TU

Grazm

SCIENCE
PASSION
TECHNOLOGY

Architecture of ML Systems
05 Data- and Task-Parallel Execution

Matthias Boehm

Graz University of Technology, Austria

Computer Science and Biomedical Engineering
Institute of Interactive Systems and Data Science
BMVIT endowed chair for Data Management

Last update: Apr 03, 2020 “ISDS

TU

Grazm

Announcements/Org
= #1 Video Recording 0 TU be

= Link in TeachCenter & TUbe (lectures will be public)
= Streaming: https://tugraz.webex.com/meet/m.boehm

.|Lr.r!|._ _
cisco \VWebhex

= Online teaching extended until Apr 30

= #2 AMLS Programming Projects
= Project selection by Apr 03 (see Lecture 02/04)
= Status: So far, project discussions w/ 11 students
= There is a project for everybody, no matter the background =
= Grace period until April 17 (email to m.boehm@tugraz.at)

= #3 Update Apache SystemDS
= SystemDS merged, in process of name change gs:fe':ﬁmm
= Already some bug reports by students (e.g., SYSTEMML-2538)

= (Build and debug tutorial after Eastern)

706.550 Architecture of Machine Learning Systems — 05 Execution Strategies & ISDS
Matthias Boehm, Graz University of Technology, SS 2020

TU

Grazm

Agenda

= Motivation and Terminology

= Background MapReduce and Spark
= Data-Parallel Execution

= Task-Parallel Execution

706.550 Architecture of Machine Learning Systems — 05 Execution Strategies
Matthias Boehm, Graz University of Technology, SS 2020

"ISDS

TU

Grazm

Motivation and Terminology

706.550 Architecture of Machine Learning Systems — 05 Execution Strategies
Matthias Boehm, Graz University of Technology, SS 2020

"ISDS

TU

Motivation and Terminology Graza

Terminology Batch/Mini-batch

= Batch ML Algorithms

= |terative ML algorithms, where each iteration
uses the entire dataset to compute gradients AW

= For (pseudo-)second-order methods, many features

= Dedicated optimizers for traditional ML algorithms

= Mini-batch ML Algorithms

= |terative ML algorithms, where each iteration
only uses a batch of rows to make the
next model update (in epochs or w/ sampling)

— LEI R — W

124

— EEliwd — W

= For large and highly redundant training sets
i i . Epoch
= Applies to almost all iterative, model-based

ML algorithms (LDA, reg., class., factor., DNN)
= Stochastic Gradient Descent (SGD)

706.550 Architecture of Machine Learning Systems — 05 Execution Strategies .ISDS
Matthias Boehm, Graz University of Technology, SS 2020

Motivation and Terminology TU

Grazm

Terminology Batch/Mini-batch, cont.

= Excursus: Mini-batch Sizes

[Dominic Masters, Carlo

Luschi: Revisiting Small Batch
Yann LeCun @ylecun - 26. Apr. 2018 Training for Deep Neural

’ Training with large minibatches is bad for your health. Networks. CoRR 2018]
More importantly, it's bad for your test error.

Friends dont let friends use minibatches larger than 32. jarxiv.org
/abs/1804.07612

QO 22 11 461) 1306 T

= Beware: increased variance, HW vs statistical efficiency,
data and model complexity, as well as used optimizer and parameters

= Excursus: Pronunciation

= Stochastic Gradient Descent, not decent

706.550 Architecture of Machine Learning Systems — 05 Execution Strategies & ISDS
Matthias Boehm, Graz University of Technology, SS 2020

Motivation and Terminology -I(;rE!l

Terminology Parallelism

Single Data Multiple Data
= Flynn’s Classification
= SISD, SIMD Single. SISD SIMD
Instruction (uni-core) (vector)

= (MISD), MIMD

[Michael J. Flynn, Kevin W. _
Rudd: Parallel Architectures. Multiple MISD MIMD
ACM Comput. Surv. 28(1) 1996] Instruction (pipelining) (multi-core)

= Example: SIMD Processing
= Streaming SIMD Extensions (SSE)

