
1

SCIENCE

PASSION

TECHNOLOGY

Architecture of ML Systems
11 Model Debugging & Serving

Matthias Boehm

Graz University of Technology, Austria

Computer Science and Biomedical Engineering

Institute of Interactive Systems and Data Science

BMVIT endowed chair for Data Management

Last update: June 18, 2020

2

706.550 Architecture of Machine Learning Systems – 11 Model Debugging and Serving

Matthias Boehm, Graz University of Technology, SS 2020

Announcements/Org

 #1 Video Recording

 Link in TeachCenter & TUbe (lectures will be public)

 Live streaming through TUbe, since May 08

 Questions: https://tugraz.webex.com/meet/m.boehm

 #2 AMLS Programming Projects

 Status: all project discussions w/ 15 students (~10 PRs)

 Soft deadline: June 30

 If unable to complete: email to m.boehm@tugraz.at

 Doodle for oral exam slots July 2/3 (1 done + 8 scheduled)

 #3 Course Evaluation

 Please participate; open period: June 1 – July 15

3

706.550 Architecture of Machine Learning Systems – 11 Model Debugging and Serving

Matthias Boehm, Graz University of Technology, SS 2020

Recap: The Data Science Lifecycle

Data Science Lifecycle

Data/SW
Engineer

DevOps
Engineer

Data Integration
Data Cleaning

Data Preparation

Model Selection
Training

Hyper-parameters

Validate & Debug
Deployment

Scoring & Feedback

Data
Scientist

Data-centric View:
Application perspective

Workload perspective

System perspective

Exploratory Process
(experimentation, refinements, ML pipelines)

4

706.550 Architecture of Machine Learning Systems – 11 Model Debugging and Serving

Matthias Boehm, Graz University of Technology, SS 2020

Agenda

 Model Debugging and Validation

 Model Deployment and Serving

5

706.550 Architecture of Machine Learning Systems – 11 Model Debugging and Serving

Matthias Boehm, Graz University of Technology, SS 2020

Model Debugging and Validation

Similar to Software Testing

Focus on Benchmarks, Assessment, Monitoring,

Trust, Finding Room for Improvements

6

706.550 Architecture of Machine Learning Systems – 11 Model Debugging and Serving

Matthias Boehm, Graz University of Technology, SS 2020

Recap: Data Validation

Sanity checks on expected shape
before training first model

 Check a feature’s min, max, and most common value

 Ex: Latitude values must be within the range [-90, 90] or [-π/2, π/2]

 The histograms of continuous or categorical values are as expected

 Ex: There are similar numbers of positive and negative labels

 Whether a feature is present in enough examples

 Ex: Country code must be in at least 70% of the examples

 Whether a feature has the right number of values (i.e., cardinality)

 Ex: There cannot be more than one age of a person

 Others

Data Acquisition and Integration

[Neoklis Polyzotis, et al: Data

Management Challenges in

Production Machine Learning.

Tutorial, SIGMOD 2017] (Google
Research)

(Amazon Research)

[Sebastian Schelter et al:

Automating Large-Scale Data

Quality Verification. PVLDB 2018]

[Mike Dreves et al: From Data to Models

and Back DEEM@SIGMOD 2020,
http://deem-workshop.org/videos/

2020/8_dreves.mp4]
(Google)

7

706.550 Architecture of Machine Learning Systems – 11 Model Debugging and Serving

Matthias Boehm, Graz University of Technology, SS 2020

Overview Model Debugging

 #1 Understanding via Visualization

 Plotting of predictions / interactions

 Combination with dimensionality

reduction into 2D:

 Autoencoder

 PCA (principal component analysis)

 t-SNE (T-distributed Stochastic Neighbor Embedding)

 Input, intermediate, and output layers of DNNs

 #2 Fairness, Explainability, and Validation via Constraints

 Impose constraints like monotonicity for ensuring fairness

 Generate succinct representations (e.g., rules) as explanation

 Establish assertions and thresholds for automatic validation and alerts

Model Debugging and Validation

[Credit: twitter.com/tim_kraska]

