

SCIENCE PASSION TECHNOLOGY

Architecture of ML Systems 01 Introduction and Overview

Matthias Boehm

Graz University of Technology, Austria Computer Science and Biomedical Engineering Institute of Interactive Systems and Data Science BMK endowed chair for Data Management

Announcements/Org

- #1 Video Recording
 - Link in TeachCenter & TUbe (lectures will be public)
 - Optional attendance (independent of COVID)
 - Hybrid, in-person but video-recorded lectures
 - RED: webex <u>https://tugraz.webex.com/meet/m.boehm</u>
 - ORANGE (Mar 15): in-person in i5 w/ TUbe video recording
- #2 Course Registrations (as of Mar 04)
 - Architecture of Machine Learning Systems (AMLS):
 - Bachelor/master/PhD ratio?
- #3 Siemens Student Challenge
 - ML model for classification w/ dependability assessment
 - Submission deadline: May 02, total prices: 10.000 EUR

2

cisco Webex

106 (9)

SIEMENS

TUbe

Agenda

- Data Management Group
- Motivation and Goals
- Course Organization
- Course Outline, and Projects
- Overview Apache SystemDS

Data Management Group

https://damslab.github.io/

About Me

- **09/2018 TU Graz**, Austria
 - BMK endowed chair for data management
 - Data management for data science

(ML systems internals, end-to-end data science lifecycle)

Center

- 2012-2018 IBM Research Almaden, USA
 - Declarative large-scale machine learning
 - Optimizer and runtime of Apache SystemML
- 2011 PhD TU Dresden, Germany
 - Cost-based optimization of integration flows
 - Systems support for time series forecasting
 - In-memory indexing and query processing

https://github.com/ apache/systemds

Data Management Courses

Motivation and Goals

Example ML Applications (Past/Present)

Transportation / Space

- Lemon car detection and reacquisition (classification, seq. mining)
- Airport passenger flows from WiFi data (time series forecasting)
- Data analysis for assisted driving (various use cases)
- Automotive vehicle development (ML-assisted simulations)
- Satellite senor analytics (regression and correlation)
- Earth observation and local climate zone classification and monitoring

Finance

- Water cost index based on various influencing factors (regression)
- Insurance claim cost per customer (model selection, regression)
- Financial analysts survey correlation (bivariate stats w/ new tests)

Health Care

- Breast cancer cell grow from histopathology images (classification)
- Glucose trends and warnings (clustering, classification)
- Emergency room diagnosis / patient similarity (classification, clustering)
- Patient survival analysis and prediction (Cox regression, Kaplan-Meier)

A Car Reacquisition Scenario

Example ML Applications (Past/Present), cont.

- Production/Manufacturing
 - Paper and fertilizer production (regression/classification, anomalies)
 - Semiconductor manufacturing, and material degradation modeling
- Other Domains
 - Machine data: errors and correlation (bivariate stats, seq. mining)
 - Smart grid: energy demand/RES supply, weather models (forecasting)
 - Visualization: dimensionality reduction into 2D (auto encoder)
 - Elastic flattening via sparse linear algebra (spring-mass system)
- Information Extraction
 - NLP contracts
 rights/obligations (classification, error analysis)
 - PDF table recognition and extraction, OCR (NMF clustering, custom)
 - Learning explainable linguistic expressions (learned FOL rules, classification)
- Algorithm Research (+ various state-of-the art algorithms)
 - User/product recommendations via various forms of NMF
 - Localized, supervised metric learning (dim reduction and classification)
 - Learning word embeddings via orthogonalized skip-gram

Motivation and Goals

11

What is an ML System?

What is an ML System?, cont.

