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Announcements/Org

= #1 Video Recording ﬂ TU be

= Link in TeachCenter & TUbe (lectures will be public)
= Live Streaming Mo 4.10pm until end of lockdown (end of semester?)

= #2 Reminder Communication

= Newsgroup: news://news.tugraz.at/tu-graz.lv.dbase; no TeachCenter forum!
(https://news.tugraz.at/cgi-bin/usenet/nntp.csh?tu-graz.lv.dbase)

= Office hours: Mo 1pm-2pm (https://tugraz.webex.com/meet/m.boehm)

= #3 Reminder Exercise 1
= Submission through TeachCenter (max 5MB, draft possible) 75/601
= Submission open (deadline Mar 31, 11.59pm) + (7+3) late days

= #4 Preview Exercise 2

= Will be published Apr 7, Py/Java examples (schema Apr 10, deadline Apr 28)
= Preview today, fully introduced next lecture
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Agenda

= Structured Query Language (SQL)
= Other Query Languages (XML, JSON)
= Preview Exercise 2
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What is a(n) SQL Query?

SELECT Firstname, Lastname, Affiliation, Location

FROM Participant AS R, Locale AS S

WHERE R.LID = S.LID #1 Declarative:
AND Location LIKE '%, GER' what not how

Volker Markl TU Berlin Berlin, GER
Thomas Neumann TU Munich Munich, GER
#2 Flexibility: #3 Automatic #4 Physical Data
closed 2 composability Optimization Independence
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Why should | care?

= SQL as a Standard (6 e et e Wt Ao, )
. ope 7! RiDIcuLous) -SOON
= Standards ensure interoperability, L‘?ENEE’E'%M@
; ; . | | ONE UNIERSAL STANDARD :
avoid vendor lock-in, g;g,:rgg. T COVERS. ERRYONE S 2221;(;;;.
ication i I USE CASES. I
and protect application investments 1 COMPETING e || s compEninG

= Mature standard with heavy

STANDPRDS. NO) / STANDERDS.
industry support for decades R %

= Rich eco system (existing apps, Bl tools,

services, frameworks, drivers, design tools, systems) [https://xked.com/927/]

= SQL is here to stay
» Foundation of mobile/server application data management ?SQLite
= Adoption of existing standard by new systems

Google
(e.g., SQL on Hadoop, cloud DBaaS) BigQuery . it
= Complemented by NoSQL abstractions, Microsoft
see lecture 10 NoSQL (key-value, document, graph) avs‘p
Pk
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Overview SQL

= Structured Query Language (SQL)
= Current Standard: ISO/IEC 9075:2016 (SQL:2016)
= Data Definition Language (DDL) - Manipulate the database schema
= Data Manipulation Language (DML) = Update and query database
= Data Control Language (DCL) - Modify permissions

= Dialects
= Spectrum of system-specific dialects mm
for non-core features T-5QL Microsoft, Sybase

= Data types and size constraints PL/SQL Oracle, (IBM)

= Catalog, builtin functions, and tools PL/pgSQL  PostgreSQL, derived

= Support for new/optional features Ur e Most systems

= Case-sensitive identifiers
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Structured Query Language (SQL) -ErLa!.

The History of the SQL Standard (€. | Date: A Critique of the

SQL Database Language.

SIGMOD Record 1984]

SQL:1986
= Database Language SQL, ANSI X3.135-1986, ISO-9075-1987(E)
= ‘87 international edition

SQL:1989 (120 pages)

= Database Language SQL with Integrity Enhancements,
ANSI X3.135-1989, ISO-9075-1989(E)

SQL:1992 (580 pages)
= Database Language SQOL, ANSI X3-1992, ISO/IEC-9075 1992, DIN 66315
= ‘95 SQL/CLI (part 3), ‘96 SQL/PSM (part 4)
SQL:1999 (2000 pages)
= [nformation Technology — Database Language — SQL, ANSI/ISO/IEC-9075 1999
= Complete reorg, ‘00 OLAP, ‘01 SQL/MED, ‘01 SQL/OLB, ‘02 SQL/JRT
SQL:2003 (3764 pages)
= [nformation Technology — Database Language — SQL, ANSI/ISO/IEC-9075 2003
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' The History of the SQL Standard, cont.

