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Announcements/Org
 #1 Video Recording 

 Link in TeachCenter & TUbe (lectures will be public)
 Streaming: https://tugraz.webex.com/meet/m.boehm

 #2 Programming Projects / Exercises 
 Apache SystemDS: 12 projects / 15 students
 DAPHNE: 2 projects / 2 students  
 Exercises: 3 projects / 6 students  TeachCenter
 Registration: Apr 02, Deadline: June 30 (soft)
 Links to project descriptions:

https://mboehm7.github.io/teaching/ss21_amls/index.htm

https://tugraz.webex.com/meet/m.boehm
https://mboehm7.github.io/teaching/ss21_amls/index.htm
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Agenda
 Motivation and Terminology
 Runtime Adaptation
 Operator Fusion & JIT Compilation
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Motivation and Terminology
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Recap: Linear Algebra Systems
 Comparison Query Optimization

 Rule- and cost-based rewrites and operator ordering
 Physical operator selection and query compilation
 Linear algebra / other ML operators, DAGs, 

control flow, sparse/dense formats

 #1 Interpretation (operation at-a-time)
 Examples: R, PyTorch, Morpheus [PVLDB’17]

 #2 Lazy Expression Compilation (DAG at-a-time)
 Examples: RIOT [CIDR’09], TensorFlow [OSDI’16]

Mahout Samsara [MLSystems’16], Dask
 Examples w/ control structures: Weld [CIDR’17],

OptiML [ICML’11], Emma [SIGMOD’15]
 #3 Program Compilation (entire program)

 Examples: SystemML [ICDE’11/PVLDB’16], Julia,
Cumulon [SIGMOD’13], Tupleware [PVLDB’15]

Motivation and Terminology

Compilers for 
Large-scale ML

DB
PL HPC

1: X = read($1); # n x m matrix
2: y = read($2); # n x 1 vector
3: maxi = 50; lambda = 0.001; 
4: intercept = $3;
5: ...
6: r = -(t(X) %*% y); 
7: norm_r2 = sum(r * r); p = -r;
8: w = matrix(0, ncol(X), 1); i = 0;
9: while(i<maxi & norm_r2>norm_r2_trgt) 
10: {
11: q = (t(X) %*% X %*% p)+lambda*p;
12: alpha = norm_r2 / sum(p * q);
13: w = w + alpha * p;
14: old_norm_r2 = norm_r2;
15: r = r + alpha * q;
16: norm_r2 = sum(r * r);
17: beta = norm_r2 / old_norm_r2;
18: p = -r + beta * p; i = i + 1; 
19: }
20: write(w, $4, format="text");

Optimization Scope
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Major Compilation/Runtime Challenges
 #1 Unknown/Changing Sizes

 Sizes inference crucial for cost-estimation and 
validity constraints (e.g., rewrites) 

 Tradeoff: optimization scope vs size inference effort
 Challenge: Unknowns  conservative fallback plans

 #2 Operator Runtime Overhead
 Operators great for programmability, size inference, 

simple compilation, and efficient kernel implementations
(sparse, dense, compressed)

 Tradeoff: general-purpose vs specialization
 Challenges: intermediates, parallelization, 

complexity of operator combinations

Motivation and Terminology

Y = foo(X)
Z = Y[Ix,]
# nrow(Z)?
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Terminology Ahead-of-Time / Just-in-Time
 Ahead-of-Time Compilation

 Originating from compiled languages like C, C++
 #1 Program compilation at different abstraction levels
 #2 Inference program compilation & packaging

 Just-In-Time Compilation (at runtime for specific data/HW)
 Originating from JIT-compiled languages like Java, C#
 #1 Lazy expression evaluation + optimization
 #2 Program/function compilation with recompilation

 Excursus: Java JIT
 #1 Start w/ Java bytecode interpretation by JVM  fast startup
 #2 Tiered JIT compile (cold, warm, hot, very hot, scorching)  performance
 Trace statistics (frequency, time) at method granularity
 Note:  -XX:+PrintCompilation

