
1
SCIENCE
PASSION

TECHNOLOGY

Architecture of ML Systems
05 Data- and Task-Parallel Execution
Matthias Boehm

Graz University of Technology, Austria

Institute of Interactive Systems and Data Science
Computer Science and Biomedical Engineering

BMK endowed chair for Data Management

Last update: Apr 15, 2021

2

706.550 Architecture of Machine Learning Systems – 05 Execution Strategies
Matthias Boehm, Graz University of Technology, SS 2021

Announcements/Org
 #1 Video Recording

 Link in TeachCenter & TUbe (lectures will be public)
 Streaming: https://tugraz.webex.com/meet/m.boehm
 Corona traffic light RED until end of April

 #2 Programming Projects / Exercises (34/55)
 Apache SystemDS: 24 projects / 37 students
 DAPHNE: 2 projects / 2 students
 Exercises: 8 projects / 16 students  TeachCenter
 Registration: Apr 02, Deadline: June 30 (soft)
 Kickoff meetings completed tonight

https://tugraz.webex.com/meet/m.boehm

3

706.550 Architecture of Machine Learning Systems – 05 Execution Strategies
Matthias Boehm, Graz University of Technology, SS 2021

Agenda
 Motivation and Terminology
 Background MapReduce and Spark
 Data-Parallel Execution
 Task-Parallel Execution

4

706.550 Architecture of Machine Learning Systems – 05 Execution Strategies
Matthias Boehm, Graz University of Technology, SS 2021

Motivation and Terminology

5

706.550 Architecture of Machine Learning Systems – 05 Execution Strategies
Matthias Boehm, Graz University of Technology, SS 2021

Terminology Optimization Methods
 Problem: Given a continuous, differentiable function 𝒇𝒇(𝑫𝑫,𝜽𝜽),

find optimal parameters 𝜽𝜽∗ = argmin 𝒇𝒇(𝑫𝑫,𝜽𝜽)

 #1 Gradient Methods (1st order)
 Pick a starting point, compute gradient, descent in

opposite direction of gradient −𝛾𝛾𝛻𝛻𝒇𝒇(𝑫𝑫,𝜽𝜽)

 #2 Newton’s Method (2nd order)
 Pick a starting point, compute gradient,

descend to where derivative = 0 (via 2nd derivate)
 Jacobian/Hessian matrices for multi-dimensional

 #3 Quasi-Newton Methods
 Incremental approximation of Hessian
 Algorithms: BFGS, L-BFGS, Conjugate Gradient (CG)
 Example: L-BFGS-B, AR(2), MSE, N=100

EnBW energy-demand time series

Motivation and Terminology

θ2

θ1

x0x1x2 x3

θ1

Presenter
Presentation Notes
BFGS vs CG: https://pubsonline.informs.org/doi/abs/10.1287/moor.3.3.244

6

706.550 Architecture of Machine Learning Systems – 05 Execution Strategies
Matthias Boehm, Graz University of Technology, SS 2021

Terminology Batch/Mini-batch
 Batch ML Algorithms

 Iterative ML algorithms, where each iteration
uses the entire dataset to compute gradients ΔW

 For (pseudo-)second-order methods, many features
 Dedicated optimizers for traditional ML algorithms

 Mini-batch ML Algorithms
 Iterative ML algorithms, where each iteration

only uses a batch of rows to make the
next model update (in epochs or w/ sampling)

 For large and highly redundant training sets
 Applies to almost all iterative, model-based

ML algorithms (LDA, reg., class., factor., DNN)
 Stochastic Gradient Descent (SGD)

Motivation and Terminology

Data

Batch 2

Batch 1

Epoch

W’
W’’

Data
W’

7

706.550 Architecture of Machine Learning Systems – 05 Execution Strategies
Matthias Boehm, Graz University of Technology, SS 2021

Recap: Central Data Abstractions
 #1 Files and Objects

 File: Arbitrarily large sequential data in specific file format (CSV, binary, etc)
 Object: binary large object, with certain meta data

 #2 Distributed Collections
 Logical multi-set (bag) of key-value pairs

(unsorted collection)
 Different physical representations
 Easy distribution of pairs

via horizontal partitioning
(aka shards, partitions)

 Can be created from single file,
or directory of files (unsorted)

Motivation and Terminology

Key Value
4 Delta
2 Bravo
1 Alfa
3 Charlie
5 Echo
6 Foxtrot
7 Golf
1 Alfa

8

706.550 Architecture of Machine Learning Systems – 05 Execution Strategies
Matthias Boehm, Graz University of Technology, SS 2021

Terminology Parallelism
 Flynn’s Classification

 SISD, SIMD
 (MISD), MIMD

 Example: SIMD Processing
 Streaming SIMD Extensions (SSE)
 Process the same operation on

multiple elements at a time
(packed vs scalar SSE instructions)

