
1
SCIENCE
PASSION

TECHNOLOGY

Architecture of ML Systems
04 Adaptation, Fusion, and JIT
Matthias Boehm

Graz University of Technology, Austria

Institute of Interactive Systems and Data Science
Computer Science and Biomedical Engineering

BMK endowed chair for Data Management

Last update: Mar 25, 2021

2

706.550 Architecture of Machine Learning Systems – 04 Advanced Compilation
Matthias Boehm, Graz University of Technology, SS 2021

Announcements/Org
 #1 Video Recording

 Link in TeachCenter & TUbe (lectures will be public)
 Streaming: https://tugraz.webex.com/meet/m.boehm

 #2 Programming Projects / Exercises
 Apache SystemDS: 12 projects / 15 students
 DAPHNE: 2 projects / 2 students
 Exercises: 3 projects / 6 students  TeachCenter
 Registration: Apr 02, Deadline: June 30 (soft)
 Links to project descriptions:

https://mboehm7.github.io/teaching/ss21_amls/index.htm

https://tugraz.webex.com/meet/m.boehm
https://mboehm7.github.io/teaching/ss21_amls/index.htm

3

706.550 Architecture of Machine Learning Systems – 04 Advanced Compilation
Matthias Boehm, Graz University of Technology, SS 2021

Agenda
 Motivation and Terminology
 Runtime Adaptation
 Operator Fusion & JIT Compilation

4

706.550 Architecture of Machine Learning Systems – 04 Advanced Compilation
Matthias Boehm, Graz University of Technology, SS 2021

Motivation and Terminology

5

706.550 Architecture of Machine Learning Systems – 04 Advanced Compilation
Matthias Boehm, Graz University of Technology, SS 2021

Recap: Linear Algebra Systems
 Comparison Query Optimization

 Rule- and cost-based rewrites and operator ordering
 Physical operator selection and query compilation
 Linear algebra / other ML operators, DAGs,

control flow, sparse/dense formats

 #1 Interpretation (operation at-a-time)
 Examples: R, PyTorch, Morpheus [PVLDB’17]

 #2 Lazy Expression Compilation (DAG at-a-time)
 Examples: RIOT [CIDR’09], TensorFlow [OSDI’16]

Mahout Samsara [MLSystems’16], Dask
 Examples w/ control structures: Weld [CIDR’17],

OptiML [ICML’11], Emma [SIGMOD’15]
 #3 Program Compilation (entire program)

 Examples: SystemML [ICDE’11/PVLDB’16], Julia,
Cumulon [SIGMOD’13], Tupleware [PVLDB’15]

Motivation and Terminology

Compilers for
Large-scale ML

DB
PL HPC

1: X = read($1); # n x m matrix
2: y = read($2); # n x 1 vector
3: maxi = 50; lambda = 0.001;
4: intercept = $3;
5: ...
6: r = -(t(X) %*% y);
7: norm_r2 = sum(r * r); p = -r;
8: w = matrix(0, ncol(X), 1); i = 0;
9: while(i<maxi & norm_r2>norm_r2_trgt)
10: {
11: q = (t(X) %*% X %*% p)+lambda*p;
12: alpha = norm_r2 / sum(p * q);
13: w = w + alpha * p;
14: old_norm_r2 = norm_r2;
15: r = r + alpha * q;
16: norm_r2 = sum(r * r);
17: beta = norm_r2 / old_norm_r2;
18: p = -r + beta * p; i = i + 1;
19: }
20: write(w, $4, format="text");

Optimization Scope

6

706.550 Architecture of Machine Learning Systems – 04 Advanced Compilation
Matthias Boehm, Graz University of Technology, SS 2021

Major Compilation/Runtime Challenges
 #1 Unknown/Changing Sizes

 Sizes inference crucial for cost-estimation and
validity constraints (e.g., rewrites)

 Tradeoff: optimization scope vs size inference effort
 Challenge: Unknowns  conservative fallback plans

 #2 Operator Runtime Overhead
 Operators great for programmability, size inference,

simple compilation, and efficient kernel implementations
(sparse, dense, compressed)

 Tradeoff: general-purpose vs specialization
 Challenges: intermediates, parallelization,

complexity of operator combinations

Motivation and Terminology

Y = foo(X)
Z = Y[Ix,]
nrow(Z)?