Motivation and Terminology

PL

(LLVM)
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Terminology Runtime Adaptation & JIT
 Excursus: Adaptive Query Processing

 Spectrum of 
Adaptivity

 Excursus: Query Execution Strategies
 #1 Volcano Iterator Model
 #2 Materialized Intermediates
 #3 Vectorized (Batched) Execution
 #4 Query Compilation
 Similar: Loop fusion, fission, tiling 

Motivation and Terminology

HPC

DB

DB

[Peter A. Boncz, Marcin Zukowski, Niels 
Nes: MonetDB/X100: Hyper-Pipelining 
Query Execution. CIDR 2005]

[Amol Deshpande, Joseph M. Hellerstein, 
Shankar Raman: Adaptive query proc-essing: 

why, how, when, what next. SIGMOD 2006]

Vector Size
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Runtime Adaptation
ML Systems w/ Optimizing Compiler
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Issues of Unknown or Changing Sizes
 Problem of unknown/changing sizes 

 Unknown or changing sizes and sparsity of intermediates 
These unknowns lead to very conservative fallback plans (distributed ops)

 #1 Control Flow
 Branches and loops
 Complex function call graphs
 User-Defined Functions

 #2 Data-Dependencies
 Data-dependent operators

(e.g., table, rmEmpty, aggregate)
 Computed size expressions

Runtime Adaptation

1
3
4
2
2
3

1

1
1

1

1

1

X = read(‘/tmp/X.csv’);
if( intercept ) 
X = cbind(X, matrix(1,nrow(X),1));

Z = foo(X) + X; # size of + and Z?

Y = table(seq(1,nrow(X)), y);
grad = t(X) %*% (P - Y); 

yY

Ex.: Multinomial 
Logistic Regression

d = dout[,(t-2)*M+1:(t-1)*M];

cur_Q = matrix (0, 1, 2*ncur);
cur_S = matrix (0, 1, ncur*dist);
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Issues of Unknown or Changing Sizes, cont.
 #3 Changing Dims and Sparsity

 Iterative feature selection workloads
 Changing dimensions or sparsity
 Same code with different data

 #4 API Limitations
 Precompiled scripts/programs 

(inputs unavailable)

 (#5 Compiler Limitations)

 Dynamic recompilation techniques as robust fallback strategy
 Shares goals and challenges with adaptive query processing
 However, ML domain-specific techniques and rewrites 

Runtime Adaptation

Ex: Stepwise LinReg
while( continue ) {

parfor( i in 1:n ) {
if( !fixed[1,i] ) {

Xi = cbind(Xg, X[,i])
B[,i] = lm(Xi,y)

}
}
# add best to Xg (AIC)

}

Presenter
Presentation Notes
AIC .. Akaike Information Criterion
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Recompilation
Runtime Adaptation

Parsing (syntactic analysis)

Live Variable Analysis

Validate (semantic analysis)

Script

Construct HOP DAGs

Compute Memory Estimates

Construct LOP DAGs 
(incl operator selection, hop-lop rewrites) 

Generate Runtime Program

[Matthias Boehm et al:
SystemML's Optimizer: 

Plan Generation for 
Large-Scale Machine 

Learning Programs. IEEE 
Data Eng. Bull 2014]

Multiple 
Rounds

Static/Dynamic Rewrites

Intra-/Inter-Procedural Analysis

Static/Dynamic Rewrites

Execution Plan

Language

HOPs

LOPs

Dynamic 
Recompilation

Other systems 
w/ recompile: 

SciDB, MatFast

~100
ms

~10
ms

~1
ms

Construct LOP DAGs 
(incl operator selection, hop-lop rewrites) 

Generate Runtime Program

Compute Memory Estimates

Static/Dynamic Rewrites
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Dynamic Recompilation
 Compile-time Decisions