 Data parallelism
(aka: instruction-level parallelism)

 Example: VFMADD132PD

Motivation and Terminology

SISD
(uni-core)

SIMD
(vector)

MISD
(pipelining)

MIMD
(multi-core)

Single Data Multiple Data

Single
Instruction

Multiple
Instruction

2009 Nehalem: 128b (2xFP64)
2012 Sandy Bridge: 256b (4xFP64)

2017 Skylake: 512b (8xFP64)

a
b
c

c = _mm512_fmadd_pd(a, b);

[Michael J. Flynn, Kevin W.
Rudd: Parallel Architectures.
ACM Comput. Surv. 28(1) 1996]

9

706.550 Architecture of Machine Learning Systems – 05 Execution Strategies
Matthias Boehm, Graz University of Technology, SS 2021

Excursus: Peak Performance
 Example Scale-up Node (DM cluster)

 Peak := 2 Sockets * 28 Cores * 2.2 GHz
* 2 FMA units * 16 FP32 slots (AVX512) * 2 (FMA)
= 7.7 TFLOP/s (FP32) = 3.85 TFLOP/s (FP64)

Motivation and Terminology

SystemDS matmult
w/ BLAS (Intel MKL):
2.23 TFLOP/s (FP64)

10

706.550 Architecture of Machine Learning Systems – 05 Execution Strategies
Matthias Boehm, Graz University of Technology, SS 2021

Terminology Parallelism, cont.
 Distributed, Data-Parallel

Computation
 Parallel computation of function foo()  single instruction
 Collection X of data items (key-value pairs) multiple data
 Data parallelism similar to SIMD but more coarse-grained notion of

“instruction” and “data”  SPMD (single program, multiple data)

 Additional Terminology
 BSP: Bulk Synchronous Parallel (global barriers)
 ASP: Asynchronous Parallel (no barriers, often with accuracy impact)
 SSP: Stale-synchronous parallel (staleness constraint on fastest-slowest)
 Other: Fork&Join, Hogwild!, event-based, decentralized

 Beware: data parallelism used in very different contexts (e.g., Param Server)

Motivation and Terminology

Y = X.map(x -> foo(x))

[Frederica Darema: The SPMD Model : Past,
Present and Future. PVM/MPI 2001]

11

706.550 Architecture of Machine Learning Systems – 05 Execution Strategies
Matthias Boehm, Graz University of Technology, SS 2021

Recap: Fault Tolerance & Resilience
 Resilience Problem

 Increasing error rates at scale
(soft/hard mem/disk/net errors)

 Robustness for preemption
 Need for cost-effective resilience

 Fault Tolerance in Large-Scale Computation
 Block replication in distributed file systems
 ECC; checksums for blocks, broadcast, shuffle
 Checkpointing (all task outputs / on request)
 Lineage-based recomputation for recovery in Spark

 ML-specific Approaches (exploit app characteristics)
 Estimate contribution from lost partition to avoid strugglers
 Example: user-defined “compensation” functions

Motivation and Terminology

[Google Data Center:
https://www.youtube.com/watch?v=XZmGGAbHqa0]

https://www.youtube.com/watch?v=XZmGGAbHqa0

12

706.550 Architecture of Machine Learning Systems – 05 Execution Strategies
Matthias Boehm, Graz University of Technology, SS 2021

Categories of Execution Strategies
Motivation and Terminology

07 Hybrid Execution and HW Accelerators [Apr 30]

05a Data-Parallel
Execution
[Apr 03]

05b Task-Parallel
Execution
[Apr 03]

06 Parameter Servers
(data, model)

[Apr 23]

Mini-batchBatch
SIMD/SPMD

Batch/Mini-batch,
Independent Tasks

MIMD

05a Data-Parallel
Execution
[Apr 16]

05b Task-Parallel
Execution
[Apr 16]

08 Caching, Partitioning, Indexing, and Compression [May 07]

13

706.550 Architecture of Machine Learning Systems – 05 Execution Strategies
Matthias Boehm, Graz University of Technology, SS 2021

Background MapReduce and Spark
(Data-Parallel Collection Processing)

Abstractions for Fault-tolerant,
Distributed Storage and Computation

14

706.550 Architecture of Machine Learning Systems – 05 Execution Strategies
Matthias Boehm, Graz University of Technology, SS 2021

Hadoop History and Architecture
 Recap: Brief History

 Google’s GFS [SOSP’03] + MapReduce
 Apache Hadoop (2006)

 Apache Hive (SQL), Pig (ETL), Mahout (ML), Giraph (Graph)

 Hadoop Architecture / Eco System
 Management (Ambari)
 Coordination / workflows

(Zookeeper, Oozie)
 Storage (HDFS)
 Resources (YARN)

