

Data Management 02 Conceptual Design

Matthias Boehm

Graz University of Technology, Austria Computer Science and Biomedical Engineering Institute of Interactive Systems and Data Science BMVIT endowed chair for Data Management

Last update: Mar 09, 2020

SCIENCE **PASSION**

Announcements/Org

#1 Video Recording

Link in TeachCenter & TUbe (lectures will be public)

#2 Course Registrations SS20

Data Management (lectures/exercises): 490/485

Databases (combined lectures/exercises): 97

#3 CS Talks x7 (Mar 10, 5pm, Aula Alte Technik)

- Claudia Müller-Birn (Freie Universität of Berlin)
- Title: Collaboration is Key –
 Human-Centered Design of Computational Systems
- #4 Study Abroad Fair (Mar 18, 10am-3pm, INF 25d HS i4)
 - Info booths and short presentations on study abroad programs (e.g., exchange, research, summer)

587

Announcements/Org, cont.

- #5 Catalyst Coding Contest (Apr 03, 3-8pm)
 - Hosted by: IT Community Styria
 - Online or in-person (teams/individuals)
 - INF 18, HS i1 (117 seats)
 - https://register.codingcontest.org/

Agenda

- DB Design Lifecycle
- ER Model and Diagrams
- Exercise 01 Data Modeling (preview)

[**Credit:** Alfons Kemper, André Eickler: Datenbanksysteme - Eine Einführung, 10. Auflage. De Gruyter Studium, de Gruyter Oldenbourg 2015, ISBN 978-3-11-044375-2, pp. 1-879]

DB Design Lifecycle

Data Modeling

Data Model

- Concepts for describing data objects and their relationships (meta model)
- Schema: Description (structure, semantics) of specific data collection

Data Models

Conceptual Data Models

- Entity-Relationship Model (ERM), focus on data, ~1975
- Unified Modeling Language (UML), focus on data and behavior, ~1990

Logical Data Models

Relational (Object/Relational)

Key-Value
 Document (XML, JSON)
 Graph
 Time Series
 Matrix/Tensor
 Object-oriented
 Network
 Mostly obsolete

DB Design Lifecycle Phases

- #1 Requirements engineering
 - Collect and analyze data and application requirements
 - **→** Specification documents

- Model data semantics and structure, independent of logical data model
- → ER model / diagram
- #3 Logical Design (lecture 03, exercise 1)
 - Model data with implementation primitives of concrete data model
 - → e.g., relational schema + integrity constraints, views, permissions, etc
- #4 Physical Design (lecture 07, exercise 3)
 - Model user-level data organization in a specific DBMS (and data model)
 - Account for deployment environment and performance requirements

Relevance in Practice

Analogy ERM-UML

- Model-driven development (self-documenting, but quickly outdated)
- But: Once data is loaded, data model and schema harder to change

Observation: Full-fledged ER modeling rarely used in practice

- Often the logical schema (relational schema) is directly created,
 maintained and used for documentation
- Reasons: redundancy, indirection, single target (relational)
- Simplified ER modeling used for brainstorming and early ideas

Goals

- Understanding of proper database design from conceptual to physical schema
- ER modeling as a helpful tool in database design
- Schema transformation and normalization as blueprint for good designs

Tool Support

- #1 Visual Design Tools
 - Draw ER diagrams in any presentation software (e.g., MS PowerPoint, LibreOffice)
 - Many desktop or web-based tools support ER diagrams directly (e.g., MS Visio, creately.com)
- #2 Design Tools w/ Code Generation
 - Draw and validate ER diagrams
 - Generate relational schemas as SQL DDL scripts
 - Examples: SAP (Sybase) PowerDesigner,
 MS Visual Studio plugins (SQL server), etc.
- → Note: For the exercises, please use basic drawing tools (existing tools use slightly diverging notations)

Entity-Relationship (ER) Model and Diagrams

[Peter P. Chen: The Entity-Relationship Model - Toward a Unified View of Data. **ACM Trans. Database Syst. 1(1) 1976**]

[Peter P. Chen: The Entity-Relationship Model: Toward a

Unified View of Data. VLDB 1975]

ER Diagram Components (Chen Notation)

Entity Type (noun)

- Entities are objects of the real world
- An entity type (or entity set) represents a collection of entities

Employee Weak entities

Relationship Type (verb)

- Relationships are concrete associations of entities
- Relationship type (or relationship set) or relationship of entity types

Attribute

- Entities or relationships are characterized by attribute-value pairs
- Attribute types (or value sets) describe entity and relationship types
- Extended attributes: composite, multi-valued, derived

ER Diagram Components (Chen Notation), cont.

