

Architecture of ML Systems 02 Languages, Architectures, and System Landscape

Matthias Boehm

Last update: Mar 13, 2020

Graz University of Technology, Austria Computer Science and Biomedical Engineering Institute of Interactive Systems and Data Science BMVIT endowed chair for Data Management

Announcements/Org

- #1 Video Recording
 - Link in TeachCenter & TUbe (lectures will be public)
 - Streaming: https://tugraz.webex.com/meet/m.boehm

36

- #2 Course Registrations AMLS (as of Mar 06)
 - COVID-19 precautions March 11 April 19
 - Project selection by Apr 03
- #3 Study Abroad Fair (Mar 18, 10am-3pm, INF 25d HS i4)
 - Info booths and short presentations on study abroad programs (e.g., exchange, research, summer)

- #4 Catalyst Coding Contest (Apr 03, 3-8pm)
 - Hosted by: IT Community Styria
 - INF 18, HS i1 (117 seats)
 - https://register.codingcontest.org/

Agenda

- Data Science Lifecycle
- ML Systems Stack
- Language Abstractions
- ML Systems Benchmarks
- Programming Projects

Data Science Lifecycle

The Data Science Lifecycle

Data-centric View:

Application perspective
Workload perspective
System perspective

Data Scientist

Data Integration
Data Cleaning
Data Preparation

Model Selection
Training
Hyper-parameters

Validate & Debug
Deployment
Scoring & Feedback

Exploratory Process

(experimentation, refinements, ML pipelines)

The Data Science Lifecycle, cont.

- Classic KDD Process (Knowledge Discovery in Databases)
 - Descriptive (association rules, clustering) and predictive

[Usama M. Fayyad, Gregory Piatetsky-Shapiro, Padhraic Smyth: From Data Mining to Knowledge Discovery in Databases. Al Magazine 17(3) (1996)]

The 80% Argument

Data Sourcing Effort

 Data scientists spend 80-90% time on finding relevant datasets and data integration/cleaning. [Michael Stonebraker, Ihab F. Ilyas: Data Integration: The Current Status and the Way Forward. IEEE Data Eng. Bull. 41(2) (2018)]

Technical Debts in ML Systems

- Glue code, pipeline jungles, dead code paths
- Plain-old-data types, multiple languages, prototypes
- Abstraction and configuration debts
- Data testing, reproducibility, process management, and cultural debts

A Text Classification Scenario

ML Systems Stack

What is an ML System?

Driving Factors for ML

Improved Algorithms and Models

- Success across data and application domains
 (e.g., health care, finance, transport, production)
- More complex models which leverage large data

Availability of Large Data Collections

- Increasing automation and monitoring → data (simplified by cloud computing & services)
- Feedback loops, data programming/augmentation

[Credit: Andrew Ng'14]

Feedback Loop

HW & SW Advancements

- Higher performance of hardware and infrastructure (cloud)
- Open-source large-scale computation frameworks,
 ML systems, and vendor-provides libraries

Stack of ML Systems

Validation & Debugging

Deployment & Scoring

Hyper-parameter

Tuning

ML Apps & Algorithms

Training

Supervised, unsupervised, RL linear algebra, libs, AutoML

Model and Feature Selection

Language Abstractions

Eager interpretation, lazy evaluation, prog. compilation

Data Programming & Augmentation

Fault Tolerance

Approximation, lineage, checkpointing, checksums, ECC

Data Preparation

(e.g., one-hot, binning)

Execution Strategies

Local, distributed, cloud (data, task, parameter server)

Data Representations

Dense & sparse tensor/matrix; compress, partition, cache

Data Integration & Data Cleaning

HW & Infrastructure

CPUs, NUMA, GPUs, FPGAs, ASICs, RDMA, SSD/NVM

Improve accuracy vs. performance vs. resource requirements

→ Specialization & Heterogeneity

Accelerators (GPUs, FPGAs, ASICs)

Memory- vs Compute-intensive

- CPU: dense/sparse, large mem, high mem-bandwidth, moderate compute
- GPU: dense, small mem, slow PCI, very high mem-bandwidth / compute