[Andrew Crotty et al: Vizdom:

Interactive Analytics through

Pen and Touch. PVLDB 2015]

[Credit: nlml.github.io/in-raw-

numpy/in-raw-numpy-t-sne/]

8

706.550 Architecture of Machine Learning Systems – 11 Model Debugging and Serving

Matthias Boehm, Graz University of Technology, SS 2020

Basic Model-Specific Statistics

 Regression Statistics

 Average response and stddev, average residuals stddev residuals

 R2 (coeff of determination) with and without bias, etc

 Classification Statistics

 Classical: recall, precision, F1-score

 Visual: confusion matrix
(correct vs predicated classes)

 understand performance

wrt individual classes

 Example Mnist

 Mispredictions might

also be visualized via

dimensionality reduction

Model Debugging and Validation

0 1 2 3 4 5 6 7 8 9
21

25

15

76

23 12

36

24

31 37

42

8 11 53

0
1
2
3
4
5
6
7
8
9

correct

label

predicted label

9

706.550 Architecture of Machine Learning Systems – 11 Model Debugging and Serving

Matthias Boehm, Graz University of Technology, SS 2020

Understanding Other Basic Issues

 Overfitting / Imbalance

 Compare train and test performance

 Algorithm-specific techniques: regularization, pruning, loss, etc

 Data Leakage

 Example: time-shifted external time series data (e.g., weather)

 Compare performance train/test vs production setting

 Covariance Shift (features)

 Distribution of features in training/test data different from production data

 Reasons: out-of-domain prediction, sample selection bias

 Examples: NLP, speech recognition, face/age recognition

 Concept Drift (features  labels)

 Gradual change of statistical properties / dependencies (features-labels)

 Requires re-training, parametric approaches for deciding when to retrain

Model Debugging and Validation

10

706.550 Architecture of Machine Learning Systems – 11 Model Debugging and Serving

Matthias Boehm, Graz University of Technology, SS 2020

Occlusion-Based Explanations

 Occlusion Explanations

 Slide gray square over inputs

 Measure how feature maps

and classifier output changes

 Incremental Computation
of Occlusion Explanations

 View CNN as white-box operator

graph and operators as views

 Materialize intermediate tensors

and apply incremental view maintenance

Model Debugging and Validation

[Matthew D. Zeiler, Rob Fergus:

Visualizing and Understanding

Convolutional Networks. ECCV 2014]

[Supun Nakandala, Arun Kumar, and Yannis

Papakonstantinou: Incremental and Approximate

Inference forFaster Occlusion-based Deep CNN

Explanations, SIGMOD 2019]

SIGMOD 2020 Research Highlight

11

706.550 Architecture of Machine Learning Systems – 11 Model Debugging and Serving

Matthias Boehm, Graz University of Technology, SS 2020

Saliency Maps

 Saliency Map

 Given input image

and specific class

 Compute saliency

map of class
derivatives wrt
input image

 Approximated w/

a linear function

(Taylor expansion)

 Unsupervised
Image
Segmentation

Model Debugging and Validation

[Karen Simonyan, Andrea Vedaldi, Andrew Zisserman: Deep

Inside Convolutional Networks: Visualising Image Classification

Models and Saliency Maps. ICLR Workshop 2014]

12

706.550 Architecture of Machine Learning Systems – 11 Model Debugging and Serving

Matthias Boehm, Graz University of Technology, SS 2020

Example Model Anomalies

 #1 Wolf Detection based on snow cover

 #2 Horse Detection
based on image watermarks

 Layer-wise relevance propagation

 #3 Race-biased Jail
Risk Assessment

Model Debugging and Validation

“silent but severe problems”

[Sebastian Lapuschkin et al.: Analyzing

Classifiers: Fisher Vectors and Deep

Neural Networks, CVPR 2016]

[Julia Angwin et al: Machine Bias – There’s software used

across the country to predict future criminals. And it’s biased

against blacks, 2016, https://www.propublica.org/article/

machine-bias-risk-assessments-in-criminal-sentencing]

