Ty

SCIENCE
PASSION
TECHNOLOGY
Data Management
08 Query Processing
Matthias Boehm
Graz University of Technology, Austria _ y—
Computer Science and Biomedical Engineering | === | ﬂL_JJ
;*' { [

"ISDS

Last update: May 01, 2020

TU

Grazm

Announcements/Org

= #1 Video Recording ‘3 TU be

= Link in TeachCenter & TUbe (lectures will be public)
= Live Streaming Mo 4.10pm until end of semester (June 30)
= Office hours: Mo 1pm-2pm (https://tugraz.webex.com/meet/m.boehm)

= #2 Exercise 1/2 Grading
= All submissions accepted (submitted/draft)
= Exercise 1 feedback this week, Exercise 2 start grading May 09

= #3 Exams (max 80 students per slot)

= June 22, 4pm; June 22, 7pm; July 1, 6pm; July 2, 6pm; July 3, 6pm;
July 28, 4pm; July 29 4pm

it
cisco \Webex

= Limited oral exams via Webex (e.g., for international students)
= #4 Course Evaluation
= Please participate; open period: June 1 —July 15 o

INF.01017UF Data Management / 706.010 Databases — 08 Query Processing .ISDS
Matthias Boehm, Graz University of Technology, SS 2020

TU

Grazm

Query Optimization and Query Processing
SELECT * FROM TopScorer WHAT _ m

WHERE Count>=4

James Rodriguez 6

CREATE VIEW TopScorer AS Yes, but HOW to Thomas Muller 5

SELECT P.Name, Count(*) we get there Robin van Persie 4
FROM Players P, Goals G ffici |

WHERE P.Pid=G.Pid etficiently Neymar 4

AND G.GOwn=FALSE
GROUP BY P.Name
ORDER BY Count(*) DESC

= Goal: Basic Understanding of Internal Query Processing
= Query rewriting and query optimization
= Query processing and physical plan operators
=>» Performance debugging & reuse of concepts and techniques
=>» Overview, detailed techniques discussed in ADBS (WS 2020)

INF.01017UF Data Management / 706.010 Databases — 08 Query Processing .ISDS
Matthias Boehm, Graz University of Technology, SS 2020

TU

Grazm

Agenda

= Query Rewriting and Optimization
= Plan Execution Strategies

= Physical Plan Operators

X Tuning and Transactions

INF.01017UF Data Management / 706.010 Databases — 08 Query Processing .ISDS
Matthias Boehm, Graz University of Technology, SS 2020

Query Rewriting and Optimization

INF.01017UF Data Management / 706.010 Databases — 08 Query Processing .ISDS
Matthias Boehm, Graz University of Technology, SS 2020

Query Rewriting and Optimization -I(;rla!l

ﬂ Overview Query Optimization
| Name | Count_

SELECT * FROM TopScorer
WHERE Count>=4

I
|
|

; James Rodriguez 6

l : Thomas Muller 5

Parsing : Robin van Persie 4
|

I N 4

AST/IR | eymar
|
Semantic Analysis :
I
IR I !
|
: I .
Query Rewrites I Plan Execution

|
IR I I
1

Plan Optimization @—» Plan Caching

Compile Time ! Runtime

INF.01017UF Data Management / 706.010 Databases — 08 Query Processing .ISDS
Matthias Boehm, Graz University of Technology, SS 2020

TU

Grazm

Query Rewriting and Optimization

Query Rewrites

= Query Rewriting
= Rewrite query into semantically equivalent form that may be
processed more efficiently or give the optimizer more freedom

= #1 Same query can be expressed differently, prevent hand optimization

= #2 Complex queries may have redundancy

= ASimple Example SELECT DISTINCT custkey, name
= Catalog meta data: FROM TPCH.Customer
custkey IS unique ‘ rewrite

SELECT custkey, name
FROM TPCH.Customer

= 20+ years of experience [Hamid Pirahesh, T. Y. Cliff Leung, Waqar Hasan:
on query rewriting A Rule Engine for Query Transformation in
Starburst and IBM DB2 C/S DBMS. ICDE 1997]

INF.01017UF Data Management / 706.010 Databases — 08 Query Processing .ISDS

Matthias Boehm, Graz University of Technology, SS 2020

Query Rewriting and Optimization

TU

Grazm

Standardization and Simplification

= Normal Forms of Boolean Expressions

= Conjunctive normal form (P;; OR ... OR P,) AND ... AND (P, OR... ORP)
® Disjunctive normal form (P;; AND ... AND P,,) OR ... OR (P,; AND ... AND P)

