



# Architecture of ML Systems 08 Data Access Methods

#### **Matthias Boehm**

Graz University of Technology, Austria Computer Science and Biomedical Engineering Institute of Interactive Systems and Data Science BMVIT endowed chair for Data Management



Last update: May 15, 2020





# Announcements/Org

#### #1 Video Recording

- Link in TeachCenter & TUbe (lectures will be public)
- Live streaming through TUbe, starting May 08
- Questions: <a href="https://tugraz.webex.com/meet/m.boehm">https://tugraz.webex.com/meet/m.boehm</a>
- Online teaching extended until Jun 30; exams via webex

# **TUbe**



#### #2 AMLS Programming Projects

- Status: all project discussions w/ 15 students (~4 PRs)
- Awesome mix of projects (algorithms, compiler, runtime)
- Email to <u>m.boehm@tugraz.at</u> if no project discussed yet
- Soft deadline: June 30



#### #3 Open Positions

- 1x PhD student (EU Project, DM+ML+HPC, 4 years, start ~11/2020)
- 1x Research Student Assistant (FFG Project, DM+ML, <=20h/week)





# Categories of Execution Strategies

Batch SIMD/SPMD

**O5**<sub>a</sub> Data-Parallel Execution [Apr 03]

Batch/Mini-batch,
Independent Tasks
MIMD

**O5**<sub>b</sub> Task-Parallel Execution [Apr 03]

Mini-batch

**06 Parameter Servers** (data, model) [Apr 24]

**07 Hybrid Execution and HW Accelerators** [May 08]

**08 Caching, Partitioning, Indexing, and Compression** [May 15]





# Agenda

- Motivation, Background, and Overview
- Caching, Partitioning, and Indexing
- Lossy and Lossless Compression

```
Iterative, I/O-bound ML algorithms → Data access crucial for performance
```

```
while(!converged) {
    ... q = X %*% v ...
}
    Data
Weights
```





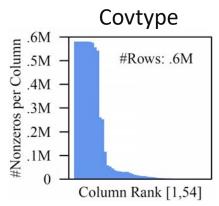
# Motivation, Background, and Overview

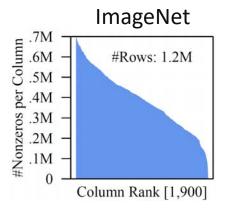


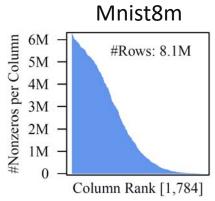


# **Motivation: Data Characteristics**

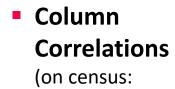
- Tall and Skinny (#rows >> #cols)
- Non-Uniform Sparsity



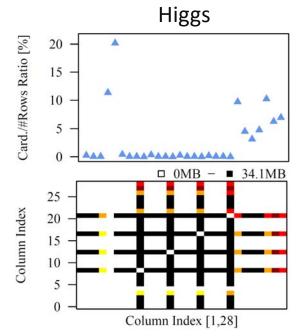


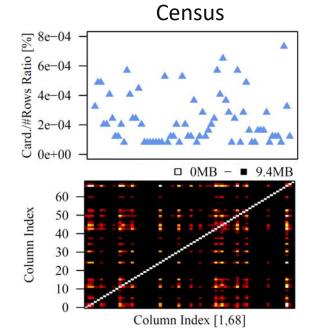


- Small Column Cardinalities
- Small Val Range



 $12.8x \rightarrow 35.7x$ 





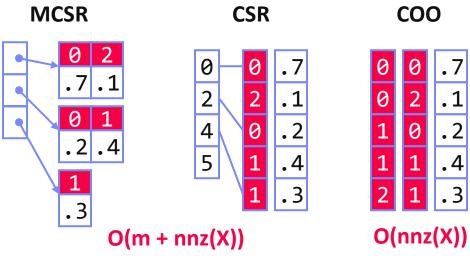


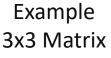


# Recap: Matrix Formats

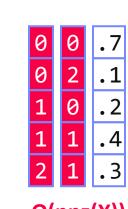
- Matrix Block (m x n)
  - A.k.a. tiles/chunks, most operations defined here
  - Local matrix: single block, different representations
- Common Block Representations
  - Dense (linearized arrays)
  - MCSR (modified CSR)
  - CSR (compressed sparse rows), CSC
  - COO (Coordinate matrix)

**Dense** (row-major) 0 .1 .2 .4 0 0 .3 0 O(mn)







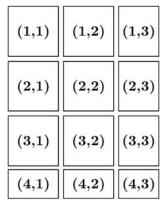




# Recap: Distributed Matrix Representations

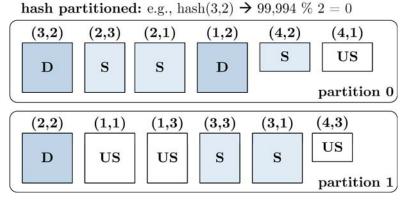
- Collection of "Matrix Blocks" (and keys)
  - Bag semantics (duplicates, unordered)
  - Logical (Fixed-Size) Blocking
    - + join processing / independence
    - (sparsity skew)
  - E.g., SystemDS on Spark: JavaPairRDD<MatrixIndexes,MatrixBlock>
  - Blocks encoded independently (dense/sparse)

