

SCIENCE PASSION TECHNOLOGY

Architecture of ML Systems 02 Languages, Architectures, and System Landscape

Matthias Boehm

Graz University of Technology, Austria Computer Science and Biomedical Engineering Institute of Interactive Systems and Data Science BMK endowed chair for Data Management

Announcements/Org

- #1 Video Recording
 - Link in TeachCenter & TUbe (lectures will be public)
 - https://tugraz.webex.com/meet/m.boehm
- #2 Course Registrations (as of Mar 11)
 - Architecture of Machine Learning Systems (AMLS)
- #3 Study Abroad Fair 2021
 - Welcome Center: Study Abroad Fair 2021, Mar 17, 10am
 - https://tu4u.tugraz.at/go/study-abroad-fair-2021
- #4 SIGMOD Programming Context 2021
 - Task: entity resolution pipeline (precision/recall), Apr 25
 - https://dbgroup.ing.unimo.it/sigmod21contest/

108 (8)

Agenda

- Data Science Lifecycle
- ML Systems Stack
- Language Abstractions
- ML Systems Benchmarks
- Programming Projects

Data Science Lifecycle

Data Science Lifecycle

6

The Data Science Lifecycle, cont.

- Classic KDD Process (Knowledge Discovery in Databases)
 - Descriptive (association rules, clustering) and predictive

[Usama M. Fayyad, Gregory Piatetsky-Shapiro, Padhraic Smyth: From Data Mining to Knowledge Discovery in Databases. **AI Magazine 17(3) (1996)**]

The Data Science Lifecycle, cont.

CRISP-DM

- CRoss-Industry
 Standard Process for
 Data Mining
- Additional focus on business understanding and deployment

[https://statistikdresden.de/archives/1128]

The 80% Argument

- Data Sourcing Effort
 - Data scientists spend 80-90% time on finding relevant datasets and data integration/cleaning.

[Michael Stonebraker, Ihab F. Ilyas: Data Integration: The Current Status and the Way Forward. IEEE Data Eng. Bull. 41(2) (2018)]

Technical Debts in ML Systems Machine Data Monitoring Resource Verification Management **Data Collection** Configuration Serving Infrastructure ML Analysis Tools [D. Sculley et al.: Hidden Technical Debt Feature Process in Machine Learning Extraction Management Tools Systems. NIPS 2015]

- Glue code, pipeline jungles, dead code paths
- Plain-old-data types, multiple languages, prototypes
- Abstraction and configuration debts
- Data testing, reproducibility, process management, and cultural debts

Data Science Lifecycle

ML Systems Stack

706.550 Architecture of Machine Learning Systems – 02 System Architecture Matthias Boehm, Graz University of Technology, SS 2021

ML Systems Stack

11

What is an ML System?

Driving Factors for ML

- Improved Algorithms and Models
 - Success across data and application domains (e.g., health care, finance, transport, production)
 - More complex models which leverage large data
- Availability of Large Data Collections
 - Increasing automation and monitoring → data (simplified by cloud computing & services)
 - Feedback loops, simulation/data prog./augmentation
 Trend: self-supervised learning

HW & SW Advancements

- Higher performance of hardware and infrastructure (cloud)
- Open-source large-scale computation frameworks, ML systems, and vendor-provides libraries

ISDS

ML Systems Stack

¹³ Stack of ML S	Systems	Vali	Deployment & Scoring
Hyper-paramete	Training	De	bugging
Tuning Model and Feature	ML Apps & Algorithms		Supervised, unsupervised, RL linear algebra, libs, AutoML
Selection	Language Abstractions		Eager interpretation, lazy evaluation, prog. compilation
Data Programming & Augmentation	Fault Tolerance		Approximation, lineage, checkpointing, checksums, ECC
Data Preparation	Execution Strategies		Local, distributed, cloud (data, task, parameter server)
(e.g., one-hot, binning)	Data Representations		Dense & sparse tensor/matrix; compress, partition, cache
Data Integration & Data Cleaning	HW & Infrastructure		CPUs, NUMA, GPUs, FPGAs, ASICs, RDMA, SSD/NVM

