
1
SCIENCE
PASSION

TECHNOLOGY

Architecture of ML Systems
01 Introduction and Overview
Matthias Boehm

Graz University of Technology, Austria

Institute of Interactive Systems and Data Science
Computer Science and Biomedical Engineering

BMK endowed chair for Data Management

Last update: Mar 04, 2021

2

706.550 Architecture of Machine Learning Systems – 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, SS 2021

Announcements/Org
 #1 Video Recording

 Link in TeachCenter & TUbe (lectures will be public)
 Optional attendance (independent of COVID)
 Hybrid, in-person but video-recorded lectures

 RED: webex https://tugraz.webex.com/meet/m.boehm
 ORANGE (Mar 15): in-person in i5 w/ TUbe video recording

 #2 Course Registrations (as of Mar 04)
 Architecture of Machine Learning Systems (AMLS):
 Bachelor/master/PhD ratio?

 #3 Siemens Student Challenge
 ML model for classification w/ dependability assessment
 Submission deadline: May 02, total prices: 10.000 EUR

[https://ecosystem.
siemens.com/ai-da-sc]

106 (9)

https://tugraz.webex.com/meet/m.boehm
https://ecosystem.siemens.com/ai-da-sc

3

706.550 Architecture of Machine Learning Systems – 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, SS 2021

Agenda
 Data Management Group
 Motivation and Goals
 Course Organization
 Course Outline, and Projects
 Overview Apache SystemDS

4

706.550 Architecture of Machine Learning Systems – 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, SS 2020

Data Management Group
https://damslab.github.io/

https://damslab.github.io/

5

706.550 Architecture of Machine Learning Systems – 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, SS 2021

About Me
 09/2018 TU Graz, Austria

 BMK endowed chair for data management
 Data management for data science

(ML systems internals, end-to-end data science lifecycle)

 2012-2018 IBM Research – Almaden, USA
 Declarative large-scale machine learning
 Optimizer and runtime of Apache SystemML

 2011 PhD TU Dresden, Germany
 Cost-based optimization of integration flows
 Systems support for time series forecasting
 In-memory indexing and query processing

Data Management Group

DB group

https://github.com/
apache/systemds

https://github.com/apache/systemds

6

706.550 Architecture of Machine Learning Systems – 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, SS 2021

Data Management Courses

Data Management /
Databases

(DM, SS+WS)

Architecture of
Database Systems

(ADBS, WS)

Architecture of
ML Systems
(AMLS, SS)

Data Integration and
Large-Scale Analysis

(DIA, WS)

Master

Bachelor

Data management from
user/application perspective

Distributed
Data Management

ML system
internals

DB system
internals
+ prog. project

Prog. projects in SystemDS
[github.com/apache/systemds]

Data Management Group

Intro to Scientific
Writing (WS)

https://github.com/apache/systemds

7

706.550 Architecture of Machine Learning Systems – 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, SS 2020

Motivation and Goals

8

706.550 Architecture of Machine Learning Systems – 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, SS 2021

Example ML Applications (Past/Present)
 Transportation / Space

 Lemon car detection and reacquisition (classification, seq. mining)
 Airport passenger flows from WiFi data (time series forecasting)
 Data analysis for assisted driving (various use cases)
 Automotive vehicle development (ML-assisted simulations)
 Satellite senor analytics (regression and correlation)
 Earth observation and local climate zone classification and monitoring

 Finance
 Water cost index based on various influencing factors (regression)
 Insurance claim cost per customer (model selection, regression)
 Financial analysts survey correlation (bivariate stats w/ new tests)

 Health Care
 Breast cancer cell grow from histopathology images (classification)
 Glucose trends and warnings (clustering, classification)
 Emergency room diagnosis / patient similarity (classification, clustering)
 Patient survival analysis and prediction (Cox regression, Kaplan-Meier)

Motivation and Goals

9

706.550 Architecture of Machine Learning Systems – 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, SS 2021

A Car Reacquisition Scenario
Motivation and Goals

Warranty
Claims

Repair
History

Diagnostic
Readouts

Predictive
Models

Features Machine
Learning

Algorithm

Algorithm

Labels

Algorithm

Algorithm

• Class skew
• Low precision

 25x
improved
precision

+ custom loss functions
+ hyper-parameter tuning

10

706.550 Architecture of Machine Learning Systems – 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, SS 2021

Example ML Applications (Past/Present), cont.
 Production/Manufacturing

 Paper and fertilizer production (regression/classification, anomalies)
 Semiconductor manufacturing, and material degradation modeling

