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Announcements/Org

 #1 Video Recording 

 Link in TeachCenter & TUbe (lectures will be public)

 Live streaming through TUbe, since May 08  

 Questions: https://tugraz.webex.com/meet/m.boehm

 #2 AMLS Programming Projects

 Status: all project discussions w/ 15 students (~10 PRs)

 Soft deadline: June 30

 If unable to complete: email to m.boehm@tugraz.at

 Doodle for oral exam slots July 2/3 (1 done + 8 scheduled)

 #3 Course Evaluation

 Please participate; open period: June 1 – July 15
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Recap: The Data Science Lifecycle

Data Science Lifecycle

Data/SW 
Engineer

DevOps 
Engineer

Data Integration 
Data Cleaning 

Data Preparation

Model Selection
Training 

Hyper-parameters

Validate & Debug
Deployment

Scoring & Feedback

Data 
Scientist

Data-centric View:
Application perspective

Workload perspective

System perspective

Exploratory Process 
(experimentation, refinements, ML pipelines)
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Agenda

 Model Debugging and Validation

 Model Deployment and Serving
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Model Debugging and Validation

Similar to Software Testing 

Focus on Benchmarks, Assessment, Monitoring, 

Trust, Finding Room for Improvements
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Recap: Data Validation

Sanity checks on expected shape 
before training first model

 Check a feature’s min, max, and most common value

 Ex: Latitude values must be within the range [-90, 90] or [-π/2, π/2]

 The histograms of continuous or categorical values are as expected

 Ex: There are similar numbers of positive and negative labels

 Whether a feature is present in enough examples

 Ex: Country code must be in at least 70% of the examples

 Whether a feature has the right number of values (i.e., cardinality)

 Ex: There cannot be more than one age of a person

 Others

Data Acquisition and Integration

[Neoklis Polyzotis, et al: Data 

Management Challenges in 

Production Machine Learning. 

Tutorial, SIGMOD 2017] (Google 
Research)

(Amazon Research)

[Sebastian Schelter et al: 

Automating Large-Scale Data 

Quality Verification. PVLDB 2018]

[Mike Dreves et al: From Data to Models 

and Back DEEM@SIGMOD 2020, 
http://deem-workshop.org/videos/

2020/8_dreves.mp4]
(Google)
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Overview Model Debugging

 #1 Understanding via Visualization

 Plotting of predictions / interactions

 Combination with dimensionality 

reduction into 2D:

 Autoencoder

 PCA (principal component analysis)

 t-SNE (T-distributed Stochastic Neighbor Embedding)

 Input, intermediate, and output layers of DNNs

 #2 Fairness, Explainability, and Validation via Constraints

 Impose constraints like monotonicity for ensuring fairness

 Generate succinct representations (e.g., rules) as explanation

 Establish assertions and thresholds for automatic validation and alerts

Model Debugging and Validation

[Credit: twitter.com/tim_kraska]

[Andrew Crotty et al: Vizdom: 

Interactive Analytics through 

Pen and Touch. PVLDB 2015]

[Credit: nlml.github.io/in-raw-

numpy/in-raw-numpy-t-sne/]
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Basic Model-Specific Statistics

 Regression Statistics

 Average response and stddev, average residuals stddev residuals

 R2 (coeff of determination) with and without bias, etc

 Classification Statistics

 Classical: recall, precision, F1-score

 Visual: confusion matrix
(correct vs predicated classes)

 understand performance

wrt individual classes

 Example Mnist

 Mispredictions might

also be visualized via

dimensionality reduction

Model Debugging and Validation
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Understanding Other Basic Issues

 Overfitting / Imbalance

 Compare train and test performance

 Algorithm-specific techniques: regularization, pruning, loss, etc

 Data Leakage

 Example: time-shifted external time series data (e.g., weather)

 Compare performance train/test vs production setting

 Covariance Shift (features)

 Distribution of features in training/test data different from production data

 Reasons: out-of-domain prediction, sample selection bias

 Examples: NLP, speech recognition, face/age recognition

 Concept Drift (features  labels)