 Split HOP DAGs for recompilation: prevent unknowns but keep DAGs as large 
as possible; split after reads w/ unknown sizes and specific operators

 Mark HOP DAGs for recompilation: Spark due to unknown sizes / sparsity

Runtime Adaptation

+

C

R1

A

abs rm

B

*

rm

R3

rms

R2

abs

A

rm

R4 tmp2

*

tmp1

R3

rm

s

R2

abs

tmp3

R4

+

C

R1

A

abs rm

B

rm tmp2 tmp3

A

rm

tmp1(recursive 
rewrite)

Control flow  statement blocks
 initial recompilation granularity

rm .. removeEmpty(X, [margin=“rows”,select=I])
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Dynamic Recompilation, cont.
 Dynamic Recompilation at Runtime on recompilation hooks 

(last level program blocks, predicates, recompile once functions)
 Deep Copy DAG
 Replace Literals
 Update DAG Statistics
 Dynamic Rewrites
 Recompute Memory 

Estimates
 [Codegen]
 Generate 

Runtime Instructions

Runtime Adaptation

X

r(t)

ba(+*)

P

CP

SP

b(-)

Y

SP[100x1M,-1]

[100x-1,-1]

[1Mx100,-1] [1Mx-1,-1] [1Mx-1,-1]

[1Mx-1,-1]

X 1Mx100,99M

P 1Mx7,7M

Y 1Mx7,7M

[1Mx100,99M] [1Mx7,7M] [1Mx7,7M]

[1Mx7,-1][100x1M,99M]

[100x7,-1]

CP

CP

Symbol Table
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Dynamic Recompilation, cont.
 Recompile Once Functions

 Unknowns due to inconsistent or 
unknown call size information

 IPA marks functions as “recompile 
once”, if it contains loops

 Recompile the entire function on entry
+ disable unnecessary recompile

 Recompile parfor Loops 
 Unknown sizes and iterations
 Recompile parfor loop on entry

+ disable unnecessary recompile
 Create independent DAGs for

individual parfor workers

Runtime Adaptation

foo = function(Matrix[Double] A)
# recompiled w/ size of A
return (Matrix[Double] C)

{
C = rand(nrow(A),1) + A;
while(...) 

C = C / rowSums(C) * s
}

while( continue ) {
parfor( i in 1:n ) {

if( !fixed[1,i] ) {
Xi = cbind(Xg, X[,i])
B[,i] = lm(Xi,y)

}
}
# add best to Xg (AIC)

}
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Operator Fusion & JIT Compilation
(aka Code Generation)

Many State-of-the-Art ML Systems, 
especially for DNNs and numerical computation
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Motivation: Fusion
 Data Flow Graphs (better data access)

 DAGs of linear algebra (LA) operations and statistical functions
 Materialized intermediates  ubiquitous fusion opportunities

Operator Fusion & JIT Compilation

sum(X*Y*Z)

a) Intermediates b) Single-Pass
t(X)%*%(X%*%v)
t(t(X%*%v)%*%X)

c) Multi-Aggregates

d) Sparsity 
Exploitation

[Matthias Boehm et al.: On Optimizing 
Operator Fusion Plans for Large-Scale 

ML in SystemML. PVLDB 2018]
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TF w/ manual rewrite
 t(t(w*(X%*%v))%*%X):
9.2 s to 1.6 s (compared to Gen 283ms)

Motivation: Fusion, cont.
Operator Fusion & JIT Compilation

Cell Template: sum(X*Y*Z)dense sparse (0.1)

Row: t(X)%*%(w*(X%*%v))

dense

Outer: sum(X*log(U%*%t(V)+1e-15))

20K x 20K, 
rank 100

Beware: SystemML 1.0, 
Julia 0.6.2, TensorFlow 1.5 



19

706.550 Architecture of Machine Learning Systems – 04 Advanced Compilation
Matthias Boehm, Graz University of Technology, SS 2021 

Motivation: Just-In-Time Compilation
 Operator Kernels (better code)