Graphics Processing Units (GPUs)

- Extensively used for deep learning training and scoring
- NVIDIA Volta: "tensor cores" for 4x4 mm → 64 2B FMA instruction

Field-Programmable Gate Arrays (FPGAs)

- Customizable HW accelerators for prefiltering, compression, DL
- Examples: Microsoft Catapult/Brainwave Neural Processing Units (NPUs)

Application-Specific Integrated Circuits (ASIC)

- Spectrum of chips: DL accelerators to computer vision
- Examples: Google TPUs (64K 2B FMA), NVIDIA DLA, Intel NNP, IBM TrueNorth

• Quantum Computers?

■ Examples: IBM Q (Qiskit), Google Sycamore (Cirq → TensorFlow Quantum)

Data Representation

ML- vs DL-centric Systems

- ML: dense and sparse matrices or tensors, different sparse formats (CSR, CSC, COO), frames (heterogeneous)
- DL: mostly dense tensors, relies vec(Berlin) vec(Germany)
 on embeddings for NLP, graphs + vec(France) ≈ vec(Paris)

Data-Parallel Operations for ML

- Distributed matrices: RDD<MatrixIndexes,MatrixBlock>
- Data properties: distributed caching, partitioning, compression

■ Lossy Compression → Acc/Perf-Tradeoff

- Sparsification (reduce non-zero values)
- Quantization (reduce value domain), learned
- New data types: Intel Flexpoint (mantissa, exp)

Execution Strategies

Batch Algorithms: Data and Task Parallel

- Data-parallel operations
- Different physical operators

Lang

Faults

Exec

Data

HW

- Mini-Batch Algorithms: Parameter Server
 - Data-parallel and model-parallel PS
 - Update strategies (e.g., async, sync, backup)
 - Data partitioning strategies
 - Federated ML (trend 2018)

■ Lots of PS Decisions → Acc/Perf-Tradeoff

- Configurations (#workers, batch size/param schedules, update type/freq)
- Transfer optimizations: lossy compression, sparsification, residual accumulation, gradient clipping, and momentum corrections

Fault Tolerance & Resilience

Resilience Problem

- Increasing error rates at scale (soft/hard mem/disk/net errors)
- Robustness for preemption
- Need cost-effective resilience

Fault Tolerance in Large-Scale Computation

- Block replication (min=1, max=3) in distributed file systems
- ECC; checksums for blocks, broadcast, shuffle
- Checkpointing (MapReduce: all task outputs; Spark/DL: on request)
- Lineage-based recomputation for recovery in Spark

ML-specific Schemes (exploit app characteristics)

- Estimate contribution from lost partition to avoid strugglers
- Example: user-defined "compensation" functions

Language Abstractions

Optimization Scope

- #1 Eager Interpretation (debugging, no opt)
- #2 Lazy expression evaluation (some opt, avoid materialization)
- #3 Program compilation (full opt, difficult)

DASK

Optimization Objective

- Most common: min time s.t. memory constraints
- Multi-objective: min cost s.t. time, min time s.t. acc, max acc s.t. time

Trend: Fusion and Code Generation

- Custom fused operations
- Examples: SystemML, Weld, Taco, Julia, TF XLA,TVM, TensorRT

sum

Sparsity-Exploiting Operator

Apps

Lang

Faults

Exec

Data

HW

ML Applications

ML Algorithms (cost/benefit – time vs acc)

- Unsupervised/supervised; batch/mini-batch; first/second-order ML
- Mini-batch DL: variety of NN architectures and SGD optimizers
- Specialized Apps: Video Analytics in NoScope (time vs acc)
 - Difference detectors / specialized models for "short-circuit evaluation"

[Credit: Daniel Kang'17]

AutoML (time vs acc)

- Not algorithms but tasks (e.g., doClassify(X, y) + search space)
- Examples: MLBase, Auto-WEKA, TuPAQ, Auto-sklearn, Auto-WEKA 2.0
- AutoML services at Microsoft Azure, Amazon AWS, Google Cloud

Data Programming and Augmentation (acc?)