Improve accuracy vs. performance vs. resource requirements
Specialization & Heterogeneity

Memory- vs Compute-intensive

- **CPU:** dense/sparse, large mem, high mem-bandwidth, moderate compute
- GPU: dense, small mem, slow PCI, very high mem-bandwidth / compute
- Graphics Processing Units (GPUs)
 - Extensively used for deep learning training and scoring
 - NVIDIA Volta: "tensor cores" for 4x4 mm \rightarrow 64 2B FMA instruction
- Field-Programmable Gate Arrays (FPGAs)
 - Customizable HW accelerators for prefiltering, compression, DL
 - Examples: Microsoft Catapult/Brainwave Neural Processing Units (NPUs)
- Application-Specific Integrated Circuits (ASIC)
 - Spectrum of chips: DL accelerators to computer vision
 - Examples: Google TPUs (64K 2B FMA), NVIDIA DLA, Intel NNP, IBM TrueNorth
- Quantum Computers?
 - Examples: IBM Q (Qiskit), Google Sycamore (Cirq → TensorFlow Quantum)

Apps Lang Faults Exec Data HW

Apps

Lang

Faults

Exec

Data

HW

Data Representation

- ML- vs DL-centric Systems
 - ML: dense and sparse matrices or tensors, different sparse formats (CSR, CSC, COO), frames (heterogeneous)
 - DL: mostly dense tensors, relies on embeddings for NLP, graphs

Data-Parallel Operations for ML

- Distributed matrices: RDD<MatrixIndexes,MatrixBlock>
- Data properties: distributed caching, partitioning, compression
- Lossy Compression Acc/Perf-Tradeoff
 - Sparsification (reduce non-zero values)
 - Quantization (reduce value domain), learned
 - Data types: bfloat16, Intel Flexpoint (mantissa, exp)

vec(Berlin) - vec(Germany)

Apps

Lang

Faults

Exec

Data

HW

16

Execution Strategies

- Batch Algorithms: Data and Task Parallel
 - Data-parallel operations
 - Different physical operators

Mini-Batch Algorithms: Parameter Server

- Data-parallel and model-parallel PS
- Update strategies (e.g., async, sync, backup)
- Data partitioning strategies
- Federated ML (trend 2018)
- Lots of PS Decisions Acc/Perf-Tradeoff
 - Configurations (#workers, batch size/param schedules, update type/freq)

TensorFlow

 Transfer optimizations: lossy compression, sparsification, residual accumulation, gradient clipping, and momentum corrections

MAHOUT

DASK

SystemML^{**}

Workers

¹⁷ Fault Tolerance & Resilience

- Resilience Problem
 - Increasing error rates at scale (soft/hard mem/disk/net errors)
 - Robustness for preemption
 - Need cost-effective resilience

- Block replication (min=1, max=3) in distributed file systems
- ECC; checksums for blocks, broadcast, shuffle
- Checkpointing (MapReduce: all task outputs; Spark/DL: on request)

P(err)=0.01

0.8

P(Job Failure) 9.0 9.0

0.2

0.0

P(err)=0.001

10

100 # Tasks

1000

10000

P(err)=0.0001

- Lineage-based recomputation for recovery in Spark
- ML-specific Schemes (exploit app characteristics)
 - Estimate contribution from lost partition to avoid strugglers
 - Example: user-defined "compensation" functions

ML Systems Stack

Language Abstractions

- Optimization Scope
 - #1 Eager Interpretation (debugging, no opt)
 - #2 Lazy expression evaluation (some opt, avoid materialization)
 - #3 Program compilation (full opt, difficult)
- Optimization Objective
 - Most common: min time s.t. memory constraints
 - Multi-objective: min cost s.t. time, min time s.t. acc, max acc s.t. time

 \mathbf{sum}

 $\Theta \mid Z$

Trend: Fusion and Code Generation

- Custom fused operations
- Examples: SystemML, Weld, Taco, Julia, TF XLA,TVM, TensorRT