= Overview SQL:2003 X: ...a part

(x) ... a package

1: Framework

3: CLI 4: PSM 9: MED 10: OLB 13: JRT 14: XML
Call Level Persistent Management Object Java Routines Extensible
Interface Stored Modules| |of External Data Language and Types Markup

Bindings Language

11: Schemata

2: Foundation

(2) Enhanced Integrity] (7) Enhanced
Management Objects
ional (8) Active (6) Basic
optiona (1) Enhanced Databases Objects (10) OLAP
features Date/Time Fac.
mandatory

Core SQL (all SQL:92 entry, some extended SQL:92/5QL:99)

features
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The History of the SQL Standard, cont.

Since SQL:2003 overall structure remained unchanged ...

= SQL:2008 (???? pages)
= [nformation Technology — Database Language — SQL, ANSI/ISO/IEC-9075 2003
= E.g., XML XQuery extensions, case/trigger extension

= SQL:2011 (4079 pages)
= [nformation Technology — Database Language — SQL, ANSI/ISO/IEC-9075 2011
= E.g., time periods, temporal constraints, time travel queries

= SQL:2016 (???? pages)
= Information Technology — Database Language — SQL, ANSI/ISO/IEC-9075 2016
= E.g., JSON documents and functions (optional)

. e o [Working Draft SQL:2011:
=» Note: We can only discuss common primitives https://www.wiscorp.com/

SQLStandards.html]
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Data Types in SQL:2003

= Large Variety of Types

= With support for
multiple spellings

SQL data types

Composite
Data Types

Predefined
Data Types

Numeric

Interval

[~

Exact Approximate
—{ NUMERIC
| DECIMAL —| REAL
| SMALLINT| || FLOAT
| INTEGER | DOUBLE
] PRECISION
Bl BIGINT

Added in SQL:1999 / SQL:2003

Deleted in SQL:2003

User-defined
Types (UDT)

Varying Fixed

Varying

Datetime

N\

Date Time || Timestamp

=» Implicit casts among numeric types
and among character types



Structured Query Language (SQL) -Erla'!l

Data Types N Postg reSQL Appropriate, Brief, Complete
= Strings

= - fixed-length character sequence (padded to n)

= —> variable-length character sequence (n max)

= TEXT —> variable-length character sequence
= Numeric

= SMALLINT — 2 byte integer (signed short)

= - 4 byte integer (signed int)

= SERIAL - INTEGER w/ auto increment

= NUMERIC(p, s) —> exact real with p digits and s after decimal point
= Time

= - date

= TIMESTAMP/TIMESTAMPTZ - date and time, timezone-aware if needed

= JSON

= JSON — text JSON representation (requires reparsing)
= JSONB — binary JSON representation
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Create, Alter, and Delete Tables Templates in SQL
Examples in PostgreSQL
= Create Table CREATE TABLE Students (

Fname VARCHAR(128) NOT NULL,
Lname VARCHAR(128) NOT NULL,
Mtime DATE DEFAULT CURRENT_DATE

Primary and foreign keys
NOT NULL, UNIQUE constraints

= DEFAULT values );
= CHECK constraints CREATE TABLE Students AS SELECT ..;
= Alter Table
ALTER TABLE Students ADD DoB DATE;
= ADD/DROP columns
« ALTER data type, defaults, ALTER TABLE Students ADD CONSTRAINT
: PKStudent PRIMARY KEY(SID);
constraints, etc
= Delete Table DROP TABLE Students; -- sorry
= Delete table DROP TABLE Students CASCADE;
= Note: order of tables matters DROZ,I’:\BLE II,: EXIJSCTS Cc.)ug’.cr'les,
due to referential integrity 1ties, Alrports, Airlines,

Routes, Planes, Routes Planes;
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Create and Delete Indexes