Logical Blocking 3,400x2,700 Matrix (w/ B<sub>c</sub>=1,000)



- Partitioning
  - Logical Partitioning (e.g., row-/column-wise)
  - Physical Partitioning (e.g., hash / grid)

Physical Blocking and Partitioning

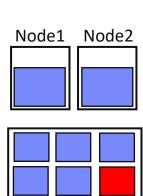


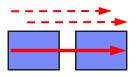


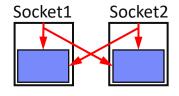


# Overview Data Access Methods

- #1 (Distributed) Caching
  - Keep read only feature matrix in (distributed) memory
- #2 Buffer Pool Management
  - Graceful eviction of intermediates, out-of-core ops
- #3 Scan Sharing (and operator fusion)
  - Reduce the number of scans as well as read/writes
- #4 NUMA-Aware Partitioning and Replication
  - Matrix partitioning / replication → data locality
- #5 Index Structures
  - Out-of-core data, I/O-aware ops, updates
- #6 Compression
  - Fit larger datasets into available memory















# Caching, Partitioning, and Indexing

#2 Buffer Pool Management

#3 Scan Sharing (and operator fusion)

#4 NUMA-Aware Partitioning and Replication

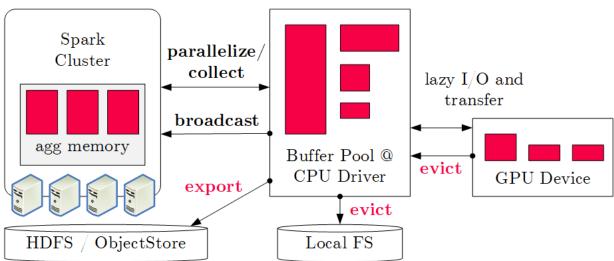
#5 Index Structures

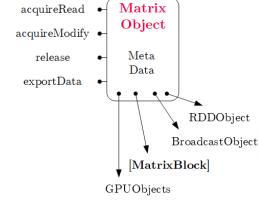




# **Buffer Pool Management**

- #1 Classic Buffer Management (SystemDS)
  - Hybrid plans of in-memory and distributed ops
  - Graceful eviction of intermediate variables





- #2 Algorithm-Specific Buffer Management
  - Operations/algorithms over out-of-core matrices and factor graphs
  - Examples: RIOT [CIDR'2009] (ops), Elementary [SIGMOD'13] (factor graphs)

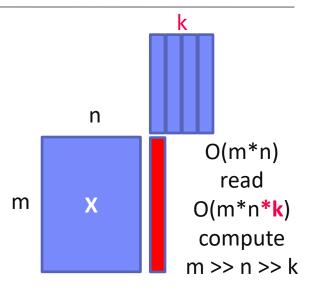




# Scan Sharing

# #1 Batching

- One-pass evaluation of multiple configurations
- Use cases: EL, CV, feature selection, hyper parameter tuning, multi-user scoring
- E.g.: TUPAQ [SoCC'16], Columbus [SIGMOD'14]



# #2 Fused Operator DAGs

- Avoid unnecessary scans, (e.g., mmchain)
- Avoid unnecessary writes / reads
- Multi-aggregates, redundancy
- E.g.: SystemML codegen [PVLDB'18]

# $a = sum(X^2)$ b = sum(X\*Y)

$$D = Sum(X^{*}Y)$$

$$c = sum(Y^2)$$



- Merge concurrent data-parallel jobs
- "Wait-Merge-Submit-Return"-loop
- E.g.: SystemML parfor [PVLDB'14]

parfor( i in 1:numModels )
 while( !converged )
 q = X %\*% v; ...





# In-Memory Partitioning (NUMA-aware)

#### NUMA-Aware Model and Data Replication

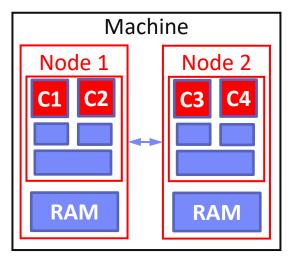
- Model Replication (06 Parameter Servers)
  - PerCore (BSP epoch), PerMachine (Hogwild!), PerNode (hybrid)
- Data Replication
  - Partitioning (sharding)
  - Full replication

#### AT MATRIX (Adaptive Tile Matrix)

- Recursive NUMA-aware partitioning into dense/sparse tiles
- Inter-tile (worker teams) and intra-tile (threads in team) parallelization
- Job scheduling framework from SAP HANA (horizontal range partitioning, socket-local queues with task-stealing)

[Ce Zhang, Christopher Ré: DimmWitted: A Study of Main-Memory Statistical Analytics. **PVLDB 2014**]





[David Kernert, Wolfgang Lehner, Frank Köhler: Topology-aware optimization of big sparse matrices and matrix multiplications on mainmemory systems. **ICDE 2016**]







# Distributed Partitioning

- Spark RDD Partitioning
  - Implicitly on every data shuffling
  - Explicitly via R.repartition(n)