Keys

- Attributes that uniquely identify an entity
- Every entity type must have such a key
- Natural or surrogate (artificial) keys

Role

- Optional description of relationship types
- Useful for recursive relationships

An EmployeeDB Example

[Peter P. Chen: The Entity-Relationship Model - Toward a Unified View of Data. ACM Trans. Database Syst. 1(1) 1976]

Multiplicity/Cardinality in Chen Notation

1 .. [0,1] N ... [0,1,N]

 $R \subseteq E1 \times E2$

- 1:1 (one-to-one) —
 - Each e1 relates to at most one e2
 - Each e2 relates to at most one e1
- 1:N (one-to-many) ←
 - Each e1 relates to many e2 (0,1,...N)
 - Each e2 relates to at most one e1
- N:1 (many-to-one)
 - Symmetric to 1:N
- N:M (many-to-many)
 - Each e1 relates to many e2 (0,1,...M)
 - Each e2 related to many e1 (0,1,...N)

An EmployeeDB Example, cont.

[Peter P. Chen: The Entity-Relationship Model - Toward a Unified View of Data. ACM Trans. Database Syst. 1(1) 1976]

Multiplicity in Modified Chen Notation

- Extension: C ("choice"/"can") to model 0 or 1, while 1 means exactly 1 and M means at least 1.
- **1:1** [1] to [1]
- **1:C** [1] to [0 or 1]
- **1:M** [1] to [at least 1]
- **1:MC** [1] to [arbitrary many]
- C:C − [0 or 1] to [0 or 1] → see 1:1 in Chen
- **C:M** [0 or 1] to [at least 1]
- C:MC [0 or 1] to [arbitrary many] → see 1:N in Chen
- M:M [at least 1] to [at least 1]
- M:MC [at least 1] to [arbitrary many]
- MC:MC [arbitrary many] to [arbitrary many] → see M:N in Chen

4 alternatives (1, C, M, MC)

→ 4*4 = 16 combinations
(symmetric combinations omitted)

(min, max)-Notation

Alternative Cardinality Notation

E2 E1 Indicate concrete min/max constraints

 $(\min_1, \max_1) \quad (\min_2, \max_2)$

Chen and (min,max) notation generally incomparable

(each entity is part of at least/at most x relationships)

Wildcard * indicates arbitrary many (i.e., N)

(min,max)-Notation, cont.

- Problem: Where do these conflicting notations come from?
- Understanding (min, max)-Notation
 - Focus on relationships!
 - Describes number of outgoing relationships for each entity

Understanding Chen- /

Modified-Chen-Notation

- Focus on entities!
- Describes number of target entities (over relationships) for each entity

BREAK (and Test Yourself)

- Task: Cardinalities in Modified-Chen Notation (prev. exam 6/100 points)
 - A musician might have created none or arbitrary many albums, and any album is created by at least one musician.
 - Every musician has exactly one agent, and an agent might be responsible for one to ten musicians.
 - Every musician occupies exactly one studio, and musicians never share a studio.

Weak Entity Types

Existence Dependencies

- Entities E2 whose existence depends on the other entities E1
- Visualized as a special rectangle with double border
- Primary key is contains primary key of E1
- Relationship between strong and weak entity types 1:N (sometimes 1:1)

Examples

- Dependents of an employee (spouse, children)
- Rooms of a building

N-ary Relationships

Use of n-ary relationships

- Relationship type among multiple entity types
- N-ary relationship can be converted to binary relationships
- Design choice: simplicity and consistency constraints

Multiplicity

- 1 Project and 1 Supplier → supply P parts
- 1 Project and 1 Part → supplied by N suppliers (1 instead of N?)
- 1 Supplier and 1 Part → supply for M projects

Recursive Relationships

- Definition
 - Recursive relationships are relations between entities of the same type
 - Use roles to differentiate cardinalities

Examples

 Beware of [at least 1] constraints in recursive relationships (e.g., (min,max)-notation, or MC notation)

An EmployeeDB Example, cont.

[Peter P. Chen: The Entity-Relationship Model - Toward a Unified View of Data. ACM Trans. Database Syst. 1(1) 1976]

Specialization and Aggregation

- Specialization via Subclasses
 - Tree of specialized entity types (no multi-inheritance)
 - Graphical symbol: triangle (or hexagon, or subset)
 - Each entity of subclass is entity of superclass, but not vice versa

- Aggregation (composition, not specialization)
 - #1: Recursive relationship types, or
 - #2: Explicit tree of entity and relationship types
 - Design choice: number of types known and finite, and heterogeneous attributes
- Beware: Simplicity is key

First Name

DoB

Last Name

Types of Attributes

Atomic Attributes

Basic, single-valued attributes

Composite Attributes

- Attributes as structured data types
- Can be represented as a hierarchy

Employee Name Last Name

Employee

Derived Attributes

- Attributes derived from other data
- Examples: Number of employees in dep, employee age, employee yearly salary

Employee DoB Age

Multi-valued Attributes

Attributes with list of homogeneous entries

Excursus: Influence of Chinese Characters?

