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Announcements/Org

= #1 Video Recording 0 TU be

= Link in TeachCenter & TUbe (lectures will be public)

st]uet],
= Streaming: https://tugraz.webex.com/meet/m.boehm cisco Webex
= Corona traffic light RED until end of April

= #2 Programming Projects / Exercises (34/55)

= Apache SystemDS: 24 projects / 37 students
DAPHNE: 2 projects / 2 students
Exercises: 8 projects / 16 students - TeachCenter
Registration: Apr 02, Deadline: June 30 (soft)
Kickoff meetings completed tonight
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Agenda

= Motivation and Terminology

= Background MapReduce and Spark
= Data-Parallel Execution

= Task-Parallel Execution
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Motivation and Terminology
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Motivation and Terminology ﬁ-le-g.

Terminology Optimization Methods

Problem: Given a continuous, differentiable function f(D, 0),
find optimal parameters 8" = argmin (f(D, @))

N
#1 Gradient Methods (1% order
= Pick a starting point, compute gradient, descent in

opposite direction of gradient —yV f(D, 0)

#2 Newton’s Method (2" order)

= Pick a starting point, compute gradient,
descend to where derivative = 0 (via 2"d derivate)

= Jacobian/Hessian matrices for multi-dimensional

= #3 Quasi-Newton Methods
= |ncremental approximation of Hessian
= Algorithms: BFGS, L-BFGS, Conjugate Gradient (CG)

= Example: L-BFGS-B, AR(2), MSE, N=100
EnBW energy-demand time series

@, (datafi-2])

0.0 0.2 0.4 0.6 0.8 1.0
&, (datali-1])


Presenter
Presentation Notes
BFGS vs CG: https://pubsonline.informs.org/doi/abs/10.1287/moor.3.3.244


Motivation and Terminology ﬁ-le-g.

Terminology Batch/Mini-batch

= Batch ML Algorithms

= |terative ML algorithms, where each iteration
uses the entire dataset to compute gradients AW

= For (pseudo-)second-order methods, many features

= Dedicated optimizers for traditional ML algorithms

= Mini-batch ML Algorithms

= |terative ML algorithms, where each iteration
only uses a batch of rows to make the
next model update (in epochs or w/ sampling)

— LEWE — W

~ =R - v

= For large and highly redundant training sets
. . . Epoch
= Applies to almost all iterative, model-based

ML algorithms (LDA, reg., class., factor., DNN)
= Stochastic Gradient Descent (SGD)
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Motivation and Terminology ﬁ-lc:r%!-

Recap: Central Data Abstractions

= #1 Files and Objects
= File: Arbitrarily large sequential data in specific file format (CSV, binary, etc)
= Object: binary large object, with certain meta data

= #2 Distributed Collections Key

= Logical multi-set (bag) of key-value pairs

(unsorted collection) = Delta
= Different physical representations 2 Bravo
= Easy distribution of pairs 1 Alfa
via horizontal pa.rt-ltlonmg 3 Charlie
(aka shards, partitions) c —
. . cho
= Can be created from single file,
or directory of files (unsorted) 6 Foxtrot
7 Golf
1 Alfa
706.550 Architecture of Machine Learning Systems — 05 Execution Strategies "
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Motivation and Terminology ﬂl’g_

Terminology Parallelism

Single Data Multiple Data

= Flynn’s Classification

= SISD, SIMD | Singlej SISD SIMD
nstruction i
= (MISD), MIMD (uni-core) (vector)
[Michael J. Flynn, Kevin W. .
Rudd: Parallel Architectures. Multiple MISD MIMD
ACM Comput. Surv. 28(1) 1996] Instruction (pipelining) (multi-core)

= Example: SIMD Processing
= Streaming SIMD Extensions (SSE)

= Process the same operation on
multiple elements at a time
(packed vs scalar SSE instructions)

2009 Nehalem: 128b (2xFP64)
2012 Sandy Bridge: 256b (4xFP64)
2017 Skylake: 512b (8xFP64)

¢ = _mm512_fmadd_pd(a, b);
= Data parallelism ] [T T T 1

: . . a | I
(aka: instruction-level parallelism) bl T T T T T 1T 11
= Example: VFMADD132PD c( I [ 1 1 I 1 [ 1}
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Motivation and Terminology ﬁ-l;-'g!-