- ML System
 - Narrow focus: SW system that executes ML applications
 - Broad focus: Entire system (HW, compiler/runtime, ML application)
 - → Trade-off runtime/resources vs accuracy
 - → Early days: no standardizations (except some exchange formats), lots of different languages and system architectures, but many shared concepts

Course Objectives

- Architecture and internals of modern (large-scale) ML systems
 - Microscopic view of ML system internals
 - Macroscopic view of ML pipelines and data science lifecycle
- #1 Understanding of characteristics → better evaluation / usage
- **#2** Understanding of effective techniques → build/extend ML systems

Course Organization

¹⁴ Basic Course Organization

- Staff
 - Lecturer: Univ.-Prof. Dr.-Ing. Matthias Boehm, ISDS
 - Assistant: M.Sc. Sebastian Baunsgaard, ISDS

Language

- Lectures and slides: English
- Communication and examination: English/German

Course Format

- VU 2/1, 5 ECTS (2x 1.5 ECTS + 1x 2 ECTS), bachelor/master
- Weekly lectures (start 12.15pm, including Q&A), attendance optional
- Mandatory programming project (2 ECTS)
- Recommended papers for additional reading on your own
- Prerequisites (preferred)
 - Basic courses Data Management/Databases, and
 - Basic courses on applied ML / Knowledge Discovery and Data Mining

Course Logistics

- Website
 - https://mboehm7.github.io/teaching/ss21_amls/index.htm
 - All course material (lecture slides) and dates
- Video Recording Lectures (TUbe, webex)?
- Communication
 - Informal language (first name is fine)
 - Please, immediate feedback (unclear content, missing background)
 - Newsgroup: N/A email is fine, summarized in following lectures
 - Office hours: by appointment or after lecture
- Exam
 - Completed programming project (checked by me/staff), ~June 30
 - Final written exam (oral exam if <=25 students take the exam)
 - Grading (40% project/exercises completion, 60% exam)

Course Logistics, cont.

Course Applicability

- Master programs computer science (CS), as well as software engineering and management (SEM)
 - Catalog Data Science (compulsory course in major, and elective)
 - Catalog Machine Learning (elective course)
 - Catalog Interactive and Visual Information Systems (elective course)
 - Catalog Software Technology (elective course)
- PhD CS doctoral school list of courses
- Free subject course in any other study program or university

Course Outline and Projects

Partially based on

[Matthias Boehm, Arun Kumar, Jun Yang: Data Management in Machine Learning Systems. Synthesis Lectures on Data Management, Morgan & Claypool Publishers 2019]

Major updates in SS2020 and SS2021

Part A: Overview and ML System Internals

- **01 Introduction and Overview** [Mar 05]
- 02 Languages, Architectures, and System Landscape [Mar 12]
- 03 Size Inference, Rewrites, and Operator Selection [Mar 19]
- 04 Operator Fusion and Runtime Adaptation [Mar 26]
- 05 Data- and Task-Parallel Execution [Apr 16]
- 06 Parameter Servers [Apr 23]
- 07 Hybrid Execution and HW Accelerators [Apr 30]
- 08 Caching, Partitioning, Indexing, and Compression [Apr 07]

Part B: ML Lifecycle Systems

- 09 Data Acquisition, Cleaning, and Preparation [May 21]
- 10 Model Selection and Management [May 28]
- 11 Model Debugging, Fairness, and Explainability [Jun 04]
- 12 Model Serving Systems and Techniques [Jun 11]
- 13 Q&A and Exam Preparation

Programming Projects

Open Source Projects

- Programming project in context of open source projects
 - Apache SystemDS: <u>https://github.com/apache/systemds</u>
 - DAPHNE: <u>https://daphne-eu.github.io/</u> (private repo but OSS release ~01/2022)
 - Other OSS projects possible, but harder to merge PRs
- Commitment to open source and open communication (PRs, mailing list)
- **Remark:** Don't be afraid to ask questions / develop code in public

Objectives

- Non-trivial feature in an ML system (2 ECTS → 50 hours)
- OSS processes: Break down into subtasks, code/tests/docs, PR per project, code review, incorporate review comments, etc

Team

Individuals or up to three-person teams (w/ separated responsibilities)

Programming Projects, cont.