"What does the Chinese character construction principles have to do with ER modeling? The answer is: both Chinese characters and the ER model are trying to model the world – trying to use graphics to represent the entities in the real world. [...]"

[Peter Pin-Shan Chen: Entity-Relationship Modeling: Historical Events, Future Trends, and Lessons Learned. Software Pioneers 2002]

Chinese characters representing real-world entities Original Form Current Form Meaning

Sun

H Moon

Person

Composition of two Chinese characters

Design Decisions

Avoid redundancy Avoid unnecessary complexity

Meta-Level:

Which notations to use (Chen, Modified Chen, (min,max)-notation)?

Entities

- What are the entity types (entity vs relationship vs attribute)?
- What are the attributes of each entity type?
- What are key attributes (one or many)?
- What are weak entities (with partial keys)?

Relationships

- What are the relationship types between entities (binary, n-ary)?
- What are the attributes of each relationship type?
- What are the cardinalities?

Attributes

What are composite, multi-valued, or derived attributes?

Design Decisions – Examples of Poor Choices

- #1 Overuse of weak entity types
- #2 Redundant attributes
 - Redundant supplier name in Part and Supplier
- Supplier Name
 Part PS Supplier Address

#3 Repeated information

■ Missing person entity type
 → redundancy per purchase

#4 Unnecessary Complexity

- Unnecessary entity type Date
- Avoid single-attribute entity types unless in many relationships

A UniversityDB Example

Discourse of Real Mini World

- Students (with SID, name, and semester) attend courses (CID, title, ECTS), and take graded exams per course
- Professors teach courses and have positions, assistants work for professors
- A course may have another course as prerequisites
- Both professors and assistants are university employees (EID, name, and room number); professors also have a position

Task: Create an ER diagram in Chen notation

- Include entity types, relationship types, attributes, and generalizations
- Mark primary keys, roles for recursive relationships, and derived attributes

Exercise 01 – Data Modeling

Published: Mar 13, 2020

Deadline: Mar 31, 2020

Exercises: DBLP Publications

Dataset

- CCO-licensed, derived (extracted, cleaned) from DBLP (https://dblp.org Feb 1, 2020) for publication year ≥ 2011
- Note: Still in process of data cleaning
- Clone or download your copy from https://github.com/tugraz-isds/datasets.git

Exercises

- 01 Data modeling (relational schema)
- 02 Data ingestion and SQL query processing
- 03 Physical design tuning, query processing, and transaction processing
- 04 Large-scale data analysis (distributed data ingestions and query processing)

persons.csv: The persons file contains author information inclu websites. It's detailed structure and examples look as follows.

#PID | name | aliases | affiliation | url A261789|Matthias Boehm 0001|Matthias Böhm 0001|Graz Unive A1537639|Stefanie N. Lindstaedt|Stefanie N. Lindstädt||ht A977823|Denis Helic||Graz University of Technology, Austr

theses.csv: The theses file contains the information of public Pl look as follows.

 $\label{eq:TKey} \begin{tabular}{ll} \tt \#TKey & | & author & | & title & | & year & | & type & | & school & | & pages & | & i \\ \tt T25621 & | & A261789 & | & Cost-based & optimization & of & integration & flow & f$

pubs.csv: The pubs file (or better, its individual parts) contains detailed structure and examples look as follows.

#PKey | authors| title | year | type | journal | volumne
P519327|A382693:A261789:A261428:A2051042:A69590|MNC: Stru
P1640801|A261789:A2051042:A2047447:A472485:A261428:A38856
P12485|A1399369:A1703306:A1416241:A557115:A650354:A863102

confs.csv: The confs file contains the information on conference likely be further improved soon.

#CKey | title | editors | year | isbn C8036|Proceedings of the 2019 International Conference on C76|Proceedings of the 9th USENIX Symposium on Networked

Overview Exercise 1 Tasks

- Task 1.1: ER Modeling (authors, publications)
 - Create an ER diagram in Modified Chen (MC) notation
 - https://github.com/tugraz-isds/datasets/tree/master/dblp_publications
- Task 1.2: Mapping ER Diagram into Relational Model
 - Create a relational schema for the ER diagram from Task 1.1
- Task 1.3: Relational Normalization
 - Bring the relational schema from Task 1.2 into third normal form (3NF)
- Task 1.4: Extra Credit
- Expected result (for all three subtasks)
 - DBExercise01_<studentID>.pdf

Conclusions and Q&A

Summary

- DB Design lifecycle from requirements to physical design
- Entity-Relationship (ER) Model and Diagrams

Importance of Good Database Design

- Poor database design → development and maintenance costs, as well as performance problems
- Once data is loaded, schema changes very difficult (data model, or conceptual and logical schema)

Exercise 1: Data Modeling

- Published Mar 13, 2020; deadline: Mar 31, 2020
- Recommendation: start with task 1.1 this weekend;
 ask questions in upcoming lectures or on news group
- Next lecture (Mar 16): 03 Data Models and Normalization