7

706.550 Architecture of Machine Learning Systems – 04 Advanced Compilation
Matthias Boehm, Graz University of Technology, SS 2021

Terminology Ahead-of-Time / Just-in-Time
 Ahead-of-Time Compilation

 Originating from compiled languages like C, C++
 #1 Program compilation at different abstraction levels
 #2 Inference program compilation & packaging

 Just-In-Time Compilation (at runtime for specific data/HW)
 Originating from JIT-compiled languages like Java, C#
 #1 Lazy expression evaluation + optimization
 #2 Program/function compilation with recompilation

 Excursus: Java JIT
 #1 Start w/ Java bytecode interpretation by JVM  fast startup
 #2 Tiered JIT compile (cold, warm, hot, very hot, scorching)  performance
 Trace statistics (frequency, time) at method granularity
 Note: -XX:+PrintCompilation

Motivation and Terminology

PL

(LLVM)

8

706.550 Architecture of Machine Learning Systems – 04 Advanced Compilation
Matthias Boehm, Graz University of Technology, SS 2021

Terminology Runtime Adaptation & JIT
 Excursus: Adaptive Query Processing

 Spectrum of
Adaptivity

 Excursus: Query Execution Strategies
 #1 Volcano Iterator Model
 #2 Materialized Intermediates
 #3 Vectorized (Batched) Execution
 #4 Query Compilation
 Similar: Loop fusion, fission, tiling

Motivation and Terminology

HPC

DB

DB

[Peter A. Boncz, Marcin Zukowski, Niels
Nes: MonetDB/X100: Hyper-Pipelining
Query Execution. CIDR 2005]

[Amol Deshpande, Joseph M. Hellerstein,
Shankar Raman: Adaptive query proc-essing:

why, how, when, what next. SIGMOD 2006]

Vector Size

9

706.550 Architecture of Machine Learning Systems – 04 Advanced Compilation
Matthias Boehm, Graz University of Technology, SS 2021

Runtime Adaptation
ML Systems w/ Optimizing Compiler

10

706.550 Architecture of Machine Learning Systems – 04 Advanced Compilation
Matthias Boehm, Graz University of Technology, SS 2021

Issues of Unknown or Changing Sizes
 Problem of unknown/changing sizes

 Unknown or changing sizes and sparsity of intermediates
These unknowns lead to very conservative fallback plans (distributed ops)

 #1 Control Flow
 Branches and loops
 Complex function call graphs
 User-Defined Functions

 #2 Data-Dependencies
 Data-dependent operators

(e.g., table, rmEmpty, aggregate)
 Computed size expressions

Runtime Adaptation

1
3
4
2
2
3

1

1
1

1

1

1

X = read(‘/tmp/X.csv’);
if(intercept)
X = cbind(X, matrix(1,nrow(X),1));

Z = foo(X) + X; # size of + and Z?

Y = table(seq(1,nrow(X)), y);
grad = t(X) %*% (P - Y);

yY

Ex.: Multinomial
Logistic Regression

d = dout[,(t-2)*M+1:(t-1)*M];

cur_Q = matrix (0, 1, 2*ncur);
cur_S = matrix (0, 1, ncur*dist);

11

706.550 Architecture of Machine Learning Systems – 04 Advanced Compilation
Matthias Boehm, Graz University of Technology, SS 2021

Issues of Unknown or Changing Sizes, cont.
 #3 Changing Dims and Sparsity

 Iterative feature selection workloads
 Changing dimensions or sparsity
 Same code with different data

 #4 API Limitations
 Precompiled scripts/programs

(inputs unavailable)

 (#5 Compiler Limitations)

 Dynamic recompilation techniques as robust fallback strategy
 Shares goals and challenges with adaptive query processing
 However, ML domain-specific techniques and rewrites

Runtime Adaptation

Ex: Stepwise LinReg
while(continue) {

parfor(i in 1:n) {
if(!fixed[1,i]) {

Xi = cbind(Xg, X[,i])
B[,i] = lm(Xi,y)

}
}
add best to Xg (AIC)

}

Presenter
Presentation Notes
AIC .. Akaike Information Criterion

12

706.550 Architecture of Machine Learning Systems – 04 Advanced Compilation
Matthias Boehm, Graz University of Technology, SS 2021

Recompilation
Runtime Adaptation

Parsing (syntactic analysis)

Live Variable Analysis

Validate (semantic analysis)

Script

Construct HOP DAGs

Compute Memory Estimates

Construct LOP DAGs
(incl operator selection, hop-lop rewrites)

Generate Runtime Program

[Matthias Boehm et al:
SystemML's Optimizer:

Plan Generation for
Large-Scale Machine

Learning Programs. IEEE
Data Eng. Bull 2014]

Multiple
Rounds

Static/Dynamic Rewrites

Intra-/Inter-Procedural Analysis

Static/Dynamic Rewrites

Execution Plan

Language

HOPs

LOPs

Dynamic
Recompilation

Other systems
w/ recompile:

SciDB, MatFast

~100
ms

~10
ms

~1
ms

Construct LOP DAGs
(incl operator selection, hop-lop rewrites)