= Transformation Rules for Boolean Expressions

RuleName _______|Examples

Commutativity rules
Associativity rules
Distributivity rules
De Morgan’s rules

Double-negation rules
Idempotence rules

AORB o B OR A

A AND B < B AND A

(AOR B) OR C & A OR (B OR C)

(A AND B) AND C & A AND (B AND C)

A OR (B AND C) & (A OR B) AND (A OR C)

A AND (B OR C) < (A AND B) OR (A AND C)
NOT (A AND B) & NOT (A) OR NOT (B)

NOT (A OR B) & NOT (A) AND NOT (B)
NOT(NOT(A)) & A

AORA & A AAND A & A

A OR NOT(A) & TRUE A AND NOT (A) < FALSE
AAND (AORB) © A A OR (AAND B) & A
A OR FALSE & A A OR TRUE & TRUE

A AND FALSE & FALSE

Query Rewriting and Optimization -I(;rla'!l

Standardization and Simplification, cont.

Elimination of Common Subexpressions
= (A;=a,; OR A;=a,,) AND (A,=a,, OR A;=a,;) = A;=a,; OR A ;=a,,

Propagation of Constants
= A>2BANDB =7 2> A 2 AND B =

Detection of Contradictions
= A>BANDB>CANDC>A—-> A>A - FALSE

Use of Constraints

= Ais primary key/unique: 1t, = no duplicate elimination necessary

* Rule MAR_STATUS = ‘married’ —> TAX_CLASS 2> 3:
(MAR_STATUS = ‘married’ AND TAX_CLASS = 1) - FALSE

Elimination of Redundancy
= RWR 2> R, RUR > R, R-R=> 0
" Rx(o,R) 2 o,R, RU(oO,R) > R, R-(o,R) > o_R
" (°p1R)N(°sz) > Op1rp2R > (Ole)U(Osz) 2 Op1vp2R

Query Rewriting and Optimization TU

Query Unnesting

[Won Kim: On Optimizing an
SQL-like Nested Query. ACM
= Case 1: Type-A Nesting Trans. Database Syst. 1982]

= |Inner block is not correlated and computes an aggregate
= Solution: Compute the aggregate once and insert into outer query

SELECT OrderNo FROM Order $X = SELECT MAX(ProdNo)

WHERE ProdNo = » FROM Product WHERE Price<100
(SELECT MAX(ProdNo)

. SELECT OrderNo FROM Order
FROM Product WHERE Price<100)

WHERE ProdNo = $X

= Case 2: Type-N Nesting

= |nner block is not correlated and returns a set of tuples
= Solution: Transform into a symmetric form (via join)

SELECT OrderNo FROM Order SELECT OrderNo
WHERE ProdNo IN » FROM Order 0O, Product P
(SELECT ProdNo WHERE O.ProdNo = P.ProdNo
FROM Product WHERE Price<100) AND P.Price < 100

INF.01017UF Data Management / 706.010 Databases — 08 Query Processing .ISDS
Matthias Boehm, Graz University of Technology, SS 2020

Query Rewriting and Optimization TU

Grazm

Query Unnesting, cont.

[Won Kim: On Optimizing an
SQL-like Nested Query. ACM
= Case 3: Type-J Nesting Trans. Database Syst. 1982]

= Un-nesting of correlated sub-queries w/o aggregation

SELECT OrderNo FROM Order O SELECT OrderNo
WHERE ProdNo IN » FROM Order O, Project P
(SELECT ProdNo FROM Project P WHERE O.ProdNo = P.ProdNo
WHERE P.ProjNo = 0.0rderNo AND P.ProjNo = 0.0OrderNo
AND P.Budget > 100,000) AND P.Budget > 100,000

= Case 4: Type-JA Nesting

= Un-nesting of correlated sub-queries w/ aggregation

SELECT OrderNo FROM Order O SELECT OrderNo FROM Order O
WHERE ProdNo IN WHERE ProdNo IN
(SELECT MAX(ProdNo) » (SELECT ProdNo FROM
FROM Project P (SELECT ProjNo, MAX(ProdNo)
WHERE P.ProjNo = 0.0rderNo FROM Project
AND P.Budget > 100,000) WHERE Budget > 100.000