Excursus: Peak Performance

= Example Scale-up Node (DM cluster) !
m Peak := 2 Sockets * 28 Cores * 2.2 GHz : matmult
1
* 2 FMA units * 16 FP32 slots (AVX512) * 2 (FMA) w/ BLAS (Intel MKL):
= 7.7 TFLOP/s (FP32) = 3.85 TFLOP/s (FP64) 1 2.23 TFLOP/s (FP64)
mboehm@alpha: ~/mv — O >

1~ /mvs

Intel (R) Xeon(R) Gold €238R CPU @ 2.20GHz
ure: Cascade Lake

1l4nm

4_.000 GHz

yres (56 threads)
(112 threads)
AVX,AVX2,AVX512
FMAR3
32EB (1.75MB Total)
32EB (1.75MB Total)
IMB (56MB Total)
38.5MB (77MB Total)
Peak Performance: 14.34 TFLOE/s
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Motivation and Terminology ﬁ-le-g.

Terminology Parallelism, cont.

= Distributed, Data-Parallel Y = X. map(x -> 'FOO(X) )
Computation

= Parallel computation of function foo() =
= Collection X of data items (key-value pairs) =

= Data parallelism similar to SIMD but more coarse-grained notion of
“instruction” and “data” =» SPMD (single program, multiple data)

[Frederica Darema: The SPMD Model : Past,
Present and Future. PVM/MPI 2001]

= Additional Terminology

= Bulk Synchronous Parallel (global barriers)
= Asynchronous Parallel (no barriers, often with accuracy impact)
= Stale-synchronous parallel (staleness constraint on fastest-slowest)

= Qther: Fork&Join, Hogwild!, event-based, decentralized

= Beware: used in very different contexts (e.g., Param Server)
706.550 Architecture of Machine Learning Systems — 05 Execution Strategies "
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Motivation and Terminology

Ty

Recap: Fault Tolerance & Resilience

[Google Data Center:

= Resilience Problem

= |ncreasing error rates at scale
(soft/hard mem/disk/net errors)

= Robustness for preemption
= Need for cost-effective resilience

https://www.youtube.com/watch?v=XZmGGAbHqa0]

= Fault Tolerance in Large-Scale Computation N |
= Block replication in distributed file systems P
= ECC; checksums for blocks, broadcast, shuffle
= Checkpointing (all task outputs / on request)

0.6 —

0.4 —

P{Job Failure)

o
[
|

S
=]

-

= Lineage-based recomputation for recovery in Spark | 10

= ML-specific Approaches (exploit app characteristics)
= Estimate contribution from lost partition to avoid strugglers

= Example: user-defined “compensation” functions

706.550 Architecture of Machine Learning Systems — 05 Execution Strategies
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Motivation and Terminology ﬁ-le-rg.

Categories of Execution Strategies

Batch/Mini-batch,
Batch Independent Tasks Mini-batch
SIMD/SPMD MIMD

05, Data-Parallel 05, Task-Parallel 06 Parameter Servers
Execution Execution (data, model)
[Apr 16] [Apr 16] [Apr 23]

07 Hybrid Execution and HW Accelerators [Apr 30]

08 Caching, Partitioning, Indexing, and Compression [May 07]
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Background MapReduce and Spark
(Data-Parallel Collection Processing)

Abstractions for Fault-tolerant,
Distributed Storage and Computation
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Data-Parallel Collection Processing

Hadoop History and Architecture

[Jeffrey Dean, Sanjay
Ghemawat: MapReduce:
Simplified Data Processing on
Large Clusters. OSDI 2004]

ClErEEED

= Recap: Brief History

= Google’s GFS [SOSP’03] + MapReduce
- Apache Hadoop (2006)

= Apache Hive (SQL), Pig (ETL), Mahout (ML), Giraph (Graph)

= Hadoop Architecture / Eco System

= Management (Ambari)

Worker Node1  Worker Node n

= Coordination / workflows

(Zookeeper, Oozie) — o k
= Storage (HDFS) ' 2’:\: MR :: MR || MR |,
= Resources (YARN) - ——— -~ task : task || task |

[SoCC’13] MR || MR |i,[ MR |[ MR |
" Processing Resource task || task [}}| task || task |,

RN > B e B waea |

Manager B Manager §
e T e T
13| 2 EBE3]2]9 B




Data-Parallel Collection Processing ﬁ!g.