Generate Runtime Program

Compute Memory Estimates

Static/Dynamic Rewrites

13

706.550 Architecture of Machine Learning Systems – 04 Advanced Compilation
Matthias Boehm, Graz University of Technology, SS 2021

Dynamic Recompilation
 Compile-time Decisions

 Split HOP DAGs for recompilation: prevent unknowns but keep DAGs as large
as possible; split after reads w/ unknown sizes and specific operators

 Mark HOP DAGs for recompilation: Spark due to unknown sizes / sparsity

Runtime Adaptation

+

C

R1

A

abs rm

B

*

rm

R3

rms

R2

abs

A

rm

R4 tmp2

*

tmp1

R3

rm

s

R2

abs

tmp3

R4

+

C

R1

A

abs rm

B

rm tmp2 tmp3

A

rm

tmp1(recursive
rewrite)

Control flow  statement blocks
 initial recompilation granularity

rm .. removeEmpty(X, [margin=“rows”,select=I])

14

706.550 Architecture of Machine Learning Systems – 04 Advanced Compilation
Matthias Boehm, Graz University of Technology, SS 2021

Dynamic Recompilation, cont.
 Dynamic Recompilation at Runtime on recompilation hooks

(last level program blocks, predicates, recompile once functions)
 Deep Copy DAG
 Replace Literals
 Update DAG Statistics
 Dynamic Rewrites
 Recompute Memory

Estimates
 [Codegen]
 Generate

Runtime Instructions

Runtime Adaptation

X

r(t)

ba(+*)

P

CP

SP

b(-)

Y

SP[100x1M,-1]

[100x-1,-1]

[1Mx100,-1] [1Mx-1,-1] [1Mx-1,-1]

[1Mx-1,-1]

X 1Mx100,99M

P 1Mx7,7M

Y 1Mx7,7M

[1Mx100,99M] [1Mx7,7M] [1Mx7,7M]

[1Mx7,-1][100x1M,99M]

[100x7,-1]

CP

CP

Symbol Table

15

706.550 Architecture of Machine Learning Systems – 04 Advanced Compilation
Matthias Boehm, Graz University of Technology, SS 2021

Dynamic Recompilation, cont.
 Recompile Once Functions

 Unknowns due to inconsistent or
unknown call size information

 IPA marks functions as “recompile
once”, if it contains loops

 Recompile the entire function on entry
+ disable unnecessary recompile

 Recompile parfor Loops
 Unknown sizes and iterations
 Recompile parfor loop on entry

+ disable unnecessary recompile
 Create independent DAGs for

individual parfor workers

Runtime Adaptation

foo = function(Matrix[Double] A)
recompiled w/ size of A
return (Matrix[Double] C)

{
C = rand(nrow(A),1) + A;
while(...)

C = C / rowSums(C) * s
}

while(continue) {
parfor(i in 1:n) {

if(!fixed[1,i]) {
Xi = cbind(Xg, X[,i])
B[,i] = lm(Xi,y)

}
}
add best to Xg (AIC)

}

16

706.550 Architecture of Machine Learning Systems – 04 Advanced Compilation
Matthias Boehm, Graz University of Technology, SS 2021

Operator Fusion & JIT Compilation
(aka Code Generation)

Many State-of-the-Art ML Systems,
especially for DNNs and numerical computation

17

706.550 Architecture of Machine Learning Systems – 04 Advanced Compilation
Matthias Boehm, Graz University of Technology, SS 2021

Motivation: Fusion
 Data Flow Graphs (better data access)

 DAGs of linear algebra (LA) operations and statistical functions
 Materialized intermediates  ubiquitous fusion opportunities

Operator Fusion & JIT Compilation

sum(X*Y*Z)

a) Intermediates b) Single-Pass
t(X)%*%(X%*%v)
t(t(X%*%v)%*%X)

c) Multi-Aggregates

d) Sparsity
Exploitation

[Matthias Boehm et al.: On Optimizing
Operator Fusion Plans for Large-Scale

ML in SystemML. PVLDB 2018]

18

706.550 Architecture of Machine Learning Systems – 04 Advanced Compilation
Matthias Boehm, Graz University of Technology, SS 2021

TF w/ manual rewrite
 t(t(w*(X%*%v))%*%X):
9.2 s to 1.6 s (compared to Gen 283ms)

Motivation: Fusion, cont.
Operator Fusion & JIT Compilation

Cell Template: sum(X*Y*Z)dense sparse (0.1)

Row: t(X)%*%(w*(X%*%v))

dense

Outer: sum(X*log(U%*%t(V)+1e-15))