[Marco Túlio Ribeiro, Sameer Singh, and Carlos

Guestrin: Why Should I Trust You?: Explaining the

Predictions of Any Classifier, KDD 2016]

12/27



25/27

13

706.550 Architecture of Machine Learning Systems – 11 Model Debugging and Serving

Matthias Boehm, Graz University of Technology, SS 2020

Debugging Bias and Fairness

 Fairness

 Validate and ensure fairness with regard to sensitive features (unbiased)

 Use occlusion and saliency maps to characterize and compare groups

 Enforcing Fairness

 Use constraints to enforce certain properties (e.g., monotonicity, smoothness)

 Example: late payment  credit score

Model Debugging and Validation

[Maya Gupta: How

Do We Make AI

Fair? SysML 2019]

14

706.550 Architecture of Machine Learning Systems – 11 Model Debugging and Serving

Matthias Boehm, Graz University of Technology, SS 2020

Explanation Tables

 Motivation

 Generate succinct
decision rules from data

 Problem: Decision tree

rules do not overlap by def

 Example athlete’s exercise log:

“Goal met”  7 vs 7

 Explanation Tables

 Find smallest explanation
table subject to max KL

divergence threshold

 Greedy and sampling algorithms

Model Debugging and Validation

[Kareem El Gebaly, Parag Agrawal, Lukasz

Golab, Flip Korn, Divesh Srivastava:

Interpretable and Informative

Explanations of Outcomes. PVLDB 2014]

15

706.550 Architecture of Machine Learning Systems – 11 Model Debugging and Serving

Matthias Boehm, Graz University of Technology, SS 2020

Data Slices and Automatic Slice Finding

 Problem

 Find top-k data slices where
model performs worse than average

 Data slice: SDG := D=PhD AND G=female (subsets of features)

 Objective: w * err(SDG)/err(S*) + (1-w) * |SDG|

 Existing Algorithms

 Preparation: Binning +

One-Hot Encoding of features

 Lattice search with heuristic,

level-wise termination

 Extensions

 #1 Lower/upper bounds  pruning & termination

 #2 Large-scale task-/data-parallel computation

Model Debugging and Validation

“find largest error vs

find large slices”

[Yeounoh Chung et al.: Slice Finder:

Automated Data Slicing for Model

Validation. CoRR 2018/ICDE2019]

SystemDS/scripts/

staging/slicing

16

706.550 Architecture of Machine Learning Systems – 11 Model Debugging and Serving

Matthias Boehm, Graz University of Technology, SS 2020

Model Assertions

 Motivation

 ML models might fail in complex ways that are not captured in loss function

 Inspired by assertions in SW dev  Model assertions via Python rules

 Assertion Use Cases

 #1 Runtime monitoring (collect statistics on incorrect behavior)

 #2 Corrective Action (trigger corrections at runtime)  but how in retrospect?

 #3 Active Learning (decide which difficult data points to give to user)

 #4 Weak supervision (propose alternative labels and use for retraining)

Model Debugging and Validation

Example:
Flickering of

object detection

[Daniel Kang, Deepti Raghavan, Peter Bailis, Matei

Zaharia: Model Assertions for Debugging Machine

Learning, NIPS Workshop ML Systems, 2018]

17

706.550 Architecture of Machine Learning Systems – 11 Model Debugging and Serving

Matthias Boehm, Graz University of Technology, SS 2020

Continuous Integration

 System Architecture
ease.ml/ci

Model Debugging and Validation

[Cedric Renggli, Bojan Karlaš, Bolin Ding, Feng Liu, Kevin

Schawinski, Wentao Wu, Ce Zhang: Continuous Integration

of Machine Learning Models with ease.ml/ci: Towards a

Rigorous Yet Practical Treatment, SysML 2019]

18

706.550 Architecture of Machine Learning Systems – 11 Model Debugging and Serving

Matthias Boehm, Graz University of Technology, SS 2020

Model Deployment and Serving

How to Exchange, Deploy, and Update Trained Models

How to Efficiently Serve Prediction Tasks

19

706.550 Architecture of Machine Learning Systems – 11 Model Debugging and Serving

Matthias Boehm, Graz University of Technology, SS 2020

Model Exchange Formats

 Definition Deployed Model

 #1 Trained ML model (weight/parameter matrix)