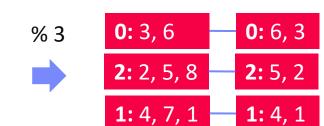
#### **Example Hash Partitioning:**

For all (k,v) of R:

hash(k) % numPartitions → pid

- Distributed Joins
  - $\blacksquare$  R3 = R1.join(R2)

|                   | <b>0:</b> 1, 2 |
|-------------------|----------------|
| <b>2:</b> 2, 3, 4 | <b>2:</b> 3, 4 |
| <b>1:</b> 7, 5    | <b>1:</b> 5, 6 |



- Single-Key Lookups v = C.lookup(k)
  - Without partitioning: scan all keys (reads/deserializes out-of-core data)
  - With partitioning: lookup partition, scan keys of partition
- Multi-Key Lookups
  - Without partitioning: scan all keys
  - With partitioning: lookup relevant partitions

```
//build hashset of required partition ids
HashSet<Integer> flags = new HashSet<>();
for( MatrixIndexes key : filter )
    flags.add(partitioner.getPartition(key));
//create partition pruning rdd
ppRDD = PartitionPruningRDD.create(in.rdd(),
    new PartitionPruningFunction(flags));
```



# Recap: B-Tree Overview

[Rudolf Bayer, Edward M. McCreight: Organization and Maintenance of Large Ordered Indices. Acta Inf. (1) 1972]



#### History B-Tree

- Bayer and McCreight 1972, Block-based, Balanced, Boeing Labs
- Multiway tree (node size = page size); designed for DBMS
- Extensions: B+-Tree/B\*-Tree (data only in leafs, double-linked leaf nodes)

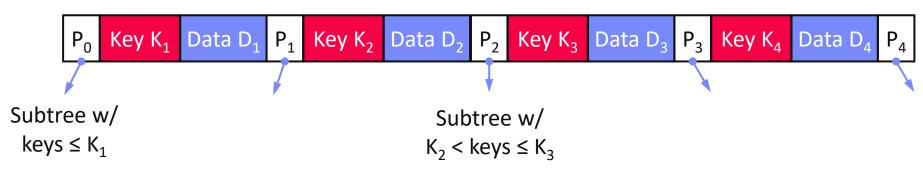
# Definition B-Tree (k, h)

- All paths from root to leafs have equal length h
- $\lceil \log_{2k+1}(n+1) \rceil \le h \le \left| \log_{k+1}\left(\frac{n+1}{2}\right) \right| + 1$
- All nodes (except root) have [k, 2k] key entries
- All nodes (except root, leafs) have [k+1, 2k+1] successors

All nodes adhere to max constraints

Data is a record or a reference to the record (RID)

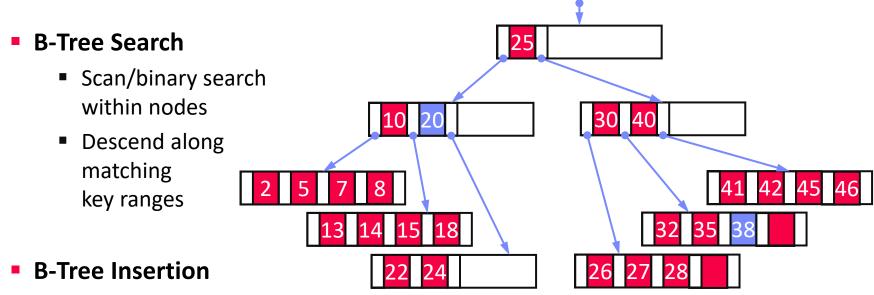
k=2







# Recap: B-Tree Overview, cont.



- Insert into leaf nodes
- Split the 2k+1 entries into two leaf nodes

#### B-Tree Deletion

- Lookup key and delete if existing
- Move entry from fullest successor; if underflow merge with sibling





# Linearized Array B-Tree (LAB-Tree)

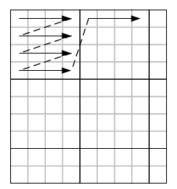
#### Basic Ideas

 B-tree over linearized array representation (e.g., row-/col-major, Z-order, UDF) [Yi Zhang, Kamesh Munagala, Jun Yang: Storing Matrices on Disk: Theory and Practice Revisited. **PVLDB 2011**]



- New leaf splitting strategies; dynamic leaf storage format (sparse and dense)
- Various flushing policies for update batching (all, LRU, smallest page, largest page, largest page probabilistically, largest group)

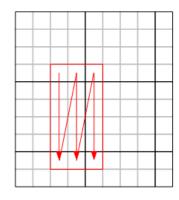
# **#1** Example linearized storage order



#### matrix A: 4 x 4 blocking row-major block order row-major cell order

# **#2** Example linearized

#### iterator order



range query A[4:9,3:5] with column-major iterator order





# Adaptive Tile (AT) Matrix

#### Basic Ideas

- Two-level blocking and NUMA-aware range partitioning (tiles, blocks)
- Z-order linearization, and recursive
   quad-tree partitioning to find var-sized tiles (tile contains N blocks)

[David Kernert, Wolfgang Lehner, Frank Köhler: Topology-aware optimization of big sparse matrices and matrix multiplications on mainmemory systems. **ICDE 2016**]



