Architecture of ML Systems 05 Data- and Task-Parallel Execution #### **Matthias Boehm** Graz University of Technology, Austria Computer Science and Biomedical Engineering Institute of Interactive Systems and Data Science BMVIT endowed chair for Data Management Last update: Apr 03, 2020 ## Announcements/Org #### #1 Video Recording - Link in TeachCenter & TUbe (lectures will be public) - Streaming: https://tugraz.webex.com/meet/m.boehm - Online teaching extended until Apr 30 #### #2 AMLS Programming Projects - Project selection by Apr 03 (see Lecture 02/04) - Status: So far, project discussions w/ 11 students - There is a project for everybody, no matter the background - Grace period until April 17 (email to m.boehm@tugraz.at) ## Complete Progents Shri Plants Complete Progents Shri Plants Complete Progents Complete Parenter Complete Parenter Complete Progents Complete Parenter Paren #### #3 Update Apache SystemDS - SystemDS merged, in process of name change - Already some bug reports by students (e.g., <u>SYSTEMML-2538</u>) - (Build and debug tutorial after Eastern) ## Agenda - Motivation and Terminology - Background MapReduce and Spark - Data-Parallel Execution - Task-Parallel Execution ## Motivation and Terminology ## Terminology Batch/Mini-batch ## Batch ML Algorithms - Iterative ML algorithms, where each iteration uses the entire dataset to compute gradients ΔW - For (pseudo-)second-order methods, many features - Dedicated optimizers for traditional ML algorithms #### Mini-batch ML Algorithms - Iterative ML algorithms, where each iteration only uses a batch of rows to make the next model update (in epochs or w/ sampling) - For large and highly redundant training sets - Applies to almost all iterative, model-based ML algorithms (LDA, reg., class., factor., DNN) - Stochastic Gradient Descent (SGD) ## Terminology Batch/Mini-batch, cont. Excursus: Mini-batch Sizes Yann LeCun @ylecun · 26. Apr. 2018 Training with large minibatches is bad for your health. More importantly, it's bad for your test error. [Dominic Masters, Carlo Luschi: Revisiting Small Batch Training for Deep Neural Networks. CoRR 2018] Friends dont let friends use minibatches larger than 32. arxiv.org /abs/1804.07612 \bigcirc 22 1 461 $^{\circ}$ 1.306 - Beware: increased variance, HW vs statistical efficiency, data and model complexity, as well as used optimizer and parameters - Excursus: Pronunciation - Stochastic Gradient Descent, not decent ## Terminology Parallelism ## Flynn's Classification - SISD, SIMD - (MISD), MIMD [Michael J. Flynn, Kevin W. Rudd: Parallel Architectures. **ACM Comput. Surv. 28(1) 1996**] Single Instruction Multiple Instruction **SISD** (uni-core) Single Data **SIMD** (vector) Multiple Data **MISD** (pipelining) **MIMD** (multi-core) ## **Example: SIMD Processing** - Streaming SIMD Extensions (SSE) - Process the same operation on multiple elements at a time (packed vs scalar SSE instructions) - Data parallelism (aka: instruction-level parallelism) - Example: VFMADD132PD 2009 Nehalem: **128b** (2xFP64) 2012 Sandy Bridge: **256b** (4xFP64) 2017 Skylake: **512b** (8xFP64) ## Recap: Central Data Abstractions ## #1 Files and Objects - File: Arbitrarily large sequential data in specific file format (CSV, binary, etc) - Object: binary large object, with certain meta data #### #2 Distributed Collections - Logical multi-set (bag) of key-value pairs (unsorted collection) - Different physical representations - Easy distribution of pairs via horizontal partitioning (aka shards, partitions) - Can be created from single file, or directory of files (unsorted) | Key | Value | |-----|----------| | 4 | Delta | | 2 | Bravo | | 1 | Alpha | | 3 | Charlie | | 5 | Echo | | 6 | Foxtrott | | 7 | Golf | ## Recap: Fault Tolerance & Resilience [Google Data Center: https://www.youtube.com/watch?v=XZmGGAbHga0] #### Resilience