

Architecture of ML Systems 05 Data- and Task-Parallel Execution

Matthias Boehm

Graz University of Technology, Austria Computer Science and Biomedical Engineering Institute of Interactive Systems and Data Science BMVIT endowed chair for Data Management

Last update: Apr 03, 2020

Announcements/Org

#1 Video Recording

- Link in TeachCenter & TUbe (lectures will be public)
- Streaming: https://tugraz.webex.com/meet/m.boehm
- Online teaching extended until Apr 30

#2 AMLS Programming Projects

- Project selection by Apr 03 (see Lecture 02/04)
- Status: So far, project discussions w/ 11 students
- There is a project for everybody, no matter the background
- Grace period until April 17 (email to m.boehm@tugraz.at)

Complete Progents Shri Plants Complete Progents Shri Plants Complete Progents Complete Parenter Complete Parenter Complete Progents Complete Parenter Complete Paren

#3 Update Apache SystemDS

- SystemDS merged, in process of name change
- Already some bug reports by students (e.g., <u>SYSTEMML-2538</u>)
- (Build and debug tutorial after Eastern)

Agenda

- Motivation and Terminology
- Background MapReduce and Spark
- Data-Parallel Execution
- Task-Parallel Execution

Motivation and Terminology

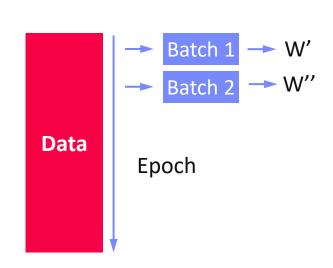
Terminology Batch/Mini-batch

Batch ML Algorithms

- Iterative ML algorithms, where each iteration uses the entire dataset to compute gradients ΔW
- For (pseudo-)second-order methods, many features
- Dedicated optimizers for traditional ML algorithms

Mini-batch ML Algorithms

- Iterative ML algorithms, where each iteration only uses a batch of rows to make the next model update (in epochs or w/ sampling)
- For large and highly redundant training sets
- Applies to almost all iterative, model-based
 ML algorithms (LDA, reg., class., factor., DNN)
- Stochastic Gradient Descent (SGD)



Terminology Batch/Mini-batch, cont.

Excursus: Mini-batch Sizes

Yann LeCun @ylecun · 26. Apr. 2018

Training with large minibatches is bad for your health. More importantly, it's bad for your test error.

[Dominic Masters, Carlo Luschi: Revisiting Small Batch Training for Deep Neural Networks. CoRR 2018]

Friends dont let friends use minibatches larger than 32. arxiv.org /abs/1804.07612

 \bigcirc

22

1 461

 $^{\circ}$

1.306

- Beware: increased variance, HW vs statistical efficiency,
 data and model complexity, as well as used optimizer and parameters
- Excursus: Pronunciation
 - Stochastic Gradient Descent, not decent

Terminology Parallelism

Flynn's Classification

- SISD, SIMD
- (MISD), MIMD

[Michael J. Flynn, Kevin W. Rudd: Parallel Architectures. **ACM Comput. Surv. 28(1) 1996**] Single

Instruction

Multiple Instruction

SISD (uni-core)

Single Data

SIMD (vector)

Multiple Data

MISD (pipelining)

MIMD (multi-core)

Example: SIMD Processing

- Streaming SIMD Extensions (SSE)
- Process the same operation on multiple elements at a time (packed vs scalar SSE instructions)
- Data parallelism (aka: instruction-level parallelism)
- Example: VFMADD132PD

2009 Nehalem: **128b** (2xFP64)

2012 Sandy Bridge: **256b** (4xFP64)

2017 Skylake: **512b** (8xFP64)

Recap: Central Data Abstractions

#1 Files and Objects

- File: Arbitrarily large sequential data in specific file format (CSV, binary, etc)
- Object: binary large object, with certain meta data

