Data Management
05 Query Languages (SQL)

Matthias Boehm

Graz University of Technology, Austria

Computer Science and Biomedical Engineering
Institute of Interactive Systems and Data Science
BMVIT endowed chair for Data Management

Last update: Mar 28, 2020

TU

Grazm

SCIENCE
PASSION
TECHNOLOGY

"ISDS

TU

Grazm

Announcements/Org

= #1 Video Recording ﬂ TU be

= Link in TeachCenter & TUbe (lectures will be public)
= Live Streaming Mo 4.10pm until end of lockdown (end of semester?)

= #2 Reminder Communication

= Newsgroup: news://news.tugraz.at/tu-graz.lv.dbase; no TeachCenter forum!
(https://news.tugraz.at/cgi-bin/usenet/nntp.csh?tu-graz.lv.dbase)

= Office hours: Mo 1pm-2pm (https://tugraz.webex.com/meet/m.boehm)

= #3 Reminder Exercise 1
= Submission through TeachCenter (max 5MB, draft possible) 75/601
= Submission open (deadline Mar 31, 11.59pm) + (7+3) late days

= #4 Preview Exercise 2

= Will be published Apr 7, Py/Java examples (schema Apr 10, deadline Apr 28)
= Preview today, fully introduced next lecture

INF.01017UF Data Management / 706.010 Databases — 05 Query Languages (SQL) .ISDS
Matthias Boehm, Graz University of Technology, SS 2020

TU

Grazm

Agenda

= Structured Query Language (SQL)
= Other Query Languages (XML, JSON)
= Preview Exercise 2

INF.01017UF Data Management / 706.010 Databases — 05 Query Languages (SQL)
Matthias Boehm, Graz University of Technology, SS 2020

"ISDS

Structured Query Language (SQL)

INF.01017UF Data Management / 706.010 Databases — 05 Query Languages (SQL) .ISDS
Matthias Boehm, Graz University of Technology, SS 2020

TU

Grazm

What is a(n) SQL Query?

SELECT Firstname, Lastname, Affiliation, Location

FROM Participant AS R, Locale AS S

WHERE R.LID = S.LID #1 Declarative:
AND Location LIKE '%, GER' what not how

Volker Markl TU Berlin Berlin, GER
Thomas Neumann TU Munich Munich, GER
#2 Flexibility: #3 Automatic #4 Physical Data
closed 2 composability Optimization Independence
INF.01017UF Data Management / 706.010 Databases — 05 Query Languages (SQL) .ISDS

Matthias Boehm, Graz University of Technology, SS 2020

TU

Grazm

Why should | care?

= SQL as a Standard (6 e et e Wt Ao,)
. ope 7! RiDIcuLous) -SOON
= Standards ensure interoperability, L‘?ENEE’E'%M@
; ; . | | ONE UNIERSAL STANDARD :
avoid vendor lock-in, g;g,:rgg. T COVERS. ERRYONE S 2221;(;;;.
ication i I USE CASES. I
and protect application investments 1 COMPETING e || s compEninG

= Mature standard with heavy

STANDPRDS. NO) / STANDERDS.
industry support for decades R %

= Rich eco system (existing apps, Bl tools,

services, frameworks, drivers, design tools, systems) [https://xked.com/927/]

= SQL is here to stay
» Foundation of mobile/server application data management ?SQLite
= Adoption of existing standard by new systems

Google
(e.g., SQL on Hadoop, cloud DBaaS) BigQuery . it
= Complemented by NoSQL abstractions, Microsoft
see lecture 10 NoSQL (key-value, document, graph) avs‘p
Pk
INF.01017UF Data Management / 706.010 Databases — 05 Query Languages (SQL) .ISDS

Matthias Boehm, Graz University of Technology, SS 2020

Structured Query Language (SQL) TU

Overview SQL

= Structured Query Language (SQL)
= Current Standard: ISO/IEC 9075:2016 (SQL:2016)
= Data Definition Language (DDL) - Manipulate the database schema
= Data Manipulation Language (DML) = Update and query database
= Data Control Language (DCL) - Modify permissions

= Dialects
= Spectrum of system-specific dialects mm
for non-core features T-5QL Microsoft, Sybase

= Data types and size constraints PL/SQL Oracle, (IBM)

= Catalog, builtin functions, and tools PL/pgSQL PostgreSQL, derived

= Support for new/optional features Ur e Most systems

= Case-sensitive identifiers

INF.01017UF Data Management / 706.010 Databases — 05 Query Languages (SQL) 5

Matthias Boehm, Graz University of Technology, SS 2020 ISDS

Structured Query Language (SQL) -ErLa!.