 #2 Trained weights AND operator graph / entire ML pipeline

 especially for DNN (many weight/bias tensors, hyper parameters, etc)

 Recap: Data Exchange Formats (model + meta data)

 General-purpose formats: CSV, JSON, XML, Protobuf

 Sparse matrix formats: matrix market, libsvm

 Scientific formats: NetCDF, HDF5

 ML-system-specific binary formats (e.g., SystemML binary block)

 Problem ML System Landscape

 Different languages and frameworks, including versions

 Lack of standardization  DSLs for ML is wild west

Model Deployment and Serving

20

706.550 Architecture of Machine Learning Systems – 11 Model Debugging and Serving

Matthias Boehm, Graz University of Technology, SS 2020

Model Exchange Formats, cont.

 Why Open Standards?

 Open source allows inspection but no control

 Open governance necessary for open standard

 Cons: needs adoption, moves slowly

 #1 Predictive Model Markup Language (PMML)

 Model exchange format in XML, created by Data Mining Group 1997

 Package model weights, hyper parameters, and limited set of algorithms

 #2 Portable Format for Analytics (PFA)

 Attempt to fix limitations of PMML, created by Data Mining Group

 JSON and AVRO exchange format

 Minimal functional math language  arbitrary custom models

 Scoring in JVM, Python, R

Model Deployment and Serving

[Nick Pentreath: Open Standards

for Machine Learning Deployment,

bbuzz 2019]

21

706.550 Architecture of Machine Learning Systems – 11 Model Debugging and Serving

Matthias Boehm, Graz University of Technology, SS 2020

Model Exchange Formats, cont.

 #3 Open Neural Network Exchange (ONNX)

 Model exchange format (data and operator graph) via Protobuf

 First Facebook and Microsoft, then IBM, Amazon  PyTorch, MXNet

 Focused on deep learning and tensor operations

 ONNX-ML: support for traditional ML algorithms

 Scoring engine: https://github.com/Microsoft/onnxruntime

 Cons: low level (e.g., fused ops), DNN-centric  ONNX-ML

 TensorFlow Saved Models

 TensorFlow-specific exchange format for model and operator graph

 Freezes input weights and literals, for additional optimizations

(e.g., constant folding, quantization, etc)

 Cloud providers may not be interested in open exchange standards

Model Deployment and Serving

Lukas Timpl
python/systemds/

onnx_systemds

22

706.550 Architecture of Machine Learning Systems – 11 Model Debugging and Serving

Matthias Boehm, Graz University of Technology, SS 2020

ML Systems for Serving

 #1 Embedded ML Serving

 TensorFlow Lite and new language bindings (small footprint,

dedicated HW acceleration, APIs, and models: MobileNet, SqueezeNet)

 SystemML JMLC (Java ML Connector)

 #2 ML Serving Services

 Motivation: Complex DNN models, ran on dedicated HW

 RPC/REST interface for applications

 TensorFlow Serving: configurable serving w/ batching

 Clipper: Decoupled multi-framework scoring, w/ batching and result caching

 Pretzel: Batching and multi-model optimizations in ML.NET

 Rafiki: Optimization for accuracy under latency constraints, and

batching and multi-model optimizations

Model Deployment and Serving

Example:
Google Translate

140B words/day

 82K GPUs in 2016

[Christopher Olston et al:

TensorFlow-Serving:

Flexible, High-

Performance ML Serving.

NIPS ML Systems 2017]

[Daniel Crankshaw

et al: Clipper: A

Low-Latency Online

Prediction Serving

System. NSDI 2017]

[Yunseong Lee et al.:

PRETZEL: Opening the Black

Box of Machine Learning

Prediction Serving Systems.

