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Announcements/Org

 #1 Video Recording 

 Link in TeachCenter & TUbe (lectures will be public)

 Live streaming through TUbe, starting May 08  

 Questions: https://tugraz.webex.com/meet/m.boehm

 #2 AMLS Programming Projects

 Status: all project discussions w/ 15 students (~8 PRs)

 Awesome mix of projects (algorithms, compiler, runtime)

 Soft deadline: June 30

 If unable to complete: email to m.boehm@tugraz.at

 #3 Course Evaluation

 Please participate; open period: June 1 – July 15
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Recap: The Data Science Lifecycle

Data Science Lifecycle

Data/SW 

Engineer

DevOps 

Engineer

Data Integration 

Data Cleaning 

Data Preparation

Model Selection

Training 

Hyper-parameters

Validate & Debug

Deployment

Scoring & Feedback

Data 

Scientist

Data-centric View:

Application perspective

Workload perspective

System perspective

Exploratory Process 

(experimentation, refinements, ML pipelines)
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Agenda

 Data Augmentation

 Model Selection Techniques

 Model Management
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Data Augmentation
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Motivation and Basic Data Augmentation

 Motivation Data Augmentation

 Complex ML models / deep NNs need lots of 

labeled data to avoid overfitting  expensive

 Augment training data by synthetic labeled data

 Translations & Reflections

 Random 224x224 patches 

and their reflections

(from 256x256 images

with known labels)

 Increased data by 2048x

 Test: corner/center patches 

+ reflections  prediction

 Alternating Intensities

 Intuition: object identity is invariant to illumination and color intensity

 PCA on dataset  add eigenvalues times a random variable N(0,0.1)

Data Augmentation

[Alex Krizhevsky, Ilya 

Sutskever, Geoffrey E. Hinton: 

ImageNet Classification with 

Deep Convolutional Neural 

Networks. NIPS 2012]

AlexNet
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Basic Data Augmentation

 Scaling and Normalization

 Standardization: subtract per-channel global pixel means

 Normalization: normalized to range [-1,1] (see min-max)

 General Principles

 #1: Movement/selection (translation, rotation, reflection, cropping)

 #2: Distortions (stretching, shearing, lens distortions, color)

 In many different combinations  often trial & error / domain expertise

 Excursus: Reducing Training Time

 Transfer learning: Use pre-trained model on ImageNet; 

freeze lower NN layers, fine-tune last layers w/ domain-specific data

 Multi-scale learning: Use cropping and scaling 

to train 256 x 256 model as starting point for a 

more compute-intensive 384x384 model

Data Augmentation

[Karen Simonyan, Andrew 

Zisserman: Very Deep Convolu-

tional Networks for Large-Scale 

Image Recognition. ICLR 2015]
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Basic Data Augmentation, cont.

 Distortions

 Translations, rotations, skewing

 Compute for every pixel a new target

location via rand displacement fields)

 Cutout

 Randomly masking out square 

regions of input images

 Size more important than shape

Data Augmentation

[Patrice Y. Simard, David Steinkraus, John 

C. Platt: Best Practices for Convolutional 

Neural Networks Applied to Visual 

Document Analysis. ICDAR 2003]

[Terrance Devries, Graham W. Taylor: 

Improved Regularization of Convolutional 

Neural Networks with Cutout. CoRR 2017]
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Domain Randomization

 Training on Simulated Images

 Random rendering of objects

with non-realistic textures

 Large variability for generalization

to real world objects

 Pre-Training on Simulated Images

 Random 3D objects and flying

distractors w/ random textures

 Random lights and rendered

onto random background

Data Augmentation

[Josh Tobin et al.: Domain 

randomization for transferring deep 

neural networks from simulation to 

the real world. IROS 2017]

[Jonathan Tremblay et al.: Training Deep 

Networks With Synthetic Data: Bridging 

the Reality Gap by Domain 

Randomization. CVPR Workshops 2018]
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Learning Data Augmentation Policies

 AutoAugment

 Search space of augmentation policies

 Goal: Find best augmentation policy

(e.g., via reinforcement learning)

 #1: Image processing functions

(translation, rotation, color normalization)

 #2: Probabilities of applying these functions

 Data Augmentation GAN (DAGAN)

 Image-conditional generative model for 

creating within-class images from inputs

 No need for known invariants

Data Augmentation

Real 

input 

image

 New state-of-the 

art top-1 error on 

ImageNet and CIFAR10

[Ekin Dogus Cubuk, Barret Zoph, 

Dandelion Mané, Vijay Vasudevan, 

Quoc V. Le: AutoAugment: Learning 

Augmentation Policies from Data. 