 Specialization opportunities: data types, shapes, and operator graphs
 Heterogeneous hardware: CPUs, GPUs, FPGAs, ASICs x architectures

 #1 CPU Architecture
 Specialize to available instructions sets
 Register allocation and assignment, etc

 #2 Heterogeneous Hardware
 JIT compilation for custom-build 

ASICs with HW support for ML ops
 Different architectures of devices

 #3 Custom ML Program
 Operator graphs and sizes

Operator Fusion & JIT Compilation

Examples: x86-64, 
sparc, amd64, arm, ppc

Example: NVIDIA 
TensorRT

GPU Platforms

[https://docs.nvidia.com/
deeplearning/sdk/tensorrt-

developer-guide/index.html]

Presenter
Presentation Notes
Notes: tesla (P4 inference, V100 training) -> datacenter, drive -> automotive; jetson -> embedded (e.g., robotics)

https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html
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Operator Fusion Overview
 Related Research Areas

 DB: query compilation
 HPC: loop fusion, tiling, and distribution (NP complete)
 ML: operator fusion (dependencies given by data flow graph)

 Example Operator Fusion

Operator Fusion & JIT Compilation

A

+

s B

*

R

C

*

for( i in 1:n )
tmp1[i,1] = s * B[i,1]; 

for( i in 1:n )
tmp2[i,1] = A[i,1] + tmp1[i,1];

for( i in 1:n )
R[i,1] = tmp2[i,1] * C[i,1];

for( i in 1:n )
R[i,1] = (A[i,1] + s*B[i,1]) * C[i,1]; 

Memory Bandwidth:
L1 core: 1TB/s

L3 socket: 400GB/s
Mem: 100 GB/s 

[https://software.intel.com/
en-us/articles/memory-

performance-in-a-nutshell]

https://software.intel.com/en-us/articles/memory-performance-in-a-nutshell
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Evolution of Operator Fusion in ML Systems
 1st Gen: Handwritten Fused Operators

 [BLAS (since 1979): e.g., alpha * X + Y  AXPY]
 Rewrites: e.g., A+B+C  AddN(A, B, C),
t(X) %*% (w * (X %*% v))  MMCHAIN

 Sparsity exploiting fused ops: 
e.g., sum(X*log(U%*%t(V)+eps))

 2nd Gen: Fusion Heuristics
 Automatic operator fusion via elementary ops
 Heuristics for replacing sub-DAGs w/ fused ops 

 3rd Gen: Optimized Fusion Plans
 Greedy/exact fusion plan (sub-DAG) selection
 [Greedy/evolutionary kernel implementations] 

Operator Fusion & JIT Compilation

[Tarek Elgamal et al: SPOOF: 
Sum-Product Optimization and 

Operator Fusion for  Large-Scale 
Machine Learning. CIDR 2017]

[Matthias Boehm et al.: On 
Optimizing Operator Fusion 
Plans for Large-Scale ML in 

SystemML. PVLDB 2018]

[Matthias Boehm: SystemML: 
Declarative Machine Learning 

on Spark. PVLDB 2016]

[Arash Ashari: On 
optimizing machine 

learning workloads via 
kernel fusion. PPOPP 2015]
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Automatic Operator Fusion System Landscape
Operator Fusion & JIT Compilation