 $\mathbf{X} \mid \mathbf{0} \mid \mathbf{Y}$

Apps

Lang

- ML Algorithms (cost/benefit time vs acc)
 - Unsupervised/supervised; batch/mini-batch; first/second-order ML
 - Mini-batch DL: variety of NN architectures and SGD optimizers
- Specialized Apps: Video Analytics in NoScope (time vs acc)
 - Difference detectors / specialized models for "short-circuit evaluation"
- AutoML (time vs acc)
 - Not algorithms but tasks (e.g., doClassify(X, y) + search space)
 - Examples: MLBase, Auto-WEKA, TuPAQ, Auto-sklearn, Auto-WEKA 2.0
 - AutoML services at Microsoft Azure, Amazon AWS, Google Cloud
- Data Programming and Augmentation (acc?)
 - Generate noisy labels for pre-training
 - Exploit expert rules, simulation models, rotations/shifting, and labeling IDEs (Software 2.0)

[Credit: Daniel Kang'17]

ISDS

Apps

Lang

Faults

Language Abstractions and System Architectures

Language Abstractions and System Architectures

Landscape of ML Systems

21

	.andsca	ape of IVI	L Syster	ns _J	AX A	IDA		
TUPAQ	Mlbase		Tuplev	vare		Das	sk ^{Luc}	dwig
TUFAQ	L	Kasen	i dipi e i		GraphLa	ab	HP	
	Emma	Cür	nülön(-D)	OptiMI			Distribut	ted R
	Glade			OptiML		RIOT-	·DB	
LIN	VIEW	Cumulon		SystemD	S DMac	2	_	
LIIV			Photon ML	SystemML		SAP HAI		RIOT
	Heming	,		М	S (Rev) R	JAF HAI		
	Velox	Samsara	F Br	ainwash	OI	RE	igR	SciDB
Long	view Tens	orDB		DeepDive		AzureML	Fa	R4ML
	. .	SimSQL	Columbus					
R	Orion	BUDS	S	Zombie	ScalOp	S	MXN	et
Matlab	S	Santoku	LibFM	Keystone	ML	Torch	PyTorch	۱
Julia	scikit-learn	Sherlock Mod	delHub			BigDL	Tensor	rFlow
Weka			Model	DB Ham	let	5.855		
SPSS	Mahout	Spark ML	MADlib	Diamagnali	CNTK	< colored and set of the set of t	Thean	0
SP35 SAS	VW Spark	·		Bismarck RAPIDS	Keras	Sir Caffe	nga D)L4J

Landscape of ML Systems, cont.

#1 Language Abstraction

#4 Data Types

#3 Distribution

#2 Execution Strategies

UDF-based Systems

- User-defined Functions (UDF)
 - Data type: Input usually collections of cells, rows, or blocks
 - Implement loss and overall optimizer by yourself / UDF abstractions
 - Examples: data-parallel (e.g., Spark MLlib) or In-DBMS analytics (MADlib, AIDA)

Example SQL

Matrix Product in SQL

Matrix Product w/ UDF

Optimization w/ UDA

```
SELECT A.i, B.j,
SUM(A.val*B.val)
FROM A, B
WHERE A.j = B.i
GROUP BY A.i, B.j;
```

```
SELECT A.i, B.j,
dot(A.row, B.col)
FROM A, B;
```

```
Init(state)
Accumulate(state,data)
Merge(state,data)
Finalize(state,data)
```


24

Graph-based Systems

[Grzegorz Malewicz et al: Pregel: a system for large-scale graph processing. SIGMOD 2010]

- Google Pregel
 - Name: Seven Bridges of Koenigsberg (Euler 1736)
 - "Think-like-a-vertex" (vertex-centric processing)
 - Iterative processing in super steps, comm.: message passing

Programming Model

- Represent graph as collection of vertices w/ edge (adjacency) lists
- Implement algorithms via Vertex API
- Terminate if all vertices halted / no more msgs

```
public abstract class Vertex {
   public String getID();
   public long superstep();
   public VertexValue getValue();
   public compute(Iterator<Message> msgs);
   public sendMsgTo(String v, Message msg);
   public void voteToHalt();
}
```


Graph-based Systems, cont.

