TU

Grazm

SCIENCE
PASSION
TECHNOLOGY

Architecture of ML Systems
04 Adaptation, Fusion, and JIT

Matthias Boehm

Graz University of Technology, Austria

Computer Science and Biomedical Engineering
Institute of Interactive Systems and Data Science
BMVIT endowed chair for Data Management

Last update: Mar 27, 2020 “"ISDS

TU

Grazm

Announcements/Org

= #1 Video Recording ﬂ TU be

= Link in TeachCenter & TUbe (lectures will be public)
stfuat]n,

= Streaming: https://tugraz.webex.com/meet/m.boehm cisco Webex

= #2 Course Administration AVILS
= COVID-19 precautions March 11 — April 19

= Project selection by Apr 03 (see Lecture 02) .
- Would a grace period until Apr 25 help? —

= Discussion current status project selection

u Latest release]
#3 SystemDS v0.2.0 Release =222 SystemDS 0.2.0 (March 24, 2020)
u Re I ea Sed M ar 24 2020’ - 87\:;1[:52;) £ corepointer released this 2 days ago - 3 commits to master since this release
with 219 commits Acknowledgements
] M e rge into Apa Ch e Syste m M L tod ay Thanks to Enrique Barba Roque, Sebastian Baunsgaard, Matthias Boehm,

Mark Dokter, Lukas Erlbacher, Kevin Innerebner, Florijan Klezin, Valentin
Leutgeb, Arnab Phani, Benjamin Rath, Svetlana Sagadeeva, Afan Secic, Shafaq
Siddiqi, Thomas Wedenig, Sebastian Wrede for their support in the creation
of the release of SystemDS 0.2.0.

706.550 Architecture of Machine Learning Systems — 04 Advanced Compilation .ISDS
Matthias Boehm, Graz University of Technology, SS 2020

TU

Grazm

Agenda

= Motivation and Terminology

= Runtime Adaptation

= Operator Fusion & JIT Compilation
= Discussion Programming Projects

706.550 Architecture of Machine Learning Systems — 04 Advanced Compilation
Matthias Boehm, Graz University of Technology, SS 2020

"ISDS

TU

Grazm

Motivation and Terminology

706.550 Architecture of Machine Learning Systems — 04 Advanced Compilation
Matthias Boehm, Graz University of Technology, SS 2020

"ISDS

Motivation and Terminology

TU

Grazm

Recap: Linear Algebra Systems

= Comparison Query Optimization
= Rule- and cost-based rewrites and operator ordering
= Physical operator selection and query compilation

» Linear algebra / other ML operators, DAGs,
control flow, sparse/dense formats

= #1 Interpretation (operation at-a-time)

DB
PL x HPC

N v S

Compilers for
Large-scale ML

Optimization Scope

= Examples: R, PyTorch, Morpheus [PVLDB’17]

= #2 Lazy Expression Compilation (DAG at-a-time)

= Examples: RIOT [CIDR’09], TensorFlow [OSDI’16]
Mahout Samsara [MLSystems’16]

ONOOUVhA,WNLER

= Examples w/ control structures: Weld [CIDR’17], 11,
OptiML [ICML'11], Emma [SIGMOD’15] 1

14:

= #3 Program Compilation (entire program) 1s:
= Examples: SystemML [ICDE’11/PVLDB’16], Julia, 1.
Cumulon [SIGMOD’13], Tupleware [PVLDB’15] o,

1

: X = read($1); # n x m matrix
: y =read($2); # n x 1 vector

maxi = 50; lambda = 0.001;
intercept = $3;

r = fto0 %% v);

norm_r2 = sum(r * r); p = -r;
w = matrix(@, ncol(X), 1); i = 0;
while(i<maxi & norm_r2>norm_r2_trgt)

q = (t(X) %*% X %*% p)+lambda*p;
alpha = norm_r2 / sum(p * q);

w = w + alpha * p;

old_norm_r2 = norm_r2;

r =r + alpha * q;

norm_r2 = sum(r * r);

beta = norm_r2 / old_norm_r2;
p=-r+beta*p; 1i=1+1;

}

: write(w, $4, format="text");

Motivation and Terminology

TU

Grazm

Major Compilation/Runtime Challenges

= #1 Unknown/Changing Sizes

m Sjzes inference crucial for cost-estimation and
validity constraints (e.g., rewrites)

= Tradeoff: optimization scope vs size inference effort
= Challenge: Unknowns = conservative fallback plans