#2 Distributed Collections

- Logical multi-set (bag) of key-value pairs (unsorted collection)
- Different physical representations
- Easy distribution of pairs via horizontal partitioning (aka shards, partitions)
- Can be created from single file, or directory of files (unsorted)

Key	Value
4	Delta
2	Bravo
1	Alpha
3	Charlie
5	Echo
6	Foxtrott
7	Golf

Recap: Fault Tolerance & Resilience

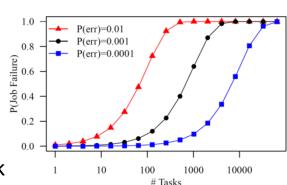
[Google Data Center:

https://www.youtube.com/watch?v=XZmGGAbHga0]

Resilience Problem

- Increasing error rates at scale (soft/hard mem/disk/net errors)
- Robustness for preemption
- Need for cost-effective resilience

- Block replication in distributed file systems
- ECC; checksums for blocks, broadcast, shuffle
- Checkpointing (all task outputs / on request)
- Lineage-based recomputation for recovery in Spark



- ML-specific Approaches (exploit app characteristics)
 - Estimate contribution from lost partition to avoid strugglers
 - Example: user-defined "compensation" functions

Categories of Execution Strategies

Batch SIMD/SPMD

O5_a Data-Parallel Execution [Apr 03]

Batch/Mini-batch, Independent Tasks MIMD

05_b Task-Parallel Execution [Apr 03]

Mini-batch

06 Parameter Servers (data, model) [Apr 24]

07 Hybrid Execution and HW Accelerators [May 08]

08 Caching, Partitioning, Indexing, and Compression [May 15]

Background MapReduce and Spark (Data-Parallel Collection Processing)

Abstractions for Fault-tolerant,
Distributed Storage and Computation

Hadoop History and Architecture

- Recap: Brief History
 - Google's GFS [SOSP'03] + MapReduce
 → Apache Hadoop (2006)
 - Apache Hive (SQL), Pig (ETL), Mahout (ML), Giraph (Graph)

[Jeffrey Dean, Sanjay Ghemawat: MapReduce: Simplified Data Processing on Large Clusters. **OSDI 2004**]

Hadoop Architecture / Eco System

Management (Ambari) Worker Node 1 Worker Node n Coordination / workflows (Zookeeper, Oozie) MR MR MR MR Storage (HDFS) **Head Node AM** task task task Resources (YARN) MR MR MR MR [SoCC'13] task task task task Processing Resource (MapReduce) Node Node Manager Manager Manager NameNode **DataNode DataNode MR Client**

MapReduce – Programming Model

- Overview Programming Model
 - Inspired by functional programming languages
 - Implicit parallelism (abstracts distributed storage and processing)
 - Map function: key/value pair → set of intermediate key/value pairs
 - Reduce function: merge all intermediate values by key
- Example SELECT Dep, count(*) FROM csv_files GROUP BY Dep