= Create Index CREATE INDEX ixStudLname
= Create a secondary (nonclustered) ON Students USING btree
index on a set of attributes (Lname ASC NULLS FIRST);

= Clustered: tuples sorted by index

= Non-clustered: sorted attribute with tuple references
= Can specify uniqueness, order, and indexing method

= PostgreSQL methods: btree, hash, gist, and gin

table data

=» see lecture 07 Physical Design and Tuning

= Delete Index

_ DROP INDEX ixStudLname;
= Drop indexes by name

= Tradeoffs

» |ndexes often automatically created for primary keys / unique attributes
= Lookup/scan performance vs insert performance
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Data ba Sse Cata | Og [Meikel Poess: TPC-H. Encyclopedia

of Big Data Technologies 2019]

= Catalog Overview

" Meta data of aI.I datz?\base objects T pgAdmin
(tables, constraints, indexes) > mostly read-only b Ecwsomer  graphical

= Accessible through SQL - 5 lineitem representation

- [ nation
= Organized by schemas (CREATE SCHEMA tpch;) 5 B3 orders
* [ part
. -+ [ partsupp
= SQL Information_Schema 5- B Columns
= Schema with tables 7" » 4 Constraints Bik
for all tables, views, constraints, etc | 4 porsuppprey
- /P partsupp_ps_partkey_fkey
= Example: check for existence of accessible table - P partsupp_ps_suppkey_fkey
+ - 5 Indexes
SELECT 1 FROM information_schema.tables 14 R Rules
+ T i
WHERE table schema = ‘tpch’ i Eregm:ggers

AND table name = €‘customer’ i £ supplier

(defined as views over PostgreSQL catalog tables)
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Insert

= Insert Tuple
= Insert a single tuple with implicit or explicit attribute assignment

INSERT INTO Students (SID, Lname, Fname, MTime, DoB)
VALUES (7, 'Boehm', 'Matthias’', '2002-10-01"','1982-06-25");

= |nsert attribute key-value pairs to use auto increment, defaults, NULLs, etc

INSERT INTO Students (Lname, Fname, DoB) SERIAL SID,
VALUES ('Boehm','Matthias', '1982-06-25"'), DEFAULT MTime

Ceeed)s (Lel)s

= |Insert Table INSERT INTO Students
» Redirect query result into SELECT * FROM NewStudents;

INSERT (append semantics)
Analogy Linux redirect (append):

cat NewStudents.txt >> Students.txt
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Update and Delete

= Update Tuple/Table
= Set-oriented update of attributes

= Update single tuple via predicate
on primary key

= Delete Tuple/Table
= Set-oriented delete of tuples

= Delete single tuple via predicate
on primary key

UPDATE Students
SET MTime = ‘2002-10-02°
WHERE LName = ‘Boehm’;

DELETE FROM Students
WHERE extract(year
FROM mtime) < 2010;

= Note: Time travel and multi-version concurrency control

= Deleted tuples might be just marked as inactive

= See |lecture 09 Transaction Processing and Concurrency
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Basic Queries

= Basic Query Template SELECT [DISTINCT] <column_list>
= Select-From-Where FROM [<table_list> |
<tablel> [RIGHT | LEFT | FULL] 3JOIN
<table2> ON <condition>]
[WHERE <predicate>]
= Duplicate elimination [GROUP BY <column list>]
[HAVING <grouping predicate>]
[ORDER BY <column_list> [ASC | DESC]]

= Example |

= Grouping and Aggregation
= Having and ordering

= SELECT |Fname, Affil, Location TFname,Affil,Location
FROM |Participant AS R,

\ Op.L1p=L.LID

X

S

Participant Location




Structured Query Language (SQL) -ErLa!.

Basic Queries, cont.