[SoCC’13]
 Processing

(MapReduce)

Data-Parallel Collection Processing

NameNode

Head Node

Worker Node 1

Resource
Manager Node

Manager

MR
AM

MR
task

MR
task

MR
task

Worker Node n

Node
Manager

MR
task

MR
task

MR
task

MR
task

MR Client DataNode
1 3 2

DataNode
3 2 9

[Jeffrey Dean, Sanjay
Ghemawat: MapReduce:

Simplified Data Processing on
Large Clusters. OSDI 2004]

15

706.550 Architecture of Machine Learning Systems – 05 Execution Strategies
Matthias Boehm, Graz University of Technology, SS 2021

MapReduce – Programming Model
 Overview Programming Model

 Inspired by functional programming languages
 Implicit parallelism (abstracts distributed storage and processing)
 Map function: key/value pair  set of intermediate key/value pairs
 Reduce function: merge all intermediate values by key

 Example

Data-Parallel Collection Processing

map(Long pos, String line) {
parts ß line.split(“,”)
emit(parts[1], 1)

}

Name Dep

X CS

Y CS

A EE

Z CS

CS 1

CS 1

EE 1

CS 1

SELECT Dep, count(*) FROM csv_files GROUP BY Dep

reduce(String dep,
Iterator<Long> iter) {

total ß iter.sum();
emit(dep, total)

} CS 3

EE 1
Collection of

key/value pairs

16

706.550 Architecture of Machine Learning Systems – 05 Execution Strategies
Matthias Boehm, Graz University of Technology, SS 2021

MapReduce – Execution Model
Data-Parallel Collection Processing

CSV
File 1

Input CSV files
(stored in HDFS)

CSV
File 2

CSV
File 3

Output Files
(HDFS)

Out 1

Out 2

Out 3

Split 11

Split 12

Split 21

Split 22

Split 31

Split 32

map
task

map
task
map
task

map
task

map
task
map
task
Sort, [Combine], [Compress]

Map-Phase

[Reduce-Phase]

reduce
task

reduce
task

reduce
task

Shuffle, Merge,
[Combine]

#1 Data Locality (delay sched., write affinity)
#2 Reduced shuffle (combine)
#3 Fault tolerance (replication, attempts)

w/ #reducers = 3

17

706.550 Architecture of Machine Learning Systems – 05 Execution Strategies
Matthias Boehm, Graz University of Technology, SS 2021

Spark History and Architecture
 Summary MapReduce

 Large-scale & fault-tolerant processing w/ UDFs and files  Flexibility
 Restricted functional APIs  Implicit parallelism and fault tolerance
 Criticism: #1 Performance, #2 Low-level APIs, #3 Many different systems

 Evolution to Spark (and Flink)
 Spark [HotCloud’10] + RDDs [NSDI’12]  Apache Spark (2014)
 Design: standing executors with in-memory storage,

lazy evaluation, and fault-tolerance via RDD lineage
 Performance: In-memory storage and fast job scheduling (100ms vs 10s)
 APIs: Richer functional APIs and general computation DAGs,

high-level APIs (e.g., DataFrame/Dataset), unified platform

 But many shared concepts/infrastructure
 Implicit parallelism through dist. collections (data access, fault tolerance)
 Resource negotiators (YARN, Mesos, Kubernetes)
 HDFS and object store connectors (e.g., Swift, S3)

Data-Parallel Collection Processing

18

706.550 Architecture of Machine Learning Systems – 05 Execution Strategies
Matthias Boehm, Graz University of Technology, SS 2021

Spark History and Architecture, cont.
 High-Level Architecture

 Different language bindings:
Scala, Java, Python, R

 Different libraries:
SQL, ML, Stream, Graph

 Spark core (incl RDDs)
 Different cluster managers:

Standalone, Mesos,
Yarn, Kubernetes

 Different file systems/
formats, and data sources:
HDFS, S3, SWIFT, DBs, NoSQL

 Focus on a unified platform
for data-parallel computation (Apache Flink w/ similar goals)

Data-Parallel Collection Processing

[https://spark.apache.org/]

Standalone MESOS YARN Kubernetes

https://spark.apache.org/

19

706.550 Architecture of Machine Learning Systems – 05 Execution Strategies
Matthias Boehm, Graz University of Technology, SS 2021

Spark Resilient Distributed Datasets (RDDs)
 RDD Abstraction

 Immutable, partitioned
collections of key-value pairs

 Coarse-grained deterministic operations (transformations/actions)
 Fault tolerance via lineage-based re-computation

 Operations
 Transformations:

define new RDDs
 Actions: return

result to driver

 Distributed Caching
 Use fraction of worker memory for caching
 Eviction at granularity of individual partitions
 Different storage levels (e.g., mem/disk x serialization x compression)