= Process the same operation on
multiple elements at a time
(packed vs scalar SSE instructions)

2009 Nehalem: 128b (2xFP64)
2012 Sandy Bridge: 256b (4xFP64)
2017 Skylake: 512b (8xFP64)

¢ = _mm512_fmadd_pd(a, b);
= Data parallelism] [T T T 1

: . . a | I
(aka: instruction-level parallelism) bl T T T T T 1T 11
= Example: VFMADD132PD c(1 [I 1T I T [1}

706.550 Architecture of Machine Learning Systems — 05 Execution Strategies .ISDS
Matthias Boehm, Graz University of Technology, SS 2020

TU

Motivation and Terminology Graza

Recap: Central Data Abstractions

= #1 Files and Objects
= File: Arbitrarily large sequential data in specific file format (CSV, binary, etc)
= Object: binary large object, with certain meta data

= #2 Distributed Collections Key

= Logical multi-set (bag) of key-value pairs

(unsorted collection) 4 Delta
= Different physical representations 2 Bravo
= Easy distribution of pairs 1 Alpha
via horizontal partitioning)
(aka shards, partitions) 3 Charlie
= Can be created from single file, 5 Echo
or directory of files (unsorted) 6 Foxtrott
7 Golf
706.550 Architecture of Machine Learning Systems — 05 Execution Strategies .ISDS

Matthias Boehm, Graz University of Technology, SS 2020

TU

Motivation and Terminology Graza

Recap: Fault Tolerance & Resilience
[Google Data Center:

https://www.youtube.com/watch?v=XZmGGAbHga0]

= Resilience Problem

= |ncreasing error rates at scale
(soft/hard mem/disk/net errors)

= Robustness for preemption

= Need for cost-effective resilience

= Fault Tolerance in Large-Scale Computation = Pem-oon

_|—*— P(err)=0.001
—&— P(err)=0.0001

= Block replication in distributed file systems

o
o
I

<
s
|

P(Job Failure)

= ECC; checksums for blocks, broadcast, shuffle

= Checkpointing (all task outputs / on request)

" Lineage-based recomputation for recovery in Spark L0 10 1000 10000

Tasks

= [VIL-specific Approaches (exploit app characteristics)
= Estimate contribution from lost partition to avoid strugglers
= Example: user-defined “compensation” functions

706.550 Architecture of Machine Learning Systems — 05 Execution Strategies & ISDS
Matthias Boehm, Graz University of Technology, SS 2020

Motivation and Terminology -Erla!.

Categories of Execution Strategies

Batch/Mini-batch,
Batch Independent Tasks Mini-batch
SIMD/SPMD MIMD

05, Data-Parallel 05, Task-Parallel 06 Parameter Servers
Execution Execution (data, model)
[Apr 03] [Apr 03] [Apr 24]

07 Hybrid Execution and HW Accelerators [May 08]

08 Caching, Partitioning, Indexing, and Compression [May 15]

706.550 Architecture of Machine Learning Systems — 05 Execution Strategies .lSDS
Matthias Boehm, Graz University of Technology, SS 2020

Background MapReduce and Spark
(Data-Parallel Collection Processing)

Abstractions for Fault-tolerant,
Distributed Storage and Computation

706.550 Architecture of Machine Learning Systems — 05 Execution Strategies B ISDS
Matthias Boehm, Graz University of Technology, SS 2020

TU

Grazm

Data-Parallel Collection Processing

Hadoop History and Architecture

[Jeffrey Dean, Sanjay
Ghemawat: MapReduce:
Simplified Data Processing on
Large Clusters. OSDI 2004]

G lEEbEm

= Recap: Brief History

= Google’s GFS [SOSP’03] + MapReduce
- Apache Hadoop (2006)

= Apache Hive (SQL), Pig (ETL), Mahout (ML), Giraph (Graph)

= Hadoop Architecture / Eco System

= Management (Ambari)

Worker Node1 Worker Node n

= Coordination / workflows

(Zookeeper, Oozie) — o 1|

" Storage (HDFS) Z"I\'; MR | MR |[MR |!
= Resources (YARN) - ———_—= task . task || task |
[SoCC’13] MR |[MR |,\[MR |[MR |