Problem - Increasing error rates at scale (soft/hard mem/disk/net errors) - Robustness for preemption - Need for cost-effective resilience - Block replication in distributed file systems - ECC; checksums for blocks, broadcast, shuffle - Checkpointing (all task outputs / on request) - Lineage-based recomputation for recovery in Spark - ML-specific Approaches (exploit app characteristics) - Estimate contribution from lost partition to avoid strugglers - Example: user-defined "compensation" functions ## Categories of Execution Strategies Batch SIMD/SPMD **O5**_a Data-Parallel Execution [Apr 03] Batch/Mini-batch, Independent Tasks MIMD **05**_b Task-Parallel Execution [Apr 03] Mini-batch **06 Parameter Servers** (data, model) [Apr 24] **07 Hybrid Execution and HW Accelerators** [May 08] **08 Caching, Partitioning, Indexing, and Compression** [May 15] # Background MapReduce and Spark (Data-Parallel Collection Processing) Abstractions for Fault-tolerant, Distributed Storage and Computation ## Hadoop History and Architecture - Recap: Brief History - Google's GFS [SOSP'03] + MapReduce → Apache Hadoop (2006) - Apache Hive (SQL), Pig (ETL), Mahout (ML), Giraph (Graph) [Jeffrey Dean, Sanjay Ghemawat: MapReduce: Simplified Data Processing on Large Clusters. **OSDI 2004**] ## Hadoop Architecture / Eco System Management (Ambari) Worker Node 1 Worker Node n Coordination / workflows (Zookeeper, Oozie) MR MR MR MR Storage (HDFS) **Head Node AM** task task task Resources (YARN) MR MR MR MR [SoCC'13] task task task task Processing Resource (MapReduce) Node Node Manager Manager Manager NameNode **DataNode DataNode MR Client** ## MapReduce – Programming Model - Overview Programming Model - Inspired by functional programming languages - Implicit parallelism (abstracts distributed storage and processing) - Map function: key/value pair → set of intermediate key/value pairs - Reduce function: merge all intermediate values by key - Example SELECT Dep, count(*) FROM csv_files GROUP BY Dep | Name | Dep | |------|-----| | X | CS | | Υ | CS | | Α | EE | | Z | CS | Collection of key/value pairs ``` map(Long pos, String line) { parts ← line.split(",") emit(parts[1], 1) ``` | CS | 1 | |----|---| | CS | 1 | | EE | 1 | | CS | 1 | ## MapReduce – Execution Model ## Spark History and Architecture ## Summary MapReduce - Large-scale & fault-tolerant processing w/ UDFs and files → Flexibility - Restricted functional APIs -> Implicit parallelism and fault tolerance - Criticism: #1 Performance, #2 Low-level APIs, #3 Many different systems #### Evolution to Spark (and Flink) - Spark [HotCloud'10] + RDDs [NSDI'12] → Apache Spark (2014) - Design: standing executors with in-memory storage, lazy evaluation, and fault-tolerance via RDD lineage - Performance: In-memory storage and fast job scheduling (100ms vs 10s) - APIs: Richer functional APIs and general computation DAGs, high-level APIs (e.g., DataFrame/Dataset), unified platform ## **→** But many shared concepts/infrastructure - Implicit parallelism through dist. collections (data access, fault tolerance) - Resource negotiators (YARN, Mesos, Kubernetes) - HDFS and object store connectors (e.g., Swift, S3) ## Spark History and Architecture, cont. #### High-Level Architecture - Different language bindings: Scala, Java, Python, R - Different libraries: SQL, ML, Stream, Graph - Spark core (incl RDDs) - Different cluster managers: Standalone, Mesos, Yarn, Kubernetes - Different file systems/ formats, and data sources: HDFS, S3, SWIFT, DBs, NoSQL Focus on a unified platform for data-parallel computation (Apache Flink w/ similar goals) ## Spark Resilient Distributed Datasets (RDDs) #### RDD Abstraction JavaPairRDD<MatrixIndexes,MatrixBlock> - Immutable, partitioned collections of key-value pairs - Coarse-grained deterministic operations (transformations/actions) - Fault