CVPR 2019]

[Antreas Antoniou, Amos J. Storkey, Harrison Edwards: 

Augmenting Image Classifiers Using Data Augmentation 

Generative Adversarial Networks. ICANN 2018]
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Weak Supervision

 Heuristically Generated Training Data

 Hand labeling expensive and time consuming, but abundant unlabeled data

 Changing labeling guidelines  labeling heuristics

Data Augmentation

basic data 

augmentation

[Alex Ratner, Paroma Varma, Braden Hancock, 

Chris Ré, and others:  Weak Supervision: A New 

Programming Paradigm for Machine Learning, 

ai.stanford.edu/blog/weak-supervision/, 2019]
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Weak Supervision, cont.

 Data 

Programming 

Overview

Data Augmentation

(coverage αi, accuracy βi) 

[Alexander J. Ratner, Christopher De Sa, Sen Wu, Daniel Selsam, Christopher Ré: 

Data Programming: Creating Large Training Sets, Quickly. NIPS 2016]

[Alexander Ratner, Stephen H. Bach, Henry R. Ehrenberg, Jason Alan Fries, Sen Wu, 

Christopher Ré: Snorkel: Rapid Training Data Creation with Weak Supervision. 

PVLDB 2017]

[Paroma Varma, Christopher Ré: Snuba: Automating Weak Supervision to Label 

Training Data. PVLDB 2018]

[Stephen H. Bach, Daniel Rodriguez, Yintao Liu, Chong Luo, Haidong Shao, 

Cassandra Xia, Souvik Sen, Alexander Ratner, Braden Hancock, Houman Alborzi, 

Rahul Kuchhal, Christopher Ré, Rob Malkin: Snorkel DryBell: A Case Study in 

Deploying Weak Supervision at Industrial Scale. SIGMOD 2019]
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Weak Supervision, cont.

 Excursus: Snorkel

[https://www.snorkel.org/]

 Programmatically 

Building and Managing 

Training Data

 Effects of Augmentation

 #1 Regularization for reduced generalization error, not always training error

(penalization of model complexity)

 #2 Invariance increase by averaging features of augmented data points

 Data Augmentation as a Kernel

 Kernel metric for augmentation selection

 Affine transforms on approx. kernel features

Data Augmentation

10 Model 

Selection & 

Management

11 Model 

Debugging 

Techniques

[Tri Dao et al: A Kernel 

Theory of Modern Data 

Augmentation. ICML 2019]
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Model Selection Techniques



15

706.550 Architecture of Machine Learning Systems – 10 Model Selection and Management

Matthias Boehm, Graz University of Technology, SS 2020 

AutoML Overview

 Model Selection

 Given a dataset and ML task 

(e.g., classification or regression) 

 Select the model (type) that performs best 

(e.g.: LogReg, Naïve Bayes, SVM, Decision Tree, Random Forest, DNN)

 Hyper Parameter Tuning

 Given a model and dataset, 

find best hyper parameter values 

(e.g., learning rate, regularization, kernels, kernel parameters, tree params)

 Validation: Generalization Error

 Goodness of fit to held-out data (e.g., 80-20 train/test)

 Cross validation (e.g., leave one out  k=5 runs w/ 80-20 train/test)

AutoML Systems/Services

 Often providing both model selection and hyper parameter search

 Integrated ML system, often in distributed/cloud environments

Model Selection Techniques

[Chris Thornton, Frank Hutter, Holger H. Hoos, 

Kevin Leyton-Brown: Auto-WEKA: combined 

selection and hyperparameter optimization of 

classification algorithms. KDD 2013]
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Basic Grid Search