" Processing Resource task || task ||| task || task |,
I -l uvere B e |
Manager | Manager §

et T e T
132 EEE3]2]9 B

Data-Parallel Collection Processing

TU

Grazm

MapReduce — Programming Model

= Overview Programming Model

= |nspired by functional programming languages

= Implicit parallelism (abstracts distributed storage and processing)

= Example
X CS
Y CS
A EE
VA CS

Collection of
key/value pairs

function: key/value pair = set of intermediate key/value pairs
function: merge all intermediate values by key

SELECT Dep, count(*) FROM csv_files GROUP BY Dep
(Long pos, String line) {

parts <& line.split(“,”)
emit(parts[1], 1)

} cS 1 (String dep,
Iterator<Long> iter) {
S 1 total <& iter.sum();
EE 1 emit(dep, total)
} CS
CS 1
EE

Data-Parallel Collection Processing -I(;rlagl

MapReduce — Execution Model

#1 Data Locality (delay sched., write affinity)

Input CSV files Map-Phase #2 Reduced shuffle (combine)
(stored in HDFS) #3 Fault tolerance (replication, attempts)

,m
co st 11
Filel | ,~~~~~ \

1 Split 12

\

/
\

[Reduce-Phase] Output Files
(HDFS)

/

reduce out 1

task 7
reduce out 2

f
csv | ! Spllt 21
\)

File 2 (- - T T T \
7 |\ Split 22 k
\

task 7

reduce Out 3
task

(
\
File 3

]
\
]

m
L

Shuffle, Merge,
[Combine]

N

Sort, [Combine], [Compress] w/ #reducers = 3

Data-Parallel Collection Processing

TU

Grazm

Spark History and Architecture

= Summary MapReduce
= Large-scale & fault-tolerant processing w/ UDFs and files =» Flexibility
= Restricted functional APIs =» Implicit parallelism and fault tolerance
= Criticism: #1 Performance, #2 Low-level APIs, #3 Many different systems

= Evolution to Spark (and Flink)
= Spark [HotCloud’10] + RDDs [NSDI'12] = Apache Spark (2014) S0Q

= Design: standing executors with in-memory storage,
lazy evaluation, and fault-tolerance via RDD lineage

= Performance: In-memory storage and fast job scheduling (100ms vs 10s)

= APIs: Richer functional APIs and general computation DAGs,
high-level APIs (e.g., DataFrame/Dataset), unified platform

=» But many shared concepts/infrastructure
= Implicit parallelism through dist. collections (data access, fault tolerance)
= Resource negotiators (YARN, Mesos, Kubernetes)
= HDFS and object store connectors (e.g., Swift, S3)

TU

Data-Parallel Collection Processing Graza

Spark History and Architecture, cont.

= High-Level Architecture https://spark.apache.org/]

Different language bindings:

Scala, Java, Python, R :
Spark MLIib

Different libraries:
SQL, ML, Stream, Graph

Spark core (incl RDDs)

Different cluster managers:

Yarn, Kubernetes
. N
formats, and data sources:

HDFS, S3, SWIFT, DBs, NoSQL S"p“aErK had@gp
PR -
S MESOS kubernetes

Streamingl (machine
learning)

= Focus on a unified platform
for data-parallel computation (Apache Flink w/ similar goals)

706.550 Architecture of Machine Learning Systems — 05 Execution Strategies .ISDS
Matthias Boehm, Graz University of Technology, SS 2020

Data-Parallel Collection Processing -ErLa!.