- Alternative Exercise: Siemens Student Challenge
 - ML model for classification w/ dependability assessment
 - (Submission deadline: May 02, total prices: 10.000 EUR)

SIEMENS

[https://ecosystem. siemens.com/ai-da-sc]

- Task: Develop an ML model that classifies given datasets and provides explanations for the misclassification probability
 - Each team receives three labeled datasets A, B, C (csv files), generated from a chosen probability distribution on a subset of [0,1]²
 - Traffic light labels (red/green)
 - False red prediction → cost but no safety problem
 - False green prediction → safety problem
 - Classifier and non-trivial upper-bounds for misclassification probability
 - Up to three-person teams (university students w/o completed PhD)
 - Paper on the proposed approach (up to 10 A4 pages, >=10pt font)
 - Including assumptions, and extension proposal for n-dim

SCIENCE PASSION TECHNOLOGY

Apache SystemDS: An ML System for the End-to-End Data Science Lifecycle

<u>Matthias Boehm^{1,2}</u>, Iulian Antonov², Sebastian Baunsgaard¹, Mark Dokter², Robert Ginthör², Kevin Innerebner¹, Florijan Klezin², Stefanie Lindstaedt^{1,2}, Arnab Phani¹, Benjamin Rath¹, Berthold Reinwald³, Shafaq Siddiqi¹, Sebastian Benjamin Wrede²

¹ Graz University of Technology; Graz, Austria
 ² Know-Center GmbH; Graz, Austria
 ³ IBM Research – Almaden; San Jose, CA, USA

TU Graz, Institute of Interactive Systems and Data Science

Landscape of ML Systems

- Existing ML Systems
 - #1 Numerical computing frameworks
 - #2 ML Algorithm libraries (local, large-scale)
 - #3 Linear algebra ML systems (large-scale)
 - #4 Deep neural network (DNN) frameworks
 - #5 Model management, and deployment
- Exploratory Data-Science Lifecycle
 - Open-ended problems w/ underspecified objectives
 - Hypotheses, data integration, run analytics
 - Unknown value → lack of system infrastructure
 → Redundancy of manual efforts and computation
- Data Preparation Problem
 - **80% Argument:** 80-90% time for finding, integrating, cleaning data
 - Diversity of tools → boundary crossing, lack of optimization

"Take these datasets and show value or competitive advantage"

[DEBull 201	.8]
data	

[NIPS 2015]

706.550 Architecture of Machine Learning Systems – 01 Introduction and Overview Matthias Boehm, Graz University of Technology, SS 2021

Data-centric View:

Apache SystemDS: A Declarative ML System for the End-to-End Data Science Lifecycle

Background and System Architecture https://github.com/apache/systemds

Example: Linear Regression Conjugate Gradient

Note: #1 Data Independence #2 Implementation- Agnostic Operations	1: 2: 3: 4:	<pre>X = read(\$1); # n x m matrix y = read(\$2); # n x 1 vector maxi = 50; lambda = 0.001; intercept = \$3;</pre>	Read matrices from HDFS/S3
	5: 6: 7:	<pre> r = -(t(X) %*% y); norm_r2 = sum(r * r); p = -r;</pre>	Compute initial gradient
Compute conjugate gradient	8: 9: 10: 11: 12:	<pre>w = matrix(0, ncol(X), 1); i = 0; while(i<maxi &="" norm_r2="">norm_r2_trgt) { q = (t(X) %*% (X %*% p))+lambda*p alpha = norm r2 / sum(p * q);</maxi></pre>	; Compute
Update model and	13: 14: 15: 16: 17:	<pre>w = w + alpha * p; old_norm_r2 = norm_r2; r = r + alpha * q; norm_r2 = sum(r * r); beta = norm r2 / old norm r2;</pre>	step size
residuals	18: 19: 20:	<pre>p = -r + beta * p; i = i + 1; } write(w, \$4, format="text");</pre>	Separation of Concerns"

Apache SystemML/SystemDS

Cluster Config:

Basic HOP and LOP DAG Compilation

LinregDS (Direct Solve)

HOP DAG driver mem: 20 GB CP write (after rewrites) 8MB • exec mem: 60 GB 16MB CP b(solve) CP b(+) 172KB 1.6TB CP ba(+*) 800GB r(diag) ba(+*) SP SP 1.6TE r(t) SP **8KB** x 800GB **v** 800MB **CP** dg(rand) $(10^8 \times 10^3, 10^{11})$ $(10^8 \times 1, 10^8)$ $(10^3 \times 1, 10^3)$ **16KB** LOP DAG r'(CP) (after rewrites) tsmm(SP) mapmm(SP) 800MB 1.6GB Х r'(CP) X_{1,1} (persisted in **MEM_DISK)** X_{2,1} У (X_{m,1}

8KB

Hybrid Runtime Plans:

- Size propagation / memory estimates
- Integrated CP / Spark runtime
- Dynamic recompilation during runtime

Distributed Matrices

- Fixed-size (squared) matrix blocks
- Data-parallel operations

Static and Dynamic Rewrites

- Example Static Rewrites (size-indep.)
 - Common Subexpression Elimination
 - Constant Folding / Branch Removal / Block Sequence Merge
 - Static Simplification Rewrites
 - Right/Left Indexing Vectorization
 - For Loop Vectorization
 - Spark checkpoint/repartition injection

- Dynamic Simplification Rewrites
- Matrix Mult Chain Optimization

rowSums(X) \rightarrow X, iff ncol(X)=1 sum(X^2) \rightarrow X%*%t(X), iff ncol(X)=1

 $sum(\lambda^*X) \rightarrow \lambda^*sum(X)$ $sum(X+Y) \rightarrow sum(X)+sum(Y)$

Selected Research Results

- L1 Data Independence & Logical Operations
 - Independence of evolving technology stack (MR \rightarrow Spark, GPUs)
 - Simplifies development (libs) and deployment (large-scale vs. embedded)
 - **Enables adaptation** to cluster/data characteristics (dense/spare/compressed)
- L2 User Categories (|Alg. Users| >> |Alg. Developers|)
 - Focus on ML researchers and algorithm developers is a niche
 - Data scientists and domain experts need higher-level abstractions
- L3 Diversity of ML Algorithms & Apps
 - Variety of algorithms (batch 1st/2nd, mini-batch DNNs, hybrid)
 - Different parallelization, ML + rules, numerical computing
- L4 Heterogeneous Structured Data
 - Support for feature transformations on 2D frames
 - Many apps deal with heterogeneous data and various structure

not adopted

in practice?

Apache SystemDS Design

- Objectives
 - Effective and efficient data preparation, ML, and model debugging at scale
 - High-level abstractions for different lifecycle tasks and users
- #1 Based on DSL for ML Training/Scoring
 - Hierarchy of abstractions for DS tasks
 - ML-based SotA, interleaved, performance

- System infrastructure for diversity of algorithm classes
- Different parallelization strategies and new architectures (Federated ML)
- Abstractions → redundancy → automatic optimization
- #3 Data Model: Heterogeneous Tensors
 - Data integration/prep requires generic data model

Appliances (e.g., production

Features (e.g., sensor readings, flags, categories)

→ SystemDS (09/2018)

→ Apache SystemDS (07/2020)

Language Abstractions and APIs, cont.