The History of the SQL Standard (€. | Date: A Critique of the

SQL Database Language.

SIGMOD Record 1984]

SQL:1986
= Database Language SQL, ANSI X3.135-1986, ISO-9075-1987(E)
= ‘87 international edition

SQL:1989 (120 pages)

= Database Language SQL with Integrity Enhancements,
ANSI X3.135-1989, ISO-9075-1989(E)

SQL:1992 (580 pages)
= Database Language SQOL, ANSI X3-1992, ISO/IEC-9075 1992, DIN 66315
= ‘95 SQL/CLI (part 3), ‘96 SQL/PSM (part 4)
SQL:1999 (2000 pages)
= [nformation Technology — Database Language — SQL, ANSI/ISO/IEC-9075 1999
= Complete reorg, ‘00 OLAP, ‘01 SQL/MED, ‘01 SQL/OLB, ‘02 SQL/JRT
SQL:2003 (3764 pages)
= [nformation Technology — Database Language — SQL, ANSI/ISO/IEC-9075 2003

INF.01017UF Data Management / 706.010 Databases — 05 Query Languages (SQL) .ISDS
Matthias Boehm, Graz University of Technology, SS 2020

Structured Query Language (SQL) -ErLa!.

' The History of the SQL Standard, cont.

= Overview SQL:2003 X: ...a part

(x) ... a package

1: Framework

3: CLI 4: PSM 9: MED 10: OLB 13: JRT 14: XML
Call Level Persistent Management Object Java Routines Extensible
Interface Stored Modules| |of External Data Language and Types Markup

Bindings Language

11: Schemata

2: Foundation

(2) Enhanced Integrity] (7) Enhanced
Management Objects
ional (8) Active (6) Basic
optiona (1) Enhanced Databases Objects (10) OLAP
features Date/Time Fac.
mandatory

Core SQL (all SQL:92 entry, some extended SQL:92/5QL:99)

features

INF.01017UF Data Management / 706.010 Databases — 05 Query Languages (SQL) .ISDS
Matthias Boehm, Graz University of Technology, SS 2020

Structured Query Language (SQL) -ErLa!.

The History of the SQL Standard, cont.

Since SQL:2003 overall structure remained unchanged ...

= SQL:2008 (???? pages)
= [nformation Technology — Database Language — SQL, ANSI/ISO/IEC-9075 2003
= E.g., XML XQuery extensions, case/trigger extension

= SQL:2011 (4079 pages)
= [nformation Technology — Database Language — SQL, ANSI/ISO/IEC-9075 2011
= E.g., time periods, temporal constraints, time travel queries

= SQL:2016 (???? pages)
= Information Technology — Database Language — SQL, ANSI/ISO/IEC-9075 2016
= E.g., JSON documents and functions (optional)

. e o [Working Draft SQL:2011:
=» Note: We can only discuss common primitives https://www.wiscorp.com/

SQLStandards.html]

INF.01017UF Data Management / 706.010 Databases — 05 Query Languages (SQL) .ISDS
Matthias Boehm, Graz University of Technology, SS 2020

Structured Query Language (SQL)

TU

Grazm

Data Types in SQL:2003

= Large Variety of Types

= With support for
multiple spellings

SQL data types

Composite
Data Types

Predefined
Data Types

Numeric

Interval

[~

Exact Approximate
—{ NUMERIC
| DECIMAL —| REAL
| SMALLINT| || FLOAT
| INTEGER | DOUBLE
] PRECISION
Bl BIGINT

Added in SQL:1999 / SQL:2003

Deleted in SQL:2003

User-defined
Types (UDT)

Varying Fixed

Varying

Datetime

N\

Date Time || Timestamp

=» Implicit casts among numeric types
and among character types

Structured Query Language (SQL) -Erla'!l

Data Types N Postg reSQL Appropriate, Brief, Complete
= Strings

= - fixed-length character sequence (padded to n)

= —> variable-length character sequence (n max)

= TEXT —> variable-length character sequence
= Numeric

= SMALLINT — 2 byte integer (signed short)

= - 4 byte integer (signed int)