 Basic Approach

 Given n hyper parameters λ1, …, λn with domains Λ1, …, Λn

 Enumerate and evaluate parameter space Λ ⊆ Λ� �  … � Λ�

(often strict subset due to dependency structure of parameters)

 Continuous hyper parameters  discretization

 Equi-width

 Exponential 

(e.g., regularization

0.1, 0.01, 0.001, etc)

 Problem: Only applicable 

with small domains 

 Heuristic: Monte-Carlo

(random search)

Model Selection Techniques

0

1

1α

β

Non-convex or unknown 

parameter space 

gridSearch()

GridSearchCV()
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Basic Iterative Algorithms

 Simulated Annealing

 Decaying temperature schedules: Tk+1 = α ∙ Tk

 #1 Generate neighbor in ε-env of old point

 #2 Accept better points and worse points w/

 Recursive Random Search

 Repeated restart

 Sample and evaluate points

 Determine best and shrink 

area if optimum unchanged

 Realign area if new 

optimum found 

Model Selection Techniques

Exploration vs 

exploitation

�	
�� 

1

1 � exp 		�′ � ��/
��

Parameter Space

[Tao Ye, Shivkumar Kalyanaraman: A 

recursive random search algorithm for 

large-scale network parameter 

configuration. SIGMETRICS 2003]
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Bayesian Optimization

 Overview BO

 Sequential Model-Based Optimization

 Fit a probabilistic model based on the 

first n-1 evaluated hyper parameters

 Use model to select next candidate

 Gaussian process (GP) models, or

tree-based Bayesian Optimization

 Underlying Foundations

 The posterior probability of a model M given 

evidence E is proportional to the likelihood of 

E given M multiplied by prior probability of M

 Prior knowledge: e.g., smoothness, noise-free 

 Maximize acquisition function:

GP high objective (exploitation) and high prediction uncertainty (exploration) 

Model Selection Techniques

[Chris Thornton, Frank Hutter, Holger H. Hoos, 

Kevin Leyton-Brown: Auto-WEKA: combined 

selection and hyperparameter optimization of 

classification algorithms. KDD 2013]

� � � 
 � � � �	��/�	��



� � � ∝ � � � �	��

beforenext after 
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Bayesian Optimization, cont

 Example 1D Problem

 Gaussian Process

 4 iterations

Model Selection Techniques

[Eric Brochu, Vlad M. Cora, Nando de 

Freitas: A Tutorial on Bayesian 

Optimization of Expensive Cost 

Functions, with Application to Active 

User Modeling and Hierarchical 

Reinforcement Learning. CoRR 2010]
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Multi-armed Bandits and Hyperband

 Overview Multi-armed Bandits

 Motivation: model types have different quality

 Select among k model types  k-armed bandit problem

 Running score for each arm  scheduling policy

 Hyperband

 Non-stochastic setting, without parametric assumptions

 Pure exploration algorithm for infinite-armed bandits

 Based on Successive Halving

 Successively discarding the 

worst-performing half of arms

 Extended by doubling budget of arms 

in each iteration (no need to configure k, random search included)

Model Selection Techniques

[Credit:

blogs.mathworks.com]

[Sébastien Bubeck, Nicolò Cesa-Bianchi: Regret Analysis of 

Stochastic and Nonstochastic Multi-armed Bandit Problems. 

Foundations and Trends in Machine Learning 2012]

[Lisha Li, Kevin G. Jamieson, Giulia 

DeSalvo, Afshin Rostamizadeh, Ameet

Talwalkar: Hyperband: A Novel Bandit-

Based Approach to Hyperparameter

Optimization. JMLR 2017]
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Selected AutoML Systems

 Auto Weka

 Bayesian optimization with 

28 learners, 11 ensemble/meta methods

 Auto Sklearn

 Bayesian optimization with 

15 classifiers, 14 feature prep, 4 data prep 

 TuPaQ

 Multi-armed bandit and large-scale

 TPOT 

 Genetic programming

 Other Services

 Azure ML, Amazon ML

 Google AutoML, H20 AutoML

Model Selection Techniques

[Hantian Zhang, Luyuan Zeng, Wentao

Wu, Ce Zhang: How Good Are Machine 

Learning Clouds for Binary Classification 

with Good Features? CoRR 2017]