20K x 20K,
rank 100

Beware: SystemML 1.0,
Julia 0.6.2, TensorFlow 1.5

19

706.550 Architecture of Machine Learning Systems – 04 Advanced Compilation
Matthias Boehm, Graz University of Technology, SS 2021

Motivation: Just-In-Time Compilation
 Operator Kernels (better code)

 Specialization opportunities: data types, shapes, and operator graphs
 Heterogeneous hardware: CPUs, GPUs, FPGAs, ASICs x architectures

 #1 CPU Architecture
 Specialize to available instructions sets
 Register allocation and assignment, etc

 #2 Heterogeneous Hardware
 JIT compilation for custom-build

ASICs with HW support for ML ops
 Different architectures of devices

 #3 Custom ML Program
 Operator graphs and sizes

Operator Fusion & JIT Compilation

Examples: x86-64,
sparc, amd64, arm, ppc

Example: NVIDIA
TensorRT

GPU Platforms

[https://docs.nvidia.com/
deeplearning/sdk/tensorrt-

developer-guide/index.html]

Presenter
Presentation Notes
Notes: tesla (P4 inference, V100 training) -> datacenter, drive -> automotive; jetson -> embedded (e.g., robotics)

https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html

20

706.550 Architecture of Machine Learning Systems – 04 Advanced Compilation
Matthias Boehm, Graz University of Technology, SS 2021

Operator Fusion Overview
 Related Research Areas

 DB: query compilation
 HPC: loop fusion, tiling, and distribution (NP complete)
 ML: operator fusion (dependencies given by data flow graph)

 Example Operator Fusion

Operator Fusion & JIT Compilation

A

+

s B

*

R

C

*

for(i in 1:n)
tmp1[i,1] = s * B[i,1];

for(i in 1:n)
tmp2[i,1] = A[i,1] + tmp1[i,1];

for(i in 1:n)
R[i,1] = tmp2[i,1] * C[i,1];

for(i in 1:n)
R[i,1] = (A[i,1] + s*B[i,1]) * C[i,1];

Memory Bandwidth:
L1 core: 1TB/s

L3 socket: 400GB/s
Mem: 100 GB/s

[https://software.intel.com/
en-us/articles/memory-

performance-in-a-nutshell]

https://software.intel.com/en-us/articles/memory-performance-in-a-nutshell

21

706.550 Architecture of Machine Learning Systems – 04 Advanced Compilation
Matthias Boehm, Graz University of Technology, SS 2021

Evolution of Operator Fusion in ML Systems
 1st Gen: Handwritten Fused Operators

 [BLAS (since 1979): e.g., alpha * X + Y  AXPY]
 Rewrites: e.g., A+B+C  AddN(A, B, C),
t(X) %*% (w * (X %*% v))  MMCHAIN

 Sparsity exploiting fused ops:
e.g., sum(X*log(U%*%t(V)+eps))

 2nd Gen: Fusion Heuristics
 Automatic operator fusion via elementary ops
 Heuristics for replacing sub-DAGs w/ fused ops

 3rd Gen: Optimized Fusion Plans
 Greedy/exact fusion plan (sub-DAG) selection
 [Greedy/evolutionary kernel implementations]

Operator Fusion & JIT Compilation

[Tarek Elgamal et al: SPOOF:
Sum-Product Optimization and

Operator Fusion for Large-Scale
Machine Learning. CIDR 2017]

[Matthias Boehm et al.: On
Optimizing Operator Fusion
Plans for Large-Scale ML in

SystemML. PVLDB 2018]

[Matthias Boehm: SystemML:
Declarative Machine Learning

on Spark. PVLDB 2016]

[Arash Ashari: On
optimizing machine

learning workloads via
kernel fusion. PPOPP 2015]

22

706.550 Architecture of Machine Learning Systems – 04 Advanced Compilation
Matthias Boehm, Graz University of Technology, SS 2021

