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Announcements/Org

= #1 Video Recording ﬂ TU be

= Link in TeachCenter & TUbe (lectures will be public)
= Live Streaming Mo 4.10pm until end of semester (June 30)
= Office hours: Mo 1pm-2pm (https://tugraz.webex.com/meet/m.boehm)

= #2 Exercises
= Exercise 1 graded, feedback in TC (plagiarism, discussion issues) %
= Exercise 2/3 in progress of being graded
= Exercise 4 published, deadline June 16 11.59pm

= #3 Exam Dates (VR Teaching Planning until June 27)

= June 22: 8am-10am, 11lam-1pm, 2pm-4pm, Spm-7pm p)
(concurrently ini7, i11, i12, i13) ¢

= Counter-proposal: cut 8am, add June 23 6pm

= Deregistration possible w/o failed attempt (even for KU/VUs)
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Agenda

= Cloud Computing Overview

= Distributed Data Storage LAST YEAR W
-y BRECOSMIZED THAT OUR
= Distributed Data Analysis ETTTEN N ro0 compeex

= Exercise 4: Large-Scale Data Analysis

\ 4

Data Integration and
Large-Scale Analysis (DIA)
(bachelor/master)

SO WE PUT THEM
INTS THE CLOUD

LET THE CL-2DE MAKE YEUR LIFE EASIER
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Cloud Computing Overview
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Motivation Cloud Computing

= Definition Cloud Computing
= On-demand, remote storage and compute resources, or services

= User: computing as a utility (similar to energy, water, internet services)
» Cloud provider: computation in data centers / multi-tenancy

= Service Models

= J|aaS: Infrastructure as a service (e.g., storage/compute nodes)
= PaaS: Platform as a service (e.g., distributed systems/frameworks)
= SaaS: Software as a Service (e.g., email, databases, office, github)

=» Transforming IT Industry/Landscape
= Since ~2010 increasing move from on-prem to cloud resources
= System software licenses become increasingly irrelevant

= Few cloud providers dominate laaS/PaaS/SaaS markets (w/ 2018 revenue):
Microsoft Azure Cloud (S 32.2B), Amazon AWS (S 25.7B), Google Cloud (N/A),
IBM Cloud (S 19.2B), Oracle Cloud (S 5.3B), Alibaba Cloud ($ 2.1B)
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Motivation Cloud Computing, cont.

\
= Argument #1: Pay as you go 100% |-------Ro-mmmm oo
= No upfront cost for infrastructure Utili
= Variable utilization =» over-provisioning zation

= Pay per use or acquired resources

Time
= Argument #2: Economies of Scale

= Purchasing and managing IT infrastructure at scale =» lower cost
(applies to both HW resources and IT infrastructure/system experts)

= Focus on scale-out on commodity HW over scale-up =» lower cost

= Argument #3: Elasticity 100 days @ 1 node
= Assuming perfect scalability, work done =
in constant time * resources 1 day @ 100 nodes

= Given virtually unlimited resources

_ (but beware Amdahl’s law:
allows to reduce time as necessary

max speedup sp = 1/s)
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Characteristics and Deployment Models

= Extended Definition

.. ) [Peter Mell and Timothy | =
= ANSI|I recommended definitions for service Grance: The NIST Definition of | ——
types, characteristics, deployment models Cloud Computing, NIST 2011]

= Characteristics
= On-demand self service: unilateral resource provision
= Broad network access: network accessibility
= Resource pooling: resource virtualization / multi-tenancy
= Rapid elasticity: scale out/in on demand
= Measured service: utilization monitoring/reporting

= Deployment Models

Public cloud: general public, on premise of cloud provider

Hybrid cloud: combination of two or more of the above
= Community cloud: single community (one or more orgs)
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MS Azure
Private Cloud

Private cloud: single org, on/off premises IBM Cloud Private
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ﬂ Excursus: 1 Query/Minute for 1 Week