# Input Matrix Z-ordering (see sparsity est.) | 0.75 | 0.25 | 0.25 | 0.00 | 0.00 | 0.25 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.50 | 1.00 | 0.00 | 0.50 | 1.00 | 0.00 | 0.50 | 1.00 | 0.00 | 0.50 | 1.00 | 0.00 | 0.50 | 1.00 | 0.00 | 0.50 | 1.00 | 0.00 | 0.50 | 1.00 | 0.00 | 0.50 | 1.00 | 0.00 | 0.50 | 1.00 | 0.00 | 0.50 | 1.00 | 0.00 | 0.50 | 1.00 | 0.00 | 0.50 | 1.00 | 0.00 | 0.50 | 1.00 | 0.00 | 0.50 | 1.00 | 0.00 | 0.50 | 1.00 | 0.00 | 0.50 | 1.00 | 0.00 | 0.50 | 1.00 | 0.00 | 0.50 | 1.00 | 0.00 | 0.50 | 1.00 | 0.00 | 0.50 | 1.00 | 0.00 | 0.50 | 1.00 | 0.00 | 0.50 | 1.00 | 0.00 | 0.50 | 1.00 | 0.00 | 0.50 | 1.00 | 0.00 | 0.50 | 1.00 | 0.00 | 0.50 | 1.00 | 0.00 | 0.50 | 1.00 | 0.00 | 0.50 | 1.00 | 0.00 | 0.50 | 1.00 | 0.00 | 0.50 | 1.00 | 0.00 | 0.50 | 1.00 | 0.00 | 0.50 | 1.00 | 0.00 | 0.50 | 1.00 | 0.00 | 0.50 | 1.00 | 0.50 | 1.00 | 0.00 | 0.50 | 1.00 | 0.00 | 0.50 | 1.00 | 0.00 | 0.50 | 1.00 | 0.00 | 0.50 | 1.00 | 0.00 | 0.50 | 1.00 | 0.00 | 0.50 | 1.00 | 0.00 | 0.50 | 1.00 | 0.00 | 0.50 | 1.00 | 0.00 | 0.50 | 1.00 | 0.00 | 0.50 | 1.00 | 0.00 | 0.50 | 1.00 | 0.00 | 0.50 | 0.00 | 0.50 | 0.50 | 0.00 | 0.50 | 0.00 | 0.50 | 0.00 | 0.50 | 0.00 | 0.50 | 0.00 | 0.50 | 0.00 | 0.50 | 0.00 | 0.50 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00



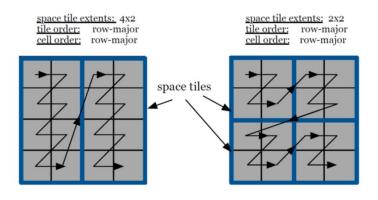
# TileDB Storage Manager

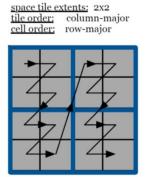
#### **Basic Ideas**

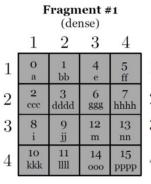
Storage manager for 2D arrays of different data types (incl. vector, 3D) [Stavros Papadopoulos, Kushal Datta, Samuel Madden, Timothy G. Mattson: The TileDB Array Data Storage Manager. PVLDB 2016]

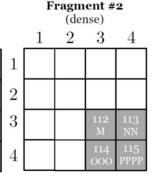


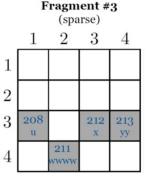
Two-level blocking (space/data tiles), update batching via fragments

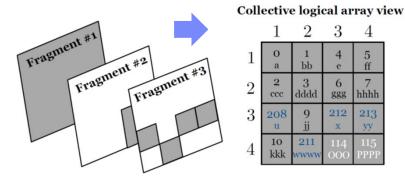












|   | 1   | 2    | 3   | 4    |
|---|-----|------|-----|------|
| 1 | O   | 1    | 4   | 5    |
|   | a   | bb   | e   | ff   |
| 2 | 2   | 3    | 6   | 7    |
|   | ccc | dddd | ggg | hhhh |
| 3 | 208 | 9    | 212 | 213  |
|   | u   | jj   | x   | уу   |
| 4 | 10  | 211  | 114 | 115  |
|   | kkk | wwww | 000 | PPPP |





# Pipelining for Mini-batch Algorithms

- Motivation
  - Overlap data access and computation in mini-batch algorithms (e.g., DNN)
  - Simple pipelining of I/O and compute via queueing / prefetching
- Example TensorFlow
  - #1 Queueing and Threading

|   | Prepare 1 | idle    | Prepare 2 | idle    | Prepare 3 | idle    |
|---|-----------|---------|-----------|---------|-----------|---------|
| U | idle      | Train 1 | idle      | Train 2 | idle      | Train 3 |

time

#2 Dataset API Prefetching

[https://www.tensorflow .org/guide/performance/ datasets] dataset = dataset.batch(batch\_size=32)
dataset = dataset.prefetch(buffer\_size=1)

| CPU     |
|---------|
| GPU/TPU |

CPU

GPU/TPU

| Prepare 1 | Prepare 2 |  | Prepare 3 |  | Prepare 4 |  |
|-----------|-----------|--|-----------|--|-----------|--|
| idle      | Train 1   |  | Train 2   |  | Train 3   |  |

time

#3 Reuse viaData Echoing



[https://ai.googleblog.com/ 2020/05/speeding-up-neuralnetwork-training.html]