 Other Domains
 Machine data: errors and correlation (bivariate stats, seq. mining)
 Smart grid: energy demand/RES supply, weather models (forecasting)
 Visualization: dimensionality reduction into 2D (auto encoder)
 Elastic flattening via sparse linear algebra (spring-mass system)

 Information Extraction
 NLP contracts  rights/obligations (classification, error analysis)
 PDF table recognition and extraction, OCR (NMF clustering, custom)
 Learning explainable linguistic expressions (learned FOL rules, classification)

 Algorithm Research (+ various state-of-the art algorithms)
 User/product recommendations via various forms of NMF
 Localized, supervised metric learning (dim reduction and classification)
 Learning word embeddings via orthogonalized skip-gram

Motivation and Goals

11

706.550 Architecture of Machine Learning Systems – 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, SS 2021

What is an ML System?

Machine
Learning

(ML)
Statistics Data

Mining

ML Applications
(entire KDD/DS

lifecycle)

Classification
Regression

Recommenders
Clustering

Dim Reduction
Neural Networks

ML System

HPC

Prog.
Language
Compilers

Compilation
TechniquesDistributed

Systems

Operating
Systems

Data
Management

Runtime Techniques
(Execution, Data Access)

HW
Architecture

Accelerators

Rapidly Evolving

Motivation and Goals

12

706.550 Architecture of Machine Learning Systems – 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, SS 2021

What is an ML System?, cont.
 ML System

 Narrow focus: SW system that executes ML applications
 Broad focus: Entire system (HW, compiler/runtime, ML application)
Trade-off runtime/resources vs accuracy
Early days: no standardizations (except some exchange formats), lots of

different languages and system architectures, but many shared concepts

 Course Objectives
 Architecture and internals of modern (large-scale) ML systems

 Microscopic view of ML system internals
 Macroscopic view of ML pipelines and data science lifecycle

 #1 Understanding of characteristics  better evaluation / usage
 #2 Understanding of effective techniques  build/extend ML systems

Motivation and Goals

13

706.550 Architecture of Machine Learning Systems – 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, SS 2020

Course Organization

14

706.550 Architecture of Machine Learning Systems – 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, SS 2021

Basic Course Organization
 Staff

 Lecturer: Univ.-Prof. Dr.-Ing. Matthias Boehm, ISDS
 Assistant: M.Sc. Sebastian Baunsgaard, ISDS

 Language
 Lectures and slides: English
 Communication and examination: English/German

 Course Format
 VU 2/1, 5 ECTS (2x 1.5 ECTS + 1x 2 ECTS), bachelor/master
 Weekly lectures (start 12.15pm, including Q&A), attendance optional
 Mandatory programming project (2 ECTS)
 Recommended papers for additional reading on your own

 Prerequisites (preferred)
 Basic courses Data Management/Databases, and
 Basic courses on applied ML / Knowledge Discovery and Data Mining

Course Organization

15

706.550 Architecture of Machine Learning Systems – 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, SS 2021

Course Logistics
 Website

 https://mboehm7.github.io/teaching/ss21_amls/index.htm
 All course material (lecture slides) and dates

 Video Recording Lectures (TUbe, webex)?

 Communication
 Informal language (first name is fine)
 Please, immediate feedback (unclear content, missing background)
 Newsgroup: N/A – email is fine, summarized in following lectures
 Office hours: by appointment or after lecture

 Exam
 Completed programming project (checked by me/staff), ~June 30
 Final written exam (oral exam if <=25 students take the exam)
 Grading (40% project/exercises completion, 60% exam)

Course Organization

https://mboehm7.github.io/teaching/ss21_amls/index.htm

16

706.550 Architecture of Machine Learning Systems – 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, SS 2021

Course Logistics, cont.
 Course Applicability

 Master programs computer science (CS), as well as
software engineering and management (SEM)
 Catalog Data Science (compulsory course in major, and elective)
 Catalog Machine Learning (elective course)
 Catalog Interactive and Visual Information Systems (elective course)
 Catalog Software Technology (elective course)

 PhD CS doctoral school list of courses
 Free subject course in any other study program or university