[Chris Thornton et al: Auto-WEKA: combined 

selection and hyperparameter optimization of 

classification algorithms. KDD 2013]

[Lars Kotthoffet al: Auto-WEKA 2.0: 

Automatic model selection and hyper-

parameter optimization in WEKA. JMLR 2017]

[Matthias Feurer et al: Auto-sklearn: 

Efficient and Robust Automated 

Machine Learning. Automated 

Machine Learning 2019]

[Evan R. Sparks, Ameet Talwalkar, Daniel 

Haas, Michael J. Franklin, Michael I. Jordan, 

Tim Kraska: Automating model search for 

large scale machine learning. SoCC 2015]

[Randal S. Olson, Jason H. Moore: TPOT: A Tree-Based 

Pipeline Optimization Tool for Automating Machine 

Learning. Automated Machine Learning 2019]
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Selected AutoML Systems, cont.

 Alpine Meadow

 Logical and physical ML pipelines

 Multi-armed bandit for pipeline selection

 Bayesian optimization for hyper-parameters

 Dabl (Data Analysis Baseline Library)

 Tools for simple data preparation and ML training

 Hyperband (successive halving) for optimization

 BOHB

 Bayesian optimization & hyperband

 Queue-based parallelization of successive halving

 Curated AutoML

Paper Collections

Model Selection Techniques

[https://amueller.github.io/

dabl/dev/user_guide.html]

[Stefan Falkner, Aaron Klein, Frank 

Hutter: BOHB: Robust and Efficient 

Hyper-parameter Optimization at 

Scale. ICML 2018]

[Zeyuan Shang et al: 

Democratizing Data Science 

through Interactive Curation of 

ML Pipelines. SIGMOD 2019]
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Neural Architecture Search

 Motivation

 Design neural networks (type of layers / network) is often trial & error process

 Accuracy vs necessary computation characterizes an architecture

 Automatic neural architecture search

 #1 Search Space of Building Blocks

 Define possible operations

(e.g., identity, 3x3/5x5 separable 

convolution, avg/max pooling)

 Define approach for connecting

operations (pick 2 inputs, apply op, 

and add results) 

Model Selection Techniques

[Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. 

Le, Jeff Dean: Efficient Neural Architecture Search 

via Parameter Sharing. ICML 2018]

Exploration of cell 

designs
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Neural Architecture Search, cont.

 #2 Search Strategy

 Classical evolutionary algorithms

 Recurrent neural networks (e.g., LSTM)

 Bayesian optimization (with 

special distance metric)

 #3 Optimization Objective

 Max accuracy (min error)

 Multi-objective (accuracy and runtime)

 Excursus: Model Scaling

 Automatically scale-up small

model for better accuracy

 EfficientNet

Model Selection Techniques

[Barret Zoph, Quoc V. Le: Neural 

Architecture Search with 

Reinforcement Learning. ICLR 2017]

[Kirthevasan Kandasamy, Willie Neiswanger, Jeff 

Schneider, Barnabás Póczos, Eric P. Xing: Neural 

Architecture Search with Bayesian Optimisation

and Optimal Transport. NeurIPS 2018]

[Mingxing Tan, Quoc V. Le: EfficientNet: 

Rethinking Model Scaling for Convolutional 

Neural Networks. ICML 2019]
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Neural Architecture Search, cont.

 Problem: Computational Resources

 Huge computational requirements for NAS (even on small datasets)

 #1 Difficult to reproduce, and #2 barrier-to-entry

 Excursus: NAS-Bench-101

 423K unique convolutional architectures

 Training and evaluated ALL architectures, 

multiple times on CIFAR-10

 Shared dataset: 5M trained models

Model Selection Techniques

[Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real, 

Kevin Murphy, Frank Hutter: NAS-Bench-101: Towards 

Reproducible Neural Architecture Search. ICML 2019]

Outer Skeleton
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Model Management
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Overview Model Management

 Motivation

 Exploratory data science process  trial and error

(preparation, feature engineering, models, model selection)

 Different personas (data engineer, ML expert, devops)

 Problems

 No record of experiments, insights lost along the way

 Difficult to reproduce results

 Cannot search for or query models 

 Difficult to collaborate

 Overview

 Experiment tracking and visualization

 Coarse-grained ML pipeline provenance and versioning

 Fine-grained data provenance (data-/ops-oriented)

Model Management

How did you create 

that model?