GROUP BY ProjNo) P

= Further un-nesting via case 3 and 2 WHERE P.ProjNo = 0.0rderNo)

INF.01017UF Data Management / 706.010 Databases — 08 Query Processing .ISDS
Matthias Boehm, Graz University of Technology, SS 2020

TU

Query Rewriting and Optimization Graza

Selections and Projections

= Example Transformation Rules

1) Grouping of 2) Grouping of 3) Pushdown of 4) Pushdown of
Selections Projections Selections Projections
Ox> Ty Op(r) Mg nc nc
17 Ooyap=g | T | PN | :
O,_ 18 X, O S N M \-p
P=q A,B A=B p(R) A=B
| R R VN | VRN N
R R R S R R S Ty T
I
R S
= Restructuring Algorithm
= #1 Split n-ary joins into binary joins Input: Standardized,
= #2 Split multi-term selections simplified, and un-nested
_ _ query graph
= #3 Push-down selections as far as possible
= #4 Group adjacent selections again Restructured
. . query graph
= #5 Push-down projections as far as possible
INF.01017UF Data Management / 706.010 Databases — 08 Query Processing .ISDS

Matthias Boehm, Graz University of Technology, SS 2020

Query Rewriting and Optimization

TU

Grazm

Example Query Restructuring

SELECT * FROM TopScorer !

WHERE count>=4 Ocount>=l4/\Pos=Fw

AND Pos=°‘FW’ -~
count DESC

CREATE VIEW TopScorer AS
SELECT P.Name, P.Pos, count(*) » YName, Pos , count (*)

FROM Players P, Goals G
WHERE P.Pid=G.Pid

AND G.GOwn=FALSE OGown=F
GROUP BY P.Name, P.Pos
ORDER BY count(*) DESC Xoig
Additional metadata: Players Goals

P.Name is unique

|
Ccount DESC

ocount>=4

VName, count(*)

» nNrme

Mpig

nPidrName nPlid

Opos=Fu OGown=F

nPid,Name,Pos T[Pid[,Gown

Players Goals

TU

Query Rewriting and Optimization Graza

Plan Optimization Overview

= Plan Generation

Selection of physical access path and plan operators

Selection of execution order of plan operators

Input: logical query plan = Output: optimal physical query plan
Costs of query optimization should not exceed yielded improvements

= Different Cost Models

Relies on statistics (cardinalities, selectivities via histograms + estimators)
Operator-specific and general-purpose cost models

Cont(T) = 0 if T is a single relation _

‘out — |T‘ + Oyt (Tl) + Cout.(TQ) ifT=T) XT, (estlmated) (real)
I/0 costs (number of read pages, tuples) | 10 590
Computation costs (CPU costs, path lengths) OModel= ‘Golf"

Memory (temporary memory requirements) 1,000 5,000

. L OMake="vw*
Beware assumptions of optimizers l

(no skew, independence, no correlation) cars 10000 10000

Query Rewriting and Optimization TU

Grazm

Join Ordering Problem

= Join Ordering
= Given a join query graph, find the optimal join ordering
= |n general, NP-hard; but polynomial algorithms exist for special cases

® ® [—-\\
= Query Types e—o o oo '\,/ YA L TiT
eo— 9o — 90— 90— o l ./ \. o — e \._.

Chains Stars Cliques

= Search Space

- Chain (no CP) Star (no CP) Clique / CP (cross product)

left- zig-zag bushy left- zig-zag/ left- zig-zag bushy
deep deep bushy deep
A 2203 2m1C(p-1) 2(n-1)! 2™1(n-1)! n! 2"2n]! n! C(n-1)
16 128 224 48 384 120 960 1,680

512 ~131K ~2.4M ~726K ~186M ~3.6M ~929M ~17.6G

C(n) ... Catalan Numbers

[Guido Moerkotte, Building Query Compilers (Under Construction), 2019,
http://pi3.informatik.uni-mannheim.de/~moer/querycompiler.pdf]

Query Rewriting and Optimization -I(;rE!l

Join Order Search Strategies

Actual

Tradeoff: Optimal (or good) plan vs compilation time

Explored

#1 Naive Full Enumeration

= |nfeasible for reasonably large queries (long tail up to 1000s of joins)

#2 Exact Dynamic Programming
= Guarantees optimal plan, often too expensive (beyond 20 relations)
= Bottom-up vs top-down approaches 100000