= #2 Operator Runtime Overhead

= Qperators great for programmability, size inference,
simple compilation, and efficient kernel implementations
(sparse, dense, compressed)

= Tradeoff: general-purpose vs specialization

= Challenges: intermediates, parallelization,
complexity of operator combinations

706.550 Architecture of Machine Learning Systems — 04 Advanced Compilation
Matthias Boehm, Graz University of Technology, SS 2020

Y = foo(X)

Z = Y[Ix,]

nrow(Z)?
sum

@

"ISDS

TU

Motivation and Terminology Graza

Terminology Ahead-of-Time / Just-in-Time

= Ahead-of-Time Compilation
= QOriginating from compiled languages like C, C++

Apache
= #1 Program compilation at different abstraction levels SystemML™
— = #2 Inference program compilation & packaging ¥ TensorflowLite
& PYTORCH

= Just-In-Time Compilation (at runtime for specific data/HW)
y

= QOriginating from JIT-compiled languages like Java, C# N y
i{g} MAHOUT Tensor

= #1 Lazy expression evaluation + optimization

. I : — Apache & fgeo
— = #2 Program/function compilation with recompilation SypstemML'" _|uI|a

(LLVIM)
= Excursus: Java JIT
= #1 Start w/ Java bytecode interpretation by JVM = fast startup
= #2 Tiered JIT compile (cold, warm, hot, very hot, scorching) = performance
= Trace statistics (frequency, time) at method granularity

PL

= Note: -XX:+PrintCompilation

706.550 Architecture of Machine Learning Systems — 04 Advanced Compilation B ISDS
Matthias Boehm, Graz University of Technology, SS 2020

Motivation and Terminology TU

Grazm

ﬂ Terminology Runtime Adaptation & JIT

[Amol Deshpande, Joseph M. Hellerstein,
= Excursus: Adaptive Query Processing Shankar Raman: Adaptive query proc-essing:
why, how, when, what next. SIGMOD 2006]

= Spectrum of

o o static late inter- intra- per
DB Ada pthlty plans binding operator operator tuple
traditional Dynamic QEP Query Scrambling XJoin, DPHJ, Eddies
DBMS Parametric Mid-query Reopt, Convergent QP
Competitive Progressive Opt

Proactive Opt

= Excursus: Query Execution Strategies 00 .
- "tuple at a time"]
#1 Volcano lterator Model 2011 DEMS "X
DB = #2 Materialized Intermediates Qi | .
] . = 10+ ag;r:gsr;i "column at a tlme"}
= #3 Vectorized (Batched) Execution E ’ MonetDBMIL |
. . 8 interpretation materialization overhead 37
. #4 Query Compllatlon % -“""‘3:;2;2:3 query without selection +24
£ p——
Y Cirmilap. £ _
HPC Similar: Loop fusion, fission, tiling 2 /{\Eﬁ?gjfc,_?ézf;ﬁedé
) MonetD BJ{X‘] 00" extra memory traffic
[Peter A. Boncz, Marcin Zukowski, Niels 02 e ;o;,fff,tp?;a?;fa:ﬁgid
Nes: MonetDB/X100: Hyper-Pipelining), CProgiam e
Query Execution. CIDR 2005] 1 4 16 64 256 1K 4K 16K 64K 256K 1M 4M 6M

Vector Size

706.550 Architecture of Machine Learning Systems — 04 Advanced Compilation B ISDS
Matthias Boehm, Graz University of Technology, SS 2020

Runtime Adaptation

ML Systems w/ Optimizing Compiler

Apache
sl SystemML™

706.550 Architecture of Machine Learning Systems — 04 Advanced Compilation
Matthias Boehm, Graz University of Technology, SS 2020

"ISDS

Runtime Adaptation -I(;rE!l

Issues of Unknown or Changing Sizes

= Problem of unknown/changing sizes

= Unknown or changing sizes and sparsity of intermediates
These unknowns lead to very conservative fallback plans (distributed ops)

= #1 Control Flow X = read(/tmp/X.csv’);

= Branches and loops if(intercept) .
) X = cbind(X, matrix(1,nrow(X),1));
= Complex function call graphs

» User-Defined Functions Z = foo(X) + X; # size of + and Z?