Spark Resilient Distributed Datasets (RDDs)

= RDD Abstraction JavaPairRDD<MatrixIndexes,MatrixBlock>

= Immutable, partitioned
collections of key-value pairs

= Coarse-grained deterministic operations (transformations/actions)
= Fault tolerance via lineage-based re-computation

= Operations

= Transformations: Transformation

map, hadoopFile, textFile,
flatMap, filter, sample, join,

define new RDDs (lazy) groupByKey, cogroup, reduceByKey,
= Actions: return cross, sortByKey, mapValues
result to driver Action reduce, save,
collect, count, lookupKey
= Distributed Caching Nodel Node2

= Use fraction of worker memory for caching ‘-\ ‘-\
= Eviction at granularity of individual partitions
= Different storage levels (e.g., mem/disk x serialization x compression)

706.550 Architecture of Machine Learning Systems — 05 Execution Strategies & ISDS
Matthias Boehm, Graz University of Technology, SS 2020

Data-Parallel Collection Processing -I(;rE!l

Spark Resilient Distributed Datasets (RDDs), cont.

"= Lifecycle of an RDD X.filter(foo())
= Note: can’t broadcast X.mapValues(foo())
an RDD directly X.reduceByKey(foo())

X.cache()/X.persist(...)

sc.parallelize(lst)

Local Data = Distributed
(value, collection) [Collection

1st = X.collect()
v = X.reduce(foo())

sc.hadoopFile(f)
sc.textFile(f)

X.saveAsObjectFile(f)
X.saveAsTextFile(f)

706.550 Architecture of Machine Learning Systems — 05 Execution Strategies .ISDS
Matthias Boehm, Graz University of Technology, SS 2020

Data-Parallel Collection Processing -ErLa!.

Spark Partitions and Implicit/Explicit Partitioning

Spark Partitions

= Logical key-value collections are split into physical partitions

~128MB
= Partitions are granularity of tasks, 1/0, shuffling, evictions
= Partitioning via Partitioners Example Hash Partitioning:
= |Implicitly on every data shuffling For all (k,v) of R:
= Explicitly via R.repartition(n) pid = hash(k) % n

Partitioning-Preserving

= All operations that are guaranteed to keep keys unchanged
(e.g. mapValues (), mapPartitions() w/ preservesPart flag)

Hash partitioned

X
- B P5
A X

Partitioning-Exploiting
= Join: R3 = R1.join(R2)

= Lookups:
v = C.lookup(k)

706.550 Architecture of Machine Learning Systems — 05 Execution Strategies .ISDS
Matthias Boehm, Graz University of Technology, SS 2020

TU

Data-Parallel Collection Processing Graza

Spark Lazy Evaluation, Caching, and Lineage

/’::__::__::__: _____________________ RN

/ l’ \ \\
[A partitioning- I
L aware !
I ! I

: I
| G |
I
1 Stagel :
| Tmm—m—m—————— I
: // —————————————————————
I
: : ¢ - .‘ | reduce
I

;|
L 3 |
: I :
;|
¥ s | |
: I
L 3] : o
\ Y Stage 2 J Stage3

\ N o o o o e o e e o e e e e e e -’ y

~ -7 cached

[Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy
McCauly, Michael J. Franklin, Scott Shenker, lon Stoica: Resilient Distributed Datasets: A
Fault-Tolerant Abstraction for In-Memory Cluster Computing. NSDI 2012]

TU

Grazm

Data-Parallel Execution

Batch ML Algorithms

AAAAAA <"Z B Apache / DASK
Spoﬂ(w &gp MAHOUT SystemML™ Iy
706.550 Architecture of Machine Learning Systems — 05 Execution Strategies
"ISDS

Matthias Boehm, Graz University of Technology, SS 2020

TU

Data-Parallel Execution Graza

Background: Matrix Formats

= Matrix Block (m x n) Example
= Ak.a. tiles/chunks, most operations defined here 3x3 Matrix
= Local matrix: single block, different representations .7 .1
= Common Block Representations 2.4
= Dense (linearized arrays)

.3
= MCSR (modified CSR) ,/,.// \

= CSR (compressed sparse rows), CSC
= COO (Coordinate matrix)

MCSR CSR COoO
‘\»l;-a o .7 .7
Dense (row-major) O 2L PAl.1 1
./7/01.1/.2/.4/0|0 .30 '\"m24 4\ Y4 |.2 .2
— - 5[\ kN .4 4
O(mn)

iy .3 .3

.3
O(m + nnz(X)) O(nnz(X))