# Lossy and Lossless Compression

#6 Compression





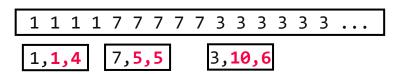
# Recap: Database Compression Schemes

# Null Suppression

 Compress integers by omitting leading zero bytes/bits (e.g., NS, gamma) 106 00000000 00000000 00000000 01101010 11 01101010

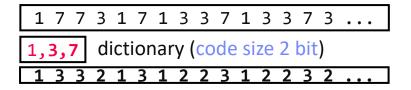
# Run-Length Encoding

 Compress sequences of equal values by runs of (value, start, run length)



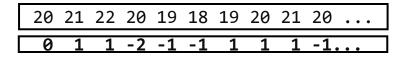
# Dictionary Encoding

 Compress column w/ few distinct values as pos in dictionary (→ code size)



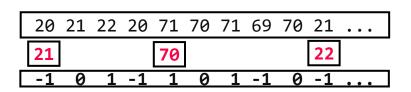
# Delta Encoding

 Compress sequence w/ small changes by storing deltas to previous value



#### Frame-of-Reference Encoding

 Compress values by storing delta to reference value (outlier handling)

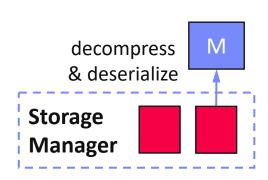




# Overview Lossless Compression Techniques

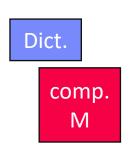
#### #1 Block-Level General-Purpose Compression

- Heavyweight or lightweight compression schemes
- Decompress matrices block-wise for each operation
- E.g.: Spark RDD compression (Snappy/LZ4),
   SciDB SM [SSDBM'11], TileDB SM [PVLDB'16],
   scientific formats NetCDF, HDF5 at chunk granularity



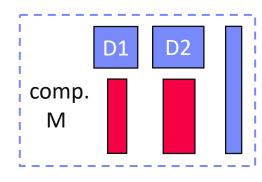
# #2 Block-Level Matrix Compression

- Compress matrix block with homogeneous encoding scheme
- Perform LA ops over compressed representation
- E.g.: CSR-VI (dict) [CF'08], cPLS (grammar) [KDD'16],
   TOC (LZW w/ trie) [SIGMOD'19]



# #3 Column-Group-Level Matrix Compression

- Compress column groups w/ heterogeneous schemes
- Perform LA ops over compressed representation
- E.g.: SystemML CLA (RLE, OLE, DDC, UC) [PVLDB'16]





# **CLA: Compressed Linear Algebra**

# Key Idea

- Use lightweight database compression techniques
- Perform LA operations on compressed matrices

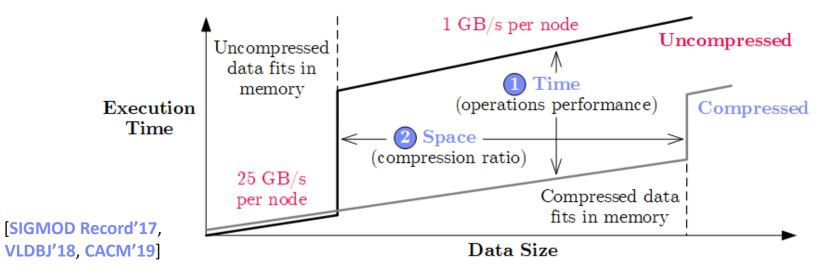
#### Goals of CLA

- Operations performance close to uncompressed
- Good compression ratios

[Ahmed Elgohary et al: Compressed Linear Algebra for Large-Scale Machine Learning. **PVLDB 2016**]



```
x
while(!converged) {
    ... q = X %*% v ...
}
```





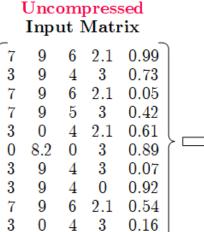


# CLA: Compressed Linear Algebra, cont. (2)

- Overview Compression Framework
  - Column-wise matrix compression (values + compressed offsets / references)
  - Column co-coding (column groups, encoded as single unit)
  - Heterogeneous column encoding formats (w/ dedicated physical encodings)

# Column Encoding Formats

- Offset-List (OLE)
- Run-Length (RLE)
- Dense Dictionary Coding (DDC)\*
- Uncompressed Columns (UC)



Compressed Column Groups

|           | -                                            |                              | -            |
|-----------|----------------------------------------------|------------------------------|--------------|
| RLE(2)    | OLE(1,3)                                     | $\overline{\mathrm{DDC}(4)}$ | <b>UC(5)</b> |
| (9) (8.2) | (7,6)(3,4)(7,5)                              | $(2.1)^{!}_{1}$ 1            | 0.99         |
| 1 6       | $\begin{bmatrix} -1 & -2 & -4 \end{bmatrix}$ | (3) i 2                      | 0.73         |
| 4_ 1_     | 3 5                                          | $(0) \mid 1$                 | 0.05         |
| 7         | 9 7                                          | 2                            | 0.42         |
| 3         | 8                                            | 1                            | 0.61         |
|           | 10                                           | 2                            | 0.89         |
|           |                                              | 2                            | 0.07         |
|           |                                              | 3                            | 0.92         |
|           |                                              | 1                            | 0.54         |
| [ ]       | l( J                                         | 2                            | 0.16         |
|           |                                              |                              |              |