= Distinct and All SELECT DISTINCT Lname, Fname
= Distinct and all alternatives FROM Students;
= Projection w/ bag semantics by default

= Sorting
SELECT * FROM Students
ORDER BY Lname DESC,

Fname DESC;

= Convert a bag into a sorted list of
tuples; order lost if used in other ops

» Single order: (Lname, Fname) DESC
= Evaluated last in a query tree

= Set Operations SELECT Firstname, Lastname
= See 04 Relational Algebra and Calculus FROM Participant2018
— UNION, INTERSECT, EXCEPT UNION DISTINCT
= Set operations set semantics by default ~ SELECT Firstname, Lastname
- DISTINCT (set) vs ALL (bag) FROM Participant2013
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Grouping and Aggregation

= Grouping and Aggregation
= Grouping: determines the distinct groups
= Aggregation: compute aggregate f(B) per group
= Column list can only contain grouping columns, aggregates, or literals
= Having: selection predicate on groups and aggregates

= Example

= Sales (Customer, Location, Product, Quantity, Price)

= Q: Compute number of sales and revenue per product

SELECT Product, sum(Quantity), sum(Quantity*Price)
FROM Sales

GROUP BY Product
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BREAK (and Test Yourself)

Orders Products
= TaSk: SQL queries OID | Customer Date Quantity | PID PID Name Price
for the fo"owing 1 A *2019-06-22° 3 2 1 X 100
2 B *2019-06-22° 1 3 2 Y 15
query trees' 3 A *2019-06-22° 1 4 4 Z 75
6 4 C 2019-06-23° 2 2 3 W 120
I 5 D 2019-06-23° 1 4
6 C 2019-06-23° 1 1
nCustomer‘, Date
l
GO Customer | Date Vcustomer, | Customer | Sum _
| A ‘2019-06-22 sum(0.Quantity*P.Price) A 120
X C 2019-06-23’ | B 120
D 2019-06-23’ C 130
/\ >o.p1D=pP.PID D 75
Orders 0.NameE{Y,Z}
0 Orders Products
Products 0 P

P

SELECT DISTINCT Customer, Date
FROM Orders 0O, Products P
WHERE O.PID P.PID

AND Name IN('Y','Z")

SELECT Customer,
sum(0.Quantity * P.Price)
FROM Orders 0O, Products P
WHERE O.PID P.PID
GROUP BY Customer
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Subqueries

= Subqueries in Table List

= Use a subquery result
like a base table

= Modularization with
WITH C AS (SELECT ..)

= Subqueries w/ IN

®» Check containment of values
in result set of sub query

= Other subqueries

SELECT S.Fname, S.Lname, C.Name
FROM Students AS S,
(SELECT CID, Name FROM Country
WHERE ..) AS C
WHERE S.CID=C.CID;

SELECT Product, Quantity, Price
FROM Sales
WHERE Product NOT IN(
SELECT Product FROM Sales
GROUP BY Product
HAVING sum(Quantity*Price)>1e6)

= EXISTS: existential quantifier Ix for correlated subqueries

= ALL: comparison (w/ universal quantifier Vx)

= SOME/ANY: comparison (w/ existential quantifier 3x)
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Correlated and Uncorrelated Subqueries

= Correlated Subquery SELECT P.Fname, P.Lname
» Evaluated subquery for every tuple FROM Professors P,
of outer query WHERE NOT EXISTS(

SELECT * FROM Courses C
WHERE C.PID=P.PID);

= Use of attribute from table bound
in outer query inside subquery

= Uncorrelated Subquery SELECT P.Fname, P.Lname

= Evaluate subquery just once FROM Professors P,
WHERE P.PID NOT IN(

SELECT PID FROM Courses);

= No attribute correlations between
subquery and outer query

= Query Unnesting (de-correlation)
[Thomas Neumann, Alfons

= Rewrite during query compilation Kemper: Unnesting Arbitrary
m See lecture Queries. BTW 2015]
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Recursive Queries T ARE Y00 LORKING O
TRYING TO Fix THE. PROBLEMS T
T e D
= Approach TTREDTO FIX THE PROBLEMS

2 T CREATED LJHEN...
= WITH RECURSIVE <name> (<arguments>) ) /

= Compose recursive table from non-recursive term,
union all/distinct, and recursive term

= Terminates when recursive term yields empty result

[https://xked.com/1739/]