- Generate noisy labels for pre-training
- Exploit expert rules, simulation models, rotations/shifting, and labeling IDEs (Software 2.0)

Language Abstractions and System Architectures

20	Land	dsca	pe of	f ML	. Syster	ns	JAX	AIDA	A			
TUPAQ Mlbase					vare			Dask	(Ludwig		
Emma			Kas	sen	Tapic	vare	Gr	raphLab	_		HP	
				Cün	nülön(-D)	OptiML					cributed R	
	Glade			nulon		Syster	nDS	DMac	RIOT-D)B		
LINVIEW					Photon ML	System	МL	C N	AP HAN	٨	RIOT	
	Hemingway Velox			ahout msara			MS (F	(Rev) R			SciDB	
Lon	ngview	Tenso			F Br	ainwash 		ORE	Big		SCIDB	
LOT	1841644		SimSQL		Columbus	DeepDi	ve	Azu	reML	Fa	R4ML	
R	Orion		JIIIJQL	BUDS		Zombie	S	ScalOps		M	1XNet	
Matlab		Sa	antoku		LibFM	Keysto	neML	. 1	orch	РуТс	orch	
Julia	scikit-	learn	Sherlock	Mod	elHub			Big	;DL	Ter	nsorFlow	
Weka	Maho	out			Mode	IDB Ha	mlet	CNTK		Th	eano	
SPSS			Spark N	ИL	MADlib	Bismarck	· K	Civin	Sing			
SA	\S	Spark	K	Flink N	ЛL	Bisiliaren	· IN	Cat	`	,-·	DL4J	

Landscape of ML Systems, cont.

#1 Language Abstraction

#4 Data Types

#2 Execution Strategies

UDF-based Systems

User-defined Functions (UDF)

- Data type: Input usually collections of cells, rows, or blocks
- Implement loss and overall optimizer by yourself / UDF abstractions
- Examples: data-parallel (e.g., Spark MLlib) or In-DBMS analytics (MADlib, AIDA)

Example SQL

Matrix Product in SQL

```
SELECT A.i, B.j,
  SUM(A.val*B.val)
FROM A, B
WHERE A.j = B.i
GROUP BY A.i, B.j;
```

Matrix Product w/ UDF

Optimization w/ UDA

dot(A.row, B.col) Accumulate(state,data) Merge(state,data) Finalize(state,data)

Graph-based Systems

[Grzegorz Malewicz et al: Pregel: a system for large-scale graph processing. SIGMOD 2010]

Google Pregel

- Name: Seven Bridges of Koenigsberg (Euler 1736)
- "Think-like-a-vertex" (vertex-centric processing)
- Iterative processing in super steps, comm.: message passing

Programming Model

- Represent graph as collection of vertices w/ edge (adjacency) lists
- Implement algorithms via Vertex API
- Terminate if all vertices halted / no more msgs

```
public abstract class Vertex {
  public String getID();
  public long superstep();
  public VertexValue getValue();

  public compute(Iterator<Message> msgs);
  public sendMsgTo(String v, Message msg);
  public void voteToHalt();
}
```


- 2 [1, 3, 4]
- **7** [5, 6] Worker
- 4 [1, 2]
- **1** [1, 2, 4]
- **6**, 7]
- 3 [2] Worker 2
- **6** [5, 7]

Graph-based Systems, cont.

Example1: Connected Components

- Determine connected components of a graph (subgraphs of connected nodes)
- Propagate max(current, msgs) if != current to neighbors, terminate if no msgs

Example 2: Page Rank

- Ranking of webpages by importance / impact
- #1: Initialize vertices to 1/numVertices()
- #2: In each super step
 - Compute current vertex value: value = 0.15/numVertices()+0.85*sum(msg)
 - Send to all neighbors: value/numOutgoingEdges()

[Credit: https://en. wikipedia.org/wiki/PageRank]