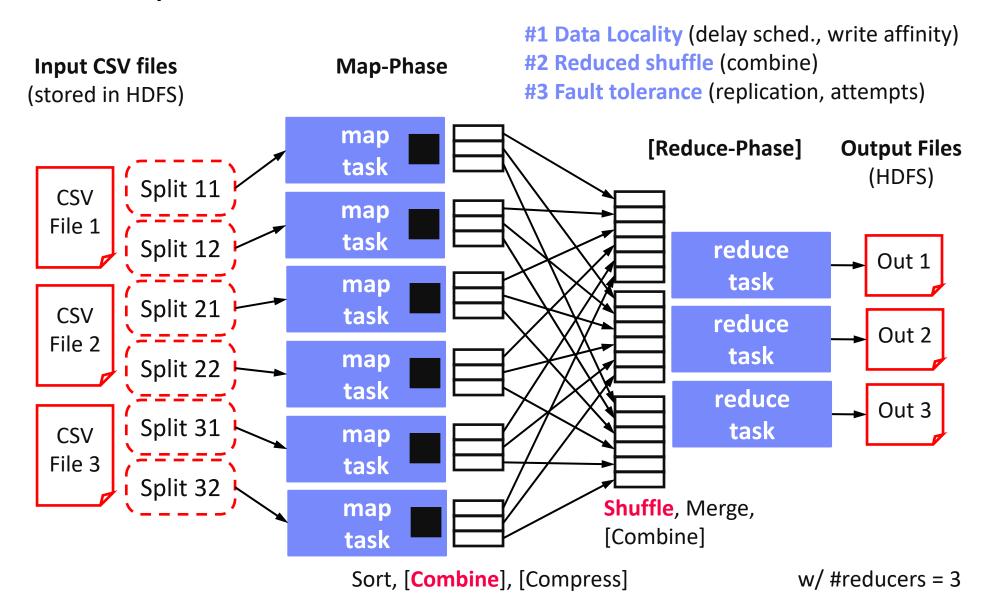
Name	Dep
X	CS
Υ	CS
Α	EE
Z	CS

Collection of key/value pairs

```
map(Long pos, String line) {
  parts ← line.split(",")
  emit(parts[1], 1)
```

CS	1
CS	1
EE	1
CS	1

MapReduce – Execution Model



Spark History and Architecture

Summary MapReduce

- Large-scale & fault-tolerant processing w/ UDFs and files → Flexibility
- Restricted functional APIs -> Implicit parallelism and fault tolerance
- Criticism: #1 Performance, #2 Low-level APIs, #3 Many different systems

Evolution to Spark (and Flink)

- Spark [HotCloud'10] + RDDs [NSDI'12] → Apache Spark (2014)
- Design: standing executors with in-memory storage, lazy evaluation, and fault-tolerance via RDD lineage
- Performance: In-memory storage and fast job scheduling (100ms vs 10s)
- APIs: Richer functional APIs and general computation DAGs, high-level APIs (e.g., DataFrame/Dataset), unified platform

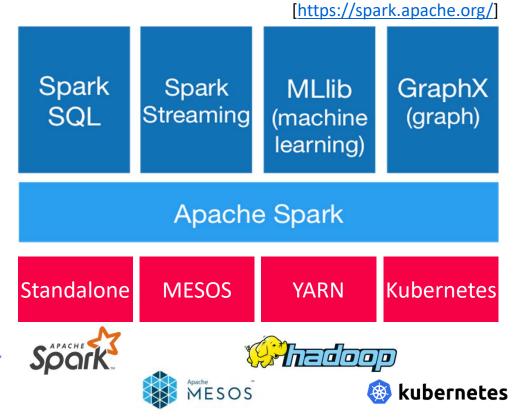
→ But many shared concepts/infrastructure

- Implicit parallelism through dist. collections (data access, fault tolerance)
- Resource negotiators (YARN, Mesos, Kubernetes)
- HDFS and object store connectors (e.g., Swift, S3)

Spark History and Architecture, cont.

High-Level Architecture

- Different language bindings:
 Scala, Java, Python, R
- Different libraries: SQL, ML, Stream, Graph
- Spark core (incl RDDs)
- Different cluster managers:
 Standalone, Mesos,
 Yarn, Kubernetes
- Different file systems/ formats, and data sources:
 HDFS, S3, SWIFT, DBs, NoSQL



Focus on a unified platform
 for data-parallel computation (Apache Flink w/ similar goals)

Spark Resilient Distributed Datasets (RDDs)

RDD Abstraction

JavaPairRDD<MatrixIndexes,MatrixBlock>

- Immutable, partitioned collections of key-value pairs
- Coarse-grained deterministic operations (transformations/actions)
- Fault tolerance via lineage-based re-computation