= #2 Data-Dependencies Y = table(seq(1,nrow(X)), y);

= Data-dependent operators grad = t(X) %*% (P - Y);

(e.g., table, rmEmpty, aggregate) Ex.: Multinomial

= Computed size expressions Logistic Regression

d = dout[, (t-2)*M+1:(t-1)*M]; <«

cur_Q = matrix (@, 1, 2*ncur);

cur_S = matrix (0, 1, ncur*dist); Y y
706.550 Architecture of Machine Learning Systems — 04 Advanced Compilation .ISDS
Matthias Boehm, Graz University of Technology, SS 2020

Runtime Adaptation -ErLa!.

Issues of Unknown or Changing Sizes, cont.

= #3 Changing Dims and Sparsity Ex: Stepwise LinReg

= [terative feature selection workloads while(continue) {
parfor(i in 1:n) {
if(!'fixed[1,i]) {
=» Same code with different data Xi = cbind(Xg, X[,i])

B[,i] = lm(Xi:y)

= Changing dimensions or sparsity

= #4 API Limitations }

}

» Precompiled scripts/programs # add best to Xg (AIC)

(inputs unavailable) }

= (#5 Compiler Limitations)

=» Dynamic recompilation techniques as robust fallback strategy
= Shares goals and challenges with adaptive query processing
= However, ML domain-specific techniques and rewrites

706.550 Architecture of Machine Learning Systems — 04 Advanced Compilation B ISDS
Matthias Boehm, Graz University of Technology, SS 2020

Runtime Adaptation -Erla‘z'.

Recompilation Script Matthias Boehm et al

SystemML's Optimizer:
Plan Generation for
Large-Scale Machine
Learning Programs. IEEE

: .
I
I
: . . I
I Language Live Variable Analysis I Data Eng. Bull 2014]
I
! l
I

Parsing (syntactic analysis)

! — ConstructHopDAGs i
Y™ sttic/Dynamickewrites K
e ~__static/oynamicRewrites ____[H
= [Compute Memory Estimates ___ [RMINNLOUCAL

Recompilation

Construct LOP DAGs Other systems
(incl operator selection, hop-lop rewrites) w/ recompile:

Generate Runtime Program SciDB, MatFast

Execution Plan

Runtime Adaptation

TU

Grazm

Dynamic Recompilation

= Compile-time Decisions

Control flow = statement blocks
- initial recompilation granularity

= Split HOP DAGs for recompilation: prevent unknowns but keep DAGs as large
as possible; split after reads w/ unknown sizes and specific operators

= Mark HOP DAGs for recompilation: Spark due to unknown sizes / sparsity

R1

}

abs

}

A

R2
f
* R3
SN
S rm rm
o
+ rm
P O 4

B C

R4
'

abs

}

rm

}

A

rm ..

»

(recursive
rewrite)

removeEmpty (X, [margin=“rows”,select=I])

SN

S

R2 R3 R4
b
* rm abs

tmpl tmp2 tmp3

R1

abs

}

A

rm
+ rm
B C A

tmpl

A
rm tmp2 tm$p3

b

TU

Runtime Adaptation Graza

Dynamic Recompilation, cont.

= Dynamic Recompilation at Runtime on recompilation hooks
(last level program blocks, predicates, recompile once functions)

Deep Copy DAG
Replace Literals Symbol Table
Update DAG Statistics X 1Mx16e0,93M
Dynamic Rewrites [[a6RxT, _1] P 1Mx7,7M
Recompute Memory ba(+*) Y 1Mx7,7M
Estimates
[Codegen] [{a0gxn}i9on] cp sp [1Mx7}52]]
Generate r(t) b()
Runtime Instructions
Y
[:[l!MXQOQSQI!] [[:IMZ,,?M]] [1Mx737M]]
706.550 Architecture of Machine Learning Systems — 04 Advanced Compilation .ISDS

Matthias Boehm, Graz University of Technology, SS 2020

TU

Runtime Adaptation Graza

Dynamic Recompilation, cont.

|] i i
Recompile Once Functions foo = function(Matrix[Double] A)

= Unknowns due to inconsistent or # recompiled w/ size of A
unknown call size information return (Matrix[Double] C)
= |PA marks functions as “recompile {

C = rand(nrow(A),1) + A;

once”, if it contains loops
P while(...)