Did you consider X?

[Manasi Vartak: ModelDB: A system 

to manage machine learning models, 

Spark Summit 2017]
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Background: Data Provenance and Lineage

 Overview

 Base query Q(D) = O with database D = {R1, …, Rn}

 Forward lineage query: Lf(Ri”, O’) from subset of input relation to output

 Backward lineage query: Lb(O’, Ri) from subset of outputs to base tables 

 #1 Lazy Lineage Query Evaluation

 Rewrite (invert) lineage queries as relational queries over input relations

 No runtime overhead but slow lineage query processing

 #2 Eager Lineage Query Evaluation

 Materialize annotations (data/transforms) during base query evaluation

 Runtime overhead but fast 

lineage query processing

 Lineage capture: Logical (relational) 

vs physical (instrumented physical ops)

Model Management

[Fotis Psallidas, Eugene Wu: 

Smoke: Fine-grained Lineage at 

Interactive Speed. PVLDB 2018]
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Model Management Systems

 ModelHub

 Versioning system for DNN models, 

including provenance tracking

 DSL for model exploration and enumeration 

queries (model selection + hyper parameters)

 Model versions stored as deltas

 ModelDB

 Model and provenance logging for ML 

pipelines via programmatic APIs

 Support for different ML systems 

(e.g., spark.ml, scikit-learn, others)

 GUIs for capturing meta data and 

metric visualization 

Model Management

[Hui Miao, Ang Li, Larry S. 

Davis, Amol Deshpande: 

ModelHub: Deep Learning 

Lifecycle Management. 

ICDE 2017]

[Manasi Vartak, Samuel Madden: 

MODELDB: Opportunities and Challenges 

in Managing Machine Learning Models. 

IEEE Data Eng. Bull. 2018]
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Model Management Systems, cont.

 MLflow

 An open source platform for 

the machine learning lifecycle

 Use of existing ML systems 

and various language bindings

 MLflow Tracking: logging and querying experiments

 Mlflow Projects: packaging/reproduction of ML pipeline results 

 MLflow Models: deployment of models in various services/tools

Model Management

[Matei Zaharia, Andrew Chen, Aaron Davidson, Ali Ghodsi, Sue Ann Hong, Andy Konwinski, 

Siddharth Murching, Tomas Nykodym, Paul Ogilvie, Mani Parkhe, Fen Xie, Corey Zumar: 

Accelerating the Machine Learning Lifecycle with MLflow. IEEE Data Eng. Bull. 41(4) 2018]
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Experiment Tracking

 TensorFlow: TensorBoard

 Suite of visualization tools

 Explicitly track and write 

summary statistics 

 Visualize behavior over

time and across experiments

 Different folders for 

model versioning? 

 Other Tools:

 Integration w/ TensorBoard

 Lots of custom logging

and plotting tools

Model Management

[Credit: https://www.tensorflow.org/guide/ 

summaries_and_tensorboard]
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Provenance for ML Pipelines (fine-grained)

 DEX: Dataset Versioning

 Versioning of datasets, stored with delta encoding

 Checkout, intersection, union queries over deltas

 Query optimization for finding efficient plans

 MISTIQUE: Intermediates of ML Pipelines

 Capturing, storage, querying of intermediates

 Lossy deduplication and compression

 Adaptive querying/materialization for finding efficient plans

 Linear Algebra Provenance

 Provenance propagation by decomposition

 Annotate parts w/ provenance polynomials

(identifiers of contributing inputs + impact)

Model Management

� 
 ���
� � ���
 � �!"
� � �!�
  

B C

D E

A

Sx Sy

Tu

Tv

[Zhepeng Yan, Val Tannen, Zachary G. 