Example1: Connected Components

- Determine connected components of a graph (subgraphs of connected nodes)
- Propagate max(current, msgs) if != current to neighbors, terminate if no msgs

Example 2: Page Rank

- Ranking of webpages by importance / impact
- #1: Initialize vertices to 1/numVertices()
- #2: In each super step
 - Compute current vertex value: value = 0.15/numVertices()+0.85*sum(msg)
 - Send to all neighbors: value/numOutgoingEdges()

[Credit: <u>https://en.</u> wikipedia.org/wiki/PageRank]

Graph-based Systems, cont.

Excursus: Graph Processing via Sparse Linear Algebra

```
# initialize state with vertex ids
 SystemDS'
                    c = seq(1, nrow(G));
   components()
                     diff = Inf;
                     iter = 1;
                     # iterative computation of connected components
                     while( diff > 0 & (maxi==0 | iter<=maxi) ) {</pre>
                       u = max(rowMaxs(G * t(c)), c);
                       diff = sum(u != c)
                       c = u; # update assignment
                       iter = iter + 1;
                     }
                     alpha = ifdef(argAlpha, 0.85);
 SystemDS'
                     while( i < maxi ) {</pre>
   pageRank()
                       # power iteration on G w/ Gij = 1/degree
                       p = alpha*(G %*% p) + (1-alpha)*(e %*% u %*% p);
[Jure Leskovec, Anand
Rajaraman, Jeffrey D.
                       i += 1:
Ullman: Mining of Massive
                     }
Datasets, Stanford 2014]
```


相時

Linear Algebra Systems

Comparison Query Optimization

- Rule- and cost-based rewrites and operator ordering
- Physical operator selection and query compilation
- Linear algebra / other ML operators, DAGs, control flow, sparse/dense formats
- #1 Interpretation (operation at-a-time)
 - Examples: R, PyTorch, Morpheus [PVLDB'17]
- #2 Lazy Expression Compilation (DAG at-a-time)
 - Examples: RIOT [CIDR'09], TensorFlow [OSDI'16]
 Mahout Samsara [MLSystems'16]
 - Examples w/ control structures: Weld [CIDR'17], OptiML [ICML'11], Emma [SIGMOD'15]
- #3 Program Compilation (entire program)
 - Examples: SystemML [PVLDB'16], Julia
 Cumulon [SIGMOD'13], Tupleware [PVLDB'15]

Optimization Scope

```
1: X = read($1); # n x m matrix
2: y = read($2); # n x 1 vector
3: maxi = 50; lambda = 0.001;
4: intercept = $3;
5:
   r = -(t(X) \% \% y);
6:
   norm r2 = sum(r * r); p = -r;
7:
   w = matrix(0, ncol(X), 1); i = 0;
8:
9:
   while(i<maxi & norm r2>norm r2 trgt)
10: {
11:
      q = (t(X) %*% X %*% p)+lambda*p;
12:
       alpha = norm_r2 / sum(p * q);
13:
       w = w + alpha * p;
14:
       old norm r2 = norm r2;
15:
       r = r + alpha * a;
16:
       norm r2 = sum(r * r);
17:
       beta = norm_r2 / old_norm_r2;
       p = -r + beta * p; i = i + 1;
18:
19: }
20: write(w, $4, format="text");
```


Graz

Linear Algebra Systems, cont.