Automatic Operator Fusion System Landscape
Operator Fusion & JIT Compilation

System Year Approach Sparse Distr. Optimization

BTO 2009 Loop Fusion No No k-Greedy, cost-based

Tupleware 2015 Loop Fusion No Yes Heuristic

Kasen 2016 Templates (Yes) Yes Greedy, cost-based

SystemML 2017 Templates Yes Yes Exact, cost-based

Weld 2017 Templates (Yes) Yes Heuristic

Taco 2017 Loop Fusion Yes No Manuel

Julia 2017 Loop Fusion Yes No Manuel

Tensorflow XLA 2017 Loop Fusion No No Manuel/Heuristic

Tensor
Comprehensions

2018 Loop Fusion No No Evolutionary,
cost-based

TVM 2018 Loop Fusion No No ML/cost-based

PyTorch 2019 Loop Fusion No No Manual/Heuristic

JAX 2019 N/A No No See TF XLA

JIT

Presenter
Presentation Notes
#1 Micro Optimizations
Hybrid tile-at-a-time loop fusion, predication, and result allocation
Examples: Tupleware
#2 Cross-Library Optimization
Generic IR based on parallel loops and builders
Examples: Weld
#3 Sparsity Exploitation
Exploit sparsity over chains of operations (compute, size of intermediates)
Examples: SystemML
#4 Iteration Schedules
Decisions on loop ordering (e.g., tensor storage formats, join ordering)
Examples: Taco, TVM, Mateev et al
#5 Optimizing Fusion Plans
Example: SystemML
#6 Autodifferentiation Native Python Code
	Example: JAX (Autograd + XLA JIT)

23

706.550 Architecture of Machine Learning Systems – 04 Advanced Compilation
Matthias Boehm, Graz University of Technology, SS 2021

A Case for Optimizing Fusion Plans
 Problem: Fusion heuristics  poor plans for complex DAGs

(cost/structure), sparsity exploitation, and local/distributed operations
 Goal: Principled approach for optimizing fusion plans

 #1 Materialization Points
(e.g., for multiple consumers)

 #2 Sparsity Exploitation
(and ordering of sparse inputs)

 #3 Decisions on Fusion Patterns
(e.g., template types)

 #4 Constraints
(e.g., memory budget and block sizes)

Operator Fusion & JIT Compilation

Y + X * (U %*% t(V))

sparse-safe over X

 Search Space that
requires optimization

24

706.550 Architecture of Machine Learning Systems – 04 Advanced Compilation
Matthias Boehm, Graz University of Technology, SS 2021

System Architecture (Compiler & Codegen Architecture)

Operator Fusion & JIT Compilation

[CIDR’17] (w/ fuse-all heuristic)
- Lacked maintainability

- Poor plans for complex DAGs
and local/distributed operations

Practical, exact, cost-based optimizer

 CPlan representation/construction and codegen similar in TF XLA
(HLO primitives, pre-clustering of nodes, caching, LLVM codegen)

 Templates: Cell, Row, MAgg, Outer w/ different data bindings

25

706.550 Architecture of Machine Learning Systems – 04 Advanced Compilation
Matthias Boehm, Graz University of Technology, SS 2021

Codegen Example L2SVM (Cell/MAgg)

 L2SVM Inner Loop

 # of Vector Intermediates
 Base (w/o fused ops): 10
 Fused (w/ fused ops): 4

Operator Fusion & JIT Compilation

1: while(continueOuter & iter < maxi) {
2 #...
3: while(continueInner) {
4: out = 1-Y* (Xw+step_sz*Xd);
5: sv = (out > 0);
6: out = out * sv;
7: g = wd + step_sz*dd

- sum(out * Y * Xd);
8: h = dd + sum(Xd * sv * Xd);
9: step_sz = step_sz - g/h;
10: }} ...

b(*)

Xd Xwstep_sz

b(+)

b(*)

b(-)

1

b(>)

0

b(*)

Y

b(*)

b(*)

ua(RC,+)

b(-)

write g...

b(+)

b(+)

dd

wd

b(*)

b(*)

ua(RC,+)

b(+)

write h

26

706.550 Architecture of Machine Learning Systems – 04 Advanced Compilation
Matthias Boehm, Graz University of Technology, SS 2021

Codegen Example L2SVM, cont. (Cell/MAgg)

 Template Skeleton
 Data access, blocking
 Multi-threading
 Final aggregation

 # of Vector Intermediates
 Gen (codegen ops): 0

Operator Fusion & JIT Compilation

public final class TMP25 extends SpoofMAgg {
public TMP25() {

super(false, AggOp.SUM, AggOp.SUM);
}
protected void genexec(double a, SideInput[] b,
double[] scalars, double[] c, ...) {
double TMP11 = getValue(b[0], rowIndex);
double TMP12 = getValue(b[1], rowIndex);
double TMP13 = a * scalars[0];
double TMP14 = TMP12 + TMP13;
double TMP15 = TMP11 * TMP14;
double TMP16 = 1 - TMP15;
double TMP17 = (TMP16 > 0) ? 1 : 0;
double TMP18 = a * TMP17;
double TMP19 = TMP18 * a;
double TMP20 = TMP16 * TMP17;
double TMP21 = TMP20 * TMP11;
double TMP22 = TMP21 * a;
c[0] += TMP19;
c[1] += TMP22;

}
}

27

706.550 Architecture of Machine Learning Systems – 04 Advanced Compilation
Matthias Boehm, Graz University of Technology, SS 2021

Codegen Example MLogreg (Row)