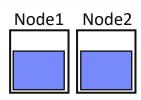
Operations

- Transformations: define new RDDs
- Actions: return result to driver

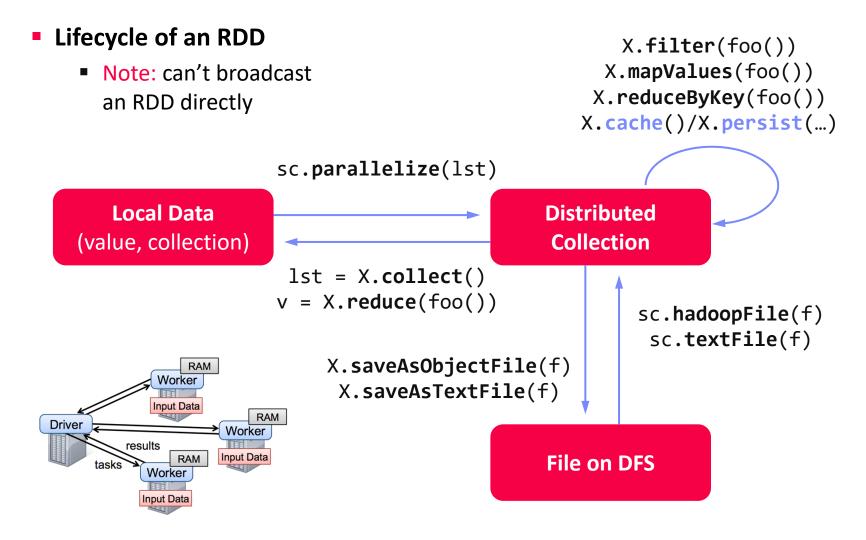
Туре	Examples
Transformation (lazy)	<pre>map, hadoopFile, textFile, flatMap, filter, sample, join, groupByKey, cogroup, reduceByKey, cross, sortByKey, mapValues</pre>
Action	<pre>reduce, save, collect, count, lookupKey</pre>

Distributed Caching

- Use fraction of worker memory for caching
- Eviction at granularity of individual partitions
- Different storage levels (e.g., mem/disk x serialization x compression)



Spark Resilient Distributed Datasets (RDDs), cont.



Spark Partitions and Implicit/Explicit Partitioning

Spark Partitions

Logical key-value collections are split into physical partitions

~128MB

Partitions are granularity of tasks, I/O, shuffling, evictions

Partitioning via Partitioners

- Implicitly on every data shuffling
- Explicitly via R.repartition(n)

Example Hash Partitioning:

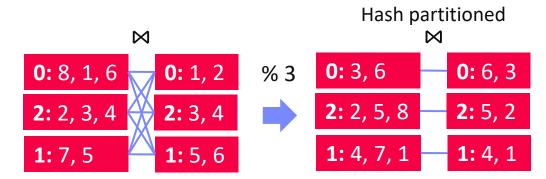
For all (k,v) of R: pid = hash(k) % n

Partitioning-Preserving

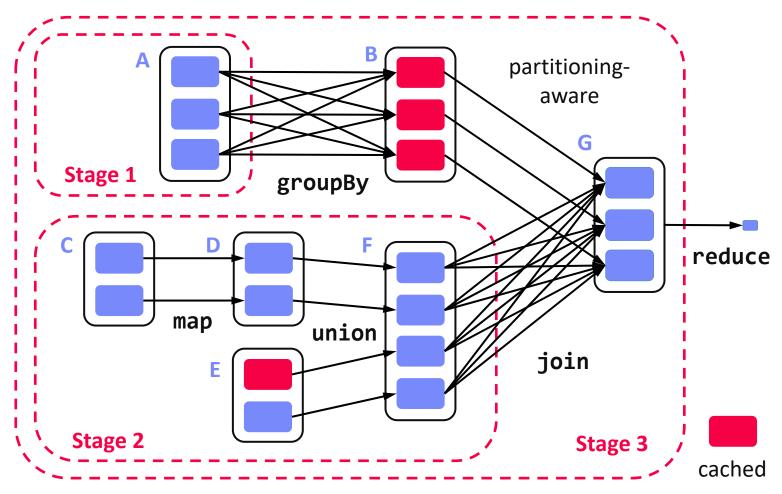
 All operations that are guaranteed to keep keys unchanged (e.g. mapValues(), mapPartitions() w/ preservesPart flag)