OSDI 2018]

[Wei Wang et al: Rafiki:

Machine Learning as

an Analytics Service

System. PVLDB 2018]

23

706.550 Architecture of Machine Learning Systems – 11 Model Debugging and Serving

Matthias Boehm, Graz University of Technology, SS 2020

Example SystemDS JMLC

 Example
Scenario

 Challenges

 Scoring part of larger end-to-end pipeline

 External parallelization w/o materialization

 Simple synchronous scoring

 Data size (tiny ΔX, huge model M)

 Seamless integration & model consistency

Model Deployment and Serving

Sentence
Classification

Sentence
Classification

Feature Extraction
(e.g., doc structure, sentences,

tokenization, n-grams)

…
(e.g., ⨝⨝⨝⨝, ∪∪∪∪)

ΔX

M
“Model”

Token Features

Sentences

 Embedded scoring

 Latency⇒ Throughput

 Minimize overhead per ΔX

 Token inputs & outputs

24

706.550 Architecture of Machine Learning Systems – 11 Model Debugging and Serving

Matthias Boehm, Graz University of Technology, SS 2020

Example SystemDS JMLC, cont.

 Background: Frame

 Abstract data type with schema
(boolean, int, double, string)

 Column-wise block layout

 Local/distributed operations:

e.g., indexing, append, transform

 Data Preparation
via Transform

Model Deployment and Serving

Training

FY

BMY

YFX transformencode X

MX

Scoring
ΔŶ

transformapplyΔFX ΔX

transformdecodeΔFŶ

Schema

…

Distributed
representation:

? x ncol(F) blocks

(shuffle-free
conversion of
csv / datasets)

25

706.550 Architecture of Machine Learning Systems – 11 Model Debugging and Serving

Matthias Boehm, Graz University of Technology, SS 2020

Example SystemML JMLC, cont.

 Motivation

 Embedded scoring

 Latency⇒ Throughput

 Minimize overhead per ΔX

 Example

Model Deployment and Serving

Typical compiler/runtime overheads:
Script parsing and config: ~100ms
Validation, compile, IPA: ~10ms
HOP DAG (re-)compile: ~1ms
Instruction execute: <0.1μs

1: Connection conn = new Connection();

2: PreparedScript pscript = conn.prepareScript(

getScriptAsString(“glm-predict-extended.dml”),

new String[]{“FX”,“MX”,“MY”,“B”}, new String[]{“FY”});

3: pscript.setFrame(“MX”, MX, true);

4: pscript.setFrame(“MY”, MY, true);

5: pscript.setMatrix(“B”, B, true);

// setup static inputs (for reuse)

1: Connection conn = new Connection();

2: PreparedScript pscript = conn.prepareScript(

getScriptAsString(“glm-predict-extended.dml”),

new String[]{“FX”,“MX”,“MY”,“B”}, new String[]{“FY”});

3: // ... Setup constant inputs

4: for(Document d : documents) {

5: FrameBlock FX = ...; //Input pipeline

6: pscript.setFrame(“FX”, FX);

7: FrameBlock FY = pscript.executeScript().getFrame(“FY”);

8: // ... Remaining pipeline

9: }

// single-node, no evictions,

// no recompile, no multithread.

// execute precompiled script

// many times

26

706.550 Architecture of Machine Learning Systems – 11 Model Debugging and Serving

Matthias Boehm, Graz University of Technology, SS 2020

Serving Optimizations – Batching

 Recap: Model Batching (see 08 Data Access)

 One-pass evaluation of multiple configurations

 EL, CV, feature selection, hyper parameter tuning

 E.g.: TUPAQ [SoCC’16], Columbus [SIGMOD’14

 Data Batching

 Batching to utilize the HW more efficiently under SLA

 Use case: multiple users use the same model

(wait and collect user request and merge)

 Adaptive: additive increase, multiplicative decrease

Model Deployment and Serving

Xm

n

k

O(m*n)

read

O(m*n*k)

compute

m >> n >> k

X1

m

n

X2

X3

Benefits for

multi-class /

complex

models

[Clipper @

NSDI’17]

27

706.550 Architecture of Machine Learning Systems – 11 Model Debugging and Serving

Matthias Boehm, Graz University of Technology, SS 2020

Serving Optimizations – MQO

 Result Caching

 Establish a function cache for X  Y

(memoization of deterministic function evaluation)