Linear Algebra Systems

- Comparison Query Optimization
 - Rule- and cost-based rewrites and operator ordering
 - Physical operator selection and query compilation
 - Linear algebra / other ML operators, DAGs, control flow, sparse/dense formats
- #1 Interpretation (operation at-a-time)
 - Examples: R, PyTorch, Morpheus [PVLDB'17]
- #2 Lazy Expression Compilation (DAG at-a-time)
 - Examples: RIOT [CIDR'09], TensorFlow [OSDI'16]
 Mahout Samsara [MLSystems'16]
 - Examples w/ control structures: Weld [CIDR'17],
 OptiML [ICML'11], Emma [SIGMOD'15]
- #3 Program Compilation (entire program)
 - Examples: SystemML [PVLDB'16], Julia
 Cumulon [SIGMOD'13], Tupleware [PVLDB'15]

Optimization Scope

```
1: X = read($1); # n x m matrix
2: y = read(\$2); # n x 1 vector
3: maxi = 50; lambda = 0.001;
   intercept = $3:
   r = -(t(X) %*% v);
   norm r2 = sum(r * r); p = -r;
   w = matrix(0, ncol(X), 1); i = 0;
   while(i<maxi & norm r2>norm r2 trgt)
10: {
11:
      q = (t(X) %*% X %*% p)+lambda*p;
12:
      alpha = norm_r2 / sum(p * q);
13:
      w = w + alpha * p;
14:
      old norm r2 = norm r2;
      r = r + alpha * q;
15:
16:
      norm r2 = sum(r * r);
17:
      beta = norm r2 / old norm r2;
      p = -r + beta * p; i = i + 1;
18:
19: }
20: write(w, $4, format="text");
```


Linear Algebra Systems, cont.

Note: TF 2.0

Some Examples ...

[Dan Moldovan et al.: AutoGraph: Imperative-style Coding with Graph-based Performance. **SysML 2019**.]


```
The second secon
```



```
X = read("./X");
y = read("./y");
p = t(X) %*% y;
w = matrix(0,ncol(X),1);

while(...) {
  q = t(X) %*% X %*% p;
  ...
}
```

```
# read via queues
sess = tf.Session()
# ...
w = tf.Variable(tf.zeros(...,
    dtype=tf.float64))

while ...:
    v1 = tf.matrix_transpose(X)
    v2 = tf.matmult(X, p)
    v3 = tf.matmult(v1, v2)
    q = sess.run(v3)
    ...
```

(Custom DSL w/ R-like syntax; program compilation)

(Embedded DSL in Scala; lazy evaluation)

(Embedded DSL in Python; lazy [and eager] evaluation)

ML Libraries

Fixed algorithm implementations

Often on top of existing linear algebra or UDF abstractions

Single-node Example (Python)

from numpy import genfromtxt
from sklearn.linear_model \
 import LinearRegression

```
X = genfromtxt('X.csv')
y = genfromtxt('y.csv')
```


Distributed Example (Spark Scala)

import org.apache.spark.ml
 .regression.LinearRegression

```
val X = sc.read.csv('X.csv')
val y = sc.read.csv('y.csv')
val Xy = prepare(X, y).cache()

val reg = new LinearRegression()
   .fit(Xy)
val out reg.transform(Xy)
```


DNN Frameworks

High-level DNN Frameworks

Language abstraction for DNN construction and model fitting

K Keras

```
Examples: Caffe, Keras
```

```
model = Sequential()
model.add(Conv2D(32, (3, 3),
padding='same',

input_shape=x_train.shape[1:]))
model.add(Activation('relu'))
model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(
    MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
...
```

```
opt = keras.optimizers.rmsprop(
    lr=0.0001, decay=1e-6)

# Let's train the model using RMSprop
model.compile(loss='cat..._crossentropy',
    optimizer=opt,
    metrics=['accuracy'])

model.fit(x_train, y_train,
    batch_size=batch_size,
    epochs=epochs,
    validation_data=(x_test, y_test),
    shuffle=True)
```

Low-level DNN Frameworks

Examples: TensorFlow, MXNet, PyTorch, CNTK

Feature-centric Tools

DeepDive

- Knowledge base construction via SQL/MLNs
- Grounding: SQL queries → factor graph
- Inference: statistical inference on factor graph
- Incremental maintenance via sampling / variational approach

Overton (Apple)

- Building, monitoring, improving ML pipelines
- High-level abstractions: tasks and payloads
- Data slicing, multi-task learning, data augmentation