Ives: Fine-grained Provenance for Linear 

Algebra Operators. TaPP 2016]

[Amit Chavan, Amol

Deshpande: DEX: Query 

Execution in a Delta-

based Storage System. 

SIGMOD 2017]

[Manasi Vartak et al: MISTIQUE: 

A System to Store and Query 

Model Intermediates for Model 

Diagnosis. SIGMOD 2018]
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Provenance for ML Pipelines (coarse-grained)

 MLflow

 Programmatic API for

tracking parameters, 

experiments, and results

 autolog() for specific params

 Flor (on Ground)

 DSL embedded in python for managing the 

workflow development phase of the ML lifecycle

 DAGs of actions, artifacts, and literals

 Data context generated by activities in Ground 

 Dataset Relationship Management

 Reuse, reveal, revise, retarget, reward

 Code-to-data relationships (data provenance)

 Data-to-code relationships (potential transforms)

Model Management

import mlflow

mlflow.log_param("num_dimensions", 8)

mlflow.log_param("regularization", 0.1)

mlflow.log_metric("accuracy", 0.1)

mlflow.log_artifact("roc.png")

[Credit: https://databricks.com/

blog/2018/06/05 ]

[Credit: https://rise.cs.berkeley.edu/

projects/jarvis/ ]

[Joseph M. Hellerstein et al: 

Ground: A Data Context 

Service. CIDR 2017]

[Zachary G. Ives, Yi Zhang, 

Soonbo Han, Nan Zheng,: 

Dataset Relationship 

Management. CIDR 2019]
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Provenance for ML Pipelines (coarse-grained), cont.

 HELIX

 Goal: focus on iterative development 

w/ small modifications (trial & error)

 Caching, reuse, and recomputation

 Reuse as Max-Flow problem  NP-hard  heuristics

 Materialization to disk for future reuse

Model Management

[Doris Xin, Stephen Macke, Litian Ma, 

Jialin Liu, Shuchen Song, Aditya G. 

Parameswaran: Helix: Holistic 

Optimization for Accelerating Iterative 

Machine Learning. PVLDB 2018]

recompute

load
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Fine-grained Lineage in SystemDS

 Problem

 Exploratory data science (data preprocessing, model configurations)

 Reproducibility and explainability of trained models (data, parameters, prep)

 Lineage/Provenance as Key Enabling Technique:

Model versioning, reuse of intermediates, incremental maintenance,

auto differentiation, and debugging (query processing over lineage)

 Efficient Lineage Tracing

 Tracing of inputs, literals, and non-determinism

 Trace lineage of logical operations for all live variables, store along outputs,

program/output reconstruction possible:

 Proactive deduplication of lineage traces for loops

Model Management

X = eval(deserialize(serialize(lineage(X))))
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Fine-grained Lineage in SystemDS, cont.

 Full Reuse of Intermediates

 Before executing instruction, 

probe output lineage in cache 

Map<Lineage, MatrixBlock>

 Cost-based/heuristic caching 

and eviction decisions (compiler-assisted)

 Partial Reuse of Intermediates

 Problem: Often partial result overlap

 Reuse partial results via dedicated 

rewrites (compensation plans)

 Example: steplm

Model Management

for( i in 1:numModels ) 

R[,i] = lm(X, y, lambda[i,], ...)

m_lmDS = function(...) {

l = matrix(reg,ncol(X),1)

A = t(X) %*% X + diag(l)

b = t(X) %*% y

beta = solve(A, b) ...}

m_steplm = function(...) {

while( continue ) {

parfor( i in 1:n ) {

if( !fixed[1,i] ) {

Xi = cbind(Xg, X[,i])

B[,i] = lm(Xi, y, ...)

} }

# add best to Xg

# (AIC)

} }

O(k(mn2+n3)) 

O(mn2+kn3)

O(n2(mn2+n3))  O(n2(mn+n3))

X

t(X)

m>>n
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Summary and Q&A

 Data Augmentation

 Model Selection Techniques

 Model Management

 Next Lectures

 June 11/12: Corpus Christi (Fronleichnam)

 11 Model Debugging Techniques [Jun 19]

 12 Model Serving Systems and Techniques [Jun 26]