Course Organization

17

706.550 Architecture of Machine Learning Systems – 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, SS 2020

Course Outline and Projects
Partially based on

[Matthias Boehm, Arun Kumar, Jun Yang: Data Management
in Machine Learning Systems. Synthesis Lectures on Data
Management, Morgan & Claypool Publishers 2019]

Major updates in SS2020 and SS2021

18

706.550 Architecture of Machine Learning Systems – 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, SS 2021

Part A: Overview and ML System Internals
 01 Introduction and Overview [Mar 05]

 02 Languages, Architectures, and System Landscape [Mar 12]

 03 Size Inference, Rewrites, and Operator Selection [Mar 19]

 04 Operator Fusion and Runtime Adaptation [Mar 26]

 05 Data- and Task-Parallel Execution [Apr 16]

 06 Parameter Servers [Apr 23]

 07 Hybrid Execution and HW Accelerators [Apr 30]

 08 Caching, Partitioning, Indexing, and Compression [Apr 07]

Course Outline and Projects

19

706.550 Architecture of Machine Learning Systems – 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, SS 2021

Part B: ML Lifecycle Systems
 09 Data Acquisition, Cleaning, and Preparation [May 21]

 10 Model Selection and Management [May 28]

 11 Model Debugging, Fairness, and Explainability [Jun 04]

 12 Model Serving Systems and Techniques [Jun 11]

 13 Q&A and Exam Preparation

Course Outline and Projects

20

706.550 Architecture of Machine Learning Systems – 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, SS 2021

Programming Projects
 Open Source Projects

 Programming project in context of open source projects
 Apache SystemDS: https://github.com/apache/systemds
 DAPHNE: https://daphne-eu.github.io/

(private repo but OSS release ~01/2022)
 Other OSS projects possible, but harder to merge PRs

 Commitment to open source and open communication (PRs, mailing list)
 Remark: Don’t be afraid to ask questions / develop code in public

 Objectives
 Non-trivial feature in an ML system (2 ECTS  50 hours)
 OSS processes: Break down into subtasks, code/tests/docs, PR per project,

code review, incorporate review comments, etc

 Team
 Individuals or up to three-person teams (w/ separated responsibilities)

Course Outline and Projects

https://github.com/apache/systemds
https://daphne-eu.github.io/

21

706.550 Architecture of Machine Learning Systems – 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, SS 2021

Programming Projects, cont.
 Alternative Exercise: Siemens Student Challenge

 ML model for classification w/ dependability assessment
 (Submission deadline: May 02, total prices: 10.000 EUR)

 Task: Develop an ML model that classifies given datasets and
provides explanations for the misclassification probability
 Each team receives three labeled datasets A, B, C (csv files),

generated from a chosen probability distribution on a subset of [0,1]2

 Traffic light labels (red/green)
 False red prediction  cost but no safety problem
 False green prediction  safety problem

 Classifier and non-trivial upper-bounds for misclassification probability
 Up to three-person teams (university students w/o completed PhD)
 Paper on the proposed approach (up to 10 A4 pages, >=10pt font)

 Including assumptions, and extension proposal for n-dim

Course Outline and Projects

[https://ecosystem.
siemens.com/ai-da-sc]

Presenter
Presentation Notes
https://ecosystem.siemens.com/media/download/e4f04c680e6979b767449bdeb8b0de05

https://ecosystem.siemens.com/ai-da-sc

22
SCIENCE
PASSION

TECHNOLOGY

Apache SystemDS: An ML System for the
End-to-End Data Science Lifecycle
Matthias Boehm1,2, Iulian Antonov2, Sebastian Baunsgaard1, Mark Dokter2, Robert
Ginthör2, Kevin Innerebner1, Florijan Klezin2, Stefanie Lindstaedt1,2, Arnab Phani1,
Benjamin Rath1, Berthold Reinwald3, Shafaq Siddiqi1, Sebastian Benjamin Wrede2

1 Graz University of Technology; Graz, Austria
2 Know-Center GmbH; Graz, Austria
3 IBM Research – Almaden; San Jose, CA, USA

TU Graz, Institute of Interactive Systems and Data Science

23

706.550 Architecture of Machine Learning Systems – 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, SS 2021

Landscape of ML Systems
 Existing ML Systems

 #1 Numerical computing frameworks
 #2 ML Algorithm libraries (local, large-scale)
 #3 Linear algebra ML systems (large-scale)
 #4 Deep neural network (DNN) frameworks
 #5 Model management, and deployment