= Example
WITH RECURSIVE rPrereq(p,s) AS(

= Courses(CID, Name), (SELECT pre, suc
Precond(pre REF CID, suc REF CID) FROM Precond WHERE suc=5)

= Dependency graph (pre—>suc) UNION DISTINCT o
(SELECT B.pre, B.suc
FROM Precond B, rPrereq R e
0_,@ WHERE B.suc = R.p)
0. ) o
o SELECT DISTINCT p FROM rPrereq @
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Procedures and Functions

= Overview Procedures and Functions
= Stored programs, written in PL/pgSQL or other languages

CREATE PROCEDURE prepStud(a INT)

" (Stored) Procedures LANGUAGE PLPGSQL AS $$
= Can be called standalone via BEGIN
CALL <proc_name>(<args>); DELETE FROM Students;
= Procedures return no outputs INSERT INTO Students
SELECT * FROM NewStudents;
. END; $%;
= Functions

= Can be called standalone or

o . CREATE FUNCTION sampleProp(FLOAT)
inside queries

RETURNS FLOAT
= Functions are value mappings AS 'SELECT $1 * (1 - $1);°
J

= Table functions can return sets LANGUAGE SQL;
of records with multiple attributes

INF.01017UF Data Management / 706.010 Databases — 05 Query Languages (SQL) .ISDS
Matthias Boehm, Graz University of Technology, SS 2020



Structured Query Language (SQL) -Erla'!l

Triggers

= QOverview Trigger
= Similar to stored procedure but register ON INSERT, DELETE, or UPDATE
= Allows complex check constraints and active behavior such as replication,
auditing, etc (good and bad)

= Trigger CREATE TRIGGER <triggername>
Template  BEFORE | AFTER | INSTEAD OF

INSERT | DELETE | (UPDATE OF <column_list>)
ON <tablename>
[REFERENCING <old new alias list>]
[FOR EACH {ROW | STATEMENT}] Condition
[WHEN (<search condition>)]
<SQL procedure statement> |

Not supported in BEGIN ATOMIC Action
PostgreSQL {<SQL Procedure statement>;}...

(need single UDF) END

Event
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Views and Authorization

= Creating Views CREATE VIEW TeamDM AS
; SELECT * FROM
= |nserts can be propagated back to Employee E, Employee M
base relations only in special cases WHERE E.MgrlD = M.EID

= Allows authorization for subset of

= Access Permissions Tables/Views GRANT SELECT
. query/modification rights on ON TABLE TeamDM
database objects for specific users, roles TO mboehm;
. access rights from users, roles REVOKE SELECT
(recursively revoke permissions of ON TABLE TeamDM
dependent views via CASCADE) FROM mboehm;

INF.01017UF Data Management / 706.010 Databases — 05 Query Languages (SQL)
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Beware of SQL Injection

= Problematic SQL String Concatenation

INSERT INTO Students (Lname, Fname)
VALUES (““+ @lname +”°¢,’°“+ @fname +”°);”;

HI, THIS 1S

WE'RE HAVING S0ME
(OMPUTER TROUBLE.

“\%m

YOUR SON'S SCHOOL.

= Possible SQL-Injection Attack

OH, DEAR - DID HE
BREAK SOMETHING?

IN HWHY /

S

DID YOU REALLY
NAME YOUR SON
Robert'); DROP
TABLE Stwdents;-- 7

~OH.YES UTTLE
BOBBY TABLES,
WE CALL HIM.

WELL, WEVE LOST THIS

YEARS STUDENT RECORDS.
T HOPE YOURE HAPPY.

{

AND T HOPE
- YOUVE LEARNED
TO SANMIZE YOUR
DATABASE. INPUTS.

[https://xkcd.com/327/]

T

INSERT INTO Students (Lname, Fname) VALUES (‘Smith¢,’Robert’);

DROP TABLE Students; --°);
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Other Query Languages
(XML, JSON)

INF.01017UF Data Management / 706.010 Databases — 05 Query Languages (SQL)
Matthias Boehm, Graz University of Technology, SS 2020

"ISDS



Other Query Languages (XML, JSON)

TU

Grazm

No really, why should | care?