= Experimental Setup

[Tim Kiefer, Hendrik Schon, Dirk Habich,
= 1GB TPC-H database, 4 queries on Wolfgang Lehner: A Query, a Minute:
2 cloud DBs / 1 on-prem DB Evaluating Performance Isolation in
Cloud Databases. TPCTC 2014]
35
Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 9 10’080 QS
30
CloudA
25 -
20 -
Relative 15 : =T o Day 4
execution 10 . b go=-T o
tlme 5 ( ‘e N - L 4‘"’”:‘.,.%;1 :
0 - —
Query 2 « Query 13 Query I7~ ~ _ - + Query 19
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CloudB * L% X  2%x . x. % PO . T
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On-prem
B S N
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Query 2 « Query 13 Query 17 + Query 19
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ﬂ Anatomy of a Data Center

L

- e
= |k

¢

| ;

Processor | |

Commodity CPU:
Xeon E5-2440: 6/12 cores
Xeon Gold 6148: 20/40 cores Server:
Multiple sockets, Rack:
RAM, disks 16-64 servers +
top-of-rack switch
Data Center: ‘
>100,000 servers Cluster:

Multiple racks + cluster switch

[Google
Data Center,
Eemshaven,
Netherlands] &
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Fa U It TO I erance [Christos Kozyrakis and Matei

Zaharia: CS349D: Cloud Computing
Technology, lecture, Stanford 2018]

= Yearly Data Center Failures

~0.5 overheating (power down most machines in <5 mins, ~1-2 days)

~1 PDU failure (~500-1000 machines suddenly disappear, ~6 hrs)

~1 rack-move (plenty of warning, ~500-1000 machines powered down, ~6 hrs)
~1 network rewiring (rolling ~5% of machines down over 2-day span)

~20 rack failures (40-80 machines instantly disappear, 1-6 hrs)

~5 racks go wonky (40-80 machines see 50% packet loss)

~8 network maintenances (~30-minute random connectivity losses)

~12 router reloads (takes out DNS and external vIPs for a couple minutes)
~3 router failures (immediately pull traffic for an hour)

~dozens of minor 30-second blips for dns

~1000 individual machine failures (2-4% failure rate, at least twice)
~thousands of hard drive failures (1-5% of all disks will die)
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Cloud Computing Overview

Fault Tolerance, cont.

= Other Common Issues
= Configuration issues, partial SW updates, SW bugs
» Transient errors: no space left on device, memory corruption, stragglers

1.0 —
—h—  P(err)=0.01

= Recap: Error Rates at Scale
_|—®— P(err)=0.001
= Cost-effective commodity hardware —=— P(en}=0.000]
= Error rate increases with increasing scale

S
=)
1

P(Job Failure)
o
=S
|

= Fault Tolerance for distributed/cloud 02
storage and data analysis 00 - 4 . . | |
| 10 100 1000 10000
=>» Cost-effective Fault Tolerance # Tasks
- (basically , soft state, )

= Effective techniques
= ECC (error correction codes), CRC (cyclic redundancy check) for detection

= Resilient storage: replication/erasure coding, checkpointing, and lineage

= Resilient compute: task re-execution / speculative execution
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Containerization

= Docker Containers
= Shipping container analogy

= Arbitrary, self-contained goods,
standardized units

= Containers reduced loading times = efficient international trade
= #1 Self-contained package of necessary SW and data (read-only image)
= #2 Lightweight virtualization w/ shared OS and resource isolation via cgroups

= Cluster Schedulers [Brendan Burns, Brian Grant, David Oppen- =
_ _ _ heimer, Eric Brewer, John Wilkes: Borg, |=*
= Container orchestration: scheduling, Omega, and Kubernetes. CACM 2016]

deployment, and management =» from machine- to application-

= Resource negotiation with clients oriented scheduling
= Typical resource bundles (CPU, memory, device)

= Examples: Kubernetes, Mesos, (YARN), ;hadgmp

. <%
Amazon ECS, Microsoft ACS, Docker Swarm kubernetes Eig%

-

pache

MESOS
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Example Amazon Services — Pricing (current gen)