Example: Stepwise Linear Regression

[M. Boehm, I. Antonov, S. Baunsgaard, M. Dokter, R. Ginthör, K. Innerebner, F. Klezin, S. N. Lindstaedt, A. Phani, B. Rath, B. Reinwald, S. Siddiqui, S. Benjamin Wrede: SystemDS: A Declarative Machine Learning System for the End-to-End Data Science Lifecycle. **CIDR 2020**]

Data Cleaning Pipelines

- Automatic Generation of Cleaning Pipelines
 - Library of robust, parameterized data cleaning primitives (physical/logical)
 - Enumeration of DAGs of primitives & hyper-parameter optimization (HB, BO)

University	Country]	Univer
TU Graz	Austria	1	TU Gra
TU Graz	Austria	1	TU Gra
TU Graz	Germany	1	TU Gra
IIT	India		IIT
IIT	IIT		IIT
IIT	Pakistan		IIT
IIT	India	1	IIT
SIBA	Pakistan	1	SIBA
SIBA	null	1	SIBA
SIBA	null	1	SIBA

	University	Country
	TU Graz	Austria
	TU Graz	Austria
	TU Graz	Austria
	IIT	India
	SIBA	Pakistan
	SIBA	Pakistan
	SIBA	Pakistan
	-	

Dirty Data

After imputeFD(0.5)

1	B	C	D	
9.77	0.80	1	1	
9.96	0.12	1	1	
0.66	0.09	null	1	
9.23	0.04	17	1	
9.91	0.02	17	null	
9.21	0.38	17	1	
9.31	null	17	1	
9.75	0.21	20	1	
null	null	20	1	
9.19	0.61	20	1	
0.64	0.31	20	1	

A	D	C	ע
0.77	0.80	1	1
0.96	0.12	1	1
0.66	0.09	17	1
0.23	0.04	17	1
0.91	0.02	17	1
0.21	0.38	17	1
0.31	0.29	17	1
0.75	0.21	20	1
0.41	0.24	20	1
0.19	0.61	20	1
0.64	0.31	20	1

Dirty Data

After **MICE**

Multi-Level Lineage Tracing & Reuse

- Lineage as Key Enabling Technique
 - Trace lineage of operations (incl. non-determinism), dedup for loops/functions

Х

t(X)

- Model versioning, data reuse, incremental maintenance, autodiff, debugging
- Full Reuse of Intermediates
 - Before executing instruction, probe output lineage in cache Map<Lineage, MatrixBlock>
 - Cost-based/heuristic caching and eviction decisions (compiler-assisted)

Partial Reuse of Intermediates

- Problem: Often partial result overlap
- Reuse partial results via dedicated rewrites (compensation plans)
- Example: stepIm

for(i in 1:numModels)
R[,i] = lm(X, y, lambda[i,], ...)

m_lmDS = function(...) {
 l = matrix(reg,ncol(X),1)
 A = t(X) %*% X + diag(1)
 b = t(X) %*% y
 beta = solve(A, b) ...}

Model Debugging

- Problem: Model M with 85% accuracy
 - Find top-k data slices where model performs worse than average
 - Data slice: S^{DG} := D=PhD A G=female (subsets of features)
 - Score: w * err(S^{DG})/err(S^{*}) + (1-w) * |S^{DG}|

Existing Algorithms

- Binning + One-Hot Encoding of X
- Lattice search w/ heuristic, level-wise termination

Extensions

- #1 Lower/upper bounds sizes/errors
 → pruning & termination
- #2 Scalable implementation in linear algebra (join & eval via sparse-sparse matrix multiply)

Sex=Male ∧

Edu=Doctorate

Sex=Male ∧

Sex=Female ∧

Edu=Doctorate

Sex=Female /

Edu=Bachelors

Thanks

Programming Projects in

Apache SystemDS, DAPHNE,

other OSS ML Systems, or

Siemens Student Challenge

Summary & Q&A

- Data Management Group
- Motivation and Goals
- Course Organization
- Course Outline, and Projects
- Overview Apache SystemDS

Next Lectures

- 02 Languages, Architectures, and System Landscape [Mar 12] + project topics
- 03 Size Inference, Rewrites, and Operator Selection [Mar 19]
- **04 Operator Fusion and Runtime Adaptation** [Mar 26]
- 05 Data- and Task-Parallel Execution [Apr 16]
- 06 Parameter Servers [Apr 23]
- 07 Hybrid Execution and HW Accelerators [Apr 30]
- 08 Caching, Partitioning, Indexing and Compression [May 07]