System Year Approach Sparse Distr. Optimization

BTO 2009 Loop Fusion No No k-Greedy, cost-based 

Tupleware 2015 Loop Fusion No Yes Heuristic

Kasen 2016 Templates (Yes) Yes Greedy, cost-based

SystemML 2017 Templates Yes Yes Exact, cost-based

Weld 2017 Templates (Yes) Yes Heuristic

Taco 2017 Loop Fusion Yes No Manuel

Julia 2017 Loop Fusion Yes No Manuel

Tensorflow XLA 2017 Loop Fusion No No Manuel/Heuristic

Tensor 
Comprehensions

2018 Loop Fusion No No Evolutionary, 
cost-based

TVM 2018 Loop Fusion No No ML/cost-based

PyTorch 2019 Loop Fusion No No Manual/Heuristic

JAX 2019 N/A No No See TF XLA

JIT

Presenter
Presentation Notes
#1 Micro Optimizations
Hybrid tile-at-a-time loop fusion, predication, and result allocation
Examples: Tupleware
#2 Cross-Library Optimization
Generic IR based on parallel loops and builders
Examples: Weld
#3 Sparsity Exploitation
Exploit sparsity over chains of operations (compute, size of intermediates)
Examples: SystemML
#4 Iteration Schedules
Decisions on loop ordering (e.g., tensor storage formats, join ordering)
Examples: Taco, TVM, Mateev et al
#5 Optimizing Fusion Plans
Example: SystemML
#6 Autodifferentiation Native Python Code
	Example: JAX (Autograd + XLA JIT)



23

706.550 Architecture of Machine Learning Systems – 04 Advanced Compilation
Matthias Boehm, Graz University of Technology, SS 2021 

A Case for Optimizing Fusion Plans
 Problem: Fusion heuristics  poor plans for complex DAGs 

(cost/structure), sparsity exploitation, and local/distributed operations
 Goal: Principled approach for optimizing fusion plans

 #1 Materialization Points
(e.g., for multiple consumers) 

 #2 Sparsity Exploitation
(and ordering of sparse inputs)

 #3 Decisions on Fusion Patterns
(e.g., template types)

 #4 Constraints
(e.g., memory budget and block sizes)

Operator Fusion & JIT Compilation

Y + X * (U %*% t(V))

sparse-safe over X

 Search Space that 
requires optimization
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System Architecture (Compiler & Codegen Architecture)

Operator Fusion & JIT Compilation

[CIDR’17] (w/ fuse-all heuristic)
- Lacked maintainability

- Poor plans for complex DAGs 
and local/distributed operations

Practical, exact, cost-based optimizer

 CPlan representation/construction and codegen similar in TF XLA 
(HLO primitives, pre-clustering of nodes, caching, LLVM codegen)

 Templates: Cell, Row, MAgg, Outer w/ different data bindings
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Codegen Example L2SVM (Cell/MAgg)

 L2SVM Inner Loop

 # of Vector Intermediates
 Base (w/o fused ops): 10
 Fused (w/ fused ops):   4

Operator Fusion & JIT Compilation

1: while(continueOuter & iter < maxi) {
2    #...     
3:   while(continueInner) {
4:     out = 1-Y* (Xw+step_sz*Xd);
5:     sv = (out > 0);
6:     out = out * sv;
7:     g = wd + step_sz*dd

- sum(out * Y * Xd);
8:     h = dd + sum(Xd * sv * Xd);
9:     step_sz = step_sz - g/h;
10: }} ...

b(*)

Xd Xwstep_sz

b(+)

b(*)

b(-)

1

b(>)

0

b(*)

Y

b(*)

b(*)

ua(RC,+)

b(-)

write g...

b(+)

b(+)

dd

wd

b(*)

b(*)

ua(RC,+)

b(+)

write h
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Codegen Example L2SVM, cont. (Cell/MAgg)

 Template Skeleton
 Data access, blocking
 Multi-threading
 Final aggregation

 # of Vector Intermediates
 Gen (codegen ops): 0

Operator Fusion & JIT Compilation

public final class TMP25 extends SpoofMAgg { 
public TMP25() {

super(false, AggOp.SUM, AggOp.SUM);
}
protected void genexec(double a, SideInput[] b, 
double[] scalars, double[] c, ...) { 
double TMP11 = getValue(b[0], rowIndex);
double TMP12 = getValue(b[1], rowIndex);
double TMP13 = a * scalars[0];
double TMP14 = TMP12 + TMP13;
double TMP15 = TMP11 * TMP14;
double TMP16 = 1 - TMP15;
double TMP17 = (TMP16 > 0) ? 1 : 0;
double TMP18 = a * TMP17;
double TMP19 = TMP18 * a;
double TMP20 = TMP16 * TMP17;
double TMP21 = TMP20 * TMP11;
double TMP22 = TMP21 * a;
c[0] += TMP19;
c[1] += TMP22;