 MLogreg Inner Loop
(main expression on feature matrix X)

Operator Fusion & JIT Compilation

1: Q = P[, 1:k] * (X %*% v)
2: H = t(X) %*% (Q - P[, 1:k] * rowSums(Q))

public final class TMP25 extends SpoofRow {
public TMP25() {

super(RowType.COL_AGG_B1_T, true, 5);
}
protected void genexecDense(double[] a, int ai,
SideInput[] b, double[] c,..., int len) {
double[] TMP11 = getVector(b[1].vals(rix),...);
double[] TMP12 = vectMatMult(a, b[0].vals(rix),...);
double[] TMP13 = vectMult(TMP11, TMP12, 0, 0,...);
double TMP14 = vectSum(TMP13, 0, TMP13.length);
double[] TMP15 = vectMult(TMP11, TMP14, 0,...);
double[] TMP16 = vectMinus(TMP13, TMP15, 0, 0,...);
vectOuterMultAdd(a, TMP16, c, ai, 0, 0,...); }

protected void genexecSparse(double[] avals, int[] aix,
int ai, SideInput[] b, ..., int len) {...}

}

28

706.550 Architecture of Machine Learning Systems – 04 Advanced Compilation
Matthias Boehm, Graz University of Technology, SS 2021

Candidate Exploration (by example MLogreg)

 Memo Table for partial
fusion plans (candidates)

 OFMC Template
Fusion API
 Open
 Fuse, Merge
 Close

 OFMC
Algorithm
 Bottom-up

Exploration
(single-pass,
template-
agnostic)

 Linear space
and time

Operator Fusion & JIT Compilation

Memo Table

29

706.550 Architecture of Machine Learning Systems – 04 Advanced Compilation
Matthias Boehm, Graz University of Technology, SS 2021

Candidate Selection (Partitions and Interesting Points)

 #1 Determine Plan Partitions
 Materialization

Points M
 Connected components

of fusion references
 Root and input nodes
Optimize partitions

independently

 #2 Determine Interesting Points
 Materialization Point Consumers: Each data dependency on materialization

points considered separately
 Template / Sparse Switches: Data dependencies where producer has

templates that are non-existing for consumers
 Optimizer considers all 2|M’i| plans (with |M’i| ≥ |Mi|) per partition

Operator Fusion & JIT Compilation

30

706.550 Architecture of Machine Learning Systems – 04 Advanced Compilation
Matthias Boehm, Graz University of Technology, SS 2021

Candidate Selection, cont. (Costs and Constraints)

 Overview Cost Model
 Cost partition with analytical cost model

based on peak memory and compute bandwidth
 Plan comparisons / fusion errors don’t propagate / dynamic recompilation

 #3 Evaluate Costs
 #1: Memoization of already processed sub-DAGs
 #2: Account for shared reads and CSEs within operators
 #3: Account for redundant computation (overlap)
 DAG traversal and cost vectors per fused operator

(with memoization of pairs of operators and cost vectors)

 #4 Handle Constraints
 Prefiltering violated constraints (e.g., row template in distributed ops)
 Assign infinite costs for violated constraints during costing

Operator Fusion & JIT Compilation

31

706.550 Architecture of Machine Learning Systems – 04 Advanced Compilation
Matthias Boehm, Graz University of Technology, SS 2021

Candidate Selection, cont. (MPSkipEnum and Pruning)

 #5 Basic Enumeration
 Linearized search space: from - to *

 #6 Cost-Based Pruning
 Upper bound: cost CU of best plan q* (monotonically decreasing)
 Opening heuristic: evaluate FA and FNR heuristics first
 Lower bound: CLS (read input, write output, min compute) + dynamic CLD

(materialize intermediates q)  skip subspace if CU ≤ CLS + CLD

 #7 Structural Pruning
 Observation: Assignments can create independent sub problems
 Build reachability graph to determine cut sets
 During enum: probe cut sets, recursive enum, combine, and skip

Operator Fusion & JIT Compilation

for(j in 1:pow(2,|M’i|))
q = createAssignment(j)
C = getPlanCost(Pi, q)
maintainBest(q, C)

32

706.550 Architecture of Machine Learning Systems – 04 Advanced Compilation
Matthias Boehm, Graz University of Technology, SS 2021

Ahead-of-Time Compilation
 TensorFlow tf.compile

 Compile entire TF graph into binary function w/ low footprint
 Input: Graph, config (feeds+fetches w/ fixes shape sizes)
 Output: x86 binary and C++ header (e.g., inference)
 Specialization for frozen model and sizes