\* DDC1/2 in VLDBJ'17

- Automatic Compression Planning (sampling-based)
  - Select column groups and formats per group (data dependent)



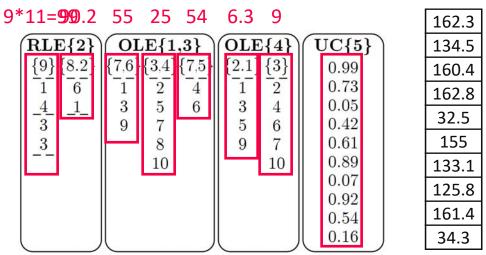


# CLA: Compressed Linear Algebra, cont. (3)

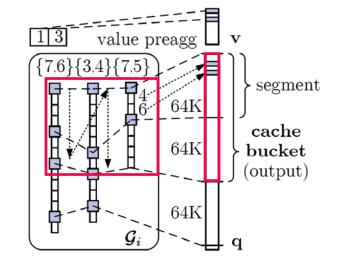
#### Matrix-Vector Multiplication

Naïve: for each tuple, pre-aggregate values, add values at offsets to q

Example: q = X v, with v = (7, 11, 1, 3, 2)



 Cache-conscious: Horizontal, segment-aligned scans, maintain positions cache unfriendly on output (q)



# Vector-Matrix Multiplication

- Naïve: cache-unfriendly on input (v)
- Cache-conscious: again use horizontal, segment-aligned scans



# CLA: Compressed Linear Algebra, cont. (4)

- Estimating Compressed Size: S<sup>C</sup> = min(S<sup>OLE</sup>, S<sup>RLE</sup>, S<sup>DDC</sup>)
  - # of distinct tuples d<sub>i</sub>: "Hybrid generalized jackknife" estimator [JASA'98]
  - # of OLE segments b<sub>ii</sub>: Expected value under maximum-entropy model
  - # of non-zero tuples z<sub>i</sub>: Scale from sample with "coverage" adjustment
  - # of runs r<sub>ii</sub>: maxEnt model + independent-interval approx. (~ Ising-Stevens)

# Compression Planning

- RLE unseen border interval  $4 (\eta_4=5)$ (2) 9 9 9 9 0 8.2 9 9 9 9 9 9 9 9 9 8.2 0
  offsets: 1 2 3 ... A=0 A=0 A=-1 A=1
- #1 Classify compressible columns
  - Draw random sample of rows (from transposed X)
  - Classify C<sup>C</sup> and C<sup>UC</sup> based on estimate compression ratio
- #2 Group compressible columns (exhaustive O(m<sup>m</sup>), greedy O(m<sup>3</sup>))
  - Bin-packing-based column partitioning
  - Greedy grouping per bin w/ pruning and memoization O(m²)
- #3 Compression
  - Extract uncompressed offset lists and exact compression ratio
  - Graceful corrections and UC group creation



# CLA: Compressed Linear Algebra, cont. (5)

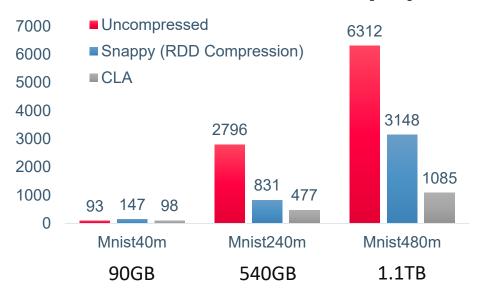
#### Experimental Setup

- LinregCG, 10 iterations (incl. compression), InfiMNIST data generator
- 1+6 node cluster (216GB aggregate memory), Spark 2.3, SystemML 1.1

#### **Compression Ratios**

| Dataset   | Gzip  | Snappy | CLA   |
|-----------|-------|--------|-------|
| Higgs     | 1.93  | 1.38   | 2.17  |
| Census    | 17.11 | 6.04   | 35.69 |
| Covtype   | 10.40 | 6.13   | 18.19 |
| ImageNet  | 5.54  | 3.35   | 7.34  |
| Mnist8m   | 4.12  | 2.60   | 7.32  |
| Airline78 | 7.07  | 4.28   | 7.44  |

#### **End-to-End Performance** [sec]



#### Open Challenges

- Ultra-sparse datasets, tensors, automatic operator fusion
- Operations beyond matrix-vector/unary, applicability to deep learning?