—t—LSe|

#3 Greedy / Heuristic Algorithms o DP Enum i

1000

—p=—BSel+

g =—=L5T

#4 Approximate Algorithms

Elapsed time (milliseconds)
[
8

— LsT+
= E.g., Genetic algorithms, 10 Heuristics e
simulated annealing : sz
= Example POStgreSQL D ! mﬂumbero:hksﬁoin:o B ’ BE
- ExaCF optimization (DPSize) if < 12 [Nicolas Bruno, César A. Galindo-Legaria,
relations (geqo_threshold) Milind Joshi: Polynomial heuristics for

guery optimization. ICDE 2010]

= Genetic algorithm for larger queries

= Join methods: NLJ, SMJ, HJ

Query Rewriting and Optimization TU

Greedy Join Ordering Star Schema

Benchmark

il

o] [

fiisii

= Example

= Part X Lineorder < Supplier & o(Customer) > o(Date), left-deep plans

H-_ H-_

Lineorder < Part ((Lineorder x o(Date)) 120K

D
Lineorder > Supplier 20M SHEEETIE) BN

: ((Lineorder x o(Date)) 105M
Lineorder x o(Customer) 90K o(Customer)) x Supplier

. Lineorder x4 o(Date) m

- - N/A (((Lineorder x o(Date)) x 135M
o(Customer)) < Supplier) 4 Part

2 (Lineorder » o(Date)) b4 Part 150K Note: Simple O(n?) algorithm
for left-deep trees;

O(n3) algorithms for bushy trees
(Lineorder > o(Date)) 4 o(Customer) existing (e.g., GOO)

(Lineorder > o(Date)) > Supplier 100K

INF.01017UF Data Management / 706.010 Databases — 08 Query Processing .ISDS
Matthias Boehm, Graz University of Technology, SS 2020 -

Query Rewriting and Optimization -ErLa!.

Dynamic Programming Join Ordering

= Exact Enumeration via Dynamic Programming
= #1: Optimal substructure (Bellman’s Principle of Optimality)
= #2: Overlapping subproblems allow for memoization

=>» Approach DPSize: Split in independent subproblems (optimal plan per set of
qguantifiers and interesting properties), solve subproblems, combine solutions

= Example Q1+Q3, Q2+Q2, Q3+Q1l

Q1+Q1 mQ“1+Q2' e Q4 | Plan

m mm [C,D,L} (LMC)XD, Dkl {C,D,L,P} {{L=C)<D}<P

P>a((LxC)xD)
C,L} LxC, Coak {LeD)

{C} Thl, IX e i {C,D,L,S}
e e {D,L} LxD,Bst {CL,P} {€C}<R P(LC),

"7 {LP} kR PxL (Poal)sag, Coafpat) {GLPS}
i LS} kxS, sl {GLS} DLRS)
tP} ©p3 NnA {DLP) Q1+Q4, Q2+Q3,
{S} {D,L.S} Q3+Q2, Q4+Q1

LpS) Q5 | Plan___

{C,D,L,PS}

Query Rewriting and Optimization -Erla'!l

BREAK (and Test Yourself)

= Rewrite the following RA expressions — assuming two relations R(a, b, c)
and S(d, e, f) — into equivalent expressions with lower costs. (5 points)

" 6,,(R @ S) =2 0,,(R) ™ S
" (0.,3(S)) n (0g,(S)) 2 Oy 5 £7(S)
", ,(R ™4 S) 2 1, ,(R) X,4S
" R U (Ogee n o<t n #<a(5)) 2 R
" 0,_3(Vb,max(c) (R)) 2 V3, max(c) (Op=3(R))
o o e e o S ISDS

TU

Grazm

Plan Execution Strategies

INF.01017UF Data Management / 706.010 Databases — 08 Query Processing
Matthias Boehm, Graz University of Technology, SS 2020

"ISDS

Plan Execution Strategies -I(;rla!l

Overview Query Processing
| Name | Count_

SELECT * FROM TopScorer
WHERE Count>=4

1
|
|

; James Rodriguez 6

¢ : Thomas Miiller 5

Parsing : Robin van Persie 4
|

I N 4

AST/IR | eymar
|
Semantic Analysis :
1
IR I :
|
. l :
Query Rewrites - Plan Execution

|
IR I I
1

Plan Optimization @—» Plan Caching

Compile Time ! Runtime

INF.01017UF Data Management / 706.010 Databases — 08 Query Processing .ISDS
Matthias Boehm, Graz University of Technology, SS 2020