Partitioning-Exploiting

- Join: R3 = R1.join(R2)
- Lookups: v = C.lookup(k)



Spark Lazy Evaluation, Caching, and Lineage



[Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauly, Michael J. Franklin, Scott Shenker, Ion Stoica: Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing. **NSDI 2012**]

Data-Parallel Execution

Batch ML Algorithms

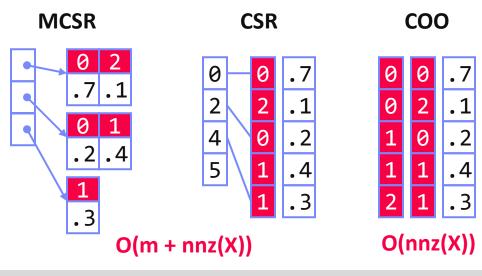
Background: Matrix Formats

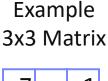
- Matrix Block (m x n)
 - A.k.a. tiles/chunks, most operations defined here
 - Local matrix: single block, different representations
- Common Block Representations
 - Dense (linearized arrays)
 - MCSR (modified CSR)
 - CSR (compressed sparse rows), CSC
 - COO (Coordinate matrix)

Dense (row-major)

.7 0 .1 .2 .4 0 0 .3 0

O(mn)





Distributed Matrix Representations

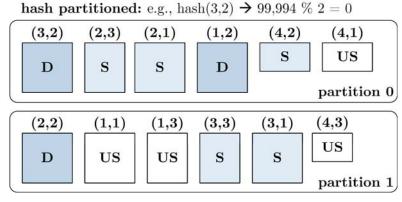
- Collection of "Matrix Blocks" (and keys)
 - Bag semantics (duplicates, unordered)
 - Logical (Fixed-Size) Blocking
 - + join processing / independence
 - (sparsity skew)
 - E.g., SystemML on Spark: JavaPairRDD<MatrixIndexes,MatrixBlock>
 - Blocks encoded independently (dense/sparse)

Logical Blocking 3,400x2,700 Matrix $(w/B_c=1,000)$

 $\begin{array}{|c|c|c|c|c|}\hline (1,1) & (1,2) & (1,3) \\\hline (2,1) & (2,2) & (2,3) \\\hline (3,1) & (3,2) & (3,3) \\\hline (4,1) & (4,2) & (4,3) \\\hline \end{array}$

- Partitioning
 - Logical Partitioning (e.g., row-/column-wise)
 - Physical Partitioning (e.g., hash / grid)

Physical Blocking and Partitioning



Distributed Matrix Representations, cont.

#1 Block-partitioned Matrices

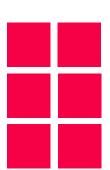
- Fixed-size, square or rectangular blocks
- Pros: Input/output alignment, block-local transpose,
 amortize block overheads, bounded mem, cache-conscious
- Cons: Converting row-wise inputs (e.g., text) requires shuffle
- Examples: RIOT, PEGASUS, SystemML, SciDB, Cumulon,
 Distributed R, DMac, Spark Mllib, Gilbert, MatFast, and SimSQL

#2 Row/Column-partitioned Matrices

- Collection of row indexes and rows (or columns respectively)
- Pros: Seamless data conversion and access to entire rows
- Cons: Storage overhead in Java, and cache unfriendly operations
- Examples: Spark MLlib, Mahout Samsara, Emma, SimSQL

#3 Algorithm-specific Partitioning

- Operation and algorithm-centric data representations
- Examples: matrix inverse, matrix factorization

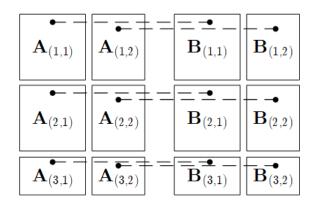


Distributed Matrix Operations

Elementwise Multiplication

(Hadamard Product)