Some Examples ...


```
X = read("./X");
y = read("./y");
p = t(X) \% \% y;
w = matrix(0, ncol(X), 1);
while(...) {
  q = t(X) \% \% X \% \% p;
```

```
val y = drmFromHDFS("./y")
var p = (X.t %*% y).collect
var w = dense(...)
X = X.par(256).checkpoint()
```

```
while(...) {
  q = (X.t \% \% X \% \% p)
       .collect
```

```
var X = drmFromHDFS("./X")
```

Note: TF 2.0

[Dan Moldovan et al.: AutoGraph: Imperative-style Coding with Graphbased Performance. SysML 2019.]


```
# read via queues
sess = tf.Session()
# ...
w = tf.Variable(tf.zeros(...,
  dtype=tf.float64))
```

```
while ...:
  v1 = tf.matrix transpose(X)
  v2 = tf.matmult(X, p)
  v3 = tf.matmult(v1, v2)
  q = sess.run(v3)
  . . .
```

(Custom DSL w/ R-like syntax; program compilation)

(Embedded DSL in Scala; lazy evaluation)

(Embedded DSL in Python; lazy [and eager] evaluation)

Graz

ML Libraries

Fixed algorithm implementations

Often on top of existing linear algebra or UDF abstractions

Distributed Example (Spark Scala)

import org.apache.spark.ml
.regression.LinearRegression

```
val X = sc.read.csv('X.csv')
val y = sc.read.csv('y.csv')
val Xy = prepare(X, y).cache()
```

```
val reg = new LinearRegression()
   .fit(Xy)
val out reg.transform(Xy)
```


DNN Frameworks

High-level DNN Frameworks

- Language abstraction for DNN construction and model fitting
- Examples: Caffe, Keras

```
model = Sequential()
model.add(Conv2D(32, (3, 3),
padding='same',
```

```
input_shape=x_train.shape[1:]))
model.add(Activation('relu'))
model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(
    MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
```

```
opt = keras.optimizers.rmsprop(
    lr=0.0001, decay=1e-6)
```

```
# Let's train the model using RMSprop
model.compile(loss='cat..._crossentropy',
    optimizer=opt,
    metrics=['accuracy'])
```

```
model.fit(x_train, y_train,
    batch_size=batch_size,
    epochs=epochs,
    validation_data=(x_test, y_test),
    shuffle=True)
```

Low-level DNN Frameworks

. . .

Examples: TensorFlow, MXNet, PyTorch, CNTK PYTORCH

Microsoft

- ³¹ Feature-centric Tools
 - DeepDive
 - Knowledge base construction via SQL/MLNs
 - Grounding: SQL queries → factor graph
 - Inference: statistical inference on factor graph
 - Incremental maintenance via sampling / variational approach

Overton (Apple)

- Building, monitoring, improving ML pipelines
- High-level abstractions: tasks and payloads
- Data slicing, multi-task learning, data augmentation
- Ludwig (Uber AI)
 - Data types and configuration files
 - Encoders, combiners, decoders
 - Example "visual question answering":

[Piero Molino, Yaroslav Dudin, Sai Sumanth Miryala: Ludwig: a type-based declarative deep learning toolbox. **CoRR 2019**]

706.550 Architecture of Machine Learning Systems – 02 System Architecture Matthias Boehm, Graz University of Technology, SS 2021

[Jaeho Shin et al: Incremental Knowledge Base Construction Using DeepDive. **PVLDB 2015**]

[Christopher Ré et al: Overton: A Data System for Monitoring and Improving Machine-Learned Products, **CIDR 2020**]

	per transport
_	
	2012/12/01/02
	200.020
1. DESCRIPTION OF TAXABLE	
	0000000000
10/23/25/2017	Contracted

ML Systems Benchmarks

706.550 Architecture of Machine Learning Systems – 02 System Architecture Matthias Boehm, Graz University of Technology, SS 2021

"Big Data" Benchmarks w/ ML Components

- **BigBench**
 - 30 workloads (6 statistics, 17 data mining)
 - Different data sources, processing types
 - Note: TPCx-BB, TPCx-HS [TPCTC 2016]

HiBench (Intel)

- MapReduce Micro benchmarks (WC, TeraSort)
- IR/ML (e.g., PageRank, K-means, Naïve Bayes)

GenBase

Preprocessing and ML in array databases

SparkBench

- Existing library algorithms (ML, Graph, SQL, stream)
- ML: LogReg, SVM, matrix factorization, PageRank

[Ahmad Ghazal et al: **BigBench:** towards an industry standard benchmark for big data analytics. SIGMOD 2013]

[Lan Yi, Jinquan Dai: Experience from Hadoop Benchmarking with HiBench: From Micro-**Benchmarks Toward End-to-End** Pipelines. WBDB 2013

[Rebecca Taft et al: GenBase: a complex analytics genomics benchmark. SIGMOD 2014]

[Dakshi Agrawal et al:

TPCTC 2015]

Performance Testing Suite.