TU

Plan Execution Strategies Graza

Overview Execution Strategies

Different execution strategies (processing models) with different
pros/cons (e.g., memory requirements, DAGs, efficiency, reuse)

#1 Iterator Model (mostly row stores)

= #2 Materialized Intermediates (mostly column stores)
High-level
. . overview,
= #3 Vectorized (Batched) Execution (row/column stores) details in
ADBS
= #4 Query Compilation (row/column stores)
INF.01017UF Data Management / 706.010 Databases — 08 Query Processing .ISDS

Matthias Boehm, Graz University of Technology, SS 2020

Plan Execution Strategies

TU

Grazm

lterator Model

= Volcano Iterator Model

= Pipelined & no global knowledge
= Open-Next-Close (ONC) interface
= Query execution from root node (pull-based)

= Example 0,_,(R)

void open() { R.open(); }
void close() { R.close(); }

Record next() {

while((r = R.next()) != EOF)

if(p(r)) //A==7
return r;
return EOF;

}

= Blocking Operators

= Sorting, grouping/aggregation,
build-phase of (simple) hash joins

Scalable (small memory)
High CPl measures

[Goetz Graefe: Volcano - An Extensible
and Parallel Query Evaluation System.
IEEE Trans. Knowl. Data Eng. 1994

open()
next()
next() - EOF
close()
opin()
ngi)‘é(()) Op-7 > EorF
close() I
open()
t
ngi)’é(()) R
next()
next() - EOF
close()

GetNext(), ReScan(), MarkPos(),

PostgreSQL: ITnit(),

RestorePos (), End()

Plan Execution Strategies -I(;rE!l

lterator Model — Predicate Evaluation

= Operator Predicates
= Examples: arbitrary selection predicates and join conditions
= QOperators parameterized with in-memory expression trees/DAGs
= Expression evaluation engine (interpretation)

= Example Selection o
« A=7AB£8) VD=9 |

“ﬂ—ﬂ & ==
Product 1 /\ [)/"\9

Product 3 __ I =
-- Product 7 - e
Product 2 A 7 B 8
INF.01017UF Data Management / 706.010 Databases — 08 Query Processing .ISDS
Matthias Boehm, Graz University of Technology, SS 2020

TU

Plan Execution Strategies Graza

Materialized Intermediates (column-at-a-time)

SELECT COUﬂt(DISTINCT o Or'der‘key) function user.s_;1_2,('AO:”d?’t§:,A1:da}e!:A2:int,A3:s'ycrr):void;
. . - X5 := sql.bind("sys"," lineitem”,” |_returnflag”,0);
FROM Or\der\s, lineitem X11 := algebra.uselect(X5,A3);
X14 := algebra.markT(X11,0Q0);
WHERE 1 orderkey = o_orderkey §15 = bar-g“;{jeg“(”: | orderkey.fkey’)
16 := sql.bindldxbat("sys"," lineitem”,” |_orderkey _fkey");
AND o orderdate >= date ’1996-07-01’ X18 := algebra.join(X15,X16);
X19 := sql.bind("sys",” orders”," o_orderdate” ,0);
AND o orderdate < date ’1996-07-01° O i e e Ay Crdate”0)
. P X26 := algebra.select(X19,A0,X25,true,false);
+ interval ’3’ month X30 := algebra.markT(X26,0Q0);
— YR’ . X31 := bat.reverse(X30);
AND l_r'etur'n'Flag R > X32 := sql.bind("sys"," orders”," o_orderkey" ,0);
X34 := bat.mirror(X32);
s1.2(A0,A1,A2.A3) X35 := algebra.join(X31,X34); H
. s X36 := bat.reverse(X35); Bln_arY
Column-oriented storage X37 := algebra.join(X18,X36); Association
X38 := bat.reverse(X37); Tabl
HaH 1 X40 := algebra.markT(X38,0Q@0); ables
Efficient array operations XAL = b renareaXA0), (BATs:=0IDNVal)
: X45 := algebra.join(X31,X32); =
DAG processing X46 := algebra.join(X41,X45);
: : X49 := algebra.selectNotNil(X46);
Reuse of intermediates X50 ‘= bat.reverse(X49);
X51 := algebra.kunique(X50);