}
}
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Codegen Example MLogreg (Row)

 MLogreg Inner Loop
(main expression on feature matrix X)

Operator Fusion & JIT Compilation

1: Q = P[, 1:k] * (X %*% v)
2: H = t(X) %*% (Q - P[, 1:k] * rowSums(Q))

public final class TMP25 extends SpoofRow { 
public TMP25() {

super(RowType.COL_AGG_B1_T, true, 5);
}
protected void genexecDense(double[] a, int ai,
SideInput[] b, double[] c,..., int len) {
double[] TMP11 = getVector(b[1].vals(rix),...);
double[] TMP12 = vectMatMult(a, b[0].vals(rix),...);
double[] TMP13 = vectMult(TMP11, TMP12, 0, 0,...);
double TMP14 = vectSum(TMP13, 0, TMP13.length);
double[] TMP15 = vectMult(TMP11, TMP14, 0,...);
double[] TMP16 = vectMinus(TMP13, TMP15, 0, 0,...);
vectOuterMultAdd(a, TMP16, c, ai, 0, 0,...); }

protected void genexecSparse(double[] avals, int[] aix,
int ai, SideInput[] b, ..., int len) {...}

}
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Candidate Exploration (by example MLogreg)

 Memo Table for partial 
fusion plans (candidates)

 OFMC Template 
Fusion API
 Open
 Fuse, Merge 
 Close

 OFMC
Algorithm
 Bottom-up 

Exploration
(single-pass, 
template-
agnostic)

 Linear space
and time

Operator Fusion & JIT Compilation

Memo Table
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Candidate Selection (Partitions and Interesting Points)

 #1 Determine Plan Partitions
 Materialization 

Points M 
 Connected components

of fusion references
 Root and input nodes
Optimize partitions

independently

 #2 Determine Interesting Points
 Materialization Point Consumers: Each data dependency on materialization 

points considered separately
 Template / Sparse Switches: Data dependencies where producer has 

templates that are non-existing for consumers
 Optimizer considers all 2|M’i| plans (with |M’i| ≥ |Mi|) per partition

Operator Fusion & JIT Compilation
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Candidate Selection, cont. (Costs and Constraints)

 Overview Cost Model
 Cost partition with analytical cost model 

based on peak memory and compute bandwidth
 Plan comparisons / fusion errors don’t propagate / dynamic recompilation

 #3 Evaluate Costs
 #1: Memoization of already processed sub-DAGs
 #2: Account for shared reads and CSEs within operators
 #3: Account for redundant computation (overlap)
 DAG traversal and cost vectors per fused operator

(with memoization of pairs of operators and cost vectors)

 #4 Handle Constraints
 Prefiltering violated constraints (e.g., row template in distributed ops)
 Assign infinite costs for violated constraints during costing

Operator Fusion & JIT Compilation
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Candidate Selection, cont. (MPSkipEnum and Pruning)

 #5 Basic Enumeration
 Linearized search space: from - to *

 #6 Cost-Based Pruning
 Upper bound: cost CU of best plan q* (monotonically decreasing)
 Opening heuristic: evaluate FA and FNR heuristics first
 Lower bound: CLS (read input, write output, min compute) + dynamic CLD

(materialize intermediates q)  skip subspace if CU ≤ CLS + CLD

 #7 Structural Pruning
 Observation: Assignments can create independent sub problems
 Build reachability graph to determine cut sets
 During enum: probe cut sets, recursive enum, combine, and skip

Operator Fusion & JIT Compilation

for( j in 1:pow(2,|M’i|) )
q = createAssignment(j)
C = getPlanCost(Pi, q)
maintainBest(q, C)
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Ahead-of-Time Compilation
 TensorFlow tf.compile