= Amazon EC2 (Elastic vcores Mem
Com pute Cloud) md.large 2 6.5 8 GiB EBS Only $0.12 per Hour
m4.xlarge 4 13 16 GiB EBS Only $0.24 per Hour
= laas offeri ng of different m4.2xlarge 8 26 32 GiB EBS Only $0.48 per Hour
node types and generations m4.4xlarge 16 535 64 GiB EBS Only $0.96 per Hour
u On-demand, reserved, and ma.10xlarge 40 1245 160 GiB EBS Only $2.40 per Hour
SpOt instances ma4.16xlarge 64 188 256 GiB EBS Only $3.84 per Hour

= Amazon ECS (Elastic Container Service)
= Paas offering for Docker containers (in EC2 launch mode)

= Automatic setup of Docker environment

= Amazon EMR (Elastic Map Reduce) -

= PaaS offering for Hadoop workloads md.xlarge

= Automatic setup of YARN, HDFS, and ™7
specialized frameworks like Spark m:Ong

= Prices in addition to EC2 prices :;mmze

$0.117 per Hour
$0.234 per Hour
$0.468 per Hour
$0.936 per Hour
$2.34 per Hour

$3.744 per Hour

INF.01017UF Data Management / 706.010 Databases — 11 Distributed Storage and Data Analytics
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$0.03 per Hour
$0.06 per Hour
$0.12 per Hour
$0.24 per Hour
$0.27 per Hour

$0.27 per Hour
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Distributed Data Storage

Cloud Object Storage
Distributed File Systems
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Data Lakes

= Concept “Data Lake”

= Store massive amounts of un/semi-structured, and structured data
(append only, no update in place)

= No need for architected schema or upfront costs (unknown analysis)
= Typically: file storage in open, raw formats (inputs and intermediates)
=>» Distributed storage and analytics for scalability and agility

= Criticism: Data Swamp

= Low data quality (lack of schema,
integrity constraints, validation)

DATA LAKE | DATA SWAMP

= Missing meta data (context) and
data catalog for search

-@-_ w o T w
|

=» Requires proper data curation / tools
q prop / [Credit: www.collibra.com]

According to priorities (data governance)

= Excursus: Research Data Management
= FAIR data principles: findable, accessible, interoperable, re-usable
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Object Storage

= Recap: Key-Value Stores
= Key-value mapping, where values can be of a variety of data types
= APIs for CRUD operations; scalability via sharding (objects or object segments)

= Object Store
= Similar to key-value stores, but: optimized for large objects in GBs and TBs
= Object identifier (key), meta data, and object as binary large object (BLOB)
= APIs: often REST APIs, SDKs, sometimes implementation of DFS APIs

= Partitioning g D, | g D, 1 D,
« Replication & | D. | | D, | Do,

Distribution Mribution

= Erasure Coding

(partitioning + parity) l@ @ lﬁ Iﬁ

INF.01017UF Data Management / 706.010 Databases — 11 Distributed Storage and Data Analytics .ISDS
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Object Storage, cont.

= Example Object Stores / Protocols

= Amazon Simple Storage Service (S3) Amason S3 (
= QOpenStack Object Storage (Swift) .
= |BM Object Storage

= Microsoft Azure Blob Storage

IBM Cloud
Object Storage

= Amazon S3
= Reliable object store for photos, videos, documents or any binary data

= Bucket: Uniquely named, static data container
http://s3.aws-eu-central-1.amazonaws.com/mboehm-bl

= Object: key, version ID, value, metadata, access control

= Single (5GB)/multi-part (5TB) upload and direct/BitTorrent download
= Storage classes: STANDARD, STANDARD _IA, GLACIER, DEEP_ARCHIVE
= QOperations: GET/PUT/LIST/DEL, and SQL over CSV/JSON objects

INF.01017UF Data Management / 706.010 Databases — 11 Distributed Storage and Data Analytics .ISDS
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Hadoop Distributed File System (HDFS)

" Brief Hadoop HIStOl'y [Sanjay Ghemawat, Howard

n Google’s GFS + MapReduce [ODS|'04] Gobioff, Shun-Tak Leung: The
- Apache Hadoop (2006) Google file system. SOSP 2003]

= Apache Hive (SQL), Pig (ETL), Mahout/SystemML (ML), Giraph (Graph)

= HDFS Overview

= Hadoop’s distributed file system, for large clusters and datasets

= Implemented in Java, w/ native libraries for compression, 1/0, CRC32
= Files split into 128 MB blocks, replicated (3x), and distributed Client

/

sﬁz,}%mmp Hadoop Distributed File System (HDFS)

Da

Data

Node

Name Data ta ata Data
Node Node Node Nod Node
e~ e~ e~ e~

@

Head Node Worker Nodes (shared-nothing cluster)
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Hadoop Distributed File System, cont.