 Multi Model Optimizations

 Same input fed into multiple partially redundant model evaluations

 Common subexpression elimination between prediction programs

 Done during compilation or runtime

 In PRETZEL, programs compiled into

physical stages and registered

with the runtime + caching for stages

(decided based on hashing the inputs)

Model Deployment and Serving

[Yunseong Lee et al.: PRETZEL: Opening

the Black Box of Machine Learning

Prediction Serving Systems. OSDI 2018]

28

706.550 Architecture of Machine Learning Systems – 11 Model Debugging and Serving

Matthias Boehm, Graz University of Technology, SS 2020

Serving Optimizations – Quantization

 Quantization

 Lossy compression via ultra-low precision / fixed-point

 Ex.: 62.7% energy spent on data movement

 Quantization for Model Scoring

 Usually much smaller data types (e.g., UINT8)

 Quantization of model weights, and sometimes also activations

 reduced memory requirements and better latency / throughput (SIMD)

Model Deployment and Serving

import tensorflow as tf

converter = tf.lite.TFLiteConverter.from_saved_model(saved_model_dir)

converter.optimizations = [tf.lite.Optimize.OPTIMIZE_FOR_SIZE]

tflite_quant_model = converter.convert()

[Credit: https://www.tensorflow.org/lite/performance/post_training_quantization]

08 Data Access
Methods

[Amirali Boroumand et al.: Google

Workloads for Consumer Devices:

Mitigating Data Movement

Bottlenecks. ASPLOS 2018]

29

706.550 Architecture of Machine Learning Systems – 11 Model Debugging and Serving

Matthias Boehm, Graz University of Technology, SS 2020

Serving Optimizations – Compilation

 TensorFlow tf.compile

 Compile entire TF graph into binary function w/ low footprint

 Input: Graph, config (feeds+fetches w/ fixes shape sizes)

 Output: x86 binary and C++ header (e.g., inference)

 Specialization for frozen model and sizes

 PyTorch Compile

 Compile Python functions into ScriptModule/ScriptFunction

 Lazily collect operations,

optimize, and JIT compile

 Explicit jit.script call

or @torch.jit.script

Model Deployment and Serving

a = torch.rand(5)

def func(x):

for i in range(10):

x = x * x # unrolled into graph

return x

jitfunc = torch.jit.script(func) # JIT

jitfunc.save("func.pt")

[Vincent Quenneville-Bélair:

How PyTorch Optimizes

Deep Learning Computations,

Guest Lecture Stanford 2020]

[Chris Leary, Todd Wang:

XLA – TensorFlow, Compiled!,

TF Dev Summit 2017]

04 Adaptation,
Fusion, and JIT

30

706.550 Architecture of Machine Learning Systems – 11 Model Debugging and Serving

Matthias Boehm, Graz University of Technology, SS 2020

Serving Optimizations – Specialization

 NoScope Architecture

 Baseline: YOLOv2 on 1 GPU

per video camera @30fps

 Optimizer to find filters

 #1 Model Specialization

 Given query and baseline model

 Trained shallow NN (based on AlexNet) on output of baseline model

 Short-circuit if prediction with high confidence

 #2 Difference Detection

 Compute difference to ref-image/earlier-frame

 Short-circuit w/ ref label if no significant difference

Model Deployment and Serving

[Daniel Kang et al: NoScope:

Optimizing Deep CNN-Based

Queries over Video Streams at

Scale. PVLDB 2017]

31

706.550 Architecture of Machine Learning Systems – 11 Model Debugging and Serving

Matthias Boehm, Graz University of Technology, SS 2020

Summary and Conclusions

 Summary 11 Model Deployment

 Model Debugging and Validation

 Model Deployment and Serving

 #1 Finalize Programming Projects by ~June 30

 #2 Oral Exam

 Doodle for July 2/3, 45min each (done via skype/webex)

 Part 1: Describe you programming project, ram-up questions

 Part 2: Questions on 2-3 topics of 11 lectures

(basic understanding of the discussed topics / techniques)