tolerance via lineage-based re-computation ## Operations - Transformations: define new RDDs - Actions: return result to driver | Туре | Examples | |-----------------------|--| | Transformation (lazy) | <pre>map, hadoopFile, textFile, flatMap, filter, sample, join, groupByKey, cogroup, reduceByKey, cross, sortByKey, mapValues</pre> | | Action | <pre>reduce, save, collect, count, lookupKey</pre> | #### Distributed Caching - Use fraction of worker memory for caching - Eviction at granularity of individual partitions - Different storage levels (e.g., mem/disk x serialization x compression) ## Spark Resilient Distributed Datasets (RDDs), cont. ## Spark Partitions and Implicit/Explicit Partitioning #### Spark Partitions Logical key-value collections are split into physical partitions ~128MB Partitions are granularity of tasks, I/O, shuffling, evictions #### Partitioning via Partitioners - Implicitly on every data shuffling - Explicitly via R.repartition(n) #### **Example Hash Partitioning:** For all (k,v) of R: pid = hash(k) % n #### Partitioning-Preserving All operations that are guaranteed to keep keys unchanged (e.g. mapValues(), mapPartitions() w/ preservesPart flag) #### Partitioning-Exploiting - Join: R3 = R1.join(R2) - Lookups: v = C.lookup(k) ## Spark Lazy Evaluation, Caching, and Lineage [Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauly, Michael J. Franklin, Scott Shenker, Ion Stoica: Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing. **NSDI 2012**] ## Data-Parallel Execution ## Batch ML Algorithms ## **Background: Matrix Formats** - Matrix Block (m x n) - A.k.a. tiles/chunks, most operations defined here - Local matrix: single block, different representations - Common Block Representations - Dense (linearized arrays) - MCSR (modified CSR) - CSR (compressed sparse rows), CSC - COO (Coordinate matrix) Dense (row-major) .7 0 .1 .2 .4 0 0 .3 0 O(mn) ## **Distributed Matrix Representations** - Collection of "Matrix Blocks" (and keys) - Bag semantics (duplicates, unordered) - Logical (Fixed-Size) Blocking - + join processing / independence - (sparsity skew) - E.g., SystemML on Spark: JavaPairRDD<MatrixIndexes,MatrixBlock> - Blocks encoded independently (dense/sparse) Logical Blocking 3,400x2,700 Matrix $(w/B_c=1,000)$ $\begin{array}{|c|c|c|c|c|}\hline (1,1) & (1,2) & (1,3) \\\hline (2,1) & (2,2) & (2,3) \\\hline (3,1) & (3,2) & (3,3) \\\hline (4,1) & (4,2) & (4,3) \\\hline \end{array}$ - Partitioning - Logical Partitioning (e.g., row-/column-wise) - Physical Partitioning (e.g., hash / grid) Physical Blocking and Partitioning ## Distributed Matrix Representations, cont. #### #1 Block-partitioned Matrices - Fixed-size, square or rectangular blocks - Pros: Input/output alignment, block-local transpose, amortize block overheads, bounded mem, cache-conscious - Cons: Converting row-wise inputs (e.g., text) requires shuffle - Examples: RIOT, PEGASUS, SystemML, SciDB, Cumulon, Distributed R, DMac, Spark Mllib, Gilbert, MatFast, and SimSQL ## #2 Row/Column-partitioned Matrices - Collection of row indexes and rows (or columns respectively) - Pros: Seamless data conversion and access to entire rows - Cons: Storage overhead in Java, and cache unfriendly operations - Examples: Spark MLlib, Mahout Samsara, Emma, SimSQL ## #3 Algorithm-specific Partitioning - Operation and algorithm-centric data representations - Examples: matrix inverse, matrix factorization ## **Distributed Matrix Operations** #### **Elementwise Multiplication** (Hadamard Product) $$C = A * B$$ Note: also with row/column vector rhs #### **Transposition** $$C = t(X)$$ ## Matrix Multiplication $$C = X %*% W$$ Note: 1:N join ## Physical MM Operator Selection - Common Selection Criteria - Data and cluster characteristics (e.g., data size/shape, memory, parallelism) - Matrix/operation properties (e.g., diagonal/symmetric, sparse-safe ops) - Data flow properties (e.g., co-partitioning, co-location, data locality) - #0 Local Operators - SystemML mm, tsmm, mmchain; Samsara/Mllib local - #1 Special Operators (special patterns/sparsity) - SystemML tsmm, mapmmchain; Samsara AtA - #2 Broadcast-Based Operators (aka broadcast join) - SystemML mapmm, mapmmchain - #3 Co-Partitioning-Based Operators (aka improved repartition join) - SystemML zipmm; Emma, Samsara OpAtB - #4 Shuffle-Based Operators (aka repartition join) - SystemML cpmm, rmm; Samsara OpAB ## Partitioning-Preserving Operations - Shuffle is major bottleneck for ML on Spark - Preserve Partitioning - Op is partitioning-preserving if keys unchanged (guaranteed) - Implicit: Use restrictive APIs (mapValues() vs mapToPair()) - Explicit: Partition computation w/ declaration of partitioning-preserving - Exploit Partitioning - Implicit: Operations based on join, cogroup, etc - Explicit: Custom operators (e.g., zipmm) ## Example: Multiclass SVM - Vectors fit neither into driver nor broadcast - $ncol(X) \le B_c$ ``` repart, chkpt X MEM_DISK parfor(iter_class in 1:num_classes) { Y_local = 2 * (Y == iter_class) - 1 g_old = t(X) %*% Y_local ... while(continue) { Xd = X %*% s ... inner while loop (compute step_sz) Xw = Xw + step_sz * Xd; out = 1 - Y_local * Xw; out = (out > 0) * out; g_new = t(X) %*% (out * Y_local) ... Zipmm ``` ## Dask PDA [Matthew Rocklin: Dask: Parallel Computation with Blocked algorithms and Task Scheduling, **Python in Science 2015**] [Dask Development Team: Dask: Library for dynamic task scheduling, 2016, https://dask.org] #### Overview Dask - Multi-threaded and distributed operations for arrays, bags, and dataframes - dask.array: list of numpy n-dim arrays - dask.dataframe: list of pandas data frames - dask.bag:unordered list of tuples (second order functions) - Local and distributed schedulers: threads, processes, YARN, Kubernetes, containers, HPC, and cloud, GPUs #### Execution - Lazy evaluation - Limitation: requires static size inference - Triggered via compute() ## Task-Parallel Execution Parallel Computation of Independent Tasks, Emulation of Data-Parallel Operations/Programs ## Overview Task-Parallelism #### Historic Perspective - Since 1980s: various parallel Fortran extensions, especially in HPC - DOALL parallel loops (independent iterations) - OpenMP (since 1997, Open Multi-Processing) ``` #pragma omp parallel for reduction(+: nnz) for (int i = 0; i < N; i++) { int threadID = omp_get_thread_num(); R[i] = foo(A[i]); nnz += (R[i]!=0) ? 1 : 0; }</pre> ``` ## Motivation: Independent Tasks in ML Workloads - Use cases: Ensemble learning, cross validation, hyper-parameter tuning, complex models with disjoint/overlapping/all data per task - Challenge #1: Adaptation to data and cluster characteristics - Challenge #2: Combination with data-parallelism ## Parallel For Loops (ParFor) ## Hybrid Parallelization Strategies [M. Boehm et al.: Hybrid Parallelization Strategies for Large-Scale Machine Learning in SystemML. **PVLDB 2014**] - Combination of data- and task-parallel ops - Combination of local and distributed computation #### Key Aspects - Dependency Analysis - Task partitioning - Data partitioning, scan sharing, various rewrites - Execution strategies - Result agg strategies - ParFor optimizer ``` reg = 10^(seq(-1,-10)) B_all = matrix(0, nrow(reg), n) parfor(i in 1:nrow(reg)) { B = lm(X, y, reg[i,1]); B_all[i,] = t(B); } ``` Local ParFor (multi-threaded), w/ local ops Remote ParFor (distributed Spark job) Local ParFor, w/ concurrent distributed ops ## Additional ParFor Examples #### Pairwise Pearson Correlation - In practice: uni/bivariate stats - Pearson's R, Anova F, Chi-squared, Degree of freedom, P-value, Cramers V, Spearman, etc) ## Batch-wise CNN Scoring Emulate data-parallelism for complex