SparkBench - A Spark

33

34

Linear Algebra and DNN Benchmarks

- SLAB: Scalable LA Benchmark (UCSD)
 - Ops: TRANS, NORM, GRM, MVM, ADD, GMM
 - **Pipelines/Decompositions: MMC, SVD**
 - Algorithms: OLS, LogReg, NMF, HRSE
- DAWNBench (Stanford)
 - Image Classification ImageNet: 93% top-5 val err
 - Image Classification CIFAR10: 94% test accuracy
 - Question Answering SQuAD: 0.75 F1 measure

- Image classification ImageNet, object detection COCO, translation WMT En-Ger, recommendation MovieLens, reinforcement learning GO
- Train to target accuracy

[Cody Coleman et al.: DAWNBench: An End-to-End **Deep Learning Benchmark** and Competition, ML Systems Workshop 2017]

[Anthony Thomas, Arun Kumar: A Comparative

Evaluation of Systems for

Analytics. **PVLDB 2018**]

Scalable Linear Algebra-based

				-
-	19	-	-	-
-				_
				G.
EX.				ĊŰ.
				23
				22

DNN Benchmarks, cont.

[MLPerf v0.6: <u>https://mlperf.org/training-results-0-6/</u>, MLPerf v0.7: <u>https://mlperf.org/training-results-0-7</u>]