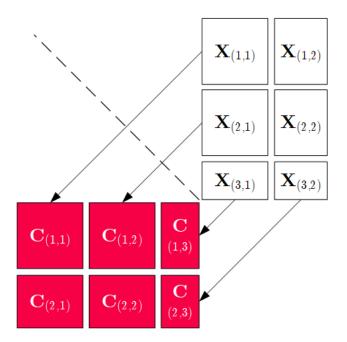
$$C = A * B$$



Note: also with row/column vector rhs

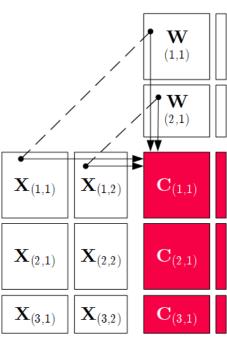
Transposition

$$C = t(X)$$



Matrix Multiplication

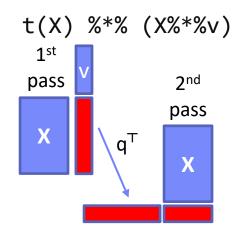
$$C = X %*% W$$



Note: 1:N join

Physical MM Operator Selection

- Common Selection Criteria
 - Data and cluster characteristics (e.g., data size/shape, memory, parallelism)
 - Matrix/operation properties (e.g., diagonal/symmetric, sparse-safe ops)
 - Data flow properties (e.g., co-partitioning, co-location, data locality)
- #0 Local Operators
 - SystemML mm, tsmm, mmchain; Samsara/Mllib local
- #1 Special Operators (special patterns/sparsity)
 - SystemML tsmm, mapmmchain; Samsara AtA
- #2 Broadcast-Based Operators (aka broadcast join)
 - SystemML mapmm, mapmmchain
- #3 Co-Partitioning-Based Operators (aka improved repartition join)
 - SystemML zipmm; Emma, Samsara OpAtB
- #4 Shuffle-Based Operators (aka repartition join)
 - SystemML cpmm, rmm; Samsara OpAB



Partitioning-Preserving Operations

- Shuffle is major bottleneck for ML on Spark
- Preserve Partitioning
 - Op is partitioning-preserving if keys unchanged (guaranteed)
 - Implicit: Use restrictive APIs (mapValues() vs mapToPair())
 - Explicit: Partition computation w/ declaration of partitioning-preserving
- Exploit Partitioning
 - Implicit: Operations based on join, cogroup, etc
 - Explicit: Custom operators (e.g., zipmm)

Example: Multiclass SVM

- Vectors fit neither into driver nor broadcast
- $ncol(X) \le B_c$

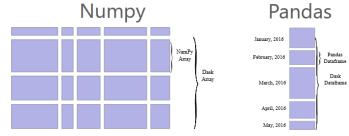
```
repart, chkpt X MEM_DISK
parfor(iter_class in 1:num_classes) {
    Y_local = 2 * (Y == iter_class) - 1
    g_old = t(X) %*% Y_local
    ...
    while( continue ) {
        Xd = X %*% s
        ... inner while loop (compute step_sz)
        Xw = Xw + step_sz * Xd;
        out = 1 - Y_local * Xw;
        out = (out > 0) * out;
        g_new = t(X) %*% (out * Y_local) ... Zipmm
```


Dask PDA

[Matthew Rocklin: Dask: Parallel Computation with Blocked algorithms and Task Scheduling, **Python in Science 2015**] [Dask Development Team: Dask: Library for dynamic task scheduling, 2016, https://dask.org]

Overview Dask

- Multi-threaded and distributed operations for arrays, bags, and dataframes
- dask.array: list of numpy n-dim arrays
- dask.dataframe: list of pandas data frames



- dask.bag:unordered list of tuples (second order functions)
- Local and distributed schedulers:
 threads, processes, YARN, Kubernetes, containers, HPC, and cloud, GPUs

Execution

- Lazy evaluation
- Limitation: requires static size inference
- Triggered via compute()

Task-Parallel Execution

Parallel Computation of Independent Tasks, Emulation of Data-Parallel Operations/Programs