Ludwig (Uber AI)

- Data types and configuration files
- Encoders, combiners, decoders
- Example "visual question answering":

[Jaeho Shin et al: Incremental Knowledge Base Construction Using DeepDive. **PVLDB 2015**]

[Christopher Ré et al: Overton: A Data System for Monitoring and Improving Machine-Learned Products, CIDR 2020]

[Piero Molino, Yaroslav Dudin, Sai Sumanth Miryala: Ludwig: a type-based declarative deep learning toolbox. **CoRR 2019**]

ML Systems Benchmarks

"Big Data" Benchmarks w/ ML Components

BigBench

- 30 workloads (6 statistics, 17 data mining)
- Different data sources, processing types
- Note: TPCx-BB, TPCx-HS [TPCTC 2016]

HiBench (Intel)

- MapReduce Micro benchmarks (WC, TeraSort)
- IR/ML (e.g., PageRank, K-means, Naïve Bayes)

GenBase

Preprocessing and ML in array databases

SparkBench

- Existing library algorithms (ML, Graph, SQL, stream)
- ML: LogReg, SVM, matrix factorization, PageRank

[Ahmad Ghazal et al: BigBench: towards an industry standard benchmark for big data analytics. SIGMOD 2013]

[Lan Yi, Jinquan Dai: Experience from Hadoop Benchmarking with HiBench: From Micro-Benchmarks Toward End-to-End Pipelines. WBDB 2013]

[Rebecca Taft et al: **GenBase:** a complex analytics genomics benchmark. **SIGMOD 2014**]

[Dakshi Agrawal et al: **SparkBench** - A Spark Performance Testing Suite. **TPCTC 2015**]

Linear Algebra and DNN Benchmarks

SLAB: Scalable LA Benchmark (UCSD)

- Ops: TRANS, NORM, GRM, MVM, ADD, GMM
- Pipelines/Decompositions: MMC, SVD
- Algorithms: OLS, LogReg, NMF, HRSE

[Anthony Thomas, Arun Kumar: A Comparative Evaluation of Systems for Scalable Linear Algebra-based Analytics. **PVLDB 2018**]

DAWNBench (Stanford)

- Image Classification ImageNet: 93% top-5 val err
- Image Classification CIFAR10: 94% test accuracy
- Question Answering SQuAD: 0.75 F1 measure

[Cody Coleman et al.: DAWNBench: An End-to-End Deep Learning Benchmark and Competition, ML Systems Workshop 2017]

MLPerf

 Image classification ImageNet, object detection COCO, translation WMT En-Ger, recommendation MovieLens, reinforcement learning GO

Train to target accuracy

[Peter Mattson et al.: MLPerf Training Benchmark, **MLSys 2020**]

DNN Benchmarks, cont.

[MLPerf v0.6:

https://mlperf.org/training-results-0-6/]