 Exploratory Data-Science Lifecycle
 Open-ended problems w/ underspecified objectives
 Hypotheses, data integration, run analytics
 Unknown value  lack of system infrastructure
 Redundancy of manual efforts and computation

 Data Preparation Problem
 80% Argument: 80-90% time for finding, integrating, cleaning data
 Diversity of tools  boundary crossing, lack of optimization

“Take these datasets
and show value or

competitive advantage”

[NIPS 2015]
[DEBull 2018]

Overview Apache SystemDS

24

706.550 Architecture of Machine Learning Systems – 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, SS 2021

The Data Science Lifecycle
Overview Apache SystemDS

Data/SW
Engineer

DevOps
Engineer

Data Integration
Data Cleaning

Data Preparation

Model Selection
Training

Hyper-parameters

Validate & Debug
Deployment

Scoring & Feedback

Data
Scientist

Data-centric View:
Application perspective
Workload perspective

System perspective

Exploratory Process
(experimentation, refinements, ML pipelines)

Key observation: SotA
data integration/cleaning based on ML

Data extraction, schema alignment, entity
resolution, data validation, data cleaning, outlier

detection, missing value imputation, semantic type
detection, data augmentation, feature selection,

feature engineering, feature transformations

Data Integration
Data Cleaning

Data Preparation

25

706.550 Architecture of Machine Learning Systems – 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, SS 2020

Apache SystemDS:
A Declarative ML System for the

End-to-End Data Science Lifecycle

Background and System Architecture
https://github.com/apache/systemds

https://github.com/apache/systemds

26

706.550 Architecture of Machine Learning Systems – 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, SS 2021

Example: Linear Regression Conjugate Gradient
Overview Apache SystemDS

1: X = read($1); # n x m matrix
2: y = read($2); # n x 1 vector
3: maxi = 50; lambda = 0.001;
4: intercept = $3;
5: ...
6: r = -(t(X) %*% y);
7: norm_r2 = sum(r * r); p = -r;
8: w = matrix(0, ncol(X), 1); i = 0;
9: while(i<maxi & norm_r2>norm_r2_trgt)
10: {
11: q = (t(X) %*% (X %*% p))+lambda*p;
12: alpha = norm_r2 / sum(p * q);
13: w = w + alpha * p;
14: old_norm_r2 = norm_r2;
15: r = r + alpha * q;
16: norm_r2 = sum(r * r);
17: beta = norm_r2 / old_norm_r2;
18: p = -r + beta * p; i = i + 1;
19: }
20: write(w, $4, format="text");

Compute
conjugate
gradient Compute

step size

Update
model and
residuals

Read matrices
from HDFS/S3

Compute initial
gradient

Note:
#1 Data Independence
#2 Implementation-
Agnostic Operations

 “Separation
of Concerns”

27

706.550 Architecture of Machine Learning Systems – 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, SS 2021

Apache SystemML/SystemDS
Overview Apache SystemDS

[SIGMOD’15,’17,‘19]
[PVLDB’14,’16a,’16b,’18]
[ICDE’11,’12,’15]
[CIDR’17]
[VLDBJ’18]
[DEBull’14]
[PPoPP’15]

Hadoop or Spark Cluster
(scale-out)

In-Memory Single Node
(scale-up)

Runtime

Compiler

Language

DML Scripts

since 2010/11since 2012 since 2015

APIs: Command line, JMLC,
Spark MLContext, Spark ML,

(20+ Scalable Algorithms)

In-Progress:

GPU

since 2014/16

07/2020 Renamed to SystemDS
05/2017 Apache Top-Level Project
11/2015 Apache Incubator Project
08/2015 Open Source Release

Write Once,
Run Anywhere

28

706.550 Architecture of Machine Learning Systems – 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, SS 2021

Basic HOP and LOP DAG Compilation
Overview Apache SystemDS

LinregDS (Direct Solve)
X = read($1);
y = read($2);
intercept = $3;
lambda = 0.001;
...
if(intercept == 1) {

ones = matrix(1, nrow(X), 1);
X = append(X, ones);