= Recompile the entire function on entry C =C / rowSums(C) * s
+ disable unnecessary recompile }
= Recompile parfor Loops while(continue) {

parfor(i in 1:n) {

= Unknown sizes and iterations
if(!fixed[1,i]) {

= Recompile parfor loop on entry Xi = cbind(Xg, X[,i])
+ disable unnecessary recompile B[,i] = 1m(Xi,y)
= Create independent DAGs for }
individual parfor workers ¥
add best to Xg (AIC)
}
706.550 Architecture of Machine Learning Systems — 04 Advanced Compilation B ISDS

Matthias Boehm, Graz University of Technology, SS 2020

Operator Fusion & JIT Compilation
(aka Code Generation)

Many State-of-the-Art ML Systems,
especially for DNNs and numerical computation

@
L] o0
' m
PYTORCH lela :] 'I-\ ! Apache [m
[??VM Tensor n SystemML™ h tvm
706.550 Architecture of Machine Learning Systems — 04 Advanced Compilation - ISDS

Matthias Boehm, Graz University of Technology, SS 2020

Operator Fusion & JIT Compilation

TU

Grazm

Motivation: Fusion

= Data Flow Graphs (better data access)

[Matthias Boehm et al.: On Optimizing | = =
Operator Fusion Plans for Large-Scale
ML in SystemML. PVLDB 2018]

= DAGs of linear algebra (LA) operations and statistical functions

= Materialized intermediates = ubiquitous fusion opportunities

a) Intermediates

sum

N

(0
0

d) Sparsity
Exploitation

sum(X*Y*Z)

sum

b) Single-Pass c) Multi-Aggregates

v

t(X)%*%(X%*%v)

sum sum sum

Dt(t(X%*%V)%*%X) - - '
< 1. -
(Xv)T
Im\

|] |

-

O log

Operator Fusion & JIT Compilation -I(;rE!l

. . . Beware: SystemML 1.0,
MOt|Vat|0n: FUSIOH, COnt Julia 0.6.2, TensorFlow 1.5
dense Cell Template: sum(X*Y*Z) sparse (0.1)
g]()()()() — TF/Gen O Fused EIOOOO - O Julia 0 Fused
o Julia/Gen H Gen N B JuliaGen H Gen
£ 1000 4 O Base E 1000 4 O Base
~ ~
S 100 5100 -
5 =
3 10 — 3 10
> »
m m
] ~ | —
IM 10M 100M 1G 1M 10M 100M 1G
Data Size (#cells per input) Data Size (#cells per input)

Row: t (X)%*%(w* (X%*%Vv)) Outer: sum(X*log(U%*%t(V)+1le-15))
— TFw— le6 — :
E 10000 — TF/Gen [Fused g ¢ @ TF/Gen [Julia/Gen [Fused
o Julia/Gen H Gen 4 t‘j leS — [J Base M Gen
_E 1000 1 O Base 9.2 S,E 10000 —

l —_
5 00 - dense g 1000
s 10 5100 —
5] | — 3
: a1 N

0.1 = 1 =

IM I0OM 100M 1G 20K x 20K, 1.0 . 01 .001 .0001

Data Size (#cells in X) Sparsity (#nnz / #cells)

rank 100

Operator Fusion & JIT Compilation -Erla'!l

Motivation: Just-In-Time Compilation

= Operator Kernels (better code)

= Specialization opportunities: data types, shapes, and operator graphs
= Heterogeneous hardware: CPUs, GPUs, FPGAs, ASICs x architectures

= #1 CPU Architecture Examples: x86-64,
= Specialize to available instructions sets sparc, amd64, arm, ppc

= Register allocation and assignment, etc

= #2 Heterogeneous Hardware Example: NVIDIA GPU Platforms

= JIT compilation for custom-build TensorRT
ASICs with HW support for ML ops

= Different architectures of devices - "

-
B S wae

l\
= F— DRIVE AGX

= #3 Custom ML Program (https://docs.nvidia.com/ o

n Operator graphs and sizes deeplearning/sdk/tensorrt-
developer-guide/index.html]

706.550 Architecture of Machine Learning Systems — 04 Advanced Compilation B ISDS
Matthias Boehm, Graz University of Technology, SS 2020

TU

Operator Fusion & JIT Compilation Graza

Operator Fusion Overview

= Related Research Areas
= DB: query compilation
= HPC: loop fusion, tiling, and distribution (NP complete)
= ML: operator fusion (dependencies given by data flow graph)

= Example Operator Fusion Memory Bandwidth:
L1 core: 1TB/s

L3 socket: 400GB/s
Mem: 100 GB/s

R for(i in 1:n)
} ® tmpl[i,1] = s * B[i,1];

* for(i in 1:n)
. tmp2[i,1] — A[i,l] + tmpl[i,l]; [https://software.intel.com/
+ C for(i in 1:n) en-us/articles/memory-
7 0 . 1 1N -N . . performance-in-a-nutshell]
A * R[lJl] = tmp2[1,1] * C[111]3
S
S B ’

for(i in 1:n)
R[i:l] = (A[i:i] + S*B[i)l]) * C[ial];