706.550 Architecture of Machine Learning Systems — 05 Execution Strategies .ISDS

Matthias Boehm, Graz University of Technology, SS 2020

Data-Parallel Execution -ErE!l

Distributed Matrix Representations
Logical Blocking

= Collection of “Matrix Blocks” (and keys) 3,400x2,700 Matrix
= Bag semantics (duplicates, unordered) (w/ B=1,000)
= Logical (Fixed-Size) Blocking an || 1,2) ||a.3)

+ join processing / independence
- (sparsity skew) (2:1) || (2,2) ||(2,3)

= E.g., SystemML on Spark:

JavaPairRDD<MatrixIndexes,MatrixBlock> DR [eie | i

» Blocks encoded independently (dense/sparse) (4,1) || (4,2) ||(4,3)
[] Partitioning hash partitioned: e.g., hash(3.2) = 99.994 % 2 = 0
. L [(32 (23 (1) (1,2 (42 (4,1
= Logical Partitioning 5 m—
(e.g., row-/column-wise) Physical b S 2 2 =
= Phvsical Partitioni Blocking and “ partition O
ysical Fartitioning piovi o (22 (L) (13 63 G (33)
. Partitioning
(e.g., hash / grid) N s | Tus | [s . |[us
partition 1)

p.

706.550 Architecture of Machine Learning Systems — 05 Execution Strategies & ISDS
Matthias Boehm, Graz University of Technology, SS 2020

Data-Parallel Execution

TU

Grazm

Distributed Matrix Representations, cont.

= #1 Block-partitioned Matrices
= Fixed-size, square or rectangular blocks

= Pros: Input/output alignment, block-local transpose,
amortize block overheads, bounded mem, cache-conscious

= Cons: Converting row-wise inputs (e.g., text) requires shuffle

= Examples: RIOT, PEGASUS, SystemMIL, SciDB, Cumulon,
Distributed R, DMac, Spark Mllib, Gilbert, MatFast, and SimSQL

= #2 Row/Column-partitioned Matrices
= Collection of row indexes and rows (or columns respectively)
= Pros: Seamless data conversion and access to entire rows
= Cons: Storage overhead in Java, and cache unfriendly operations
= Examples: Spark MLlib, Mahout Samsara, Emma, SimSQL
= #3 Algorithm-specific Partitioning
= Qperation and algorithm-centric data representations
= Examples: matrix inverse, matrix factorization

706.550 Architecture of Machine Learning Systems — 05 Execution Strategies
Matthias Boehm, Graz University of Technology, SS 2020

"ISDS

Data-Parallel Execution TU

Distributed Matrix Operations

Elementwise Multiplication . Matrix
(Hadamard Product) Transposition Multiplication
C=A*B C = t(X) C = X %*% W
S T e — ™ | e . W
Ay || Ane By || Bua \\ X1 || X(12) // (1.1)
N / =
— T —==—= _|L \\ // W
Apy [|Ape) Bpi) ||Bpo Xp1 || X@ea) / diss
Y
Asy |[Asy| | Bey |[Bey X1 (| Xe2)

Note: also with
row/column vector rhs

Note: 1:N join

706.550 Architecture of Machine Learning Systems — 05 Execution Strategies .ISDS
Matthias Boehm, Graz University of Technology, SS 2020

Data-Parallel Execution -ErLa!.

Physical MM Operator Selection

= Common Selection Criteria
= Data and cluster characteristics (e.g., data size/shape, memory, parallelism)
= Matrix/operation properties (e.g., diagonal/symmetric, sparse-safe ops)
= Data flow properties (e.g., co-partitioning, co-location, data locality)

= #0 Local Operators t(X) %*% (X%*%v)
= SystemML mm, tsmm, mmchain; Samsara/Mllib local 1t
= #1 Special Operators (special patterns/sparsity) bass pzan:S
= SystemML tsmm, mapmmchain; Samsara AtA !I&T !
|]

#2 Broadcast-Based Operators (aka broadcast join)
= SystemML mapmm, mapmmchain

#3 Co-Partitioning-Based Operators (aka improved repartition join)
= SystemML zipmm; Emma, Samsara OpAtB