functions ## Conceptual Design: Master/worker (task: group of parfor iterations) ``` D = read("./input/D"); R = matrix(0, ncol(D), ncol(D)); parfor(i in 1:(ncol(D)-1)) { X = D[,i]; sX = sd(X); parfor(j in (i+1):ncol(D)) { Y = D[,i]; sY = sd(Y); R[i,j] = cov(X,Y)/(sX*sY); write(R, "./output/R"); prob = matrix(0, Ni, Nc) parfor(i in 1:ceil(Ni/B)) { Xb = X[((i-1)*B+1):min(i*B,Ni),]; prob[((i-1)*B+1):min(i*B,Ni),] = ... # CNN scoring } ``` ## **ParFor Execution Strategies** ## #1 Task Partitioning - Fixed-size schemes:naive (1) , static (n/k), fixed (m) - Self-scheduling: e.g., guided self scheduling, factoring #### Factoring (n=101, k=4) $$R_0 = N,$$ $$R_{i+1} = R_i - k \cdot l_i, \quad l_i = \left\lceil \frac{R_i}{x_i \cdot k} \right\rceil = \left\lceil \left(\frac{1}{x_i}\right)^{i+1} \frac{N}{k} \right\rceil$$ (13,13,13,13,7,7,7,7,3,3,3,3,2,2,2,2,1) ## #2 Data Partitioning Local or remote row/column partitioning (incl locality) #### #3 Task Execution - Local (multi-core) execution - Remote (MR/Spark) execution ## #4 Result Aggregation - With and without compare (non-empty output variable) - Local in-memory / remote MR/Spark result aggregation ## ParFor Optimizer Framework - Design: Runtime optimization for each top-level parfor - Plan Tree P - Nodes N_P - Exec type et - Parallelism k - Attributes A - Height h - Exec contexts *EC*_P Plan TreeOptimizationObjective $$\phi_2$$: min $\hat{T}(r(P))$ $s.t.$ $\forall ec \in \mathcal{EC}_P : \hat{M}(r(ec)) \leq cm_{ec} \land K(r(ec)) \leq ck_{ec}.$ - Heuristic optimizer w/ transformation-based search strategy - Cost and memory estimates w/ plan tree aggregate statistics ## Task-Parallelism in R #### Multi-Threading - doMC as multi-threaded foreach backend - Foreach w/ parallel (%dopar%) or sequential (%do%) execution [https://cran.r-project.org/web/packages/doMC/vignettes/gettingstartedMC.pdf] #### Distribution - doSNOW as distributed foreach backend - MPI/SOCK as comm methods [https://cran.r-project.org/web/packages/doSNOW/doSNOW.pdf] ``` library(doMC) registerDoMC(32) R <- foreach(i=1:(ncol(D)-1),</pre> .combine=rbind) %dopar% { X = D[,i]; sX = sd(X); Ri = matrix(0, 1, ncol(D)) for(j in (i+1):ncol(D)) { Y = D[,j]; sY = sd(Y) Ri[1,i] = cov(X,Y)/(sX*sY); return(Ri); library(doSNOW) clust = makeCluster(c("192.168.0.1", "192.168.0.2", "192.168.0.3"), type="SOCK"); registerDoSNOW(clust); ... %dopar% ... stopCluster(clust); ``` ## Task-Parallelism in Other Systems #### MATLAB - Parfor loops for multi-process & distributed loops - Use-defined par #### matlabpool 32 ``` c = pi; z = 0; r = rand(1,10) parfor i = 1 : 10 z = z+1; # reduction b(i) = r(i); # sliced end ``` [Gaurav Sharma, Jos Martin: MATLAB®: A Language for Parallel Computing. Int. Journal on Parallel Prog. 2009] #### Julia Dedicated macros: @threads @distributed ``` a = zeros(1000) @threads for i in 1:1000 a[i] = rand(r[threadid()]) end ``` #### TensorFlow User-defined parallel iterations, responsible for correct results or acceptable approximate results [https://www.tensorflow.org/ api docs/python/tf/while loop] ``` tf.while_loop(cond, body, loop_vars, parallel_iterations=10, swap_memory=False, maximum_iterations=None, ...) ``` ## Summary and Q&A - Categories of Execution Strategies - Data-parallel execution for batch ML algorithms - Task-parallel execution for custom parallelization of independent tasks - Parameter servers (data-parallel vs model-parallel) for mini-batch ML algorithms - #1 Different strategies (and systems) for different ML workloads - **→** Specialization and abstraction - #2 Awareness of underlying execution frameworks - #3 Awareness of effective compilation and runtime techniques - Next Lectures (after Easter Break) - 06 Parameter Servers [Apr 24] - 07 Hybrid Execution and HW Accelerators [May 08] - 08 Caching, Partitioning, Indexing and Compression [May 15]