MapReduce — Programming Model

= Overview Programming Model
= |nspired by functional programming languages
= Implicit parallelism (abstracts distributed storage and processing)
o function: key/value pair = set of intermediate key/value pairs
= function: merge all intermediate values by key

= Example SELECT Dep, count(*) FROM csv_files GROUP BY Dep

(Long pos, String line) {
parts & line.split(“,”)

X CS emit(parts[1], 1)
Y CS .

} cs 1 (String dep, .
A EE Iterator<Long> iter) {
7 cs CS 1 total < iter.sum();

EE 1 emit(dep, total)
. CS 3
Collection of S 1 }

key/value pairs EE 1



Data-Parallel Collection Processing ﬁ-le-rLa!.

MapReduce — Execution Model

#1 Data Locality (delay sched., write affinity)

Input CSV files Map-Phase #2 Reduced shuffle (combine)
(stored in HDFS) #3 Fault tolerance (replication, attempts)

CSV k
L1 Split 12
\

]

f
csv | ! Spllt 21
\ ]

File 2 (- - T \
iz

(- - T T \

csv |! Spllt 31 )

N oo

File3 [ == ===\

Sort, [Combine], [Compress] w/ #reducers = 3

[Reduce-Phase]  Output Files
(HDFS)

/

reduce out 1

task 7
reduce out 2

\

task 7

reduce Out 3

:L
i

task 7

—i

Shuffle, Merge,
[Combine]

N




Data-Parallel Collection Processing ﬁ!g.

Spark History and Architecture

= Summary MapReduce
= Large-scale & fault-tolerant processing w/ UDFs and files =» Flexibility
= Restricted functional APIs =» Implicit parallelism and fault tolerance
= Criticism: #1 Performance, #2 Low-level APIs, #3 Many different systems

AAAAAA

= Spark [HotCloud’10] + RDDs [NSDI'12] = Apache Spark (2014)  SPQ

= Design: standing executors with in-memory storage,
lazy evaluation, and fault-tolerance via RDD lineage

= Performance: In-memory storage and fast job scheduling (100ms vs 10s)

= APIs: Richer functional APIs and general computation DAGs,
high-level APIs (e.g., DataFrame/Dataset), unified platform

= Evolution to Spark (and Flink) Iy
rK

=» But many shared concepts/infrastructure
= Implicit parallelism through dist. collections (data access, fault tolerance)
= Resource negotiators (YARN, Mesos, Kubernetes)
= HDFS and object store connectors (e.g., Swift, S3)



Data-Parallel Collection Processing ﬁ-ley.

Spark History and Architecture, cont.

= High-Level Architecture (https://spark.apache.org/]

Different language bindings:
Scala, Java, Python, R

MLlIlib

Different libraries:
SQL, ML, Stream, Graph

Spark core (incl RDDs)

Different cluster managers:

Yarn, Kubernetes

e
formats, and data sources:

HDFS, S3, SWIFT, DBs, NoSQL S‘p“o’”rk [ hadggp
2 o
ek

learning)

AVAVA
VAVAY

MESOS ) kubernetes

= Focus on a unified platform
for data-parallel computation (Apache Flink w/ similar goals)

706.550 Architecture of Machine Learning Systems — 05 Execution Strategies .ISDS
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Data-Parallel Collection Processing ﬁ!g.

Spark Resilient Distributed Datasets (RDDs)

= RDD Abstraction JavaPairRDD<MatrixIndexes,MatrixBlock>

= Immutable, partitioned
collections of key-value pairs

= Coarse-grained deterministic operations (transformations/actions)
= Fault tolerance via lineage-based re-computation

= Operations

= Transformations:  Transformation

map, hadoopFile, textFile,
flatMap, filter, sample, join,

define new RDDs (lazy) groupByKey, cogroup, reduceByKey,
= Actions: return cross, sortByKey, mapValues
result to driver Action reduce, save,
collect, count, lookupKey
= Distributed Caching Nodel Node2

= Use fraction of worker memory for caching ‘-\ ‘-\
= Eviction at granularity of individual partitions
= Different storage levels (e.g., mem/disk x serialization x compression)

706.550 Architecture of Machine Learning Systems — 05 Execution Strategies .ISDS
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Data-Parallel Collection Processing ﬁIrLa!.