# Block-level Compression w/ D-VI, CSR-VI, CSX

- CSR-VI (CSR-Value Indexed) / D-VI
  - Create dictionary for distinct values
  - Encode 8 byte values as 1, 2, or 4-byte codes (positions in the dictionary)
  - Extensions w/ delta coding of indexes
  - Example CSR-VI matrix-vector multiplyc = A %\*% b

```
[Kornilios Kourtis, Georgios I. Goumas, Nectarios Koziris: Optimizing sparse matrix-vector multiplication using index and value compression. CF 2008]
```



[Vasileios Karakasis et al.: An Extended Compression Format for the Optimization of Sparse Matrix-Vector Multiplication. IEEE Trans. Parallel Distrib. Syst. 2013]

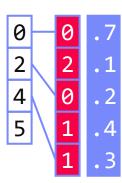


```
for(int i=0; i<a.nrow; i++) {
   int pos = A.rptr[i];
   int end = A.rptr[i+1];
   for(int k=pos; k<end; k++)
       b[i] += dict[A.val[k]] * b[A.ix[k]];
}
   value decoding</pre>
```

(MV over compressed

representation)

**CSR** 







# Tuple-oriented Compression (TOC)

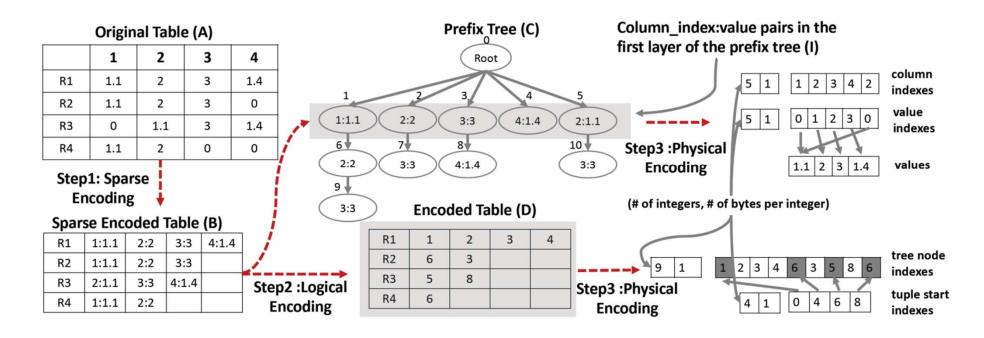
#### Motivation

DNN and ML often trained with mini-batch SGD

[Fengan Li, Lingjiao Chen, Yijing Zeng, Arun Kumar, Xi Wu, Jeffrey F. Naughton, Jignesh M. Patel: Tupleoriented Compression for Large-scale Mini-batch Stochastic Gradient Descent, **SIGMOD 2019**]



Effective compression for small batches (#rows)





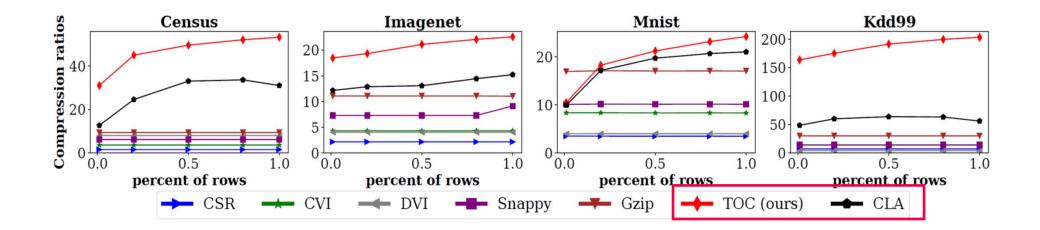


# Tuple-oriented Compression (TOC), cont.

ExampleCompression Ratios

[Fengan Li, Lingjiao Chen, Yijing Zeng, Arun Kumar, Xi Wu, Jeffrey F. Naughton, Jignesh M. Patel: Tupleoriented Compression for Large-scale Mini-batch Stochastic Gradient Descent, **SIGMOD 2019**]





Take-away: specialized lossless matrix compression

→ reduce memory bandwidth requirements and #FLOPs





# **Lossy Compression**

#### Overview

- Extensively used in DNN (runtime vs accuracy) → data format + compute
- Careful manual application regarding data and model
- Note: ML algorithms approximate by nature + noise generalization effect

#### Background Floating Point Numbers (IEEE 754)

■ Sign s, Mantissa m, Exponent e: value = s \* m \* 2e (simplified)

| Precision          | Sign | Mantissa | Exponent |        |
|--------------------|------|----------|----------|--------|
| Double (FP64)      | 1    | 52       | 11       | [bits] |
| Single (FP32)      | 1    | 23       | 8        |        |
| Half (FP16)        | 1    | 10       | 5        |        |
| Quarter (FP8)      | 1    | 3        | 4        |        |
| Half-Quarter (FP4) | 1    | 1        | 2        |        |





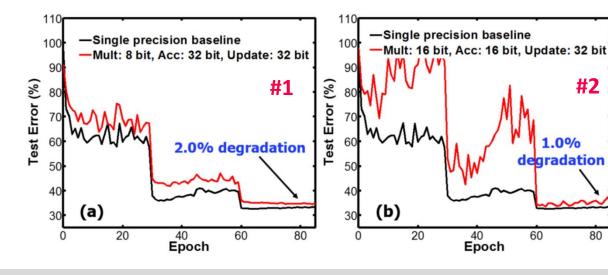
# Low and Ultra-low FP Precision

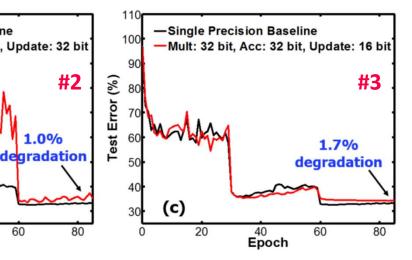
- Model Training w/ low FP Precision
- see **05 Execution Strategies**, SIMD → speedup/reduced energy