Data-Parallel Collection Processing

JavaPairRDD<MatrixIndexes,MatrixBlock>

Type Examples

Transformation
(lazy)

map, hadoopFile, textFile,
flatMap, filter, sample, join,

groupByKey, cogroup, reduceByKey,
cross, sortByKey, mapValues

Action reduce, save,
collect, count, lookupKey

Node1 Node2

20

706.550 Architecture of Machine Learning Systems – 05 Execution Strategies
Matthias Boehm, Graz University of Technology, SS 2021

Spark Resilient Distributed Datasets (RDDs), cont.
 Lifecycle of an RDD

 Note: can’t broadcast
an RDD directly

Data-Parallel Collection Processing

File on DFS

Distributed
Collection

Local Data
(value, collection)

sc.parallelize(lst)

lst = X.collect()
v = X.reduce(foo())

X.filter(foo())
X.mapValues(foo())
X.reduceByKey(foo())
X.cache()/X.persist(…)

X.saveAsObjectFile(f)
X.saveAsTextFile(f)

sc.hadoopFile(f)
sc.textFile(f)

21

706.550 Architecture of Machine Learning Systems – 05 Execution Strategies
Matthias Boehm, Graz University of Technology, SS 2021

Spark Partitions and Implicit/Explicit Partitioning
 Spark Partitions

 Logical key-value collections are split into physical partitions
 Partitions are granularity of tasks, I/O, shuffling, evictions

 Partitioning via Partitioners
 Implicitly on every data shuffling
 Explicitly via R.repartition(n)

 Partitioning-Preserving
 All operations that are guaranteed to keep keys unchanged

(e.g. mapValues(), mapPartitions() w/ preservesPart flag)

 Partitioning-Exploiting
 Join: R3 = R1.join(R2)
 Lookups:
v = C.lookup(k)

Data-Parallel Collection Processing

Example Hash Partitioning:
For all (k,v) of R:
pid = hash(k) % n

0: 8, 1, 6

1: 7, 5

2: 2, 3, 4

0: 1, 2

1: 5, 6

2: 3, 4

0: 3, 6

1: 4, 7, 1

2: 2, 5, 8

0: 6, 3

1: 4, 1

2: 5, 2

% 3
⋈ ⋈

Hash partitioned

~128MB

22

706.550 Architecture of Machine Learning Systems – 05 Execution Strategies
Matthias Boehm, Graz University of Technology, SS 2021

Spark Lazy Evaluation, Caching, and Lineage
Data-Parallel Collection Processing

join
union

groupBy

Stage 3

Stage 1

Stage 2

A B

C D F

G

map

partitioning-
aware

E

[Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy
McCauly, Michael J. Franklin, Scott Shenker, Ion Stoica: Resilient Distributed Datasets: A

Fault-Tolerant Abstraction for In-Memory Cluster Computing. NSDI 2012]

reduce

cached

Presenter
Presentation Notes
Notes:
Dryad-­‐like DAGs
Pipelines functions within a stage
Locality & data reuse aware
Partitioning-­‐aware to avoid shuffles

23

706.550 Architecture of Machine Learning Systems – 05 Execution Strategies
Matthias Boehm, Graz University of Technology, SS 2021

Data-Parallel Execution
Batch ML Algorithms

24

706.550 Architecture of Machine Learning Systems – 05 Execution Strategies
Matthias Boehm, Graz University of Technology, SS 2021

Background: Matrix Formats
 Matrix Block (m x n)

 A.k.a. tiles/chunks, most operations defined here
 Local matrix: single block, different representations

 Common Block Representations
 Dense (linearized arrays)
 MCSR (modified CSR)
 CSR (compressed sparse rows), CSC
 COO (Coordinate matrix)

Data-Parallel Execution

.7 .1

.2 .4
.3

Example
3x3 Matrix

.7 0 .1 .2 .4 0 0 .3 0
Dense (row-major)

.7

.1

.2

.4

.3

0
2
0
1
1

0
2
4
5

CSR

.7

.1

.2

.4

.3

0
2
0
1
1

COO

0
0
1
1
2

.7 .1
2

MCSR

0

.2 .4
10

.3
1O(mn)

O(m + nnz(X)) O(nnz(X))

25

706.550 Architecture of Machine Learning Systems – 05 Execution Strategies
Matthias Boehm, Graz University of Technology, SS 2021

Distributed Matrix Representations
 Collection of “Matrix Blocks” (and keys)

 Bag semantics (duplicates, unordered)
 Logical (Fixed-Size) Blocking

+ join processing / independence
- (sparsity skew)

 E.g., SystemML on Spark:
JavaPairRDD<MatrixIndexes,MatrixBlock>

 Blocks encoded independently (dense/sparse)