Overview Task-Parallelism

Historic Perspective

- Since 1980s: various parallel Fortran extensions, especially in HPC
- DOALL parallel loops (independent iterations)
- OpenMP (since 1997, Open Multi-Processing)


```
#pragma omp parallel for reduction(+: nnz)
for (int i = 0; i < N; i++) {
   int threadID = omp_get_thread_num();
   R[i] = foo(A[i]);
   nnz += (R[i]!=0) ? 1 : 0;
}</pre>
```

Motivation: Independent Tasks in ML Workloads

- Use cases: Ensemble learning, cross validation, hyper-parameter tuning, complex models with disjoint/overlapping/all data per task
- Challenge #1: Adaptation to data and cluster characteristics
- Challenge #2: Combination with data-parallelism

Parallel For Loops (ParFor)

Hybrid Parallelization Strategies

[M. Boehm et al.: Hybrid Parallelization Strategies for Large-Scale Machine Learning in SystemML. **PVLDB 2014**]

- Combination of data- and task-parallel ops
- Combination of local and distributed computation

Key Aspects

- Dependency Analysis
- Task partitioning
- Data partitioning, scan sharing, various rewrites
- Execution strategies
- Result agg strategies
- ParFor optimizer

```
reg = 10^(seq(-1,-10))
B_all = matrix(0, nrow(reg), n)

parfor( i in 1:nrow(reg) ) {
    B = lm(X, y, reg[i,1]);
    B_all[i,] = t(B);
}
```

Local ParFor (multi-threaded), w/ local ops

Remote ParFor (distributed Spark job) Local ParFor, w/ concurrent distributed ops

Additional ParFor Examples

Pairwise Pearson Correlation

- In practice: uni/bivariate stats
- Pearson's R, Anova F, Chi-squared,
 Degree of freedom, P-value,
 Cramers V, Spearman, etc)

Batch-wise CNN Scoring

Emulate data-parallelism for complex functions

Conceptual Design:

Master/worker (task: group of parfor iterations)

```
D = read("./input/D");
R = matrix(0, ncol(D), ncol(D));
parfor(i in 1:(ncol(D)-1)) {
  X = D[,i];
  sX = sd(X);
   parfor(j in (i+1):ncol(D)) {
      Y = D[,i];
      sY = sd(Y);
      R[i,j] = cov(X,Y)/(sX*sY);
write(R, "./output/R");
prob = matrix(0, Ni, Nc)
parfor( i in 1:ceil(Ni/B) ) {
  Xb = X[((i-1)*B+1):min(i*B,Ni),];
  prob[((i-1)*B+1):min(i*B,Ni),] =
      ... # CNN scoring
}
```


ParFor Execution Strategies

#1 Task Partitioning

- Fixed-size schemes:naive (1) , static (n/k), fixed (m)
- Self-scheduling: e.g., guided self scheduling, factoring

Factoring (n=101, k=4)

$$R_0 = N,$$

$$R_{i+1} = R_i - k \cdot l_i, \quad l_i = \left\lceil \frac{R_i}{x_i \cdot k} \right\rceil = \left\lceil \left(\frac{1}{x_i}\right)^{i+1} \frac{N}{k} \right\rceil$$

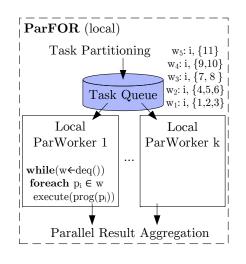
(13,13,13,13,7,7,7,7,3,3,3,3,2,2,2,2,1)

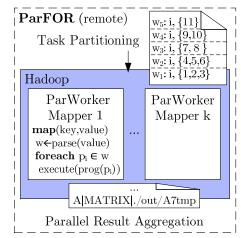
#2 Data Partitioning

 Local or remote row/column partitioning (incl locality)