= SERIAL - INTEGER w/ auto increment

= NUMERIC(p, s) —> exact real with p digits and s after decimal point
= Time

= - date

= TIMESTAMP/TIMESTAMPTZ - date and time, timezone-aware if needed

= JSON

= JSON — text JSON representation (requires reparsing)
= JSONB — binary JSON representation

Structured Query Language (SQL) TU

Grazm

Create, Alter, and Delete Tables Templates in SQL
Examples in PostgreSQL
= Create Table CREATE TABLE Students (

Fname VARCHAR(128) NOT NULL,
Lname VARCHAR(128) NOT NULL,
Mtime DATE DEFAULT CURRENT_DATE

Primary and foreign keys
NOT NULL, UNIQUE constraints

= DEFAULT values);
= CHECK constraints CREATE TABLE Students AS SELECT ..;
= Alter Table
ALTER TABLE Students ADD DoB DATE;
= ADD/DROP columns
« ALTER data type, defaults, ALTER TABLE Students ADD CONSTRAINT
: PKStudent PRIMARY KEY(SID);
constraints, etc
= Delete Table DROP TABLE Students; -- sorry
= Delete table DROP TABLE Students CASCADE;
= Note: order of tables matters DROZ,I’:\BLE II,: EXIJSCTS Cc.)ug’.cr'les,
due to referential integrity 1ties, Alrports, Airlines,

Routes, Planes, Routes Planes;

INF.01017UF Data Management / 706.010 Databases — 05 Query Languages (SQL) .ISDS
Matthias Boehm, Graz University of Technology, SS 2020

Structured Query Language (SQL) -ErLa!.

Create and Delete Indexes

= Create Index CREATE INDEX ixStudLname
= Create a secondary (nonclustered) ON Students USING btree
index on a set of attributes (Lname ASC NULLS FIRST);

= Clustered: tuples sorted by index

= Non-clustered: sorted attribute with tuple references
= Can specify uniqueness, order, and indexing method

= PostgreSQL methods: btree, hash, gist, and gin

table data

=» see lecture 07 Physical Design and Tuning

= Delete Index

_ DROP INDEX ixStudLname;
= Drop indexes by name

= Tradeoffs

» |ndexes often automatically created for primary keys / unique attributes
= Lookup/scan performance vs insert performance

INF.01017UF Data Management / 706.010 Databases — 05 Query Languages (SQL) .ISDS
Matthias Boehm, Graz University of Technology, SS 2020

Structured Query Language (SQL) TU

Grazm

Data ba Sse Cata | Og [Meikel Poess: TPC-H. Encyclopedia

of Big Data Technologies 2019]

= Catalog Overview

" Meta data of aI.I datz?\base objects T pgAdmin
(tables, constraints, indexes) > mostly read-only b Ecwsomer graphical

= Accessible through SQL - 5 lineitem representation

- [nation
= Organized by schemas (CREATE SCHEMA tpch;) 5 B3 orders
* [part
. -+ [partsupp
= SQL Information_Schema 5- B Columns
= Schema with tables 7" » 4 Constraints Bik
for all tables, views, constraints, etc | 4 porsuppprey
- /P partsupp_ps_partkey_fkey
= Example: check for existence of accessible table - P partsupp_ps_suppkey_fkey
+ - 5 Indexes
SELECT 1 FROM information_schema.tables 14 R Rules
+ T i
WHERE table schema = ‘tpch’ i Eregm:ggers

AND table name = €‘customer’ i £ supplier

(defined as views over PostgreSQL catalog tables)

INF.01017UF Data Management / 706.010 Databases — 05 Query Languages (SQL) .ISDS
Matthias Boehm, Graz University of Technology, SS 2020

Structured Query Language (SQL) TU

Grazm

Insert

= Insert Tuple
= Insert a single tuple with implicit or explicit attribute assignment

INSERT INTO Students (SID, Lname, Fname, MTime, DoB)
VALUES (7, 'Boehm', 'Matthias’', '2002-10-01"','1982-06-25");

= |nsert attribute key-value pairs to use auto increment, defaults, NULLs, etc

INSERT INTO Students (Lname, Fname, DoB) SERIAL SID,
VALUES ('Boehm','Matthias', '1982-06-25"'), DEFAULT MTime

Ceeed)s (Lel)s

= |Insert Table INSERT INTO Students
» Redirect query result into SELECT * FROM NewStudents;