#4 Shuffle-Based Operators (aka repartition join)
= SystemML cpmm, rmm; Samsara OpAB

Data-Parallel Execution -ErE!l

Partitioning-Preserving Operations

Shuffle is major bottleneck for ML on Spark

Preserve Partitioning
= QOp is partitioning-preserving if keys unchanged (guaranteed)
» Implicit: Use restrictive APIs (mapValues() vs mapToPair())
= Explicit: Partition computation w/ declaration of partitioning-preserving

Exploit Partitioning
» Implicit: Operations based on join, cogroup, etc
= Explicit: Custom operators (e.g., zipmm)
_ <«—— repart, chkpt X MEM_DISK

= Example: parfor(iter_class in 1:num_classes) {
Multiclass SVM Y _local = 2 * (Y == iter_class) -1
_ g old = t(X) %*% Y_local
= \ectors fit <—— chkpt y_local MEM_DISK
neitherinto | ~ while(continue) {
. = %*%
driver nor Xd .X %*% S <«—— chkpt Xd, Xw MEM_DISK
. inner while loop (compute step_sz)
broadcast Xw = Xw + step_sz * Xd;
= ncol(X)<B out = 1 - Y_local * Xw;
¢ out = (out > @) * out;
> L» g new = t(X) %*% (out * Y_local) ... Z1lpmm

Data-Parallel Execution

TU

Grazm

Dask 7/

= Overview Dask

[Matthew Rocklin: Dask: Parallel Computation with Blocked
algorithms and Task Scheduling, Python in Science 2015]
[Dask Development Team: Dask: Library for dynamic task

scheduling, 2016, https://dask.org]

Multi-threaded and distributed operations for arrays, bags, and dataframes

dask.array:

list of numpy n-dim arrays | v -
dask.dataframe: : N

list of pandas data frames
dask.bag:unordered list of tuples (second order functions)
Local and distributed schedulers:

Numpy Pandas

threads, processes, YARN, Kubernetes, containers, HPC, and cloud, GPUs

= Execution import dask.array as da

Lazy evaluation x = da.random.random(

Limitation: requires

. e . = X + X.T
static size inference y

y.persist() # cache in memory
Triggered via z = y[::2, 5000:].mean(axis=1)

(10000,10000), chunks=(1000,1000))

compute() ret = z.compute() # returns NumPy array

706.550 Architecture of Machine Learning Systems — 05 Execution Strategies
Matthias Boehm, Graz University of Technology, SS 2020

"ISDS

Task-Parallel Execution

Parallel Computation of Independent Tasks,
Emulation of Data-Parallel Operations/Programs

@
o (R My, juia F

Tensor

706.550 Architecture of Machine Learning Systems — 05 Execution Strategies
Matthias Boehm, Graz University of Technology, SS 2020

"ISDS

Task-Parallel Execution TU

Grazm

Overview Task-Parallelism

= Historic Perspective

= Since 1980s: various parallel Fortran extensions, especially in HPC
= (independent iterations)

= OpenMP (since 1997, #pragma omp parallel for reduction(+: nnz)
Open Multi-Processing) for (int i = @; 1 < Nj i++) {
int threadID = omp_get_thread_num();
OpenMP R[i] = foo(A[i]);
nnz += (R[i]!=0) ? 1 : ©;
}

= Motivation: Independent Tasks in ML Workloads

Ensemble learning, cross validation, hyper-parameter tuning,
complex models with disjoint/overlapping/all data per task

= Challenge #1: Adaptation to data and cluster characteristics
= Challenge #2: Combination with data-parallelism

706.550 Architecture of Machine Learning Systems — 05 Execution Strategies & ISDS
Matthias Boehm, Graz University of Technology, SS 2020

Task-Parallel Execution -ErLa!.