= Semi-structured XML and JSON
= Self-contained documents for representing nested data
= Common data exchange formats without redundancy of flat files
= Human-readable formats = often used for SW configuration

= Goals
= Awareness of XML and JSON as data models

= Query languages and embedded querying in SQL
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XML (Extensible Markup Language)

= XML Data Model <?xml version=“1.0“ encoding="“UTF-8“?>
) <data>
= Meta language to define <student id=“1”’>
specific <course id="“INF.01017UF” name=“DM”/>
= D f f <course id=“706.550” name=“AMLS”/>
ocument format for ¢/students
semi-structured data <student id=“5">
= Well formedness <course 1id=“706.520” name=“DIA”/>
</student>
= XML schema /DTD </data>
= XPath (XML Path Language) /data/student[@id=°1’]/course/@name
= Query language for
of an XML document «“DM*’
= Axis specifies for ancestors, descendants, siblings, etc “AMLS”

= XSLT (XML Stylesheet Language Transformations)
= Schema mapping (transformation) language for XML documents

= XQuery
= Query language to extract, transform, and analyze XML documents



Other Query Languages (XML, JSON) -Erla'!l

XML in PostgreSQL, cont.

= Overview XML in PostgreSQL

= Data types or (well-formed, type-safe operations)
= |SO/IEC 9075-14 XML-related specifications (SQL/XML)

= Creating XML INSERT INTO Students
= Various to parse documents, (Fname,I:namejD?c). )
and create elements/attributes VALUES( ‘John”,”Smith”,

= XMLPARSE(<xml|_document>) = xmlparse(<source_doc>));

= XMLELEMENT / XMLATTRIBUTES

= Processing XML SELECT Fname, Lname,
xpath(‘/student/@id’ ,Doc)

= Execute expressions on XML types
FROM Students

= XMLEXIST with XPath instead of XQuery
= XPATH with optional namespace handling
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JSON (JavaScript Object Notation)

= JSON Data Model {“students:”[
{“id”: 1, “courses”:|
= Data exchange format for (“id“:“INF.01017UF”, “name®:“DM"},
semi-structured data {“1d“:“706.550”, “name:“AMLS”}]},

{“1d”: 5, “courses”:|[

]
Not as verbose as XML {“1d“:“706.520”, “name®“:“DIA”}]},

(especially for arrays) 1}
= Popular format (e.g., Twitter)

* Query Languages JSONiq Example:
= Most common: libraries for declare option jsonig-version “..”;
tree traversal and data extraction for $x in collection(“students”)
. . : where $x.id 1t 10
JSONig: XQuery-like query language let $c := count($x.courses)

= JSONPath: XPath-like query language return {“sid”:$x.id, “count”:$c}

[http://www.jsonig.org/docs/JSONig/html-single/index.html]
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JSON in PostgreSQL, cont.

= Overview JSON in PostgreSQL

= Alternative data types: (text), (binary, with restrictions)
= Implements RFC 7159, built-ins for conversion and access

" Creating JSON SELECT row_to_json(t) FROM
= Built-in functions for creating (SELECT Fname, Lname
JSON from tables and tables FROM Students) t
from JSON input
= Processing JSON SELECT Fname, Lname,
= Specialized operators for Doc->students->>id
tree traversal and data extraction FROM Students
= get JSON array element/object
= get JSON array element/object as text

= Built-in functions for extracting json (e.g., json_each)
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Preview Exercise 2: Query Languages and APlIs Graza

Exercises: DBLP Publications

persons.csv: The persons file contains author information inclu
| Data Set websites. It's detailed structure and examples look as follows.