Memory requirements
Unnecessary read/write
from and to memory

X52 := bat.reverse(X51);

X53 := aggr.count(X52);

sql.exportValue(1,”sys.orders”,"L1" ,"wrd” ,32,0,6,X53);
end s1.2;

[Milena Ivanova, Martin L. Kersten, Niels [———
J. Nes, Romulo Goncalves: An
architecture for recycling intermediates
in a column-store. SIGMOD 2009]

INF.01017UF Data Management / 706.010 Databases — 08 Query Processing .ISDS
Matthias Boehm, Graz University of Technology, SS 2020

Plan Execution Strategies TU

Grazm

Vectorized Execution (vector-at-a-time)

= |dea: Pipelining of vectors (sub columns) s.t. vectors fit in CPU cache

100 i
: Column-oriented storage
"tuple at a time” Workload: TPCH Q1 Efficient array operations
28.11 _DBMS "X" ' Memory/cache efficiency
26.6"NMySQL 4.1 DAG processing
interpretation " . N . .
= 10t dominates column at a time" | Reuse of intermediates
o) ; - MonetDB/MIL
g main-memory
8 interpretation materialization overhead ~-3.7
0 overhead '
o decreases query without selection —#-2.4
£
i I]
TF . vectors start to exceed
0601 - " CPU cache, causing
- MonetDB/X100 extra memory traffic
P "vector at a time" [Peter A. Boncz, Marcin Zukowski,
Sl ¢ low interpretation overhead Niels Nes: M tDB/X100: H -
Hand-Coded in—cache materialization €15 e.s' .O.ne / ' yr:)er
C Program Pipelining Query Execution.
0.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 CIDR 2005]

1 4 16 64 256 1K 4K 16K 64K 256K 1M 4M 6M
Vector Size (# Tuples)

INF.01017UF Data Management / 706.010 Databases — 08 Query Processing .ISDS
Matthias Boehm, Graz University of Technology, SS 2020

Plan Execution Strategies

TU
Grazm
27 ° °
. Query Compilation
= |dea: Data-centric, not op-centric processing + LLVM code generation
Operator Trees Compiled Query
(w/o and w/ pipeline boundaries) (conceptual, not LLVM)
5 _initialize memory of M,—p, M.—., and I".
s for each tuple t in R;
/ \ iftx="T
Oy=7 M, i materialize ¢ in hash table of X,—;
/ for each tuple t in R»
R, N ifty=3
l L aggregate t in hash table of I',
$/=3 in I
R, R, materialize ¢t in hash

[Thomas Neumann: Efficiently Compiling Efficient
Query Plans for Modern Hardware. PVLDB 2011]

ta

[for each tuple t3 in Rj
for each match to in X._.[ts.c]
for each match t1 in X,—p[t3.0]

i output t1 ota ots

INF.01017UF Data Management / 706.010 Databases — 08 Query Processing

Matthias Boehm, Graz University of Technology, SS 2020

"ISDS

TU

Grazm

Physical Plan Operators

INF.01017UF Data Management / 706.010 Databases — 08 Query Processing
Matthias Boehm, Graz University of Technology, SS 2020

"ISDS

Physical Plan Operators TU

Grazm

Overview Plan Operators

= Multiple Physical Operators

= Different physical operators for different data and query characteristics
= Physical operators can have vastly different costs

= Examples (supported in most DBMS)

= Logical Plan Selection Projection Grouping Join
Operators op(R) ma(R) Y6:agg)(R) R ™Mpg=sp S
= Physical Plan TableScan ALL SortGB NestedLoopIN
Operators IndexScan HashGB SortMergelN
ALL HashJN
Lecture 07 This Lecture
Exercise 3

INF.01017UF Data Management / 706.010 Databases — 08 Query Processing .ISDS
Matthias Boehm, Graz University of Technology, SS 2020

Physical Plan Operators -ErLa!.