}
I = matrix(1, ncol(X), 1);
A = t(X) %*% X + diag(I)*lambda;
b = t(X) %*% y;
beta = solve(A, b);
...
write(beta, $4);

HOP DAG
(after rewrites)

LOP DAG
(after rewrites)

Cluster Config:
• driver mem: 20 GB
• exec mem: 60 GB

dg(rand)
(103x1,103)

r(diag)

X
(108x103,1011)

y
(108x1,108)

ba(+*) ba(+*)

r(t)

b(+)
b(solve)

writeScenario:
X: 108 x 103, 1011

y: 108 x 1, 108

 Hybrid Runtime Plans:
• Size propagation / memory estimates
• Integrated CP / Spark runtime
• Dynamic recompilation during runtime
 Distributed Matrices

• Fixed-size (squared) matrix blocks
• Data-parallel operations

800MB

800GB

800GB
8KB

172KB

1.6TB

1.6TB

16MB
8MB

8KB

CP

SP

CP

CP

CP

SP
SP

CP

1.6GB
800MB

16KB

X

y

r’(CP)

mapmm(SP) tsmm(SP)

r’(CP)

(persisted in
MEM_DISK)

X1,1

X2,1

Xm,1

29

706.550 Architecture of Machine Learning Systems – 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, SS 2021

Static and Dynamic Rewrites
 Example Static Rewrites (size-indep.)

 Common Subexpression Elimination
 Constant Folding / Branch Removal /

Block Sequence Merge
 Static Simplification Rewrites
 Right/Left Indexing Vectorization
 For Loop Vectorization
 Spark checkpoint/repartition injection

 Example Dynamic Rewrites (size-dep.)
 Dynamic Simplification Rewrites
 Matrix Mult Chain Optimization

Overview Apache SystemDS


t(X)

1kx1k
X

1kx1k
Z
1

2,002 MFLOPs

sum(λ*X)  λ*sum(X)
sum(X+Y)  sum(X)+sum(Y)

X

Y

X Y ┬*

trace(X%*%Y)  sum(X*t(Y))

O(n3) O(n2)

rowSums(X)  X, iff ncol(X)=1
sum(X^2)  X%*%t(X), iff ncol(X)=1

t(X)
1kx1k

X
1kx1k

p
1

4 MFLOPs

Size propagation
and sparsity
estimation

30

706.550 Architecture of Machine Learning Systems – 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, SS 2021

Selected Research Results
Overview Apache SystemDS

#4 Compressed Linear Algebra
(PVLDB’16,

SIGMOD Record’17,
VLDB Journal’18, CACM’19)

What-If
#3 Resource Optimization

for automatic resource
provisioning
(SIGMOD’15)

parfor

#2 Task-Parallel Parfor Loops
hybrid parallelization

strategies
(PVLDB’14)

#1 SystemML’s Optimizer
rewrites, operator selection, size
propagation, memory estimates,

dynamic recompilation (DEBull’14)

#5 Optimizing Operator
Fusion Plans

(PPoPP’15, CIDR’17,
PVLDB’18)

#6 Advanced Optimization
sum-product (CIDR’17),

sparsity estimation (SIGMOD’19)

∑∏

GPU, meta, numerical stability,
parameter servers, etc

(ICDE’11,
PVLDB’16)

31

706.550 Architecture of Machine Learning Systems – 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, SS 2021

Lessons Learned from SystemML
 L1 Data Independence & Logical Operations

 Independence of evolving technology stack (MR  Spark, GPUs)
 Simplifies development (libs) and deployment (large-scale vs. embedded)
 Enables adaptation to cluster/data characteristics (dense/spare/compressed)

 L2 User Categories (|Alg. Users| >> |Alg. Developers|)
 Focus on ML researchers and algorithm developers is a niche
 Data scientists and domain experts need higher-level abstractions

 L3 Diversity of ML Algorithms & Apps
 Variety of algorithms (batch 1st/2nd, mini-batch DNNs, hybrid)
 Different parallelization, ML + rules, numerical computing

 L4 Heterogeneous Structured Data
 Support for feature transformations on 2D frames
 Many apps deal with heterogeneous data and various structure

Overview Apache SystemDS

Why was SystemML
not adopted
in practice?