 Partitioning
 Logical Partitioning

(e.g., row-/column-wise)
 Physical Partitioning

(e.g., hash / grid)

Data-Parallel Execution

Logical Blocking
3,400x2,700 Matrix

(w/ Bc=1,000)

Physical
Blocking and
Partitioning

26

706.550 Architecture of Machine Learning Systems – 05 Execution Strategies
Matthias Boehm, Graz University of Technology, SS 2021

Distributed Matrix Representations, cont.
 #1 Block-partitioned Matrices

 Fixed-size, square or rectangular blocks
 Pros: Input/output alignment, block-local transpose,

amortize block overheads, bounded mem, cache-conscious
 Cons: Converting row-wise inputs (e.g., text) requires shuffle
 Examples: RIOT, PEGASUS, SystemML, SciDB, Cumulon,

Distributed R, DMac, Spark Mllib, Gilbert, MatFast, and SimSQL
 #2 Row/Column-partitioned Matrices

 Collection of row indexes and rows (or columns respectively)
 Pros: Seamless data conversion and access to entire rows
 Cons: Storage overhead in Java, and cache unfriendly operations
 Examples: Spark MLlib, Mahout Samsara, Emma, SimSQL

 #3 Algorithm-specific Partitioning
 Operation and algorithm-centric data representations
 Examples: matrix inverse, matrix factorization

Data-Parallel Execution

27

706.550 Architecture of Machine Learning Systems – 05 Execution Strategies
Matthias Boehm, Graz University of Technology, SS 2021

Distributed Matrix Operations
Data-Parallel Execution

Elementwise Multiplication
(Hadamard Product) Transposition

Matrix
Multiplication

Note: also with
row/column vector rhs

Note: 1:N join

28

706.550 Architecture of Machine Learning Systems – 05 Execution Strategies
Matthias Boehm, Graz University of Technology, SS 2021

Physical MM Operator Selection
 Common Selection Criteria

 Data and cluster characteristics (e.g., data size/shape, memory, parallelism)
 Matrix/operation properties (e.g., diagonal/symmetric, sparse-safe ops)
 Data flow properties (e.g., co-partitioning, co-location, data locality)

 #0 Local Operators
 SystemML mm, tsmm, mmchain; Samsara/Mllib local

 #1 Special Operators (special patterns/sparsity)
 SystemML tsmm, mapmmchain; Samsara AtA

 #2 Broadcast-Based Operators (aka broadcast join)
 SystemML mapmm, mapmmchain

 #3 Co-Partitioning-Based Operators (aka improved repartition join)
 SystemML zipmm; Emma, Samsara OpAtB

 #4 Shuffle-Based Operators (aka repartition join)
 SystemML cpmm, rmm; Samsara OpAB

Data-Parallel Execution

X

v

X

1st

pass 2nd

pass

q┬

t(X) %*% (X%*%v)

29

706.550 Architecture of Machine Learning Systems – 05 Execution Strategies
Matthias Boehm, Graz University of Technology, SS 2021

 Examples Distributed MM Operators

Physical MM Operator Selection, cont.
Data-Parallel Execution

X1,1

X2,1

X3,1

X1,2

X2,2

X3,2

X4,1 X4,2

Y
1,1

Y
2,1

Y1,1

Y2,1

Y3,1

Y1,2

Y2,2

Y3,2

Y4,1 Y4,2

X1,1

X2,1

X1,3X1,2

X2,2

X1,4

X2,3 X2,4

Broadcast-based
MM (mapmm)

Shuffle-based
MM (cpmm)

30

706.550 Architecture of Machine Learning Systems – 05 Execution Strategies
Matthias Boehm, Graz University of Technology, SS 2021

Partitioning-Preserving Operations
 Shuffle is major bottleneck for ML on Spark
 Preserve Partitioning

 Op is partitioning-preserving if keys unchanged (guaranteed)
 Implicit: Use restrictive APIs (mapValues() vs mapToPair())
 Explicit: Partition computation w/ declaration of partitioning-preserving

 Exploit Partitioning
 Implicit: Operations based on join, cogroup, etc
 Explicit: Custom operators (e.g., zipmm)

 Example:
Multiclass SVM
 Vectors fit

neither into
driver nor
broadcast

 ncol(X) ≤ Bc

Data-Parallel Execution

parfor(iter_class in 1:num_classes) {
Y_local = 2 * (Y == iter_class) - 1
g_old = t(X) %*% Y_local
...
while(continue) {

Xd = X %*% s
... inner while loop (compute step_sz)
Xw = Xw + step_sz * Xd;
out = 1 - Y_local * Xw;
out = (out > 0) * out;
g_new = t(X) %*% (out * Y_local) ...