 Gradual change of statistical properties / dependencies (features-labels)

 Requires re-training, parametric approaches for deciding when to retrain 

Model Debugging and Validation
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Occlusion-Based Explanations 

 Occlusion Explanations

 Slide gray square over inputs

 Measure how feature maps

and classifier output changes

 Incremental Computation
of Occlusion Explanations

 View CNN as white-box operator 

graph and operators as views

 Materialize intermediate tensors 

and apply incremental view maintenance

Model Debugging and Validation

[Matthew D. Zeiler, Rob Fergus: 

Visualizing and Understanding 

Convolutional Networks. ECCV 2014]

[Supun Nakandala, Arun Kumar, and Yannis

Papakonstantinou: Incremental and Approximate 

Inference forFaster Occlusion-based Deep CNN 

Explanations, SIGMOD 2019]

SIGMOD 2020 Research Highlight
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Saliency Maps

 Saliency Map

 Given input image

and specific class

 Compute saliency

map of class 
derivatives wrt
input image 

 Approximated w/

a linear function

(Taylor expansion)

 Unsupervised 
Image 
Segmentation

Model Debugging and Validation

[Karen Simonyan, Andrea Vedaldi, Andrew Zisserman: Deep 

Inside Convolutional Networks: Visualising Image Classification 

Models and Saliency Maps. ICLR Workshop 2014]
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Example Model Anomalies

 #1 Wolf Detection based on snow cover

 #2 Horse Detection 
based on image watermarks

 Layer-wise relevance propagation

 #3 Race-biased Jail 
Risk Assessment

Model Debugging and Validation

“silent but severe problems”

[Sebastian Lapuschkin et al.: Analyzing 

Classifiers: Fisher Vectors and Deep 

Neural Networks, CVPR 2016]

[Julia Angwin et al: Machine Bias – There’s software used 

across the country to predict future criminals. And it’s biased 

against blacks, 2016, https://www.propublica.org/article/

machine-bias-risk-assessments-in-criminal-sentencing]

[Marco Túlio Ribeiro, Sameer Singh, and Carlos 

Guestrin: Why Should I Trust You?: Explaining the 

Predictions of Any Classifier, KDD 2016]

12/27



25/27
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Debugging Bias and Fairness

 Fairness

 Validate and ensure fairness with regard to sensitive features (unbiased)

 Use occlusion and saliency maps to characterize and compare groups

 Enforcing Fairness

 Use constraints to enforce certain properties (e.g., monotonicity, smoothness)

 Example: late payment  credit score

Model Debugging and Validation

[Maya Gupta: How 

Do We Make AI 

Fair? SysML 2019]
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Explanation Tables

 Motivation

 Generate succinct
decision rules from data

 Problem: Decision tree

rules do not overlap by def

 Example athlete’s exercise log:

“Goal met”  7 vs 7

 Explanation Tables

 Find smallest explanation 
table subject to max KL 

divergence threshold

 Greedy and sampling algorithms

Model Debugging and Validation

[Kareem El Gebaly, Parag Agrawal, Lukasz 

Golab, Flip Korn, Divesh Srivastava: 

Interpretable and Informative 

Explanations of Outcomes. PVLDB 2014]
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Data Slices and Automatic Slice Finding

 Problem

 Find top-k data slices where 
model performs worse than average

 Data slice: SDG :=  D=PhD AND G=female (subsets of features)

 Objective: w * err(SDG)/err(S*) + (1-w) * |SDG|

 Existing Algorithms

 Preparation: Binning + 

One-Hot Encoding of features

 Lattice search with heuristic, 

level-wise termination

 Extensions

 #1 Lower/upper bounds  pruning & termination

 #2 Large-scale task-/data-parallel computation 

Model Debugging and Validation

“find largest error vs 

find large slices”

[Yeounoh Chung et al.: Slice Finder: 

Automated Data Slicing for Model 

Validation. CoRR 2018/ICDE2019]

SystemDS/scripts/

staging/slicing
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Model Assertions

 Motivation

 ML models might fail in complex ways that are not captured in loss function

 Inspired by assertions in SW dev  Model assertions via Python rules

 Assertion Use Cases

 #1 Runtime monitoring (collect statistics on incorrect behavior)

 #2 Corrective Action (trigger corrections at runtime)  but how in retrospect?