Presenter
Presentation Notes
Why was SystemML not adopted in Practice?
ML researchers with large data is a niche  ML libraries, dedicated teams
Changed focus to mini-batch DNN workloads, parameter servers, Python
DSL and optimizing compiler (limited docs, resources, maturity)
 SystemML’s key differentiator became ineffective in spurring adoption

32

706.550 Architecture of Machine Learning Systems – 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, SS 2021

Apache SystemDS Design
 Objectives

 Effective and efficient data preparation, ML, and model debugging at scale
 High-level abstractions for different lifecycle tasks and users

 #1 Based on DSL for ML Training/Scoring
 Hierarchy of abstractions for DS tasks
 ML-based SotA, interleaved, performance

 #2 Hybrid Runtime Plans and Optimizing Compiler
 System infrastructure for diversity of algorithm classes
 Different parallelization strategies and new architectures (Federated ML)
 Abstractions  redundancy  automatic optimization

 #3 Data Model: Heterogeneous Tensors
 Data integration/prep requires generic data model

Overview Apache SystemDS

Apache SystemML (since 2010)
 SystemDS (09/2018)
 Apache SystemDS (07/2020)

33

706.550 Architecture of Machine Learning Systems – 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, SS 2021

Language Abstractions and APIs, cont.
 Example: Stepwise Linear Regression

Overview Apache SystemDS

X = read(‘features.csv’)
Y = read(‘labels.csv’)
[B,S] = steplm(X, Y,

icpt=0, reg=0.001)
write(B, ‘model.txt’)

User Script
m_steplm = function(...) {
while(continue) {

parfor(i in 1:n) {
if(!fixed[1,i]) {

Xi = cbind(Xg, X[,i])
B[,i] = lm(Xi, y, ...)

} }
add best to Xg
(AIC)

} }

Built-in Functions

m_lm = function(...) {
if(ncol(X) > 1024)

B = lmCG(X, y, ...)
else

B = lmDS(X, y, ...)
}

m_lmCG = function(...) {
while(i<maxi&nr2>tgt) {

q = (t(X) %*% (X %*% p))
+ lambda * p

beta = ... }
}

m_lmDS = function(...) {
l = matrix(reg,ncol(X),1)
A = t(X) %*% X + diag(l)
b = t(X) %*% y
beta = solve(A, b) ...}

Linear
Algebra

Programs

ML
Algorithms

Feature
Selection

Facilitates optimization
across data science

lifecycle tasks

34

706.550 Architecture of Machine Learning Systems – 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, SS 2021

Apache SystemDS Architecture
Overview Apache SystemDS

Command
Line JMLC ML Context Python, R, and Java

Language BindingsAPIs1

Optimizations
(e.g., IPA, rewrites,
operator ordering,
operator selection,

codegen)

Command
Line JMLC ML Context Python, R, and Java

Language Bindings

Parser/Language (syntactic/semantic)

High-Level Operators (HOPs)

Low-Level Operators (LOPs)

Built-in
Functions for
entire Lifecycle

APIs

Compiler2

1

Optimizations
(e.g., IPA, rewrites,
operator ordering,
operator selection,

codegen)

Command
Line JMLC ML Context Python, R, and Java

Language Bindings

Parser/Language (syntactic/semantic)

High-Level Operators (HOPs)

Low-Level Operators (LOPs)

Control Program

Recompiler Runtime
Program

Lineage & Reuse Cache

Buffer Pool

Mem/FS
I/O

Built-in
Functions for
entire Lifecycle

Codegen
I/O

DFS
I/O

APIs

Compiler2

1

3

Optimizations
(e.g., IPA, rewrites,
operator ordering,
operator selection,

codegen)

Command
Line JMLC ML Context Python, R, and Java

Language Bindings

Parser/Language (syntactic/semantic)

High-Level Operators (HOPs)

Low-Level Operators (LOPs)

Control Program

Recompiler Runtime
Program

Lineage & Reuse Cache

Buffer Pool

Mem/FS
I/O

ParFor
Optimizer/Runtime

Parameter
Server

TensorBlock Library
(single/multi-threaded, different value types,

homogeneous/heterogeneous tensors)

CP
Inst.

GPU
Inst.

Spark
Inst.

Feder-
ated
Inst.