706.550 Architecture of Machine Learning Systems — 04 Advanced Compilation B ISDS
Matthias Boehm, Graz University of Technology, SS 2020

TU

Operator Fusion & JIT Compilation Graza

Evolution of Operator Fusion in ML Systems

= 15t Gen: Handwritten Fused Operators

= [BLAS (since 1979): e.g., alpha * X + Y > AXPY] [Arash Ashari: On
optimizing machine
= Rewrites: e.g., A+B+C - AddN(A, B, C), learning workloads via

t(X) %*% (w * (X %*% v)) > MMCHAIN kernel fusion. PPOPP 2015]

. o Matthias Boehm: SystemMIL:
= Sparsity exploiting fused ops: [
P y €Xp g P Declarative Machine Learning

e.g., sum(X*log(U%*%t(V)+eps)) on Spark. PVLDB 2016]

= 2" Gen: [Tarek Elgamal et al: SPOOF:

Sum-Product Optimization and
Operator Fusion for Large-Scale
= Heuristics for replacing sub-DAGs w/ fused ops Machine Learning. CIDR 2017]

= Automatic operator fusion via elementary ops

= 3rd Gen: [Matthias Boehm et al.: On
Optimizing Operator Fusion

Plans for Large-Scale ML in
= [Greedy/evolutionary kernel implementations] SystemML. PVLDB 2018]

= Greedy/exact fusion plan (sub-DAG) selection

706.550 Architecture of Machine Learning Systems — 04 Advanced Compilation B ISDS
Matthias Boehm, Graz University of Technology, SS 2020

Operator Fusion & JIT Compilation

TU

Grazm

Automatic Operator Fusion System Landscape
I T T Y T

2009 Loop Fusion k-Greedy, cost-based
Tupleware 2015 Loop Fusion No Yes Heuristic
Kasen 2016 Templates (Yes) Yes Greedy, cost-based
SystemML 2017 Templates Yes Yes Exact, cost-based
Weld 2017 Templates (Yes) Yes Heuristic
Taco 2017 Loop Fusion Yes No Manuel
Julia 2017 Loop Fusion Yes No Manuel
Tensorflow XLA 2017 Loop Fusion No No Manuel/Heuristic
Tensor 2018 Loop Fusion No No Evolutionary,
JIT { Comprehensions cost-based
TVM 2018 Loop Fusion No No ML/cost-based
PyTorch 2019 Loop Fusion No No Manual/Heuristic
JAX 2019 N/A No No See TF XLA
e e "ISDS

Operator Fusion & JIT Compilation -ErLa!.

A Case for Optimizing Fusion Plans AP L

Problem: Fusion heuristics = poor plans for complex DAGs
(cost/structure), sparsity exploitation, and local/distributed operations

Goal: Principled approach for optimizing fusion plans C=A+s*B
D = (C/2)"(C-1)

E = exp(C-1)
#1 Materialization Points) /6 '
. . .
(e.g., for multiple consumers) iéé]
m
FA g 2 FNR

Y +[X ¥ (U %*% t(V))

#2 Sparsity Exploitation
(and ordering of sparse inputs)

sparse-safe over X

#3 Decisions on Fusion Patterns
(e.g., template types)

#4 Constraints =>» Search Space that
requires optimization

(e.g., memory budget and block sizes)

706.550 Architecture of Machine Learning Systems — 04 Advanced Compilation .ISDS
Matthias Boehm, Graz University of Technology, SS 2020

Operator Fusion & JIT Compilation

TU

Grazm

System Architecture (Compiler & Codegen Architecture)

Seript

4 SystemML Compiler)

(Parse & Validate)

(Static Rewrites & IPA)

pilation

at

f/— Dvnamic Recom

(Dynamic Rewrit%)

Practical, exact, cost-based optimizer

HOPs Candidate Selection | Memo
Table
Plan Cache ' Cost Model

=

Codegen

(Memory Estirnates)

(Oper ator Selection)

(Gen Runtime Prcrg)

Y Execution Plan

/

Compiler

Candidate Exploration N Optimizer

~

(partial

CPlan Construction fusion
l Rewrites plans)

Code Generation
Cache ' janino/javac

HOP DAG Modification

= CPlan representation/construction and codegen similar in TF XLA
(HLO primitives, pre-clustering of nodes, caching, LLVM codegen) Tensorrion e,

= Templates: Cell, Row, MIAgg, Outer w/ different data bindings

Operator Fusion & JIT Compilation -ErE!l

Codegen Example L2SVM (cell/magg)

= L2SVM Inner Loop

1: while(continueOuter & iter < maxi) {
2 #...
3: while(continuelnner) {
4: out = 1-Y* (Xw+step_sz*Xd);
5: sv = (out > 0);
6: out = out * sv;
7: g = wd + step_sz*dd

- sum(out * Y * Xd);
8: h = dd + sum(Xd * sv * Xd);
9: step sz = step_ sz - g/h;
10: }} ...