INSERT (append semantics)
Analogy Linux redirect (append):

cat NewStudents.txt >> Students.txt

INF.01017UF Data Management / 706.010 Databases — 05 Query Languages (SQL) .ISDS
Matthias Boehm, Graz University of Technology, SS 2020

Structured Query Language (SQL)

TU

Grazm

Update and Delete

= Update Tuple/Table
= Set-oriented update of attributes

= Update single tuple via predicate
on primary key

= Delete Tuple/Table
= Set-oriented delete of tuples

= Delete single tuple via predicate
on primary key

UPDATE Students
SET MTime = ‘2002-10-02°
WHERE LName = ‘Boehm’;

DELETE FROM Students
WHERE extract(year
FROM mtime) < 2010;

= Note: Time travel and multi-version concurrency control

= Deleted tuples might be just marked as inactive

= See |lecture 09 Transaction Processing and Concurrency

INF.01017UF Data Management / 706.010 Databases — 05 Query Languages (SQL)
Matthias Boehm, Graz University of Technology, SS 2020

"ISDS

Structured Query Language (SQL) TU

Grazm

Basic Queries

= Basic Query Template SELECT [DISTINCT] <column_list>
= Select-From-Where FROM [<table_list> |
<tablel> [RIGHT | LEFT | FULL] 3JOIN
<table2> ON <condition>]
[WHERE <predicate>]
= Duplicate elimination [GROUP BY <column list>]
[HAVING <grouping predicate>]
[ORDER BY <column_list> [ASC | DESC]]

= Example |

= Grouping and Aggregation
= Having and ordering

= SELECT |Fname, Affil, Location TFname,Affil,Location
FROM |Participant AS R,

\ Op.L1p=L.LID

X

S

Participant Location

Structured Query Language (SQL) -ErLa!.

Basic Queries, cont.

= Distinct and All SELECT DISTINCT Lname, Fname
= Distinct and all alternatives FROM Students;
= Projection w/ bag semantics by default

= Sorting
SELECT * FROM Students
ORDER BY Lname DESC,

Fname DESC;

= Convert a bag into a sorted list of
tuples; order lost if used in other ops

» Single order: (Lname, Fname) DESC
= Evaluated last in a query tree

= Set Operations SELECT Firstname, Lastname
= See 04 Relational Algebra and Calculus FROM Participant2018
— UNION, INTERSECT, EXCEPT UNION DISTINCT
= Set operations set semantics by default ~ SELECT Firstname, Lastname
- DISTINCT (set) vs ALL (bag) FROM Participant2013
INF.01017UF Data Management / 706.010 Databases — 05 Query Languages (SQL) .ISDS
Matthias Boehm, Graz University of Technology, SS 2020

Structured Query Language (SQL) TU

Grazm

Grouping and Aggregation

= Grouping and Aggregation
= Grouping: determines the distinct groups
= Aggregation: compute aggregate f(B) per group
= Column list can only contain grouping columns, aggregates, or literals
= Having: selection predicate on groups and aggregates

= Example

= Sales (Customer, Location, Product, Quantity, Price)

= Q: Compute number of sales and revenue per product

SELECT Product, sum(Quantity), sum(Quantity*Price)
FROM Sales

GROUP BY Product

INF.01017UF Data Management / 706.010 Databases — 05 Query Languages (SQL) .ISDS
Matthias Boehm, Graz University of Technology, SS 2020

Structured Query Language (SQL)

TU

Grazm

BREAK (and Test Yourself)

Orders Products
= TaSk: SQL queries OID | Customer Date Quantity | PID PID Name Price
for the fo"owing 1 A *2019-06-22° 3 2 1 X 100
2 B *2019-06-22° 1 3 2 Y 15
query trees' 3 A *2019-06-22° 1 4 4 Z 75
6 4 C 2019-06-23° 2 2 3 W 120
I 5 D 2019-06-23° 1 4
6 C 2019-06-23° 1 1
nCustomer‘, Date
l
GO Customer | Date Vcustomer, | Customer | Sum _
| A ‘2019-06-22 sum(0.Quantity*P.Price) A 120
X C 2019-06-23’ | B 120
D 2019-06-23’ C 130
/\ >o.p1D=pP.PID D 75
Orders 0.NameE{Y,Z}
0 Orders Products
Products 0 P

P

SELECT DISTINCT Customer, Date
FROM Orders 0O, Products P
WHERE O.PID P.PID

AND Name IN('Y','Z")

SELECT Customer,
sum(0.Quantity * P.Price)
FROM Orders 0O, Products P
WHERE O.PID P.PID
GROUP BY Customer

Structured Query Language (SQL)

TU

Grazm

Subqueries

= Subqueries in Table List

= Use a subquery result
like a base table

= Modularization with
WITH C AS (SELECT ..)