- Trend: from FP32/FP16 to FP8
- #1: Precision of intermediates (weights, act, errors, grad) → loss in accuracy
- #2: Precision of accumulation → impact on convergence (swamping s+L)
- #3: Precision of weight updates → loss in accuracy
- **Example ResNet18 over ImageNet**

[Naigang Wang et al.: Training Deep Neural Networks with 8-bit Floating Point Numbers. NeurIPS 2018]









40

60



# Low and Ultra-low FP Precision, cont.

#### Numerical Stable Accumulation

#1 Sorting ASC + Summation (accumulate small values first)

```
# #2 Kahan Summation
w/ error independent
of number of values n
sumOld = sum;
sum = sum + (input + corr);
corr = (input + corr) - (sum - sumOld);
```

#### #3 Chunk-based Accumulation

- Divide long dot products into smaller chunks
- Hierarchy of partial sums → FP16 accumulators

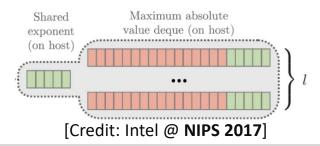
#### #4 Stochastic Rounding

- Replace nearest with probabilistic rounding
- Probability accounts for number of bits

#### #5 Intel FlexPoint / Google bfloat16

 Blocks of values w/ shared exponent (16bit w/ 5bit shared exponent) [N. Wang et al.: Training Deep Neural Networks with 8-bit Floating Point Numbers. NeurIPS 2018]









# Fixed-Point Arithmetic

#### Recommended "Reading"

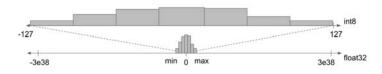


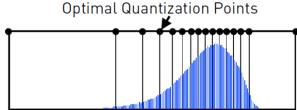
[Inside TensorFlow: Model Optimization Toolkit (Quantization and Pruning), YouTube, 2020]

#### Motivation

- Forward-pass for model scoring (inference) can be done in UINT8 and below
- Static, dynamic, and learned quantization schemes (weights and inputs)
- #1 Quantization (reduce value domain)
  - Split value domain into N buckets such that k = log<sub>2</sub> N can encode the data
  - a) Static Quantization (e.g., min/max)
     per tensor or per tensor channel
  - b) Learned Quantization Schemes
    - Dynamic programming
    - Various heuristics
    - Example systems: ZipML, SketchML

[https://blog.tensorflow.org/2020/04/ quantization-aware-training-with-tensorflowmodel-optimization-toolkit.html]





[Hantian Zhang, Jerry Li, Kaan Kara, Dan Alistarh, Ji Liu, Ce Zhang: ZipML: Training Linear Models with End-to-End Low Precision, and a Little Bit of Deep Learning. ICML 2017]







# Other Lossy Techniques

[https://blog.tensorflow.org/2019/05/tfmodel-optimization-toolkit-pruning-API.html]

- #2 Sparsification/Pruning (reduce #non-zeros)
  - Value clipping: zero-out very small values below a threshold to reduce size of weights
  - Training w/ target sparsity: remove connections

| Sparse Accuracy  | NNZ   |
|------------------|-------|
| 78.1% @ sp=1.0   | 27.1M |
| 78.0% @ sp=0.5   | 13.6M |
| 76.1% @ sp=0.25  | 6.8M  |
| 74.6% @ sp=0.125 | 3.3M  |

#### #3 Mantissa Truncation

- Truncate m of FP32 from 23bit to 16bit.
- E.g., TensorFlow (transfers), Pstore

#### **#4 Aggregated Data Representations**

- a) Dim reduction (e.g., auto encoders)
- b) No FK-PK joins in Factorized Learning (foreign key as lossy compressed rep)

# efficient storage framework for managing scientific data. SSDBM 2014]



[Amir Ilkhechi et al: DeepSqueeze: Deep Semantic Compression for Tabular Data, **SIGMOD 2020**]



[Arun Kumar et al: To Join or Not to Join?: Thinking Twice about Joins before Feature Selection. **SIGMOD 2016**]



# #5 Sampling

- User specifies approximation contract for error (regression/classification) and scale
- Min sample size for max likelihood estimators

[Yongjoo Park et al: BlinkML: Efficient Maximum Likelihood Estimation with Probabilistic Guarantees. **SIGMOD 2019**]





# **Summary and Conclusions**

- Data Access Methods → High Impact on Performance/Energy
  - Caching, Partitioning, and Indexing
  - Lossy and Lossless Compression
- Next Lectures
  - May 21/22: Ascension Day (Christi Himmelfahrt)
  - 09 Data Acquisition, Cleaning, and Preparation [May 29]
  - 10 Model Selection and Management [Jun 05]
  - 11 Model Debugging Techniques [Jun 12]
  - 12 Model Serving Systems and Techniques [Jun 19]

(**Part B:** ML Lifecycle Systems)