repart, chkpt X MEM_DISK

chkpt y_local MEM_DISK

zipmm

chkpt Xd, Xw MEM_DISK

31

706.550 Architecture of Machine Learning Systems – 05 Execution Strategies
Matthias Boehm, Graz University of Technology, SS 2021

Dask
 Overview Dask

 Multi-threaded and distributed operations for arrays, bags, and dataframes
 dask.array:

list of numpy n-dim arrays
 dask.dataframe:

list of pandas data frames
 dask.bag:unordered list of tuples (second order functions)
 Local and distributed schedulers:

threads, processes, YARN, Kubernetes, containers, HPC, and cloud, GPUs

 Execution
 Lazy evaluation
 Limitation: requires

static size inference
 Triggered via
compute()

Data-Parallel Execution

[Matthew Rocklin: Dask: Parallel Computation with Blocked
algorithms and Task Scheduling, Python in Science 2015]
[Dask Development Team: Dask: Library for dynamic task

scheduling, 2016, https://dask.org]

import dask.array as da

x = da.random.random(
(10000,10000), chunks=(1000,1000))

y = x + x.T
y.persist() # cache in memory
z = y[::2, 5000:].mean(axis=1) # colMeans
ret = z.compute() # returns NumPy array

Presenter
Presentation Notes
Note: somewhat in competition w/ PySpark (but not out-of-core), scalable ML algorithms via https://ml.dask.org/ (partnering with scikit-learn, XGBoost)

https://dask.org/

32

706.550 Architecture of Machine Learning Systems – 05 Execution Strategies
Matthias Boehm, Graz University of Technology, SS 2021

Task-Parallel Execution
Parallel Computation of Independent Tasks,

Emulation of Data-Parallel Operations/Programs

33

706.550 Architecture of Machine Learning Systems – 05 Execution Strategies
Matthias Boehm, Graz University of Technology, SS 2021

Overview Task-Parallelism
 Historic Perspective

 Since 1980s: various parallel Fortran extensions, especially in HPC
 DOALL parallel loops (independent iterations)
 OpenMP (since 1997,

Open Multi-Processing)

 Motivation: Independent Tasks in ML Workloads
 Use cases: Ensemble learning, cross validation, hyper-parameter tuning,

complex models with disjoint/overlapping/all data per task
 Challenge #1: Adaptation to data and cluster characteristics
 Challenge #2: Combination with data-parallelism

Task-Parallel Execution

#pragma omp parallel for reduction(+: nnz)
for (int i = 0; i < N; i++) {
int threadID = omp_get_thread_num();
R[i] = foo(A[i]);
nnz += (R[i]!=0) ? 1 : 0;

}

34

706.550 Architecture of Machine Learning Systems – 05 Execution Strategies
Matthias Boehm, Graz University of Technology, SS 2021

Parallel For Loops (ParFor)
 Hybrid Parallelization Strategies

 Combination of data- and task-parallel ops
 Combination of local and distributed computation

 Key Aspects
 Dependency Analysis
 Task partitioning
 Data partitioning, scan

sharing, various rewrites
 Execution strategies
 Result agg strategies
 ParFor optimizer

Task-Parallel Execution

reg = 10^(seq(-1,-10))
B_all = matrix(0, nrow(reg), n)

parfor(i in 1:nrow(reg)) {
B = lm(X, y, reg[i,1]);
B_all[i,] = t(B);

}

Local ParFor
(multi-threaded),

w/ local ops

Remote ParFor
(distributed
Spark job)

Local ParFor,
w/ concurrent
distributed ops

[M. Boehm et al.: Hybrid Parallelization
Strategies for Large-Scale Machine Learning

in SystemML. PVLDB 2014]

Presenter
Presentation Notes
NOTE: dependency analysis (constant, greatest common denominator if dependency possible, Banerjee if dependencies in loop bounds)

35

706.550 Architecture of Machine Learning Systems – 05 Execution Strategies
Matthias Boehm, Graz University of Technology, SS 2021

Additional ParFor Examples
 Pairwise Pearson Correlation

 In practice: uni/bivariate stats
 Pearson‘s R, Anova F, Chi-squared,

Degree of freedom, P-value,
Cramers V, Spearman, etc)

 Batch-wise CNN Scoring
 Emulate data-parallelism

for complex functions

 Conceptual Design:
Coordinator/worker (task: group of parfor iterations)

Task-Parallel Execution

D = read("./input/D");
R = matrix(0, ncol(D), ncol(D));
parfor(i in 1:(ncol(D)-1)) {

X = D[,i];
sX = sd(X);
parfor(j in (i+1):ncol(D)) {

Y = D[,j];
sY = sd(Y);
R[i,j] = cov(X,Y)/(sX*sY);