Close	ed Div <u>isi</u>	ion Times															
								Benchmark results (minutes)						T		T	
								Object Image detectio classifi- light- cation weight		,	Translation		Recom- mendation	Reinforce- ment Learning			
								ImageNet	сосо	coco	WMT E-G	WMT E-G	MovieLens- 20M	Go			
ŧ	Submitter	System	Processor	#	Accelerator	#	Software	ResNet-50 v1.5	SSD w/ ResNet-34	Mask- R-CNN	NMT	Transformer	NCF	Mini Go	Details	Code	Notes
Availab	le in cloud																
).6-1	Google	TPUv3.32			TPUv3	16	TensorFlow, TPU 1.14.1.dev	42.19	12.61	107.03	12.25	10.20	[1]		details	code	none
).6-2	Google	TPUv3.128			TPUv3	64	TensorFlow, TPU 1.14.1.dev	11.22	3.89	57.46	4.62	3.85	[1]		<u>details</u>	code	none
).6-3	Google	TPUv3.256			TPUv3	128	TensorFlow, TPU 1.14.1.dev	6.86	2.76	35.60	3.53	2.81	[1]		<u>details</u>	<u>code</u>	none
).6-4	Google	TPUv3.512			TPUv3	256	TensorFlow, TPU 1.14.1.dev	3.85	1.79		2.51	1.58	[1]		details	code	none
).6-5	Google	TPUv3.1024			TPUv3	512	TensorFlow, TPU 1.14.1.dev	2.27	1.34		2.11	1.05	[1]		<u>details</u>	code	none
).6-6	Google	TPUv3.2048			TPUv3	1024	TensorFlow, TPU 1.14.1.dev	1.28	1.21			0.85	[1]		<u>details</u>	code	none
Availab	le on-prem	ise															
).6-7	Intel	32x 2S CLX 8260L	CLX 8260L	64			TensorFlow						[1]	14.43	<u>details</u>	code	none
0.6-8	NVIDIA	DGX-1			Tesla V100	8	MXNet, NGC19.05	115.22					[1]		<u>details</u>	code	none
0.6-9	NVIDIA	DGX-1			Tesla V100	8	PyTorch, NGC19.05		22.36	207.48	20.55	20.34	[1]		details	code	none
).6-10	NVIDIA	DGX-1			Tesla V100	8	TensorFlow, NGC19.05						[1]	27.39	details	code	none
).6-11	NVIDIA	3x DGX-1			Tesla V100	24	TensorFlow, NGC19.05						[1]	13.57	<u>details</u>	<u>code</u>	none
).6-12	NVIDIA	24x DGX-1			Tesla V100	192	PyTorch, NGC19.05			22.03			[1]		details	code	none
).6-13	NVIDIA	30x DGX-1			Tesla V100	240	PyTorch, NGC19.05		2.67				[1]		details	code	none
).6-14	NVIDIA	48x DGX-1			Tesla V100	384	PyTorch, NGC19.05				1.99		[1]		<u>details</u>	code	none
).6-15	NVIDIA	60x DGX-1			Tesla V100	480	PyTorch, NGC19.05					2.05	[1]		<u>details</u>	code	none
).6-16	NVIDIA	130x DGX-1			Tesla V100	1040	MXNet, NGC19.05	1.69					[1]		details	code	none
).6-17	NVIDIA	DGX-2		П	Tesla V100	16	MXNet, NGC19.05	57.87					DC	V CLID	-DD	O.D.	-
).6-18	NVIDIA	DGX-2			Tesla V100	16	PyTorch, NGC19.05		12.21	101.00	10.94	11.04	DG	X SUPI	ERP	עט	
).6-19	NVIDIA	DGX-2H			Tesla V100	16	MXNet, NGC19.05	52.74					Auton	omous Vehicles	Speech /	Al Health	care Graphics HP
).6-20	NVIDIA	DGX-2H			Tesla V100	16	PyTorch, NGC19.05		11.41	95.20	9.87	9.80		The Control of the Co	ilo	NO.	
).6-21	NVIDIA	4x DGX-2H			Tesla V100	64	PyTorch, NGC19.05		4.78	32.72				1999			
).6-22	NVIDIA	10x DGX-2H			Tesla V100	160	PyTorch, NGC19.05					2.41	9				
).6-23	NVIDIA	12x DGX-2H			Tesla V100	192	PyTorch, NGC19.05			18.47			-		10	1	No. of the
).6-24	NVIDIA	15x DGX-2H			Tesla V100	240	PyTorch, NGC19.05		2.56					The same of the sa			The second second
).6-25	NVIDIA	16x DGX-2H			Tesla V100	256	PyTorch, NGC19.05				2.12			251 ES	H		
).6-26	NVIDIA	24x DGX-2H			Tesla V100	384	PyTorch, NGC19.05				1.80		46.				
).6-27	NVIDIA	30x DGX-2H, 8 chips each			Tesla V100	240	PyTorch, NGC19.05		2.23					TOP HELD			
).6-28	NVIDIA	30x DGX-2H			Tesla V100	480	PyTorch, NGC19.05					1.59	E. E	The same			
).6-29	NVIDIA	32x DGX-2H			Tesla V100	512	MXNet, NGC19.05	2.59								96 DGX 10 Mell	2H snox EDR IB per node
0.6-30	NVIDIA	96x DGX-2H			Tesla V100	1536	MXNet, NGC19.05	1.33								- 1,536 V	100 Tensor Core GPU watt of power