Nested Loop Join

= Overview
= Most general join operator (no order, no indexes, arbitrary predicates 0)
= Poor asymptotic behavior (very slow)

= Algorithm (pseudo code) DIG RID=STD |\Ij| = ||I;:
. _—
o e tin w0 T 5o |5
if(r.RID 6 s.SID) 9 7
emit concat(r, s) 1 3
How to implement next()? 7 1
9
= Complexity 7
= Complexity: Time: O(N * M), Space: O(1)
= Pick smaller table as inner if it fits entirely in memory (buffer pool)
e o e "ISDS

Physical Plan Operators TU

Block Nested Loop / Index Nested Loop Joins

= Block Nested Loop Join for each block by in R
= Avoid 1/0 by blocked data access ‘CO; each ElOCIf bsb In 5
" Read blocks of b, and bg R and S pages or €ach m1h By

for each s in bg
if(r.RID 6 s.SID)
emit concat(r, s)

= Complexity unchanged but
potentially much fewer scans

= Index Nested Loop Join for each r in R

= Use index to locate qualifying tuples for each s in S.IX(6,r.RID)
(==, >=, >, <=, <) emit concat(r,s)

= Complexity (for equivalence predicates):
Time: O(N * log M), Space:

INF.01017UF Data Management / 706.010 Databases — 08 Query Processing .ISDS
Matthias Boehm, Graz University of Technology, SS 2020

II%!I

TU

Physical Plan Operators Graza

Sort-Merge Join

= Overview
= Sort Phase: sort the input tables R and S (w/ external sort algorithm)
= Merge Phase: step-wise merge with lineage scan

= Algorithm (Merge, PK-FK) produced sorted | N =|R|

Record next() { output X
while(curR!=EOF && curS!=EOF) {

. / \
A o S oo T o
curR = R.next();

RID=SID

else if(curR.RID > curS.SID) 1 1
curS = S.next();
else if(curR.RID == curS.SID) { 7 3
t = concat(curR, curS);
curS = S.next(); //FK side 9 7
return t;
}o) !
return EOF; 9

}

= Complexity
= Time (unsorted vs sorted): O(N log N + M log M) vs O(N + M)
= Space (unsorted vs sorted): O(N + M) vs O(1)

II%!I

Physical Plan Operators -ErLa!.

Hash Join

= Overview
* Build Phase: read table S and build a hash table H over join key
" Probe Phase: read table R and probe Hq with the join key
= Algorithm (Build+Probe, PK-FK) | N = |R]

Record next() { X M= |S]
// build phase (first call)

/
while((r = R.next()) != EOF) ﬁ
Hr.put(r.RID, r); .m n
9 7

// probe phase
while((s = S.next()) != EOF) 1 ey
if(Hr.containsKey(s.SID)) 7
return concat(Hr.get(s.SID), s);

RID=SID

return EOF;

}

N O 2 W

= Complexity
= Time: O(N + M), Space: O(N)
= Classic hashing: p in-memory partitions of Hr w/ p scans of Rand S

TU

Physical Plan Operators Graza

Sort-GroupBy and Hash-GroupBy

= Recap: Classification of Aggregates (04 Relational Algebra)
= Additive, semi-additive, additively-computable, others

VA,count(*)(R)
= Sort Group-By sort
= Similar to sort-merge join O(NlogN) XXXXXXYVYYYYYVYZ2Z22ZZz
(Sort, GroupAggregate) aggregate -
= Sorted group output O(N) X,6 Y,7 Z,5
n i, i
Hash Group-By build & agg . ™

= Similar to hash join (HashAggregate) O(N) A)
,count(*
= Higher temporary memory consumption

= Unsorted group output -
= #1 w/ tuple grouping R z
= #2 w/ direct aggregation (e.g., count)
= Beware: cache-unfriendly if many groups (size(H) > L2/L3 cache)
INF.01017UF Data Management / 706.010 Databases — 08 Query Processing .ISDS

Matthias Boehm, Graz University of Technology, SS 2020

Exercise 3:
Tuning and Transactions

Published: Apr 28
Deadline: May 19

INF.01017UF Data Management / 706.010 Databases — 08 Query Processing
Matthias Boehm, Graz University of Technology, SS 2020

"ISDS

Exercise 3: Tuning and Transactions -Erla'!l

Task 3.1 Query Rewriting and Tuning

6/25

= #1 Query Unnesting points

= Rewrite Q09 into an equivalent SQL query w/o subqueries
-- Q09:
SELECT I.Name FROM Institutions I WHERE I.CoKey IN(
SELECT CoKey FROM Countries C WHERE C.Name=’Germany’ OR C.Name=’Austria’)