= HDFS NameNode hadoop fs -1s
= Master daemon that manages file system R '
namespace and access by clients

./data/mnistlim.bin

= Metadata for all files (e.g., replication,
permissions, sizes, block ids, etc)

= FSImage: checkpoint of FS namespace
= EditLog: of file write operations (merged on startup)

= HDFS DataNode
= Worker daemon per cluster node that manages block storage (list of disks)
= Block creation, deletion, replication as individual files in local FS
= On startup: scan local blocks and send block report to name node
= Serving block read and write requests

= Send heartbeats to NameNode (capacity, current transfers) and
receives replies (replication, removal of block replicas)

INF.01017UF Data Management / 706.010 Databases — 11 Distributed Storage and Data Analytics .ISDS
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Hadoop Distributed File System, cont.
Client B

= HDFS Write 1 Create '

= #1 Client RPC to NameNode HDFS Client D
to create file = lease/replica DNs

= #2 Write blocks to DNs, pipelined ~ foo.txt: Node mea Nod
replication to other DNs D1-1,2 — —

= #3 DNs report to NN via heartbeat D2-1,2 - m m

= HDFS Read

= #1 Client RPC to NameNode 1. Open t
to open file > DNs for blocks HDFS Client IZW

= #2 Read blocks sequentially from f
closest DN w/ block foo.txt: Data Data
Node Node

INF.01017UF Data Management / 706.010 Databases — 11 Distributed Storage and Data Analytics .ISDS
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foo.txt

foo.txt

» |nputFormats and RecordReaders  D1-1,2
as abstraction for multi-part files D2-1,2
(incl. compression/encryption)
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Hadoop Distributed File System, cont.

= Data Locality
= HDFS is generally rack-aware (node-local, rack-local, other)

» Schedule reads from closest data node

= Replica placement (rep 3): local DN, other-rack DN, same-rack DN

= MapReduce/Spark: locality-aware execution (function vs data shipping)

= HDFS Federation

Eliminate NameNode as
namespace scalability bottleneck

Independent NameNodes,
responsible for name spaces

DataNodes store blocks of
all NameNodes

Client-side mount tables

INF.01017UF Data Management / 706.010 Databases — 11 Distributed Storage and Data Analytics
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Block Storage

I
I
I
I
I
I
1
NS1 :
I
I
I
I
I
I
1

Common Storage

[Credit: https://hadoop.apache.org/docs/current/hadoop-

project-dist/hadoop-hdfs/Federation.html]
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Excursus: Amazon Redshift [Anurag Gupta et al.: Amazon [ ——

Redshift and the Case for Simpler
Data Warehouses. SIGMOD 2015]

= Motivation (release 02/2013) [Mengchu Cai et al.: Integrated

= Simplicity and cost-effectiveness Querying of SQL database data

(fully-managed DWH at petabyte scale) and S3 data in Amazon Redshift.
IEEE Data Eng. Bull. 41(2) 2018]

= System Architecture . amazon
= Data plane: data storage and SQL execution REDSHIFT
= Control plane: workflows for monitoring, S {JDBE/ODBC ,,,,,,,,,,,,, :
and managing databases, AWS services éged?rfﬂizﬁﬂster i :
" Data Plane ey d : o
= Leader node + sliced compute nodes 1 INES e
in EC2 with local storage g B
= Replication across nodes + S3 backup Spectnum Spectrum Specnum Spectrum Spectrum
= Query compilation in C++ code “‘3 ‘g ‘g ‘g °3
= Support for flat and nested files N T o b besseniinong

.. _ Amazon S3 * :
= Similar Google Microsoft T i

S t BigQuery ﬁ
stems : =
y $H% snowflake %\’S

ar
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Data-Parallel Computation
(MapReduce, Spark)
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Hadoop History and Architecture