Parallel For Loops (ParFor) — [

[M. Boehm et al.: Hybrid Parallelization

n Hybrid Parallelization Strategies Strategies for Large-Scale Machine Learning
in SystemML. PVLDB 2014]

= Combination of data- and task-parallel ops
= Combination of local and distributed computation

= Key Aspects reg = 10" (seq(-1,-10))
= Dependency Analysis B_all = matrix(@, nrow(reg), n)

= Task partitioning ..
parfor(i in 1l:nrow(reg)) {

= 1m(XJ Y, reg[i,l]);
B all[i,] = t(B);

= Data partitioning, scan
sharing, various rewrites

= Execution strategies

}
= Result agg strategies / \ \
= ParFor optimizer

Local ParFor Remote ParFor Local ParFor,
(multi-threaded), (distributed w/ concurrent
w/ local ops Spark job) distributed ops
706.550 Architecture of Machine Learning Systems — 05 Execution Strategies .ISDS

Matthias Boehm, Graz University of Technology, SS 2020

TU

Task-Parallel Execution Graza

Apache

Additional ParFor Examples — [

= Pairwise Pearson Correlation D = read("./input/D");
R = matrix(0, ncol(D), ncol(D));
parfor(i in 1:(ncol(D)-1)) {

» |n practice: uni/bivariate stats

= Pearson‘s R, Anova F, Chi-squared, X = ;
Degree of freedom, P-value, sX = sd(X);
Cramers V, Spearman, etc) parfor(j in (i+1):ncol(D)) {
Y = 5
sY = sd(Y);
R[1,j] = cov(X,Y)/(sX*sY);
}o}

write(R, "./output/R");

= Batch-wise CNN Scoring prob = matrix(@, Ni, Nc)

parfor(i in 1:ceil(Ni/B)) {

_ Xb = X[((i-1)*B+1) :min(i*B,Ni),];
for complex functions prob[((i-1)*B+1):min(i*B,Ni),] =

= Emulate data-parallelism

=» Conceptual Design: }
Master/worker (task: group of parfor iterations)

706.550 Architecture of Machine Learning Systems — 05 Execution Strategies B ISDS
Matthias Boehm, Graz University of Technology, SS 2020

Task-Parallel Execution -Erla'!l

ParFor Execution Strategies SystemML"

#1 Task Partitioning

» Fixed-size schemes:

- ‘ i+1
naive (1), static (n/k), fixed (m) RR” - g —_— [RJ _ Ki) %w
i4+1 — Llg — f by O T)

Factoring (n=101, k=4)

= Self-scheduling: e.g.,

= Remote (MR/Spark) execution i
Parallel Result Aggregation

guided self scheduling, factoring (13,13,13,13,7,7,7,7,3,3,3,3, 2,2,2,2, 1)
= #2 Data Partitioning 'ParFOR (local) | |ParFOR (remote) [w.s (1]~ |
| Task Partitioning wsi, {11} | | Task Partitioning |":ki910F]|
= Local or remote row/column | e oy e lomilg ok 78] |

oy . . . wy: i, {7,8} y (2 LAZosy |
partitioning (incl locality) | mwz:m,sm Hadoop A EE |
\ X X W 1’{1’2’3}} \ ParWorker ParWorker }

. \ Local Local | Mapper 1 Mapper k
= #3 TaSk EXECUtIOn } ParWorker 1 ParWorker k } } mf(i_P(kCY-,(V‘dllllC)) }
wEparse(value
. . \ s ’ ! | foreach p; € w !
= Local (multi-core) execution | ety edeal) o exeente(pros(n) |
} execute(prog(pi)) | ‘ |
| ! \ \
\ | \ \
\

#4 Result Aggregation
= With and without compare (non-empty output variable)

= Local in-memory / remote MR/Spark result aggregation

706.550 Architecture of Machine Learning Systems — 05 Execution Strategies B ISDS
Matthias Boehm, Graz University of Technology, SS 2020

TU

Task-Parallel Execution Graza

ParFor Optimizer Framework — [

= Design: Runtime optimization for each top-level parfor

- — — — — — — T T T == - - - - - - - - - - — - — —_— —_—_ "

= Plan Tree P | eCo DAFOR cme. = 1024 MB
= Nodes N,
= Exec type et

ckec =16

|
|
o i
= Parallelismk ! ¥ A ______ A __________ |
= Attributes A

= Height h

= Exec contexts EC,

ec ... execution context
cm ... memory constraint
ck ... parallelism constraint

- Plan_ T':ee] ¢ : min T(r(P))
Optimization .
Objective st. VYece ECp: M(r(ec)) < ceme. N K(r(ec)) < ckec.