Built-in
Functions for
entire Lifecycle

Codegen
I/O

DFS
I/O

APIs

Compiler2

1

3 4

[M. Boehm, I. Antonov, S. Baunsgaard, M. Dokter, R. Ginthör, K. Innerebner, F. Klezin, S. N. Lindstaedt,
A. Phani, B. Rath, B. Reinwald, S. Siddiqui, S. Benjamin Wrede: SystemDS: A Declarative Machine Learning
System for the End-to-End Data Science Lifecycle. CIDR 2020]

> 17,500 tests

35

706.550 Architecture of Machine Learning Systems – 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, SS 2021

Data Cleaning Pipelines
 Automatic Generation of Cleaning Pipelines

 Library of robust, parameterized data cleaning primitives (physical/logical)
 Enumeration of DAGs of primitives & hyper-parameter optimization (HB, BO)

Apache SystemDS – Selected Features

P1: gmm  imputeFDmergeDup delML Pn: outlierBySdmice  delDup voting

LPn

PP1

LP2LP1

PPn PPnPPnPP1

O

PP1

…

…

……

Outlier Detection MVI  Deduplication  Resolve Mislabels

Debugging

University Country
TU Graz Austria
TU Graz Austria
TU Graz Germany
IIT India
IIT IIT
IIT Pakistan
IIT India
SIBA Pakistan
SIBA null
SIBA null

University Country
TU Graz Austria
TU Graz Austria
TU Graz Austria
IIT India
IIT India
IIT India
IIT India
SIBA Pakistan
SIBA Pakistan
SIBA Pakistan

A B C D
0.77 0.80 1 1
0.96 0.12 1 1
0.66 0.09 null 1
0.23 0.04 17 1
0.91 0.02 17 null
0.21 0.38 17 1
0.31 null 17 1
0.75 0.21 20 1
null null 20 1
0.19 0.61 20 1
0.64 0.31 20 1

A B C D
0.77 0.80 1 1
0.96 0.12 1 1
0.66 0.09 17 1
0.23 0.04 17 1
0.91 0.02 17 1
0.21 0.38 17 1
0.31 0.29 17 1
0.75 0.21 20 1
0.41 0.24 20 1
0.19 0.61 20 1
0.64 0.31 20 1

Dirty Data After imputeFD(0.5) After MICE

Data
Samples

Target
App

Dirty Data

Rules/Objectives

Top-k
Pipelines

Data- and Task-parallel
Computation

Logical

Physical

Presenter
Presentation Notes
Note: Inspired by earlier work on imputation in DBMS, Data civilizer, Alpine Meadow, CleanML, AlphaClean, and work from TU Berlin
Rules: simple FDs, transform specs (cat/numerical -> drop invalid)
MICE: Multivariate imputation by chained equations (MICE)

36

706.550 Architecture of Machine Learning Systems – 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, SS 2021

Multi-Level Lineage Tracing & Reuse
 Lineage as Key Enabling Technique

 Trace lineage of operations (incl. non-determinism), dedup for loops/functions
 Model versioning, data reuse, incremental maintenance, autodiff, debugging

 Full Reuse of Intermediates
 Before executing instruction,

probe output lineage in cache
Map<Lineage, MatrixBlock>

 Cost-based/heuristic caching
and eviction decisions (compiler-assisted)

 Partial Reuse of Intermediates
 Problem: Often partial result overlap
 Reuse partial results via dedicated

rewrites (compensation plans)
 Example: steplm

Apache SystemDS – Selected Features

for(i in 1:numModels)
R[,i] = lm(X, y, lambda[i,], ...)

m_lmDS = function(...) {
l = matrix(reg,ncol(X),1)
A = t(X) %*% X + diag(l)
b = t(X) %*% y
beta = solve(A, b) ...}

m_steplm = function(...) {
while(continue) {

parfor(i in 1:n) {
if(!fixed[1,i]) {

Xi = cbind(Xg, X[,i])
B[,i] = lm(Xi, y, ...)

} }
add best to Xg
(AIC)

} }

X

t(X)

m>>n

[SIGMOD’21]

Presenter
Presentation Notes
Note: inspired by earlier work on COLUMBUS, KeystoneML, Helix, PRETZEL, MISTIQUE, Alpine Meadow

37

706.550 Architecture of Machine Learning Systems – 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, SS 2021

Federated Learning
 Python API

 Federated data objects and lazy evaluation

 Example Federated Execution

Apache SystemDS – Selected Features

features = federated(sds,[node1,node2],([…],[…]))
model = features.l2svm(labels).compute()

while(continueOuter & iter<maxi) {
Xd = X %*% s (federated MV)
...
while(continueInner) {

out = 1-Y* (Xw+step_sz*Xd);
sv = (out > 0);
out = out * sv;
g = wd + step_sz*dd

- sum(out * Y * Xd);
h = dd + sum(Xd * sv * Xd);
step_sz = step_sz - g/h;

}
g_new = t(X) %*% (out * Y)

- lambda * w
...