= Subqueries w/ IN

®» Check containment of values
in result set of sub query

= Other subqueries

SELECT S.Fname, S.Lname, C.Name
FROM Students AS S,
(SELECT CID, Name FROM Country
WHERE ..) AS C
WHERE S.CID=C.CID;

SELECT Product, Quantity, Price
FROM Sales
WHERE Product NOT IN(
SELECT Product FROM Sales
GROUP BY Product
HAVING sum(Quantity*Price)>1e6)

= EXISTS: existential quantifier Ix for correlated subqueries

= ALL: comparison (w/ universal quantifier Vx)

= SOME/ANY: comparison (w/ existential quantifier 3x)

INF.01017UF Data Management / 706.010 Databases — 05 Query Languages (SQL) .ISDS
Matthias Boehm, Graz University of Technology, SS 2020

Structured Query Language (SQL) TU

Grazm

Correlated and Uncorrelated Subqueries

= Correlated Subquery SELECT P.Fname, P.Lname
» Evaluated subquery for every tuple FROM Professors P,
of outer query WHERE NOT EXISTS(

SELECT * FROM Courses C
WHERE C.PID=P.PID);

= Use of attribute from table bound
in outer query inside subquery

= Uncorrelated Subquery SELECT P.Fname, P.Lname

= Evaluate subquery just once FROM Professors P,
WHERE P.PID NOT IN(

SELECT PID FROM Courses);

= No attribute correlations between
subquery and outer query

= Query Unnesting (de-correlation)
[Thomas Neumann, Alfons

= Rewrite during query compilation Kemper: Unnesting Arbitrary
m See lecture Queries. BTW 2015]

INF.01017UF Data Management / 706.010 Databases — 05 Query Languages (SQL) .ISDS
Matthias Boehm, Graz University of Technology, SS 2020

Structured Query Language (SQL) TU

Grazm

Recursive Queries T ARE Y00 LORKING O
TRYING TO Fix THE. PROBLEMS T
T e D
= Approach TTREDTO FIX THE PROBLEMS

2 T CREATED LJHEN...
= WITH RECURSIVE <name> (<arguments>)) /

= Compose recursive table from non-recursive term,
union all/distinct, and recursive term

= Terminates when recursive term yields empty result

[https://xked.com/1739/]

= Example
WITH RECURSIVE rPrereq(p,s) AS(

= Courses(CID, Name), (SELECT pre, suc
Precond(pre REF CID, suc REF CID) FROM Precond WHERE suc=5)

= Dependency graph (pre—>suc) UNION DISTINCT o
(SELECT B.pre, B.suc
FROM Precond B, rPrereq R e
0_,@ WHERE B.suc = R.p)
0.) o
o SELECT DISTINCT p FROM rPrereq @

INF.01017UF Data Management / 706.010 Databases — 05 Query Languages (SQL) .ISDS
Matthias Boehm, Graz University of Technology, SS 2020

Structured Query Language (SQL) -Erla'!l

Procedures and Functions

= Overview Procedures and Functions
= Stored programs, written in PL/pgSQL or other languages

CREATE PROCEDURE prepStud(a INT)

" (Stored) Procedures LANGUAGE PLPGSQL AS $$
= Can be called standalone via BEGIN
CALL <proc_name>(<args>); DELETE FROM Students;
= Procedures return no outputs INSERT INTO Students
SELECT * FROM NewStudents;
. END; $%;
= Functions

= Can be called standalone or

o . CREATE FUNCTION sampleProp(FLOAT)
inside queries

RETURNS FLOAT
= Functions are value mappings AS 'SELECT $1 * (1 - $1);°
J

= Table functions can return sets LANGUAGE SQL;
of records with multiple attributes

INF.01017UF Data Management / 706.010 Databases — 05 Query Languages (SQL) .ISDS
Matthias Boehm, Graz University of Technology, SS 2020