 #3 Active Learning (decide which difficult data points to give to user)

 #4 Weak supervision (propose alternative labels and use for retraining)

Model Debugging and Validation

Example: 
Flickering of 

object detection

[Daniel Kang, Deepti Raghavan, Peter Bailis, Matei

Zaharia: Model Assertions for Debugging Machine 

Learning, NIPS Workshop ML Systems, 2018]
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Continuous Integration

 System Architecture
ease.ml/ci

Model Debugging and Validation

[Cedric Renggli, Bojan Karlaš, Bolin Ding, Feng Liu, Kevin 

Schawinski, Wentao Wu, Ce Zhang: Continuous Integration 

of Machine Learning Models with ease.ml/ci: Towards a 

Rigorous Yet Practical Treatment, SysML 2019]
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Model Deployment and Serving

How to Exchange, Deploy, and Update Trained Models

How to Efficiently Serve Prediction Tasks
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Model Exchange Formats

 Definition Deployed Model

 #1 Trained ML model (weight/parameter matrix)

 #2 Trained weights AND operator graph / entire ML pipeline

 especially for DNN (many weight/bias tensors, hyper parameters, etc)

 Recap: Data Exchange Formats (model + meta data)

 General-purpose formats: CSV, JSON, XML, Protobuf

 Sparse matrix formats: matrix market, libsvm

 Scientific formats: NetCDF, HDF5

 ML-system-specific binary formats (e.g., SystemML binary block)

 Problem ML System Landscape

 Different languages and frameworks, including versions

 Lack of standardization  DSLs for ML is wild west

Model Deployment and Serving
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Model Exchange Formats, cont.

 Why Open Standards?

 Open source allows inspection but no control

 Open governance necessary for open standard

 Cons: needs adoption, moves slowly

 #1 Predictive Model Markup Language (PMML)

 Model exchange format in XML, created by Data Mining Group 1997

 Package model weights, hyper parameters, and limited set of algorithms

 #2 Portable Format for Analytics (PFA)

 Attempt to fix limitations of PMML, created by Data Mining Group

 JSON and AVRO exchange format

 Minimal functional math language  arbitrary custom models

 Scoring in JVM, Python, R

Model Deployment and Serving

[Nick Pentreath: Open Standards 

for Machine Learning Deployment, 

bbuzz 2019]
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Model Exchange Formats, cont.

 #3 Open Neural Network Exchange (ONNX)

 Model exchange format (data and operator graph) via Protobuf

 First Facebook and Microsoft, then IBM, Amazon  PyTorch, MXNet

 Focused on deep learning and tensor operations

 ONNX-ML: support for traditional ML algorithms

 Scoring engine: https://github.com/Microsoft/onnxruntime

 Cons: low level (e.g., fused ops), DNN-centric  ONNX-ML

 TensorFlow Saved Models

 TensorFlow-specific exchange format for model and operator graph

 Freezes input weights and literals, for additional optimizations

(e.g., constant folding, quantization, etc)

 Cloud providers may not be interested in open exchange standards

Model Deployment and Serving

Lukas Timpl
python/systemds/

onnx_systemds
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ML Systems for Serving

 #1 Embedded ML Serving

 TensorFlow Lite and new language bindings (small footprint, 

dedicated HW acceleration, APIs, and models: MobileNet, SqueezeNet)

 SystemML JMLC (Java ML Connector)

 #2 ML Serving Services

 Motivation: Complex DNN models, ran on dedicated HW

 RPC/REST interface for applications 

 TensorFlow Serving: configurable serving w/ batching

 Clipper: Decoupled multi-framework scoring, w/ batching and  result caching 

 Pretzel: Batching and multi-model optimizations in ML.NET

 Rafiki: Optimization for accuracy under latency constraints, and 

batching and multi-model optimizations

Model Deployment and Serving

Example:
Google Translate 

140B words/day

 82K GPUs in 2016

[Christopher Olston et al: 

TensorFlow-Serving: 

Flexible, High-

Performance ML Serving. 