 PyTorch Compile
 Compile Python functions into ScriptModule/ScriptFunction
 Lazily collect operations,

optimize, and JIT compile
 Explicit jit.script call

or @torch.jit.script

Operator Fusion & JIT Compilation

a = torch.rand(5)
def func(x):
for i in range(10):
x = x * x # unrolled into graph

return x

jitfunc = torch.jit.script(func) # JIT
jitfunc.save("func.pt")

[Vincent Quenneville-Bélair:
How PyTorch Optimizes
Deep Learning Computations,
Guest Lecture Stanford 2020]

[Chris Leary, Todd Wang:
XLA – TensorFlow, Compiled!,

TF Dev Summit 2017]

33

706.550 Architecture of Machine Learning Systems – 04 Advanced Compilation
Matthias Boehm, Graz University of Technology, SS 2021

Excursus: MLIR
 Motivation TF Compiler Ecosystem

 Different IRs and compilation
chains for runtime backends

 Duplication of infrastructure
and fragile error handling

 MLIR (Multi-level, Machine Learning IR)
 SSA-based IR, similar to LLVM
 Hierarchy of modules, functions,

regions, blocks, and operations
 Dialects for different backends

(defined ops, customization)
 Systematic lowering

Operator Fusion & JIT Compilation

[Rasmus Munk Larsen, Tatiana Shpeisman:
TensorFlow Graph Optimizations,

Guest Lecture Stanford 2019]

func @testFunction(%arg0: i32) {
%x = call @thingToCall(%arg0)
: (i32) -> i32

br ^bb1
^bb1:
%y = addi %x, %x : i32
return %y : i32

}

[Chris Lattner et al.: MLIR: A Compiler
Infrastructure for the End of Moore's Law. CoRR

2020, https://arxiv.org/pdf/2002.11054.pdf]

Presenter
Presentation Notes
Note: Regions consist of a CFG of blocks with arguments, blocks contain list of operations, ops can contain nested regions.

https://arxiv.org/pdf/2002.11054.pdf

34

706.550 Architecture of Machine Learning Systems – 04 Advanced Compilation
Matthias Boehm, Graz University of Technology, SS 2021

func @main() {
%G = daphne.rand {rows=50, cols=50, seed=-1, sparsity=0.07} : ...
%initP = daphne.rand {rows=50, cols=1, seed=-1, sparsity=1.0} : ...
%e, %u ...
%alpha = daphne.constant 0.5 : f64
%initI = daphne.constant 0 : i64
%loop:2 = daphne.while(%p = %initP, %i = %initI) :
(!daphne.matrix<?x?xf64>, i64) -> (!daphne.matrix<?x?xf64>, i64) condition: {
%max_iteration = daphne.constant 10 : i64
%c = cmpi "ult", %i, %max_iteration : i64
daphne.yield %c : i1

} body: {
%1 = daphne.mat_mul %G, %p : (!daphne.matrix<?x?xf64>, !daphne.matrix<?x?xf64>) -> !daphne.matrix<?x?xf64>
%2 = daphne.mul %alpha, %1 : (f64, !daphne.matrix<?x?xf64>) -> !daphne.matrix<?x?xf64>
%3 = daphne.mat_mul %e, %u : (!daphne.matrix<?x?xf64>, !daphne.matrix<?x?xf64>) -> !daphne.matrix<?x?xf64>
%4 = daphne.mat_mul %3, %p : (!daphne.matrix<?x?xf64>, !daphne.matrix<?x?xf64>) -> !daphne.matrix<?x?xf64>
%cst1f = daphne.constant 1.0 : f64
%5 = daphne.sub %cst1f, %alpha : (f64, f64) -> f64
%6 = daphne.mul %5, %4 : (f64, !daphne.matrix<?x?xf64>) -> !daphne.matrix<?x?xf64>
%newP = daphne.add %2, %6 : (!daphne.matrix<?x?xf64>, !daphne.matrix<?x?xf64>) -> !daphne.matrix<?x?xf64>
%cst1 = daphne.constant 1 : i64
%nextI = daphne.add %i, %cst1 : (i64, i64) -> i64
daphne.yield %newP, %nextI : !daphne.matrix<?x?xf64>, i64

}
daphne.print %loop#0 : !daphne.matrix<?x?xf64>
daphne.return

}

Excursus: MLIR, cont.
(DAPHNE pre-project prototype)

Operator Fusion & JIT Compilation

while(i < max_iter) { # PageRank
p = alpha*(G%*%p) + (1-alpha)*(e%*%u%*%p);
i += 1;