Structured Query Language (SQL) -Erla'!l

Triggers

= QOverview Trigger
= Similar to stored procedure but register ON INSERT, DELETE, or UPDATE
= Allows complex check constraints and active behavior such as replication,
auditing, etc (good and bad)

= Trigger CREATE TRIGGER <triggername>
Template BEFORE | AFTER | INSTEAD OF

INSERT | DELETE | (UPDATE OF <column_list>)
ON <tablename>
[REFERENCING <old new alias list>]
[FOR EACH {ROW | STATEMENT}] Condition
[WHEN (<search condition>)]
<SQL procedure statement> |

Not supported in BEGIN ATOMIC Action
PostgreSQL {<SQL Procedure statement>;}...

(need single UDF) END

Event

INF.01017UF Data Management / 706.010 Databases — 05 Query Languages (SQL) .ISDS
Matthias Boehm, Graz University of Technology, SS 2020

Structured Query Language (SQL)

TU

Grazm

Views and Authorization

= Creating Views CREATE VIEW TeamDM AS
; SELECT * FROM
= |nserts can be propagated back to Employee E, Employee M
base relations only in special cases WHERE E.MgrlD = M.EID

= Allows authorization for subset of

= Access Permissions Tables/Views GRANT SELECT
. query/modification rights on ON TABLE TeamDM
database objects for specific users, roles TO mboehm;
. access rights from users, roles REVOKE SELECT
(recursively revoke permissions of ON TABLE TeamDM
dependent views via CASCADE) FROM mboehm;

INF.01017UF Data Management / 706.010 Databases — 05 Query Languages (SQL)
Matthias Boehm, Graz University of Technology, SS 2020

AND M.login = ‘mboehm’;

"ISDS

Structured Query Language (SQL)

TU

Grazm

Beware of SQL Injection

= Problematic SQL String Concatenation

INSERT INTO Students (Lname, Fname)
VALUES (““+ @lname +”°¢,’°“+ @fname +”°);”;

HI, THIS 1S

WE'RE HAVING S0ME
(OMPUTER TROUBLE.

“\%m

YOUR SON'S SCHOOL.

= Possible SQL-Injection Attack

OH, DEAR - DID HE
BREAK SOMETHING?

IN HWHY /

S

DID YOU REALLY
NAME YOUR SON
Robert'); DROP
TABLE Stwdents;-- 7

~OH.YES UTTLE
BOBBY TABLES,
WE CALL HIM.

WELL, WEVE LOST THIS

YEARS STUDENT RECORDS.
T HOPE YOURE HAPPY.

{

AND T HOPE
- YOUVE LEARNED
TO SANMIZE YOUR
DATABASE. INPUTS.

[https://xkcd.com/327/]

T

INSERT INTO Students (Lname, Fname) VALUES (‘Smith¢,’Robert’);

DROP TABLE Students; --°);

INF.01017UF Data Management / 706.010 Databases — 05 Query Languages (SQL)
Matthias Boehm, Graz University of Technology, SS 2020

"ISDS

TU

Grazm

Other Query Languages
(XML, JSON)

INF.01017UF Data Management / 706.010 Databases — 05 Query Languages (SQL)
Matthias Boehm, Graz University of Technology, SS 2020

"ISDS

Other Query Languages (XML, JSON)

TU

Grazm

No really, why should | care?

= Semi-structured XML and JSON
= Self-contained documents for representing nested data
= Common data exchange formats without redundancy of flat files
= Human-readable formats = often used for SW configuration

= Goals
= Awareness of XML and JSON as data models

= Query languages and embedded querying in SQL

INF.01017UF Data Management / 706.010 Databases — 05 Query Languages (SQL)
Matthias Boehm, Graz University of Technology, SS 2020

"ISDS

Other Query Languages (XML, JSON) -Erla'!l

XML (Extensible Markup Language)

= XML Data Model <?xml version=“1.0“ encoding="“UTF-8“?>
) <data>
= Meta language to define <student id=“1”’>
specific <course id="“INF.01017UF” name=“DM”/>
= D f f <course id=“706.550” name=“AMLS”/>
ocument format for ¢/students
semi-structured data <student id=“5">
= Well formedness <course 1id=“706.520” name=“DIA”/>
</student>
= XML schema /DTD </data>
= XPath (XML Path Language) /data/student[@id=°1’]/course/@name
= Query language for
of an XML document «“DM*’
= Axis specifies for ancestors, descendants, siblings, etc “AMLS”

= XSLT (XML Stylesheet Language Transformations)
= Schema mapping (transformation) language for XML documents

= XQuery
= Query language to extract, transform, and analyze XML documents

Other Query Languages (XML, JSON) -Erla'!l

XML in PostgreSQL, cont.