} ...

X1

X2

At all workers
0. load Xi if not loaded
1. Send s  tmp1
2. Exec Xi %*% tmp1  tmp2
3. Retrieve tmp2 as Xdi

At master
Xd = rbind(Xd1, Xd2)

Node 1

Node 2

[SIGMOD’21]

Presenter
Presentation Notes
Note: Inspired by work on federated ML
Federated linear algebra (arbitrary algorithms) + federated parameter server
Stateful federated workers: lineage-based reuse, async compression and data reorganization

38

706.550 Architecture of Machine Learning Systems – 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, SS 2021

Model Debugging
 Problem: Model M with 85% accuracy

 Find top-k data slices where model performs worse than average
 Data slice: SDG := D=PhD Λ G=female

(subsets of features)
 Score: w * err(SDG)/err(S*) + (1-w) * |SDG|

 Existing Algorithms
 Binning + One-Hot Encoding of X
 Lattice search w/ heuristic, level-wise termination

 Extensions
 #1 Lower/upper bounds sizes/errors
 pruning & termination

 #2 Scalable implementation in linear algebra
(join & eval via sparse-sparse matrix multiply)

Apache SystemDS – Selected Features

[Yeounoh Chung et al.: Slice Finder:
Automated Data Slicing for Model
Validation. CoRR 2018/ICDE2019]

1 0 0 0 1
1 0 0 0 1
0 1 1 0 0
1 0 0 0 1
0 1 0 1 0
0 1 1 0 0

0 1 0
1 0 1
1 0 0
0 0 0
0 1 0

Candidate
Slices

Data
0 2 0
0 2 0
2 0 1
0 2 0
1 1 1
2 0 1

== Level

39

706.550 Architecture of Machine Learning Systems – 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, SS 2021

Summary & Q&A
 Data Management Group
 Motivation and Goals
 Course Organization
 Course Outline, and Projects
 Overview Apache SystemDS

 Next Lectures
 02 Languages, Architectures, and System Landscape [Mar 12] + project topics
 03 Size Inference, Rewrites, and Operator Selection [Mar 19]
 04 Operator Fusion and Runtime Adaptation [Mar 26]
 05 Data- and Task-Parallel Execution [Apr 16]
 06 Parameter Servers [Apr 23]
 07 Hybrid Execution and HW Accelerators [Apr 30]
 08 Caching, Partitioning, Indexing and Compression [May 07]

Programming Projects in
Apache SystemDS, DAPHNE,

other OSS ML Systems, or
Siemens Student Challenge

Thanks

	Architecture of ML Systems�01 Introduction and Overview
	Announcements/Org
	Agenda
	Data Management Group
	About Me
	Data Management Courses
	Motivation and Goals
	Example ML Applications (Past/Present)
	A Car Reacquisition Scenario
	Example ML Applications (Past/Present), cont.
	What is an ML System?
	What is an ML System?, cont.
	Course Organization
	Basic Course Organization
	Course Logistics
	Course Logistics, cont.
	Course Outline and Projects
	Part A: Overview and ML System Internals
	Part B: ML Lifecycle Systems
	Programming Projects
	Programming Projects, cont.
	Apache SystemDS: An ML System for the End-to-End Data Science Lifecycle
	Landscape of ML Systems
	The Data Science Lifecycle
	Apache SystemDS: �A Declarative ML System for the �End-to-End Data Science Lifecycle
	Example: Linear Regression Conjugate Gradient
	Apache SystemML/SystemDS
	Basic HOP and LOP DAG Compilation
	Static and Dynamic Rewrites
	Selected Research Results
	Lessons Learned from SystemML
	Apache SystemDS Design
	Language Abstractions and APIs, cont.
	Apache SystemDS Architecture
	Data Cleaning Pipelines
	Multi-Level Lineage Tracing & Reuse
	Federated Learning
	Model Debugging
	Summary & Q&A