= #2 Query Rewriting

= Rewrite Q10 into an equivalent SQL query w/o intersection or difference
-- Ql10:
(SELECT P.Name FROM Persons P, Theses T
WHERE P.Akey = T.Akey AND T.Year < 2020)
INTERSECT
(SELECT P.Name FROM Persons P, Theses T
WHERE P.Akey = T.Akey AND T.Year >= 2018)

= #3 Indexing See lectures

= Add a secondary index on an attribute of your choosing
to speedup the original/rewritten query Q10

INF.01017UF Data Management / 706.010 Databases — 08 Query Processing .ISDS
Matthias Boehm, Graz University of Technology, SS 2020

Exercise 3: Tuning and Transactions -I(;rla'!l

Task 3.2 B-Tree Insertion and Deletion

6/25

" Setup points

= SET seed TO 0.2<student _id>;
SELECT * FROM generate_series(1,20) ORDER BY random();

= #4 B-Tree Insertion (k=2)

= Draw the final B-tree after inserting your sequence in the obtained order
(e.g., with you favorite tool, by hand, or ASCI art)

= #5 B-Tree Deletion

= Draw the final B-tree after taking #3 and deleting the sequence
[8,14) in order of keys (del 8, del 9, ..., del 13)

See lecture

INF.01017UF Data Management / 706.010 Databases — 08 Query Processing .ISDS
Matthias Boehm, Graz University of Technology, SS 2020

Exercise 3: Tuning and Transactions -Erla'!l

Task 3.3 Iterator Model and Operators

9/25

= #6 Operator Implementations i
points

= Pick your favorite prog. language (e.g., Python, Java, C# or C++)
= (), (), () iterator model (base class)
= Implement table scan, selection, hash join, and hash group-by

= Testing Q = new HashGroupBy(gcol=a, afun=SUM, acol=b,
new HashJoin(jcols=(d,e),
new Selection(pred=’c=7’, new TblScan(cR)),
new TblScan(cS)))

Q.)

while((t=Q. ()) != null)
print(t)

Q. 0

= Requirements (generality of operators)

= Single-attribute equality selection predicates,

. . . . See lecture
single-attribute many-to-many equality inner joins, and
single-attribute grouping and aggregation (sum/count)
INF.01017UF Data Management / 706.010 Databases — 08 Query Processing .ISDS
Matthias Boehm, Graz University of Technology, SS 2020

Exercise 3: Tuning and Transactions -Erla'!l

Task 3.4 Transaction Processing

4/25

" Setup points

" Create tablesR(a INT, b INT) andS(a INT, b INT)

= #7 Simple Transaction
= Create a SQL transaction that atomically the following tuples

R := {(21 4): (3J 5): (6J 8)) (7J 9)}
S := {(41 29)) (5: 21): (6J 8@)}

= #8 Isolation Levels

= Create two SQL transactions that can be executed interactively
(e.g., in psql terminals) to create the Phantom Read anomaly

= Which isolation levels don’t / do prevent this anomaly
= Explain why the anomaly does/doesn’t occur See lectures

INF.01017UF Data Management / 706.010 Databases — 08 Query Processing .ISDS
Matthias Boehm, Graz University of Technology, SS 2020

Exercise 3: Tuning and Transactions -Erla'!l

Task 3.5: Extra Credit (Query Processing)

5/25

= #9 Query Characteristics points

= Explain how a specialized group-by operator implementation
could exploit the structure of query Q11 for improving latency
and total execution time

= provide the specialized operator implementation

-- Q11:

SELECT Year FROM Theses
GROUP BY Year
HAVING count(*) > 8
LIMIT 3

See lecture

INF.01017UF Data Management / 706.010 Databases — 08 Query Processing .ISDS
Matthias Boehm, Graz University of Technology, SS 2020

TU

Grazm

Conclusions and Q&A

= Summary

= Query rewriting and query optimization

= Query processing and physical operators

= Exercise 3 Reminder

Submission deadline: May 19, 11.59pm (plus 7+3 late days)

= Total points >= 50%, but crucial to submit

= Next Lectures

09 Transaction Processing and Concurrency [May 11, Arnab Phani]

10 NoSQL (key-value, document, graph) [May 18]

11 Distributed file systems and object storage [May 25]

12 Data-parallel computation (MapReduce, Spark) [May 25]
13 Data stream processing systems [Jun 08]

14 Q&A and exam preparation [Jun 15]

INF.01017UF Data Management / 706.010 Databases — 08 Query Processing .ISDS
Matthias Boehm, Graz University of Technology, SS 2020