= Overview XML in PostgreSQL

= Data types or (well-formed, type-safe operations)
= |SO/IEC 9075-14 XML-related specifications (SQL/XML)

= Creating XML INSERT INTO Students
= Various to parse documents, (Fname,I:namejD?c).)
and create elements/attributes VALUES(‘John”,”Smith”,

= XMLPARSE(<xml|_document>) = xmlparse(<source_doc>));

= XMLELEMENT / XMLATTRIBUTES

= Processing XML SELECT Fname, Lname,
xpath(‘/student/@id’ ,Doc)

= Execute expressions on XML types
FROM Students

= XMLEXIST with XPath instead of XQuery
= XPATH with optional namespace handling

INF.01017UF Data Management / 706.010 Databases — 05 Query Languages (SQL) .ISDS
Matthias Boehm, Graz University of Technology, SS 2020

Other Query Languages (XML, JSON) -ErLa!.

JSON (JavaScript Object Notation)

= JSON Data Model {“students:”[
{“id”: 1, “courses”:|
= Data exchange format for (“id“:“INF.01017UF”, “name®:“DM"},
semi-structured data {“1d“:“706.550”, “name:“AMLS”}]},

{“1d”: 5, “courses”:|[

]
Not as verbose as XML {“1d“:“706.520”, “name®“:“DIA”}]},

(especially for arrays) 1}
= Popular format (e.g., Twitter)

* Query Languages JSONiq Example:
= Most common: libraries for declare option jsonig-version “..”;
tree traversal and data extraction for $x in collection(“students”)
. . : where $x.id 1t 10
JSONig: XQuery-like query language let $c := count($x.courses)

= JSONPath: XPath-like query language return {“sid”:$x.id, “count”:$c}

[http://www.jsonig.org/docs/JSONig/html-single/index.html]

INF.01017UF Data Management / 706.010 Databases — 05 Query Languages (SQL) .ISDS
Matthias Boehm, Graz University of Technology, SS 2020

Other Query Languages (XML, JSON) TU

JSON in PostgreSQL, cont.

= Overview JSON in PostgreSQL

= Alternative data types: (text), (binary, with restrictions)
= Implements RFC 7159, built-ins for conversion and access

" Creating JSON SELECT row_to_json(t) FROM
= Built-in functions for creating (SELECT Fname, Lname
JSON from tables and tables FROM Students) t
from JSON input
= Processing JSON SELECT Fname, Lname,
= Specialized operators for Doc->students->>id
tree traversal and data extraction FROM Students
= get JSON array element/object
= get JSON array element/object as text

= Built-in functions for extracting json (e.g., json_each)

INF.01017UF Data Management / 706.010 Databases — 05 Query Languages (SQL) .ISDS
Matthias Boehm, Graz University of Technology, SS 2020

Preview Exercise 2:
Query Languages and APIs

INF.01017UF Data Management / 706.010 Databases — 05 Query Languages (SQL)
Matthias Boehm, Graz University of Technology, SS 2020

"ISDS

TU

Preview Exercise 2: Query Languages and APlIs Graza

Exercises: DBLP Publications

persons.csv: The persons file contains author information inclu
| Data Set websites. It's detailed structure and examples look as follows.

= CCO-licensed, derived (extracted, cleaned) #ID | name | aliases | affiliation | url

A261789 |[Matthias Boehm 8881 |Matthias BShm 8861|Graz Unive

from DBLP (https://dblp.org Feb 1, 2020) S e
for publication year = 2011 + DM venues

theses.csv: The theses file contains the information of public Pt

= Clone or download your copy from look as follows.
httDS://github'COm/tUgraz_iSdS/datasets'git #TKey | author | title | year | type | school | pages | i

T25621|A261789|Cost-based optimization of integration flo
T38852|A1399369|An Architecture for Fast and General Data

= Exercises ‘
™ 01 Data modeling (relational Schema) pubs.csv: The pubs file (or better, its individual parts) contains

detailed structure and examples look as follows.