 Compile entire TF graph into binary function w/ low footprint
 Input: Graph, config (feeds+fetches w/ fixes shape sizes)
 Output: x86 binary and C++ header (e.g., inference)
 Specialization for frozen model and sizes

 PyTorch Compile
 Compile Python functions into ScriptModule/ScriptFunction
 Lazily collect operations, 

optimize, and JIT compile
 Explicit jit.script call

or @torch.jit.script

Operator Fusion & JIT Compilation

a = torch.rand(5)
def func(x):
for i in range(10):
x = x * x # unrolled into graph

return x

jitfunc = torch.jit.script(func) # JIT
jitfunc.save("func.pt")

[Vincent Quenneville-Bélair: 
How PyTorch Optimizes
Deep Learning Computations, 
Guest Lecture Stanford 2020]

[Chris Leary, Todd Wang: 
XLA – TensorFlow, Compiled!, 

TF Dev Summit 2017]
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Excursus: MLIR
 Motivation TF Compiler Ecosystem

 Different IRs and compilation 
chains for runtime backends

 Duplication of infrastructure
and fragile error handling

 MLIR (Multi-level, Machine Learning IR)
 SSA-based IR, similar to LLVM
 Hierarchy of modules, functions, 

regions, blocks, and operations
 Dialects for different backends

(defined ops, customization)
 Systematic lowering

Operator Fusion & JIT Compilation

[Rasmus Munk Larsen, Tatiana Shpeisman: 
TensorFlow Graph Optimizations, 

Guest Lecture Stanford 2019]

func @testFunction(%arg0: i32) {
%x = call @thingToCall(%arg0) 
: (i32) -> i32

br ^bb1
^bb1:
%y = addi %x, %x : i32
return %y : i32

}

[Chris Lattner et al.: MLIR: A Compiler 
Infrastructure for the End of Moore's Law. CoRR

2020, https://arxiv.org/pdf/2002.11054.pdf]

Presenter
Presentation Notes
Note: Regions consist of a CFG of blocks with arguments, blocks contain list of operations, ops can contain nested regions.

https://arxiv.org/pdf/2002.11054.pdf
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func @main() {
%G = daphne.rand {rows=50, cols=50, seed=-1, sparsity=0.07} : ...
%initP = daphne.rand {rows=50, cols=1, seed=-1, sparsity=1.0} : ...
%e, %u ... 
%alpha = daphne.constant 0.5 : f64
%initI = daphne.constant 0 : i64
%loop:2 = daphne.while(%p = %initP, %i = %initI) : 
(!daphne.matrix<?x?xf64>, i64) -> (!daphne.matrix<?x?xf64>, i64) condition: {
%max_iteration = daphne.constant 10 : i64
%c = cmpi "ult", %i, %max_iteration : i64
daphne.yield %c : i1

} body: {
%1 = daphne.mat_mul %G, %p : (!daphne.matrix<?x?xf64>, !daphne.matrix<?x?xf64>) -> !daphne.matrix<?x?xf64>
%2 = daphne.mul %alpha, %1 : (f64, !daphne.matrix<?x?xf64>) -> !daphne.matrix<?x?xf64>
%3 = daphne.mat_mul %e, %u : (!daphne.matrix<?x?xf64>, !daphne.matrix<?x?xf64>) -> !daphne.matrix<?x?xf64>
%4 = daphne.mat_mul %3, %p : (!daphne.matrix<?x?xf64>, !daphne.matrix<?x?xf64>) -> !daphne.matrix<?x?xf64>
%cst1f = daphne.constant 1.0 : f64
%5 = daphne.sub %cst1f, %alpha : (f64, f64) -> f64
%6 = daphne.mul %5, %4 : (f64, !daphne.matrix<?x?xf64>) -> !daphne.matrix<?x?xf64>
%newP = daphne.add %2, %6 : (!daphne.matrix<?x?xf64>, !daphne.matrix<?x?xf64>) -> !daphne.matrix<?x?xf64>
%cst1 = daphne.constant 1 : i64
%nextI = daphne.add %i, %cst1 : (i64, i64) -> i64
daphne.yield %newP, %nextI : !daphne.matrix<?x?xf64>, i64