= CCO-licensed, derived (extracted, cleaned) #ID | name | aliases | affiliation | url

A261789 |[Matthias Boehm 8881 |Matthias BShm 8861|Graz Unive

from DBLP (https://dblp.org Feb 1, 2020) S e
for publication year = 2011 + DM venues

theses.csv: The theses file contains the information of public Pt

= Clone or download your copy from look as follows.
httDS://github'COm/tUgraz_iSdS/datasets'git #TKey | author | title | year | type | school | pages | i

T25621|A261789|Cost-based optimization of integration flo
T38852|A1399369|An Architecture for Fast and General Data

= Exercises ‘
™ 01 Data modeling (relational Schema) pubs.csv: The pubs file (or better, its individual parts) contains

detailed structure and examples look as follows.

= 02 Data ingestion and SQL query processing

#PKey | authors| title | year | type | journal | volumne

- I ° I h . . P519327 |A382693:4261789: A261428: 42051042 : AG9598 |MNC: Stru
Re atlona SC ema + |ngest|0n P164@801|A261789:42851042: A2047447 : AA72485: 261428 A3B856
P12485|A1399369:A1783306:A1416241:A557115: A658354 : AB3102

= SQL query processing + extra credit )

| 03 Physical deS|gn tuning’ query processing’ ‘c:nlfs.;:su;: Thhe confs file tc:iontains the information on conferenc
. . ikely be further improved soon.
and transaction processing

#CKey | title | editors | year | isbn

u 04 La rge-scale data analySiS (distributed (8836 |Proceedings of the 2819 International Conference on
. . . C76|Proceedings of the 9th USENIX Symposium on Networked
data ingestions and query processing)

<
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Preview Exercise 2: Query Languages and APlIs -ErLa!.

Task 2.1: Schema Creation via SQL

= Schema creation via SQL
= Relies on lectures 04 Relational Algebra and 05 Query Languages (SQL)
= Setup DBMS PostgreSQL
= Create database db<studentID> and setup relational schema
= |gnore (1) person aliases, and (2) conference editors
= Primary keys, foreign keys, NOT NULL, UNIQUE
= CreateSchema.sql

= Recommended Schema
= TBA (after Apr 10, 11.59pm)
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Preview Exercise 2: Query Languages and APlIs -ErLa!.

Task 2.2 Data Ingestion via CLI

= Data Ingestion Program via ODBC/JDBC
= Relies on lectures 05 Query Languages (SOL) and 06 APIs (ODBC, JDBC)
= Write a program that performs deduplication and data ingestion
= Programming language of your choosing (Python, Java, C#, C++ recommended)

= Data Ingestion Process
= Data: https://github.com/tugraz-isds/datasets/tree/master/dblp publications

= |nvoke your ingestion program as follows = script to compile and run

IngestData ./confs.csv ./journals.csv \
./persons.csv ./pubs.csv ./theses.csv \
<host> <port> <database> <user> <password>
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Preview Exercise 2: Query Languages and APlIs Graza

Getting Started w/ Task 2.2

= Exercise 2: Would you know how to start? “I feel a bit lost on how to
If not, please ask. start this task and also a bit
overwhelmed by the amount
of lists and the two phases of

loading the data.” (Apr 26, 2019)
= Some Pointers

= Download and install PostgreSQL, use pgAdmin for schema creation / querying
= Download and install an IDE (e.g., PyCharm, Eclipse/IntelliJ, VS Code)
= Run CreateSchema.sql through query tool (pgAdmin or psql terminal)
= #1 Setup the database connection
= /2 Read the csv files into lists of string arrays (create a function for that)
= #3 For all target tables (in order of reference, create a function for each)
= Extract necessary data from respective lists (incl. deduplication)
= |nsert data via CLI into table using PK lookup tables
= Create tailor-made lookup tables if necessary
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Grazm

Conclusions and Q&A

Summary
= History and fundamentals of the Structured Query Language (SQL)
= Awareness of XIVIL and JSON (data model and querying)

Exercise 1 Reminder
= Submission deadline: Mar 31, 11.59pm
= Late day policy: 7+3 days; replacements possible via email

Exercise 2
= To be published Apr 07 on website and TeachCenter
= Submission deadline Apr 28, 11.59pm

Next Lectures
= 06 APIs (ODBC, JDBC, OR frameworks) [Apr 20], incl. Exercise 2
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