Close	ed Divisi	on Times															
								Benchmark	results (minu	utes)							
		V0.6						Image classifi- cation	Object detection, light- weight	Object detection, heavy-wt.	Translation , recurrent		Recom- mendation	Reinforce- ment Learning			
								ImageNet	сосо	сосо	WMT E-G	WMT E-G	MovieLens- 20M	Go			
								ResNet-50	SSD w/	Mask-	WWITE-O	WWITE-O	20101	00			
#	Submitter	System	Processor	# Acc	celerator	#	Software	v1.5	ResNet-34	R-CNN	NMT	Transformer	NCF	Mini Go	Details	Code	Notes
Availab	le in cloud																
0.6-1	Google	TPUv3.32		TPL	Uv3	16	TensorFlow, TPU 1.14.1.dev	v 42.19	12.61	107.03	12.25	10.20	[1]		details	code	none
0.6-2	Google	TPUv3.128		TPU	Uv3	64	TensorFlow, TPU 1.14.1.dev	v 11.22	3.89	57.46	4.62	3.85	[1]		details	<u>code</u>	none
0.6-3	Google	TPUv3.256		TPU	Uv3	128	TensorFlow, TPU 1.14.1.dev	v <u>6</u> .86	2.76	35.60	3.53	2.81	[1]		details	<u>code</u>	none
0.6-4	Google	TPUv3.512		TPL	Uv3	256	TensorFlow, TPU 1.14.1.dev	v 3.85	1.79		2.51	1.58	[1]		details	<u>code</u>	none
0.6-5	Google	TPUv3.1024		TPU	Uv3	512	TensorFlow, TPU 1.14.1.dev	v 2.27	1.34		2.11	1.05	[1]		details	code	none
0.6-6	Google	TPUv3.2048		TPU	Uv3	1024	TensorFlow, TPU 1.14.1.dev	v 1.28	1.21			0.85	[1]		details	code	none
Availab	le on-premi	se															
0.6-7	Intel	32x 2S CLX 8260L	CLX 8260L	64			TensorFlow						[1]	14.43	details	code	none
0.6-8	NVIDIA	DGX-1		Tesl	sla V100	8	MXNet, NGC19.05	115.22					[1]		details	code	none
0.6-9	NVIDIA	DGX-1		Tesl	sla V100	8	PyTorch, NGC19.05		22.36	207.48	20.55	20.34	[1]		details	<u>code</u>	none
0.6-10	NVIDIA	DGX-1		Tesl	sla V100	8	TensorFlow, NGC19.05						[1]	27.39	details	code	none
0.6-11	NVIDIA	3x DGX-1		Tesl	sla V100	24	TensorFlow, NGC19.05						[1]	13.57	details	code	none
0.6-12	NVIDIA	24x DGX-1		Tesl	sla V100	192	PyTorch, NGC19.05			22.03			[1]		details	<u>code</u>	none
0.6-13	NVIDIA	30x DGX-1		Tesl	sla V100	240	PyTorch, NGC19.05		2.67				[1]		details	code	none
0.6-14	NVIDIA	48x DGX-1		Tesl	sla V100	384	PyTorch, NGC19.05				1.99		[1]		details	code	none
0.6-15	NVIDIA	60x DGX-1		Tesl	sla V100	480	PyTorch, NGC19.05					2.05	[1]		details	<u>code</u>	none
0.6-16	NVIDIA	130x DGX-1		Tesl	sla V100	1040	MXNet, NGC19.05	1.69					[1]		details	code	none
0.6-17	NVIDIA	DGX-2		Tesl	sla V100	16	MXNet, NGC19.05	57.87					DG	X SUP	FRD	חר	1
0.6-18	NVIDIA	DGX-2		Tesl	sla V100	16	PyTorch, NGC19.05		12.21	101.00	10.94	11.04					
0.6-19	NVIDIA	DGX-2H		Tesl	sla V100	16	MXNet, NGC19.05	52.74					Auton	omous Vehicles	Speech A	I Health	care Graphics HPC
0.6-20	NVIDIA	DGX-2H		Tesl	sla V100	16	PyTorch, NGC19.05		11.41	95.20	9.87	9.80		Senter and	i h	NA	
0.6-21	NVIDIA	4x DGX-2H		Tesl	sla V100		PyTorch, NGC19.05		4.78	32.72			N				
0.6-22	NVIDIA	10x DGX-2H			sla V100		PyTorch, NGC19.05					2.41	dive.				
0.6-23	NVIDIA	12x DGX-2H			sla V100		PyTorch, NGC19.05			18.47				Section 1	In		Distantia -
0.6-24	NVIDIA	15x DGX-2H			sla V100		PyTorch, NGC19.05		2.56				-	the state of the s	1		LINES
0.6-25	NVIDIA	16x DGX-2H			sla V100		PyTorch, NGC19.05				2.12			The Aller and			
0.6-26	NVIDIA	24x DGX-2H			sla V100		PyTorch, NGC19.05				1.80				10		
0.6-27	NVIDIA	30x DGX-2H, 8 chips each			sla V100		PyTorch, NGC19.05		2.23					State of the state			
0.6-28	NVIDIA	30x DGX-2H			sla V100		PyTorch, NGC19.05					1.59		Transition of the second	A	• 96 DGX	2H
0.6-29	NVIDIA	32x DGX-2H			sla V100		MXNet, NGC19.05	2.59						P. North		• 10 Mella	anox EDR IB per node
0.6-30	NVIDIA	96x DGX-2H		Tesl	sla V100	1536	MXNet, NGC19.05	1.33									100 Tensor Core GPUs watt of power

96 x DGX-2H = 96 * 16 = 1536 V100 GPUs → ~ 96 * \$400K = **\$35M - \$40M** [https://www.forbes.com/sites/tiriasresearch/2019/ 06/19/nvidia-offers-a-turnkey-supercomputer-thedgx-superpod/#693400f43ee5]

AutoML and Data Cleaning

- MLBench
 - Compare AutoML w/ human experts (Kaggle)
 - Classification, regression; AUC vs Runtime

Open Source) AutoML Benchmark

- 39 classification datasets, AUC metric, 10-fold CV
- Extensible metrics, OS AutoML frameworks, datasets