= Heuristic optimizer w/ transformation-based search strategy
= Cost and memory estimates w/ plan tree aggregate statistics

706.550 Architecture of Machine Learning Systems — 05 Execution Strategies & ISDS
Matthias Boehm, Graz University of Technology, SS 2020

TU

Grazm

Task-Parallel Execution

Task-Parallelism in R R

= Multi-Threading library(doMC)
= doMC as multi-threaded PengterDOMc(?’z)
: h backend R <- foreach(i=1:(ncol(D)-1),
oreach backen .combine=rbind) %dopar% {
= Foreach w/ parallel (%dopar%) X = D[,i]; sX = sd(X);
or sequential (%do%) execution Ri = matrix(0@, 1, ncol(D))
[https://cran.r-project.org/web/packages/ for(J in (],'+].'):nc°1(D)) {
doMC/vignettes/gettingstartedMC.pdf] Y.= Dl;’J]’ sY = sd(Y)
Ri[1,j] = cov(X,Y)/(sX*sY);
}
return(Ri);
}
= Distribution library(doSNOW)
= doSNOW as distributed CIUSt“= makeClust,e:r-(“ .,
foreach backend c(“192.168.0.1”, “192.168.0.27,
“192.168.0.3"”), type=“SOCK”);

= MPI/SOCK as comm methods registerDoSNOW(clust);
. %dopar% ...

[https://cran.r-project.org/web/packages/
doSNOW/doSNOW.pdf] stopCluster(clust);
706.550 Architecture of Machine Learning Systems — 05 Execution Strategies & ISDS

Matthias Boehm, Graz University of Technology, SS 2020

Task-Parallel Execution

TU

Grazm

Task-Parallelism in Other Systems

= MATLAB

= Parfor loops for
multi-process &
distributed loops

= Use-defined par

= Julia

= Dedicated macros:
@threads
@distributed

= TensorFlow

= User-defined parallel iterations, responsible for
correct results or acceptable approximate results

matlabpool 32
cC = pi; z = 0;
r = rand(1,10)
parfor i =1 : 10
z = z+1; # reduction
b(i) = r(i); # sliced
end

“\hmﬂlAB

[Gaurav Sharma, Jos Martin:
MATLAB®: A Language for
Parallel Computing. Int. Journal
on Parallel Prog. 2009]

a = zeros(1000)

@threads for i1 in 1:1000
a[i] = rand(r[threadid()])

end

[] ...
julia
[https://docs.julialang.

org/en/vl/manual/
parallel-computing/]

L3 k\
Tensor
[https://www.tensorflow.org/

api docs/python/tf/while loop]

tf.while_loop(cond, body, loop vars, parallel_iterations=10,
swap_memory=False, maximum_iterations=None, ...)

706.550 Architecture of Machine Learning Systems — 05 Execution Strategies
Matthias Boehm, Graz University of Technology, SS 2020

"ISDS

TU

Grazm

Summary and Q&A

Categories of Execution Strategies
= Data-parallel execution for batch ML algorithms
= Task-parallel execution for custom parallelization of independent tasks

= Parameter servers (data-parallel vs model-parallel)
for mini-batch ML algorithms

#1 Different strategies (and systems) for different ML workloads
=» Specialization and abstraction

#2 Awareness of underlying execution frameworks

#3 Awareness of effective compilation and runtime techniques

Next Lectures (after Easter Break)
= (06 Parameter Servers [Apr 24]
= 07 Hybrid Execution and HW Accelerators [May 08]
= 08 Caching, Partitioning, Indexing and Compression [May 15]

706.550 Architecture of Machine Learning Systems — 05 Execution Strategies & ISDS
Matthias Boehm, Graz University of Technology, SS 2020