[Jeffrey Dean, Sanjay
Ghemawat: MapReduce:
Simplified Data Processing on
Large Clusters. OSDI 2004]

G liEREED

= Recap: Brief History

= Google’s GFS [SOSP’03] + MapReduce
- Apache Hadoop (2006)

= Apache Hive (SQL), Pig (ETL), Mahout (ML), Giraph (Graph)

= Hadoop Architecture / Eco System

= Management (Ambari)

Worker Node1  Worker Node n

= Coordination / workflows

(Zookeeper, Oozie) :_ ________ 1| :_ ________ 1|
= Storage (HDFS) 2"“'; MR |I'[ MR ][ MR ||
= Resources (YARN) - ———_—= task . task || task |

[SoCC’13] MR |[ MR |, [ MR |[ MR |,
" Processing Resource task || task ||| task || task |,

r— R I I

Manager | Manager §
R lent Toe Bag
TEEY -- B EY -
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Central Data Abstractions

= #1 Files and Objects
= File: Arbitrarily large sequential data in specific file format (CSV, binary, etc)
= Object: binary large object, with certain meta data

= #2 Distributed Collections Key

= Logical multi-set (bag) of key-value pairs

(unsorted collection) 4 Delta
= Different physical representations 2 Bravo
= Easy distribution of pairs 1 Alpha
via horizontal partitioning )
(aka shards, partitions) 3 Charlie
= Can be created from single file, 5 Echo
or directory of files (unsorted) 6 Foxtrott
7 Golf
INF.01017UF Data Management / 706.010 Databases — 11 Distributed Storage and Data Analytics .ISDS
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MapReduce — Programming Model

= Overview Programming Model

= |nspired by functional programming languages

= Implicit parallelism (abstracts distributed storage and processing)

= Example
X CS
Y CS
A EE
VA CS

Collection of
key/value pairs

function: key/value pair = set of intermediate key/value pairs
function: merge all intermediate values by key

SELECT Dep, count(*) FROM csv_files GROUP BY Dep
(Long pos, String line) {

parts <& line.split(“,”)
emit(parts[1], 1)

} cS 1 (String dep,
Iterator<Long> iter) {
S 1 total <& iter.sum();
EE 1 emit(dep, total)
} CS
CS 1
EE
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MapReduce — Execution Model

#1 Data Locality (delay sched., write affinity)

Input CSV files Map-Phase #2 Reduced shuffle (combine)
(stored in HDFS) #3 Fault tolerance (replication, attempts)

,m
co st
Filel | ,~~~~~ \

1 Split 12

\

/
\

[Reduce-Phase]  Output Files
(HDFS)

/

reduce out 1

task 7
reduce out 2

f
csv | ! Spllt 21
\ )

File 2 (- - T T T \
7 |\ Split 22 k
\

task 7

reduce Out 3
task

(
\
File 3

]
\
]

m
L

Shuffle, Merge,
[Combine]

N

Sort, [Combine], [Compress] w/ #reducers = 3
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Spark History and Architecture

= Summary MapReduce
= Large-scale & fault-tolerant processing w/ UDFs and files =» Flexibility
= Restricted functional APIs =» Implicit parallelism and fault tolerance
= Criticism: #1 Performance, #2 Low-level APIs, #3 Many different systems

= Evolution to Spark (and Flink)

= Spark [HotCloud’10] + RDDs [NSDI’12] = Apache Spark (2014) Spqﬁzz

= Design: standing executors with in-memory storage,
lazy evaluation, and fault-tolerance via RDD lineage

= Performance: In-memory storage and fast job scheduling (100ms vs 10s)

= APIs: Richer functional APIs and general computation DAGs,
high-level APIs (e.g., DataFrame/Dataset), unified platform

=» But many shared concepts/infrastructure
= Implicit parallelism through dist. collections (data access, fault tolerance)
= Resource negotiators (YARN, Mesos, Kubernetes)
= HDFS and object store connectors (e.g., Swift, S3)
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Spark History and Architecture, cont.