= # of Vector Intermediates
= Base (w/o fused ops): 10

= Fused (w/ fused ops): 4

Operator Fusion & JIT Compilation -Erla!.

Codegen Example L2SVM, cont. (cel/magg)

= Template Skeleton public final class TMP25 extends SpoofMAgg {
. public TMP25() {
" Data access, blocking super(false, AggOp.SUM, AggOp.SUM);
= Multi-threading }
) i protected void genexec(double a, SideInput[] b,
= Final aggregation double[] scalars, double[] c, ...) {
; double TMP11 = getValue(b[©], rowIndex);
abstract class SpooiMAgg double TMP12 = getValue(b[1], rowIndex);
. double TMP13 = a * scalars[@];
execute() { double TMP14 = TMP12 + TMP13:
or all rows r
for all cols c clase TAIPOS double TMP15 = TMP1l * TMP14;
out[r,c] = extends double TMP16 = 1 - TMP15;
genexec SpoofMAgg double TMP17 = (TMP16 > @) ? 1 : ©;
infr.c]): double TMP18 = a * TMP17;

double TMP19 = TMP18 * a;

abstract ;‘if;‘;;‘g‘}e double TMP20 = TMP16 * TMP17;
genexec(); . double TMP21 = TMP20 * TMP11;
} double TMP22 = TMP21 * a;
(skeleton) (generated) c[e] += TMP19;

c[1] += TMP22;
= # of Vector Intermediates , }

= Gen (codegen ops): 0

TU

Operator Fusion & JIT Compilation Graza

Codegen Example MLogreg (row)

= MLogreg Inner Loop

(main expression on feature matrix X) |
= P[, 1:k] * (X %*% v) 11 ba(—+

1: Q
2: H

t(X) %*% (Q - P[, 1:k] * rowSums(Q))
public final class TMP25 extends SpoofRow {
public TMP25() {
super(RowType.COL_AGG_B1_T, true, 5);
}

protected void genexecDense(double[] a, int ai,

SideInput[] b, double[] c,..., int len) { aﬂ%—

double[] TMP11l = getVector(b[1].vals(rix),...);

double[] TMP12 = vectMatMult(a, b[@].vals(rix),...);

double[] TMP13 = vectMult(TMP11l, TMP12, @, 0,...);

double TMP14 = vectSum(TMP13, ©, TMP13.length);

double[] TMP15 = vectMult(TMP11l, TMP14, ©,...); 1 ba(~

double[] TMP16 = vectMinus(TMP13, TMP15, @, 0,...);

vectOuterMultAdd(a, TMP16, c, ai, ©, ©,...); } \ |
protected void genexecSparse(double[] avals, int[] aix, X v P

int ai, SidelInput[] b, ..., int len) {...}

Operator Fusion & JIT Compilation -Erla!.

Candidate Exploration (by example MLogreg)

= Memo Table for partial Memo Table

fusion plans (candidates) m /11 ba(): .
|

= OFMIC Template |
Fusion API 11 ba(+

= Open
= Fuse, Merge
" Close gbm
= OFMC
7 ua(R

I
b0 1-

— e o o o

@D o)
F

Algorithm 10 r(t)

= Bottom-up 4

Exploration
(single-pass, /
template- 4 ba(+*) Srix

agnostic) AN |
X v P

= Linear space

and time ba .. binary aggregate b .. binary r(t) .. transpose
(matrix multiply) rix .. right indexing ua .. unary aggregate

Operator Fusion & JIT Compilation -ErLa!.