NIPS ML Systems 2017]

[Daniel Crankshaw

et al: Clipper: A 

Low-Latency Online 

Prediction Serving 

System. NSDI 2017]

[Yunseong Lee et al.: 

PRETZEL: Opening the Black 

Box of Machine Learning 

Prediction Serving Systems. 

OSDI 2018]

[Wei Wang et al: Rafiki: 

Machine Learning as 

an Analytics Service 

System. PVLDB 2018]
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Example SystemDS JMLC

 Example
Scenario 

 Challenges

 Scoring part of larger end-to-end pipeline

 External parallelization w/o materialization

 Simple synchronous scoring

 Data size (tiny ΔX, huge model M) 

 Seamless integration & model consistency

Model Deployment and Serving

Sentence 
Classification

Sentence 
Classification

Feature Extraction
(e.g., doc structure, sentences, 

tokenization, n-grams)

…
(e.g., ⨝⨝⨝⨝, ∪∪∪∪)

ΔX

M
“Model”

Token Features

Sentences

 Embedded scoring

 Latency⇒ Throughput

 Minimize overhead per ΔX

 Token inputs & outputs
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Example SystemDS JMLC, cont.

 Background: Frame

 Abstract data type with schema 
(boolean, int, double, string)

 Column-wise block layout

 Local/distributed operations:

e.g., indexing, append, transform

 Data Preparation 
via Transform

Model Deployment and Serving

Training

FY

BMY

YFX transformencode X

MX

Scoring
ΔŶ

transformapplyΔFX ΔX

transformdecodeΔFŶ

Schema

…

Distributed 
representation: 

? x ncol(F) blocks

(shuffle-free
conversion of 
csv / datasets)
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Example SystemML JMLC, cont.

 Motivation

 Embedded scoring

 Latency⇒ Throughput

 Minimize overhead per ΔX

 Example

Model Deployment and Serving

Typical compiler/runtime overheads:
Script parsing and config: ~100ms
Validation, compile, IPA: ~10ms
HOP DAG (re-)compile:  ~1ms
Instruction execute: <0.1μs

1: Connection conn = new Connection();

2: PreparedScript pscript = conn.prepareScript(

getScriptAsString(“glm-predict-extended.dml”), 

new String[]{“FX”,“MX”,“MY”,“B”}, new String[]{“FY”});

3: pscript.setFrame(“MX”, MX, true);

4: pscript.setFrame(“MY”, MY, true);

5: pscript.setMatrix(“B”, B, true);

// setup static inputs (for reuse)

1: Connection conn = new Connection();

2: PreparedScript pscript = conn.prepareScript(

getScriptAsString(“glm-predict-extended.dml”), 

new String[]{“FX”,“MX”,“MY”,“B”}, new String[]{“FY”});

3: // ... Setup constant inputs

4: for( Document d : documents ) {

5: FrameBlock FX = ...; //Input pipeline

6: pscript.setFrame(“FX”, FX);

7: FrameBlock FY = pscript.executeScript().getFrame(“FY”);

8: // ... Remaining pipeline 

9: }

// single-node, no evictions, 

// no recompile, no multithread.