= High-Level Architecture https://spark.apache.org/]

Different language bindings:

Scala, Java, Python, R :
Spark MLIib

Different libraries:
SQL, ML, Stream, Graph

Spark core (incl RDDs)

Different cluster managers:

Yarn, Kubernetes
. N
formats, and data sources:

HDFS, S3, SWIFT, DBs, NoSQL S"p“aErK had@gp
PR -
S MESOS kubernetes

Streamingl (machine
learning)

= Focus on a unified platform
for data-parallel computation

INF.01017UF Data Management / 706.010 Databases — 11 Distributed Storage and Data Analytics .ISDS
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Resilient Distributed Datasets (RDDs)

= RDD Abstraction JavaPairRDD

collections of key-value pairs
= Coarse-grained deterministic operations (transformations/actions)
= Fault tolerance via lineage-based re-computation

= Operations

= Transformations:  Transformation

map, hadoopFile, textFile,
flatMap, filter, sample, join,

define new RDDs (lazy) groupByKey, cogroup, reduceByKey,
= Actions: return cross, sortByKey, mapValues
result to driver Action reduce, save,
collect, count, lookupKey
= Distributed Caching Nodel Node2

= Use fraction of worker memory for caching ‘-\ ‘-\
= Eviction at granularity of individual partitions
= Different storage levels (e.g., mem/disk x serialization x compression)

INF.01017UF Data Management / 706.010 Databases — 11 Distributed Storage and Data Analytics .ISDS
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Spark Resilient Distributed Datasets (RDDs), cont.

"= Lifecycle of an RDD X.filter(foo())
= Note: can’t broadcast X.mapValues(foo())
an RDD directly X.reduceByKey(foo())
X.cache()

sc.parallelize(lst)

Local Data = Distributed
(value, collection) [ Collection

1st = X.collect()
v = X.reduce(foo())

sc.hadoopFile(f)
sc.textFile(f)

X.saveAsObjectFile(f)
X.saveAsTextFile(f)

INF.01017UF Data Management / 706.010 Databases — 11 Distributed Storage and Data Analytics .ISDS
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Partitions and Implicit/Explicit Partitioning

= Spark Partitions

= Logical key-value collections are split into physical partitions

~128MB
= Partitions are granularity of tasks, 1/0, shuffling, evictions
= Partitioning via Partitioners Example Hash Partitioning:
= |Implicitly on every data shuffling For all (k,v) of R:
= Explicitly via R.repartition(n) pid = hash(k) % n

= Partitioning-Preserving

= All operations that are guaranteed to keep keys unchanged
(e.g. mapValues (), mapPartitions() w/ preservesPart flag)

Hash partitioned

X
- B P5
A X

= Partitioning-Exploiting
= Join: R3 = R1.join(R2)

= Lookups:
v = C.lookup(k)

INF.01017UF Data Management / 706.010 Databases — 11 Distributed Storage and Data Analytics .ISDS
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Spark Lazy Evaluation, Caching, and Lineage

/’::__::__::__: _____________________ RN

/ l’ \ \\
[ A partitioning- I
L aware !
I ! I

: I
| G |
I
1 Stagel :
| Tmm—m—m—————— I
: // —————————————————————
I
: : ¢ - .‘ | reduce
I

;|
L 3 |
: I :
;|
¥ s | |
: I
L 3 ] : o
\ Y Stage 2 J Stage3

\ N o o o o e o e e o e e e e e e -’ y

~ -7 cached

[Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy
McCauly, Michael J. Franklin, Scott Shenker, lon Stoica: Resilient Distributed Datasets: A
Fault-Tolerant Abstraction for In-Memory Cluster Computing. NSDI 2012]
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Example: k-Means Clustering

= k-Means Algorithm

= Gjven dataset D and number of clusters k, find cluster centroids
(“mean” of assigned points) that minimize within-cluster variance

= Euclidean distance: sqrt(sum((a-b)"2))

|| Pseudo COde Clustering Result with k = 4, nax_iterations = 18, seed = 1468
function Kmeans(D, k, maxiter) { 1y
C¢ = randCentroids(D, k); ol
C={};
i = @; //until convergence b
while( C¢ != C & i<=maxiter ) { s
C =C5
. . 6
1 =1+ 1;
A = getAssignments(D, C); a
c _ 4 .
C¢ = getCentroids(D, A, k); Nl
return C°¢ "o 2 y 5 s 10 12 14
INF.01017UF Data Management / 706.010 Databases — 11 Distributed Storage and Data Analytics .ISDS
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Example: K-Means Clustering in Spark