Candidate Selection (Partitions and Interesting Points)

= #1 Determine Plan Partitions

I
=» Optimize partitions :
|

|_ = | partition
Ps

Materialization partition

Points M ——— - P
Connected components; sartition root
of fusion references | ~|—--- node Ra

| partition

Root and input nodes Ps

operators with
. fusion plans

. materialization

independently points M

______ partition input Zss

= #2 Determine Interesting Points

Materialization Point Consumers: Each data dependency on materialization
points considered separately

= Template / Sparse Switches: Data dependencies where producer has

templates that are non-existing for consumers

=» Optimizer considers all 2IMil plans (with |M’.| = |M.|) per partition

706.550 Architecture of Machine Learning Systems — 04 Advanced Compilation .ISDS
Matthias Boehm, Graz University of Technology, SS 2020

Operator Fusion & JIT Compilation TU

Grazm

Candidate Selection, cont. (Costs and Constraints)

= Overview Cost Model _
- -) C(Pi|q) - Z (T; + max (T];,T;;))
= Cost partition with analytical cost model pePila
based on peak memory and compute bandwidth

= Plan comparisons / fusion errors don’t propagate / dynamic recompilation

= #3 Evaluate Costs

= #1: Memoization of already processed sub-DAGs 9
= #2: Account for shared reads and CSEs within operators

= #3: Account for redundant computation (overlap)

=>» DAG traversal and cost vectors per fused operator
(with memoization of pairs of operators and cost vectors)

= #4 Handle Constraints

= Prefiltering violated constraints (e.g., row template in distributed ops)
= Assign infinite costs for violated constraints during costing

706.550 Architecture of Machine Learning Systems — 04 Advanced Compilation B ISDS
Matthias Boehm, Graz University of Technology, SS 2020

Operator Fusion & JIT Compilation -ErLa!.

Candidate Selection, cont. (virskipEnum and Pruning)

virtual search
tree

= #5 Basic Enumeration M

= Linearized search space: from-to * Mz
for(j in 1:pow(2,[M’;])) Mg
q = createAssignment(j)

C = getPlanCost(P,, q)
maintainBest(q, C) r

= #6 Cost-Based Pruning
= Upper bound: cost CY of best plan g* (monotonically decreasing)
= Opening heuristic: evaluate FA and FNR heuristics first

= Lower bound: C® (read input, write output, min compute) + dynamic C°
(materialize intermediates q) = skip subspace if CV < C*CHP

= #7 Structural Pruning
= Observation: Assignments can create independent sub problems
= Build reachability graph to determine cut sets
= During enum: probe cut sets, recursive enum, combine, and skip

Operator Fusion & JIT Compilation TU

Grazm

Ahead-of-Time Compilation

= TensorFlow tf.compile

@™
= Compile entire TF graph into binary function w/ low footprint TensoI.r n
» |nput: Graph, config (feeds+fetches w/ fixes shape sizes)

. . Chris Leary, Todd Wang:
= Qutput: x86 binary and C++ header (e.g., inference) XLA_[TensorFlo\\/N Comp”edg!

n TF Dev Summit 2017]

= PyTorch Compile PYTMRCH
= Compile Python functions into ScriptModule/ScriptFunction

= Lazily collect operations,

optimize, and JIT compile a = torch.rand(5)
def func(x):

= Explicit jit.script call for i in range(10):

or @torch.jit.script X = X * x # unrolled into graph
return x
[Vincent Quenneville-Bélair:
How PyTorch Optimizes jit'FunC = torch. jit . Scr‘ipt('FunC) # JIT
Deep Learning Computations, jitfunc.save("func.pt")

Guest Lecture Stanford 2020]

706.550 Architecture of Machine Learning Systems — 04 Advanced Compilation B ISDS
Matthias Boehm, Graz University of Technology, SS 2020

Operator Fusion & JIT Compilation -ErLa!.

. [Rasmus Munk Larsen, Tatiana Shpeisman:
EXC u rS u S . M I-I R “l:-" TensorFlow Graph Optimizations,
Tensor Guest Lecture Stanford 2019]

= Motivation TF Compiler Ecosystem

LLVM IR

Several others

= Different IRs and compilation
chains for runtime backends ©rappler ()

= Duplication of infrastructure —>
TensorFlow

and fragile error handling —>
—_—

/i Tensor RT

nGraph

> Core ML .
— NNAPI
[TensorFlow Lite <

Many others

= MLIR (Multi-level, Machine Learning IR) func @testFunction(%arge:

132
= SSA-based IR, similar to LLVM %x = call @thingToCall(%arg;){
= Hierarchy of modules, functions, :A(BZ) -> 132
blocks, and operations (text-based) ’\bE;: bbl
= Dialects for different backends %y = addi %x, %x : 132
(defined ops, customization) return %y : 132
= Systematic lowering }
706.550 Arﬁ\::;(;‘til:;eBc;fehr:I;dg:aezLji;':;:gtSys:cems — 04 Advanced Compilation 5 ISDS
) y of Technology, SS 2020