96 x DGX-2H = 96 * 16 = 1536 V100 GPUs
→ ~ 96 * \$400K = \$35M - \$40M

[https://www.forbes.com/sites/tiriasresearch/2019/ 06/19/nvidia-offers-a-turnkey-supercomputer-thedgx-superpod/#693400f43ee5]

AutoML and Data Cleaning

MLBench

- Compare AutoML w/ human experts (Kaggle)
- Classification, regression; AUC vs Runtime

[Yu Liu, Hantian Zhang, Luyuan Zeng, Wentao Wu, Ce Zhang: MLBench: Benchmarking Machine Learning Services Against Human Experts. **PVLDB 2018**]

(Open Source) AutoML Benchmark

- 39 classification datasets, AUC metric, 10-fold CV
- Extensible metrics, OS AutoML frameworks, datasets

[Pieter Gijsbers et al.: An Open Source AutoML Benchmark. **Automated ML**

Workshop 2019

CleanML

- Train/Test on dirty vs clean data (2x2)
- Missing values, outliers, duplicates, mislabels

[Peng Li et al: CleanML: A Benchmark for Joint Data Cleaning and Machine Learning, CoRR 2019]

Meta Worlds Benchmark

- Meta-reinforcement and multi-task learning
- 50 robotic manipulation tasks (e.g., get coffee, open window, pick & place)

[Tianhe Yu et al: Meta-World: A Benchmark and Evaluation for Multi-Task and Meta Reinforcement Learning, CoRL 2019]

Programming Projects

Refinement until March 27

(bring you own if you want)

Project Selection by April 03

Example Projects APIs/Tools

- #1 Extended Python and Java Language Bindings
- #2 Auto Differentiation (builtin function and compiler)
- #3 Built-in Functions for Regression, Classification, Clustering
- #4 Built-in Functions for Time Series Missing Value Imputation
- #5 DL-based Entity Resolution Primitives (baseline implementation)
- #6 Model Selection Primitives (BO, multi-armed bandit, hyperband)
- #7 Neural Collaborative Filtering (see MLPerf benchmark)
- #8 Quantum Neural Networks (Grover's Quantum Search, Qiskit/TFQ)
- #9 SLAB Benchmark (benchmark driver, summary)
- #10 Documentation and Tutorials (for different target users)
- #11 Extended Test Framework (comparisons, caching, remove redundancy)
- #12 Performance Testsuite (extend algorithm-level suite)
- #13 ONNX Graph Importer/Exporter (DML script / HOP DAG generation)

Example Projects Compiler/Runtime

- #14 Loop Vectorization Rewrites (more general framework)
- #15 Canonicalization Rewrite Framework (refactoring, new rewrites)
- #16 Extended CSE & Constant Folding (commutativity, one-shot)
- #17 Extended Matrix Multiplication Chain Opt (sparsity, rewrites)
- #18 Extended Update In-Place Framework (reference counting)
- #19 Operator Scheduling Algorithms (baselines)
- #20 Lazy / Asynchronous Instruction Evaluation
- #21 SLIDE Operators and Runtime Integration (Sub-Linear DL Engine)
- #22 Compression Planning Extensions (co-coding search algorithm)
- #23 Feature Transform: Equi-Height/Custom Binning (local, distributed)
- #24 Extended Intel MKL-DNN Runtime Operations (beyond conv2d)
- #25 Extended I/O Framework for Other Formats (e.g., NetCDF, HDF5, Arrow)
- #26 Protobuf reader/writer into Data Tensor (local, distributed)

Summary and Q&A

- Data Science Lifecycle
- ML Systems Stack
- Language Abstractions
- ML System Benchmarks
- Programming Projects (first come, first serve)
- Recommended Reading (a critical perspective on a broad sense of ML systems)
 - [M. Jordan: SysML: Perspectives and Challenges. Keynote at SysML 2018]
 - "ML [...] is far from being a solid engineering discipline that can yield robust, scalable solutions to modern data-analytic problems"
 - https://www.youtube.com/watch?v=4inIBmY8dQI