}

Initial translation w/o
much optimization

module {
func @main() {
%0 = daphne.constant 5.000000e-01 : f64
%1 = daphne.constant 0 : i64
%2 = daphne.constant 1.000000e+00 : f64
%3 = daphne.constant 1 : i64
%4 = daphne.constant 10 : i64
%5 = daphne.rand {cols = 50 : i64, rows = 50 : i64, seed = -1 : i64, sparsity = 7.000000e-02 : f64} : () -> ...
%6, %7, %8 = ...
%9 = daphne.sub %2, %0 : (f64, f64) -> f64
%10:2 = daphne.while (%arg0 = %6, %arg1 = %1) : (!daphne.matrix<50x1xf64>, i64) -> (same) condition: {
%11 = cmpi "ult", %arg1, %4 : i64
daphne.yield %11 : i1

} body: {
%11 = daphne.mat_mul %5, %arg0 : (!daphne.matrix<50x50xf64>, !daphne.matrix<50x1xf64>) -> !daphne.matrix<50x1xf64>
%12 = daphne.mul %11, %0 : (!daphne.matrix<50x1xf64>, f64) -> !daphne.matrix<50x1xf64>
%13 = daphne.mat_mul %8, %arg0 : (!daphne.matrix<1x50xf64>, !daphne.matrix<50x1xf64>) -> !daphne.matrix<1x1xf64>
%14 = daphne.mat_mul %7, %13 : (!daphne.matrix<50x1xf64>, !daphne.matrix<1x1xf64>) -> !daphne.matrix<50x1xf64>
%15 = daphne.mul %9, %14 : (f64, !daphne.matrix<50x1xf64>) -> !daphne.matrix<50x1xf64>
%16 = daphne.add %12, %15 : (!daphne.matrix<50x1xf64>, !daphne.matrix<50x1xf64>) -> !daphne.matrix<50x1xf64>
%17 = daphne.add %arg1, %3 : (i64, i64) -> i64
daphne.yield %16, %17 : !daphne.matrix<50x1xf64>, i64

}
daphne.print %10#0 : !daphne.matrix<50x1xf64>
daphne.return

}
}

3) Code motion outside loop

2) Matrix multiplication chain reordered

1) Shape inference of dimensions

After Several Optimization Passes

35

706.550 Architecture of Machine Learning Systems – 04 Advanced Compilation
Matthias Boehm, Graz University of Technology, SS 2021

Conclusions
 Summary

 Motivation and Terminology
 Runtime Adaptation
 Operator Fusion & JIT

 Impact of Size Inference and Costs (lecture 03)
 Ubiquitous Rewrite, Fusion, and Codegen/JIT Opportunities

 Next Lectures (Runtime Aspects)
 Easter break: Mar 27 – Apr 10
 05 Data- and Task-Parallel Execution (batch/prog) [Apr 16]
 06 Parameter Servers (mini-batch) [Apr 23]
 07 Hybrid Execution and HW Accelerators [Apr 30]
 08 Caching, Partitioning, Indexing and Compression [May 07]

Recommended Reading
[Chris Leary, Todd Wang: XLA –
TensorFlow, Compiled!, TF Dev Summit 2017,
https://www.youtube.com/watch?time_continue=1541
&v=kAOanJczHA0&feature=emb_logo]

https://www.youtube.com/watch?time_continue=1541&v=kAOanJczHA0&feature=emb_logo

	Architecture of ML Systems�04 Adaptation, Fusion, and JIT
	Announcements/Org
	Agenda
	Motivation and Terminology
	Recap: Linear Algebra Systems
	Major Compilation/Runtime Challenges
	Terminology Ahead-of-Time / Just-in-Time
	Terminology Runtime Adaptation & JIT
	Runtime Adaptation
	Issues of Unknown or Changing Sizes
	Issues of Unknown or Changing Sizes, cont.
	Recompilation
	Dynamic Recompilation
	Dynamic Recompilation, cont.
	Dynamic Recompilation, cont.
	Operator Fusion & JIT Compilation �(aka Code Generation)
	Motivation: Fusion
	Motivation: Fusion, cont.
	Motivation: Just-In-Time Compilation
	Operator Fusion Overview
	Evolution of Operator Fusion in ML Systems
	Automatic Operator Fusion System Landscape
	A Case for Optimizing Fusion Plans
	System Architecture (Compiler & Codegen Architecture)
	Codegen Example L2SVM (Cell/MAgg)
	Codegen Example L2SVM, cont. (Cell/MAgg)
	Codegen Example MLogreg (Row)
	Candidate Exploration (by example MLogreg)
	Candidate Selection (Partitions and Interesting Points)
	Candidate Selection, cont. (Costs and Constraints)
	Candidate Selection, cont. (MPSkipEnum and Pruning)
	Ahead-of-Time Compilation
	Excursus: MLIR
	Excursus: MLIR, cont.�(DAPHNE pre-project prototype)
	Conclusions