} }
write(R, "./output/R");

prob = matrix(0, Ni, Nc)
parfor(i in 1:ceil(Ni/B)) {

Xb = X[((i-1)*B+1):min(i*B,Ni),];
prob[((i-1)*B+1):min(i*B,Ni),] =

... # CNN scoring
}

36

706.550 Architecture of Machine Learning Systems – 05 Execution Strategies
Matthias Boehm, Graz University of Technology, SS 2021

parfor(i in 1:(ncol(D)-1)) {
X = D[,i];
sX = sd(X);
parfor(j in (i+1):ncol(D)) {

Y = D[,j];

ParFor Execution Strategies
 #1 Task Partitioning

 Fixed-size schemes:
naive (1) , static (n/k), fixed (m)

 Self-scheduling: e.g.,
guided self scheduling, factoring

 #2 Data Partitioning
 Local or remote row/column

partitioning (incl locality)

 #3 Task Execution
 Local (multi-core) execution
 Remote (MR/Spark) execution

 #4 Result Aggregation
 With and without compare (non-empty output variable)
 Local in-memory / remote MR/Spark result aggregation

Task-Parallel Execution

Local
ParWorker k

ParFOR (local)

Local
ParWorker 1

 while(wßdeq())
 foreach pi ∈ w
 execute(prog(pi))

Task Partitioning

Parallel Result Aggregation

Task Queue

...

w5: i, {11}
w4: i, {9,10}
w3: i, {7, 8 }
w2: i, {4,5,6}
w1: i, {1,2,3}

Hadoop
ParWorker
Mapper k

ParFOR (remote)

 ParWorker
Mapper 1

 map(key,value)
 wßparse(value)
 foreach pi ∈ w
 execute(prog(pi))

Task Partitioning

Parallel Result Aggregation

...

…
A|MATRIX|./out/A7tmp

w5: i, {11}
w4: i, {9,10}
w3: i, {7, 8 }
w2: i, {4,5,6}
w1: i, {1,2,3}

Factoring (n=101, k=4)

(13,13,13,13, 7,7,7,7, 3,3,3,3, 2,2,2,2, 1)

37

706.550 Architecture of Machine Learning Systems – 05 Execution Strategies
Matthias Boehm, Graz University of Technology, SS 2021

ParFor Optimizer Framework
 Design: Runtime optimization for each top-level parfor

 Plan Tree P
 Nodes NP

 Exec type et
 Parallelism k
 Attributes A

 Height h
 Exec contexts ECP

 Plan Tree
Optimization
Objective

 Heuristic optimizer w/ transformation-based search strategy
 Cost and memory estimates w/ plan tree aggregate statistics

Task-Parallel Execution

ParFOR

b(cm)

Generic ParFOR

Generic

RIX LIX b(cov)...

RIX b(cm)...

ec0 ParFOR

b(cm)

Generic ParFOR

ec1 Generic

RIX LIX b(cov)...

RIX b(cm)... cmec = 600 MB
ckec = 1

cmec = 1024 MB
ckec = 16

MR

ec … execution context
cm … memory constraint
ck … parallelism constraint

38

706.550 Architecture of Machine Learning Systems – 05 Execution Strategies
Matthias Boehm, Graz University of Technology, SS 2021

Task-Parallelism in R
 Multi-Threading

 doMC as multi-threaded
foreach backend

 Foreach w/ parallel (%dopar%)
or sequential (%do%) execution

 Distribution
 doSNOW as distributed

foreach backend
 MPI/SOCK as comm methods

Task-Parallel Execution

library(doMC)
registerDoMC(32)
R <- foreach(i=1:(ncol(D)-1),

.combine=rbind) %dopar% {
X = D[,i]; sX = sd(X);
Ri = matrix(0, 1, ncol(D))
for(j in (i+1):ncol(D)) {

Y = D[,j]; sY = sd(Y)
Ri[1,j] = cov(X,Y)/(sX*sY);

}
return(Ri);

}

[https://cran.r-project.org/web/packages/
doMC/vignettes/gettingstartedMC.pdf]

[https://cran.r-project.org/web/packages/
doSNOW/doSNOW.pdf]

library(doSNOW)
clust = makeCluster(

c(“192.168.0.1”, “192.168.0.2”,
“192.168.0.3”), type=“SOCK”);

registerDoSNOW(clust);
... %dopar% ...
stopCluster(clust);

https://cran.r-project.org/web/packages/doMC/vignettes/gettingstartedMC.pdf
https://cran.r-project.org/web/packages/doSNOW/doSNOW.pdf

39

706.550 Architecture of Machine Learning Systems – 05 Execution Strategies
Matthias Boehm, Graz University of Technology, SS 2021

Task-Parallelism in Other Systems
 MATLAB

 Parfor loops for
multi-process &
distributed loops

 Use-defined par

 Julia
 Dedicated macros:
@threads
@distributed

 TensorFlow
 User-defined parallel iterations, responsible for

correct results or acceptable approximate results

Task-Parallel Execution

tf.while_loop(cond, body, loop_vars, parallel_iterations=10,
swap_memory=False, maximum_iterations=None, ...)