// create spark context (allocate configured executors)
JavaSparkContext sc = new JavaSparkContext();

// read and cache data, initialize centroids

JavaRDD<Row> D = sc.textFile(“hdfs:/user/mboehm/data/D.csv*)
.map(new ParseRow()).cache(); // cache data in spark executors

Map<Integer,Mean> C = asCentroidMap(D.takeSample(false, k));

// until convergence
while( !equals(C, C2) & i<=maxiter ) {
C2 = C; i++;
// assign points to closest centroid, recompute centroid
Broadcast<Map<Integer,Row>> bC = sc.broadcast(C)
C = D.mapToPair(new NearestAssignment(bC))
.foldByKey(new Mean(©), new IncComputeCentroids())

.collectAsMap();
} o .
Note: Existing library algorithm
return C; [https://github.com/apache/spark/blob/master/mllib/src/
main/scala/org/apache/spark/mllib/clustering/KMeans.scala]
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Distributed Data Analysis TJ

Grazm

Se rve rI ess CO m p utl ng [Joseph M. Hellerstein et al: Serverless

Computing: One Step Forward, Two
Steps Back. CIDR 2019]

= Definition Serverless

= FaaS: functions-as-a-service (event-driven, stateless input-output mapping)
= |nfrastructure for deployment and auto-scaling of APls/functions
= Examples: Amazon Lambda, Microsoft Azure Functions, etc Jx) < >

Lambda Functions
Event Source 1 . Other APIs
. ) I d P P Dnﬂuuﬂ@ . i
(e.g., clou - - \D - and Services

services hazon
) Aeatewﬁl Auto scaling
Pay-per-request
= Example (1M x 100ms = 0.25)

import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestHandler;

public class MyHandler implements RequestHandler<Tuple, MyResponse> {
@Override
public MyResponse handleRequest(Tuple input, Context context) {
return expensiveStatelessComputation(input);
}
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Exercise 4:
Large-Scale Data Analysis

Published: May 24
Deadline: June 16

INF.01017UF Data Management / 706.010 Databases — 11 Distributed Storage and Data Analytics
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Exercise 4: Large-Scale Data Analysis TU

Grazm

Task 4.1 Apache Spark Setup 3/25

points
= #1 Pick your Spark Language Binding
= Java, Scala, Python
<dependency>
. <groupId>org.apache.spark</groupId>
= #2 Install Dependencies <artifactId>spark-core 2.11</artifactId>
= Java: Maven <version>2.4.3</version>
K k-sql </dependency>
SparkK-core, spark-sq <dependency>
= Python: <groupId>org.apache.spark</groupId>
pip install pyspark <artifactId>spark-sgl 2.11</artifactId>
<version>2.4.3</version>
</dependency>

= (#3 Win Environment)

= Download https://github.com/steveloughran/winutils/tree/master/hadoop-
2.7.1/bin/winutils.exe

= Create environment variable HADOOP_HOME=“<some-path>/hadoop”
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Exercise 4: Large-Scale Data Analysis

TU

Grazm

Task 4.2 SQL Query Processing

= Q12: Top 5 Co-Authors

= Compute top-5, unique co-author
pairs by number of joint papers
= Exclude duplicates (A1-A2, A2-Al)

= Return names and paper count,
sorted desc by #papers

= Q13: SIGMOD/PVLDB Papers

= Compute which persons published
>20 SIGMOD/PVLDB papers
between 2014 and 2020 (inclusive)

= Return names and paper count,
sorted desc by #papers

—

B oW

[

(V=== R ¥ L T R R

al

character varying (128)

Xuemin Lin
Xuemin Lin

Jianhua Feng

Thomas Neumann 0001

Yiqun Liu

name
character varying (128)