// execute precompiled script

// many times
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Serving Optimizations – Batching 

 Recap: Model Batching (see 08 Data Access)

 One-pass evaluation of multiple configurations

 EL, CV, feature selection, hyper parameter tuning

 E.g.: TUPAQ [SoCC’16], Columbus [SIGMOD’14

 Data Batching

 Batching to utilize the HW more efficiently under SLA

 Use case: multiple users use the same model

(wait and collect user request and merge)

 Adaptive: additive increase, multiplicative decrease

Model Deployment and Serving

Xm

n

k

O(m*n) 

read

O(m*n*k) 

compute

m >> n >> k

X1

m

n

X2

X3

Benefits for 

multi-class / 

complex 

models

[Clipper @ 

NSDI’17]
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Serving Optimizations – MQO 

 Result Caching

 Establish a function cache for X  Y

(memoization of deterministic function evaluation)

 Multi Model Optimizations

 Same input fed into multiple partially redundant model evaluations

 Common subexpression elimination between prediction programs

 Done during compilation or runtime

 In PRETZEL, programs compiled into 

physical stages and registered 

with the runtime + caching for stages

(decided based on hashing the inputs)

Model Deployment and Serving

[Yunseong Lee et al.: PRETZEL: Opening 

the Black Box of Machine Learning 

Prediction Serving Systems. OSDI 2018]
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Serving Optimizations – Quantization 

 Quantization

 Lossy compression via ultra-low precision / fixed-point 

 Ex.: 62.7% energy spent on data movement

 Quantization for Model Scoring

 Usually much smaller data types (e.g., UINT8)

 Quantization of model weights, and sometimes also activations

 reduced memory requirements and better latency / throughput (SIMD)

Model Deployment and Serving

import tensorflow as tf

converter = tf.lite.TFLiteConverter.from_saved_model(saved_model_dir)

converter.optimizations = [tf.lite.Optimize.OPTIMIZE_FOR_SIZE]

tflite_quant_model = converter.convert()

[Credit: https://www.tensorflow.org/lite/performance/post_training_quantization ]

08 Data Access 
Methods

[Amirali Boroumand et al.: Google 

Workloads for Consumer Devices: 

Mitigating Data Movement 

Bottlenecks. ASPLOS 2018]
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Serving Optimizations – Compilation

 TensorFlow tf.compile

 Compile entire TF graph into binary function w/ low footprint

 Input: Graph, config (feeds+fetches w/ fixes shape sizes)

 Output: x86 binary and C++ header (e.g., inference)

 Specialization for frozen model and sizes

 PyTorch Compile

 Compile Python functions into ScriptModule/ScriptFunction

 Lazily collect operations, 

optimize, and JIT compile

 Explicit jit.script call

or @torch.jit.script

Model Deployment and Serving

a = torch.rand(5)

def func(x):

for i in range(10):

x = x * x # unrolled into graph

return x

jitfunc = torch.jit.script(func) # JIT

jitfunc.save("func.pt")

[Vincent Quenneville-Bélair: 

How PyTorch Optimizes

Deep Learning Computations, 

Guest Lecture Stanford 2020]

[Chris Leary, Todd Wang: 

XLA – TensorFlow, Compiled!, 

TF Dev Summit 2017]

04 Adaptation, 
Fusion, and JIT
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Serving Optimizations – Specialization  

 NoScope Architecture

 Baseline: YOLOv2 on 1 GPU

per video camera @30fps

 Optimizer to find filters

 #1 Model Specialization

 Given query and baseline model

 Trained shallow NN (based on AlexNet) on output of baseline model 

 Short-circuit if prediction with high confidence

 #2 Difference Detection

 Compute difference to ref-image/earlier-frame

 Short-circuit w/ ref label if no significant difference

Model Deployment and Serving

[Daniel Kang et al: NoScope:  

Optimizing Deep CNN-Based 

Queries over Video Streams at 

Scale. PVLDB 2017]
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Summary and Conclusions

 Summary 11 Model Deployment

 Model Debugging and Validation

 Model Deployment and Serving

 #1 Finalize Programming Projects by ~June 30

 #2 Oral Exam

 Doodle for July 2/3, 45min each (done via skype/webex)

 Part 1: Describe you programming project, ram-up questions

 Part 2: Questions on 2-3 topics of 11 lectures

(basic understanding of the discussed topics / techniques)