= 02 Data ingestion and SQL query processing

#PKey | authors| title | year | type | journal | volumne

- I ° I h . . P519327 |A382693:4261789: A261428: 42051042 : AG9598 |MNC: Stru
Re atlona SC ema + |ngest|0n P164@801|A261789:42851042: A2047447 : AA72485: 261428 A3B856
P12485|A1399369:A1783306:A1416241:A557115: A658354 : AB3102

= SQL query processing + extra credit)

| 03 Physical deS|gn tuning’ query processing’ ‘c:nlfs.;:su;: Thhe confs file tc:iontains the information on conferenc
. . ikely be further improved soon.
and transaction processing

#CKey | title | editors | year | isbn

u 04 La rge-scale data analySiS (distributed (8836 |Proceedings of the 2819 International Conference on
. . . C76|Proceedings of the 9th USENIX Symposium on Networked
data ingestions and query processing)

<

INF.01017UF Data Management / 706.010 Databases — 05 Query Languages (SQL) .ISDS
Matthias Boehm, Graz University of Technology, SS 2020

Preview Exercise 2: Query Languages and APlIs -ErLa!.

Task 2.1: Schema Creation via SQL

= Schema creation via SQL
= Relies on lectures 04 Relational Algebra and 05 Query Languages (SQL)
= Setup DBMS PostgreSQL
= Create database db<studentID> and setup relational schema
= |gnore (1) person aliases, and (2) conference editors
= Primary keys, foreign keys, NOT NULL, UNIQUE
= CreateSchema.sql

= Recommended Schema
= TBA (after Apr 10, 11.59pm)

INF.01017UF Data Management / 706.010 Databases — 05 Query Languages (SQL) .ISDS
Matthias Boehm, Graz University of Technology, SS 2020

Preview Exercise 2: Query Languages and APlIs -ErLa!.

Task 2.2 Data Ingestion via CLI

= Data Ingestion Program via ODBC/JDBC
= Relies on lectures 05 Query Languages (SOL) and 06 APIs (ODBC, JDBC)
= Write a program that performs deduplication and data ingestion
= Programming language of your choosing (Python, Java, C#, C++ recommended)

= Data Ingestion Process
= Data: https://github.com/tugraz-isds/datasets/tree/master/dblp publications

= |nvoke your ingestion program as follows = script to compile and run

IngestData ./confs.csv ./journals.csv \
./persons.csv ./pubs.csv ./theses.csv \
<host> <port> <database> <user> <password>

INF.01017UF Data Management / 706.010 Databases — 05 Query Languages (SQL) .ISDS
Matthias Boehm, Graz University of Technology, SS 2020

TU

Preview Exercise 2: Query Languages and APlIs Graza

Getting Started w/ Task 2.2

= Exercise 2: Would you know how to start? “I feel a bit lost on how to
If not, please ask. start this task and also a bit
overwhelmed by the amount
of lists and the two phases of

loading the data.” (Apr 26, 2019)
= Some Pointers

= Download and install PostgreSQL, use pgAdmin for schema creation / querying
= Download and install an IDE (e.g., PyCharm, Eclipse/IntelliJ, VS Code)
= Run CreateSchema.sql through query tool (pgAdmin or psql terminal)
= #1 Setup the database connection
= /2 Read the csv files into lists of string arrays (create a function for that)
= #3 For all target tables (in order of reference, create a function for each)
= Extract necessary data from respective lists (incl. deduplication)
= |nsert data via CLI into table using PK lookup tables
= Create tailor-made lookup tables if necessary

INF.01017UF Data Management / 706.010 Databases — 05 Query Languages (SQL) .ISDS
Matthias Boehm, Graz University of Technology, SS 2020

TU

Grazm

Conclusions and Q&A

Summary
= History and fundamentals of the Structured Query Language (SQL)
= Awareness of XIVIL and JSON (data model and querying)

Exercise 1 Reminder
= Submission deadline: Mar 31, 11.59pm
= Late day policy: 7+3 days; replacements possible via email

Exercise 2
= To be published Apr 07 on website and TeachCenter
= Submission deadline Apr 28, 11.59pm

Next Lectures
= 06 APIs (ODBC, JDBC, OR frameworks) [Apr 20], incl. Exercise 2

INF.01017UF Data Management / 706.010 Databases — 05 Query Languages (SQL) .ISDS
Matthias Boehm, Graz University of Technology, SS 2020