#3 Task Execution

- Local (multi-core) execution
- Remote (MR/Spark) execution



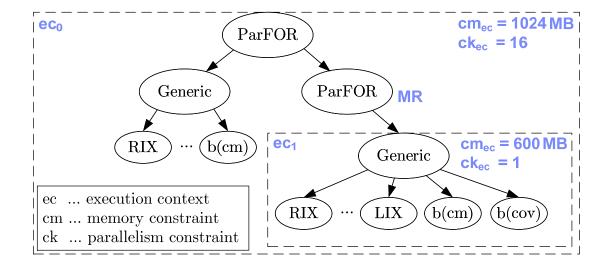


#4 Result Aggregation

- With and without compare (non-empty output variable)
- Local in-memory / remote MR/Spark result aggregation

ParFor Optimizer Framework

- Design: Runtime optimization for each top-level parfor
- Plan Tree P
 - Nodes N_P
 - Exec type et
 - Parallelism k
 - Attributes A
 - Height h
 - Exec contexts *EC*_P



Plan TreeOptimizationObjective

$$\phi_2$$
: min $\hat{T}(r(P))$
 $s.t.$ $\forall ec \in \mathcal{EC}_P : \hat{M}(r(ec)) \leq cm_{ec} \land K(r(ec)) \leq ck_{ec}.$

- Heuristic optimizer w/ transformation-based search strategy
 - Cost and memory estimates w/ plan tree aggregate statistics

Task-Parallelism in R

Multi-Threading

- doMC as multi-threaded foreach backend
- Foreach w/ parallel (%dopar%)
 or sequential (%do%) execution

[https://cran.r-project.org/web/packages/doMC/vignettes/gettingstartedMC.pdf]

Distribution

- doSNOW as distributed foreach backend
- MPI/SOCK as comm methods

[https://cran.r-project.org/web/packages/doSNOW/doSNOW.pdf]

```
library(doMC)
registerDoMC(32)
R <- foreach(i=1:(ncol(D)-1),</pre>
              .combine=rbind) %dopar% {
   X = D[,i]; sX = sd(X);
   Ri = matrix(0, 1, ncol(D))
   for(j in (i+1):ncol(D)) {
      Y = D[,j]; sY = sd(Y)
      Ri[1,i] = cov(X,Y)/(sX*sY);
   return(Ri);
library(doSNOW)
clust = makeCluster(
   c("192.168.0.1", "192.168.0.2",
   "192.168.0.3"), type="SOCK");
registerDoSNOW(clust);
... %dopar% ...
stopCluster(clust);
```


Task-Parallelism in Other Systems

MATLAB

- Parfor loops for multi-process & distributed loops
- Use-defined par

matlabpool 32

```
c = pi; z = 0;
r = rand(1,10)
parfor i = 1 : 10
  z = z+1; # reduction
  b(i) = r(i); # sliced
end
```


[Gaurav Sharma, Jos Martin: MATLAB®: A Language for Parallel Computing. Int. Journal on Parallel Prog. 2009]

Julia

Dedicated macros: @threads @distributed

```
a = zeros(1000)
@threads for i in 1:1000
  a[i] = rand(r[threadid()])
end
```


TensorFlow

 User-defined parallel iterations, responsible for correct results or acceptable approximate results

[https://www.tensorflow.org/ api docs/python/tf/while loop]

```
tf.while_loop(cond, body, loop_vars, parallel_iterations=10,
    swap_memory=False, maximum_iterations=None, ...)
```


Summary and Q&A

- Categories of Execution Strategies
 - Data-parallel execution for batch ML algorithms
 - Task-parallel execution for custom parallelization of independent tasks
 - Parameter servers (data-parallel vs model-parallel) for mini-batch ML algorithms
- #1 Different strategies (and systems) for different ML workloads
 - **→** Specialization and abstraction
- #2 Awareness of underlying execution frameworks
- #3 Awareness of effective compilation and runtime techniques
- Next Lectures (after Easter Break)
 - 06 Parameter Servers [Apr 24]
 - 07 Hybrid Execution and HW Accelerators [May 08]
 - 08 Caching, Partitioning, Indexing and Compression [May 15]