}
daphne.print %loop#0 : !daphne.matrix<?x?xf64>
daphne.return

}

Excursus: MLIR, cont.
(DAPHNE pre-project prototype)

Operator Fusion & JIT Compilation

while(i < max_iter) { # PageRank
p = alpha*(G%*%p) + (1-alpha)*(e%*%u%*%p);
i += 1;

}

Initial translation w/o 
much optimization

module  {
func @main() {
%0 = daphne.constant 5.000000e-01 : f64
%1 = daphne.constant 0 : i64
%2 = daphne.constant 1.000000e+00 : f64
%3 = daphne.constant 1 : i64
%4 = daphne.constant 10 : i64
%5 = daphne.rand {cols = 50 : i64, rows = 50 : i64, seed = -1 : i64, sparsity = 7.000000e-02 : f64} : () -> ...
%6, %7, %8 = ...
%9 = daphne.sub %2, %0 : (f64, f64) -> f64
%10:2 = daphne.while (%arg0 = %6, %arg1 = %1) : (!daphne.matrix<50x1xf64>, i64) -> (same) condition: {
%11 = cmpi "ult", %arg1, %4 : i64
daphne.yield %11 : i1

} body: {
%11 = daphne.mat_mul %5, %arg0 : (!daphne.matrix<50x50xf64>, !daphne.matrix<50x1xf64>) -> !daphne.matrix<50x1xf64>
%12 = daphne.mul %11, %0 : (!daphne.matrix<50x1xf64>, f64) -> !daphne.matrix<50x1xf64>
%13 = daphne.mat_mul %8, %arg0 : (!daphne.matrix<1x50xf64>, !daphne.matrix<50x1xf64>) -> !daphne.matrix<1x1xf64>
%14 = daphne.mat_mul %7, %13 : (!daphne.matrix<50x1xf64>, !daphne.matrix<1x1xf64>) -> !daphne.matrix<50x1xf64>
%15 = daphne.mul %9, %14 : (f64, !daphne.matrix<50x1xf64>) -> !daphne.matrix<50x1xf64>
%16 = daphne.add %12, %15 : (!daphne.matrix<50x1xf64>, !daphne.matrix<50x1xf64>) -> !daphne.matrix<50x1xf64>
%17 = daphne.add %arg1, %3 : (i64, i64) -> i64
daphne.yield %16, %17 : !daphne.matrix<50x1xf64>, i64

}
daphne.print %10#0 : !daphne.matrix<50x1xf64>
daphne.return

}
}

3) Code motion outside loop

2) Matrix multiplication chain reordered

1) Shape inference of dimensions

After Several Optimization Passes
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Conclusions
 Summary

 Motivation and Terminology
 Runtime Adaptation
 Operator Fusion & JIT

 Impact of Size Inference and Costs (lecture 03)
 Ubiquitous Rewrite, Fusion, and Codegen/JIT Opportunities

 Next Lectures (Runtime Aspects)
 Easter break: Mar 27 – Apr 10
 05 Data- and Task-Parallel Execution (batch/prog) [Apr 16]
 06 Parameter Servers (mini-batch) [Apr 23]
 07 Hybrid Execution and HW Accelerators [Apr 30]
 08 Caching, Partitioning, Indexing and Compression [May 07]

Recommended Reading
[Chris Leary, Todd Wang: XLA –
TensorFlow, Compiled!, TF Dev Summit 2017, 
https://www.youtube.com/watch?time_continue=1541
&v=kAOanJczHA0&feature=emb_logo]

https://www.youtube.com/watch?time_continue=1541&v=kAOanJczHA0&feature=emb_logo
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