TU

Grazm

Discussion
Programming Projects

706.550 Architecture of Machine Learning Systems — 04 Advanced Compilation
Matthias Boehm, Graz University of Technology, SS 2020

"ISDS

Programming Projects -I(;rE!l

Example Projects

APIS and Algorithms
= #1 Extended Python and Java Language Bindings (addition ops)

#2 Built-in Functions for Regression, Classification, Clustering

#3 Built-in Functions for Time Series Missing Value Imputation

#4 Neural Collaborative Filtering (see MLPerf benchmark)

#5 DL-based Entity Resolution Primitives (baseline implementation)

#6 Vodel Selection Primitives (BO, multi-armed bandit, hyperband)

Documentation, Tutorials, and Tests

#7 Documentation and Tutorials (for different target users)

#8 Extended Test Framework (comparisons, caching, remove redundancy)

#9 New Optimizer Test Framework (rewrites, optimization passes)

#10 SLAB Benchmark (benchmark driver, summary)

#11 Performance Testsuite (extend algorithm-level suite)

706.550 Architecture of Machine Learning Systems — 04 Advanced Compilation .ISDS
Matthias Boehm, Graz University of Technology, SS 2020

Programming Projects -I(;rE!l

Example Project, cont.

Tools and Experimental

#12 ONNX Graph Importer/Exporter (DML script / HOP DAG generation)
#13 Auto Differentiation (builtin function and compiler)

#14 SLIDE Operators and Runtime Integration (Sub-Linear DL Engine)
#15 Quantum Neural Networks (Grover’s Quantum Search, Qiskit/TFQ)

Compiler Features

#16 Loop Vectorization Rewrites (more general framework)

#17 Canonicalization Rewrite Framework (refactoring, new rewrites)
#18 Extended CSE & Constant Folding (commutativity, one-shot)
#19 Extended Matrix Multiplication Chain Opt (sparsity, rewrites)
#20 Extended Update In-Place Framework (reference counting)

#21 LLVM Code Generator Framework (extension CPU native)

#22 Operator Scheduling Algorithms (baselines)

706.550 Architecture of Machine Learning Systems — 04 Advanced Compilation .ISDS
Matthias Boehm, Graz University of Technology, SS 2020

Programming Projects -I(;rla!l

Example Projects, cont.

Runtime Features
= #23 Feature Transform: Equi-Height/Custom Binning (local, distributed)

#24 Federated Feature Transformations (recoding, one-hot encoding)

#25 Selected N-Dimensional Tensor Operations

#26 Compression Planning Extensions (co-coding search algorithm)
#27 Extended Intel MKL-DNN Runtime Operations (beyond conv2d)
#28 Selected Dense and Sparse GPU Operations (libs, custom)

1/O Subsystem

= #29 Lineage-Exploitation in Buffer Pool (for recomputation)

= #30 Multi-threaded Buffer Pool Eviction (multi-part/multi-disk)

= #31 Extended I/O Framework for Other Formats (e.g., NetCDF, HDF5, Arrow)
= #32 Protobuf reader/writer into Data Tensor (local, distributed)

706.550 Architecture of Machine Learning Systems — 04 Advanced Compilation .ISDS
Matthias Boehm, Graz University of Technology, SS 2020

TU

Grazm

Conclusions
= Summary Recommended Reading +
= Motivation and Terminology [Chris Leary, Todd Wang: XLA — TensorFlow
. . TensorFlow, Compiled!, TF Dev Summit 2017,
" Runtime Adaptation https://www.youtube.com/watch?time_continue=154
= QOperator Fusion & IT 1&v=kAOanJczHAO&feature=emb_logo]
= Discussion Programming Projects
=» Impact of Size Inference and Costs (lecture 03)
=» Ubiquitous Rewrite, Fusion, and Codegen/JIT Opportunities
= Next Lectures (Runtime Aspects)
= 05 Data- and Task-Parallel Execution (batch/prog) [Apr 03]
= 06 Parameter Servers (mini-batch) [Apr 24]
= 07 Hybrid Execution and HW Accelerators [May 08]
= 08 Caching, Partitioning, Indexing and Compression [May 15]
706.550 Architecture of Machine Learning Systems — 04 Advanced Compilation .ISDS

Matthias Boehm, Graz University of Technology, SS 2020