[Gaurav Sharma, Jos Martin:
MATLAB®: A Language for

Parallel Computing. Int. Journal
on Parallel Prog. 2009]

matlabpool 32
c = pi; z = 0;
r = rand(1,10)
parfor i = 1 : 10
z = z+1; # reduction
b(i) = r(i); # sliced

end

a = zeros(1000)
@threads for i in 1:1000
a[i] = rand(r[threadid()])

end

[https://docs.julialang.
org/en/v1/manual/

parallel-computing/]

[https://www.tensorflow.org/
api_docs/python/tf/while_loop]

https://docs.julialang.org/en/v1/manual/parallel-computing/
https://www.tensorflow.org/api_docs/python/tf/while_loop

40

706.550 Architecture of Machine Learning Systems – 05 Execution Strategies
Matthias Boehm, Graz University of Technology, SS 2021

Task-Parallelism in Other Systems, cont.
 sk-dist [https://pypi.org/project/sk-dist/]

 Distributed training of local scikit-learn models (via PySpark)
 Grid Search / Cross Validation (hyper-parameter optimization)
 Multi-class Training (one-against the rest)
 Tree Ensembles (many decision trees)

 Model Hopper Parallelism (MOP)
 Given a dataset D, p workers, and

several NN configurations S
 Partition D into worker-local partitions Dp

 Schedule tasks for sub-epochs of 𝑆𝑆′ ⊆ 𝑆𝑆 on p
without moving the partitioned data

 Checkpointing of models between tasks

 Reinforcement Learning Frameworks  next lecture

Task-Parallel Execution

[https://docs.ray.io/en/
stable/rllib.html]

[Supun Nakandala, Yuhao Zhang, Arun
Kumar: Cerebro: Efficient and Reproducible
Model Selection on Deep Learning Systems.

DEEM@SIGMOD 2019]

[Supun Nakandala, Yuhao
Zhang, Arun Kumar: Cerebro:
A Data System for Optimized

Deep Learning Model
Selection. PVLDB 2020]

https://pypi.org/project/sk-dist/
https://docs.ray.io/en/stable/rllib.html

41

706.550 Architecture of Machine Learning Systems – 05 Execution Strategies
Matthias Boehm, Graz University of Technology, SS 2021

Summary and Q&A
 Categories of Execution Strategies

 Data-parallel execution for batch ML algorithms
 Task-parallel execution for custom parallelization of independent tasks
 Parameter servers (data-parallel vs model-parallel)

for mini-batch ML algorithms

 #1 Different strategies (and systems) for different ML workloads
 Specialization and abstraction

 #2 Awareness of underlying execution frameworks
 #3 Awareness of effective compilation and runtime techniques

 Next Lectures
 06 Parameter Servers [Apr 23]
 07 Hybrid Execution and HW Accelerators [Apr 30]
 08 Caching, Partitioning, Indexing and Compression [May 07]

	Architecture of ML Systems�05 Data- and Task-Parallel Execution
	Announcements/Org
	Agenda
	Motivation and Terminology
	Terminology Optimization Methods
	Terminology Batch/Mini-batch
	Recap: Central Data Abstractions
	Terminology Parallelism
	Excursus: Peak Performance
	Terminology Parallelism, cont.
	Recap: Fault Tolerance & Resilience
	Categories of Execution Strategies
	Background MapReduce and Spark�(Data-Parallel Collection Processing)
	Hadoop History and Architecture
	MapReduce – Programming Model
	MapReduce – Execution Model
	Spark History and Architecture
	Spark History and Architecture, cont.
	Spark Resilient Distributed Datasets (RDDs)
	Spark Resilient Distributed Datasets (RDDs), cont.
	Spark Partitions and Implicit/Explicit Partitioning
	Spark Lazy Evaluation, Caching, and Lineage
	Data-Parallel Execution
	Background: Matrix Formats
	Distributed Matrix Representations
	Distributed Matrix Representations, cont.
	Distributed Matrix Operations
	Physical MM Operator Selection
	Physical MM Operator Selection, cont.
	Partitioning-Preserving Operations
	Dask
	Task-Parallel Execution
	Overview Task-Parallelism
	Parallel For Loops (ParFor)
	Additional ParFor Examples
	ParFor Execution Strategies
	ParFor Optimizer Framework
	Task-Parallelism in R
	Task-Parallelism in Other Systems
	Task-Parallelism in Other Systems, cont.
	Summary and Q&A