CleanML

- Train/Test on dirty vs clean data (2x2)
- Missing values, outliers, duplicates, mislabels
- Meta Worlds Benchmark
 - Meta-reinforcement and multi-task learning
 - 50 robotic manipulation tasks (e.g., get coffee, open window, pick & place)

[Yu Liu, Hantian Zhang, Luyuan Zeng, Wentao Wu, Ce Zhang: MLBench: Benchmarking Machine Learning Services Against Human Experts. **PVLDB 2018**]

[Pieter Gijsbers et al.: An Open Source AutoML Benchmark. Automated ML S Workshop 2019]

[Peng Li et al: CleanML: A Benchmark for Joint Data Cleaning and Machine Learning, **ICDE 2021**]

Page 1 2100	the part has figure as
2010 1	aller Alle
	differ and the
-	alash-http://www.
The second second	through the

[Tianhe Yu et al: Meta-World: A Benchmark and Evaluation for Multi-Task and Meta Reinforcement Learning, **CoRL 2019**]

Programming Projects

Refinement until March 26

(bring you own if you want) Project Selection by April 02

Programming Projects

Overview Project Types

#1 Apache SystemDS Projects

- <u>https://issues.apache.org/jira/secure/Dashboard.jspa?selectPageId=12335852</u> <u>#Filter-Results/12365413</u>
- Features across the stack (built-in scripts, APIs, compiler, runtime)

#2 DAPHNE Projects

- Private list of projects, descriptions on demand, OSS ~01/2022
- Features at level of runtime, compiler, tools

#3 Data Cleaning Benchmark

- Design and implement new data cleaning benchmark
- Docs, toolkit (e.g., datagen), and benchmark driver
- #4 Alternative Exercise: Siemens Student Challenge
 - ML model for classification w/ dependability assessment
 - (Submission deadline: May 02, total prices: 10.000 EUR)

[https://ecosystem. siemens.com/ai-da-sc]

Apache SystemDS Projects

- #S1 New built-in functions (algorithms, NN archs, FNN, GAN, cleaning)
- #S2 Python API extensions (frame support, multi-return)
- #S3 Documentation and Tutorials (for different target users)
- #S4 Benchmarks and Tests (SLAB benchmark, perf/test frameworks)
- #S5 Lineage-based debugging (convergence, model behavior, fairness)
- #S6 Auto Differentiation (built-in function and compiler)
- #S7 Loop Vectorization Rewrites (more general framework)
- #S8 Extended CSE & Constant Folding (commutativity, one-shot)
- #S9 Extended Update In-Place Framework (reference counting)
- #S10 Extended Matrix Multiplication Chain Opt (sparsity, rewrites)
- #S11 Operator Scheduling Algorithms (baselines, lazy, async)
- #S12 Compressed Linear Algebra (read, constant/delta, functional)
- #S13 Extended Intel MKL-DNN Runtime Operations (beyond conv2d)
- #S14 Extended I/O Framework for Other Formats (NetCDF, HDF5, Arrow)

DAPHNE Projects

- #D1 Parser for SystemDS DSL → DaphnelR
- #D2 Parser for subset of SQL → DaphnelR
- #D3 Explain: readable IR via custom IR-level parser/printers
- #D4 Sparsity-aware MM chain optimization w/ rewrites
- #D5 Various LA and RA simplification rewrites
- #D6 IO readers/writers for common data formats (arrow, parquet)
- #D7 Matrix and frame data generators (dense and sparse, properties)
- #D8 Kernels for LA and RA operations (dense and sparse)
- #D9 Distributed runtime operations on Spark
- #D10 Analyze: Extraction of data characteristics (interesting properties)

Summary and Q&A

- Data Science Lifecycle
- ML Systems Stack
- Language Abstractions
- ML System Benchmarks
- Programming Projects (first come, first serve)
- Recommended Reading (a critical perspective on a broad sense of ML systems)
 - [M. Jordan: SysML: Perspectives and Challenges. Keynote at SysML 2018]
 - "ML [...] is far from being a solid engineering discipline that can yield robust, scalable solutions to modern data-analytic problems"
 - https://www.youtube.com/watch?v=4inIBmY8dQI