Lei Chen 0002
Guoliang Li 0001
Samuel Madden
Tim Kraska

Jeffrey Xu Yu

H. V. Jagadish
KXuemin Lin

Divesh Srivastava
Michael Stonebraker
Surajit Chaudhuri
Xiaokui Xiao

Aditya G. Parameswaran
Andrew Pavlo

Lu Qin

Gang Chen 0001

a2

character varying (128)
Wenjie Zhang 0007

Ying Zhang 0001

Guoliang Li 0001

Alfons Kemper

Shaoping Ma
16  Beng Chin Ooi
17  Gautam Das 0001
18  Anastasia Ailamaki
42 19  Nan Tang 0001
40 20  Mourad Ouzzani
36 21  Stratos ldreos
32 22 Magdalena Balazinska
31 23 Fatma Ozcan
30 24 Carsten Binnig
30 25  Kian-Lee Tan
30 26 Thomas Neumann 0001
27 27  Jignesh M. Patel
27 28 Donald Kossmann
27 29  Michael J. Franklin
26 30 Jian Pei
26 31  Bin Cui 0001
26 32  Divyakant Agrawal
25 33  Sihem Amer-Yahia
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4/25
points

cnt
bigint
83
70
67
66

66

25
25
24
24
24
23
23
23
23
22
22
22
21
21
21
21
21
21
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Exercise 4: Large-Scale Data Analysis -Erla'!l

Task 4.3 Query Processing via Spark RDDs ~ 12/25

points

= #1 Spark Context Creation

= Create a spark context sc w/ local master (local[*])

= #2 Implement Q12 via RDD Operations
* Implement Q12 self-contained in executeQ12RDD()
= All reads should use sc.textFile(fname)

= RDD i ly > .
operations only = stdout See Spark online

documentation for
= #3 Implement Q13 via RDD Operations details

* Implement Q13 self-contained in executeQ13RDD()
= All reads should use sc.textFile(fname)
= RDD operations only = stdout
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Exercise 4: Large-Scale Data Analysis -ErLa!.

Task 4.4 Query Processing via Spark SQL 6/25

points

= #1 Spark Session Creation

= Create a spark session via a spark session builder and w/
local master (local[*]) . _
=» SQL processing of high

= #2 Implement Q12 via Dataset Operations importance in modern

data management
= |mplement Q12 self-contained in executeQO09Dataset() 8

= All reads should use sc.read().format("csv"

= SQL or Dataset operations only = Parquet See Spark online
documentation for
= #3 Implement Q13 via Dataset Operations details

= |mplement Q13 self-contained in executeQ10Dataset()
= All reads should use sc.read().format("csv"
= SQL or Dataset operations only = Parquet

= WebUIl INFO Utils: Successfully started service 'SparkUI' on port 4040.
INFO SparkUI: Bound SparkUI to [..] http://192.168.108.220:4040
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Exercise 4: Large-Scale Data Analysis Graza

Task 4.5 Extra Credit: Graph Processing 5

points

= Input Co-author graph

= AuthPapersCOO.csv 1 fauthor', co-author
. 2 1901634,70215
(coordinate format) 3 1001634, 519925
AuthPapersCSR.csv 1 Buthor co-muthors T e

2 1081634 ,70215:519925:1444319:2383440

(Compressed Sparse I‘OW) 3 1243968,76416:323847:407298:688292:918500:1198961:1231227:1256611:1377989

= #1 Compute Connected Components

= Leverage Spark to compute assignment

of vertices to components /9\

= Write output to text file, print #components to stdout
= APIs up to you (e.g., Spark RDDs, Spark SQL, Spark GraphX)

= Example 37
Apache 33

SystemDS 40
41

42
43
A4
45
46

# initialize state with vertex ids
c = seq(l,nrow(G))};

diff = Inf;

iter = 1;

# iterative computation of connected components
while( diff > 0 & (maxi==0 | iter<=maxi) ) {

u = max(rowMaxs{(G * t(c)), ¢);

diff = sum(u != ¢)

c = u; # update assignment
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Conclusions and Q&A

= Summary 11 Distributed Storage & Data Analysis
= Cloud Computing Overview
= Distributed Storage
= Distributed Data Analytics

= Next Lectures (Part B: Modern Data Management)
= June 1: Whit Monday (Pfingstmontag)
= 12 Data stream processing systems [Jun 08]
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