Spark Resilient Distributed Datasets (RDDs), cont.

= Lifecycle of an RDD X.filter(foo())
= Note: can’t broadcast X.mapValues(foo())
an RDD directly X.reduceByKey(foo())

X.cache()/X.persist(..)

sc.parallelize(1lst)

Local Data = Distributed
(value, collection) & Collection

1st = X.collect()
v = X.reduce(foo())

sc.hadoopFile(f)
sc.textFile(f)

X.saveAsObjectFile(f)
X.saveAsTextFile(f)

706.550 Architecture of Machine Learning Systems — 05 Execution Strategies .ISDS
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Data-Parallel Collection Processing ﬂELa!.

Spark Partitions and Implicit/Explicit Partitioning

= Spark Partitions

= Logical key-value collections are split into physical partitions

~128MB
= Partitions are granularity of tasks, 1/0, shuffling, evictions
= Partitioning via Partitioners Example Hash Partitioning:
= |Implicitly on every data shuffling For all (k,v) of R:
= Explicitly viaR.repartition(n) pid = hash(k) % n

Partitioning-Preserving

= All operations that are guaranteed to keep keys unchanged
(e.g. mapValues (), mapPartitions() w/ preservesPart flag)

Hash partitioned

X
- BN E5
A ETE

706.550 Architecture of Machine Learning Systems — 05 Execution Strategies .ISDS
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= Partitioning-Exploiting
= Join: R3 = R1.join(R2)

= Lookups:
v = C.lookup(k)




()
Data-Parallel Collection Processing ﬁ-le-rLa!.

Spark Lazy Evaluation, Caching, and Lineage

/’:__::__:__:__: _____________________ RN
/ " \ \‘
: ! A partitioning- ,
;! aware I
I : |
| : G :
|
|\ _Stagel — |
|
: // —————————————————————
C 1
I
: I -' -‘ :r‘educe
I |
(s - |
|
|
I |
I
|
' . | :
| I :
I '\ - ] , -
\ Y Stage 2 / Stage3
\ N e e e e e e e e e e e e e e e e e = -~ y
~ - cached

[Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy
McCauly, Michael J. Franklin, Scott Shenker, lon Stoica: Resilient Distributed Datasets: A
Fault-Tolerant Abstraction for In-Memory Cluster Computing. NSDI 2012]



Presenter
Presentation Notes
Notes:
Dryad-­‐like DAGs 
Pipelines functions within a stage 
Locality & data reuse aware 
Partitioning-­‐aware to avoid shuffles 
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Data-Parallel Execution
Batch ML Algorithms

QQQQQQ J\_{ Apache /
SpleK. @ MAHOUT SystemML™ [DASK
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Data-Parallel Execution ﬁErLa!.

Background: Matrix Formats

= Matrix Block (m x n) Example
= Ak.a. tiles/chunks, most operations defined here 3x3 Matrix
= Local matrix: single block, different representations .7 .1
= Common Block Representations 2.4
= Dense (linearized arrays)

.3
= MCSR (modified CSR) ,/,.// \

= CSR (compressed sparse rows), CSC
= COO (Coordinate matrix)

MCSR CSR CoOo
‘\»l;-a o1 .7 .7
Dense (row-major) h G 2L Bl.1 1
.7/0.1/.2|.4l0 /0 .30 \m24 4\ YA|.2 .2
— 5\ kR .4 .4
O(mn)

N .3 .3

.3
O(m + nnz(X)) O(nnz(X))

706.550 Architect f Machine L ing Syst —05E tion Strategi
Matthias Baehm, Graz University of Technology, S2021 "ISDS



Data-Parallel Execution ﬁ!g.

Distributed Matrix Representations
Logical Blocking

= Collection of “Matrix Blocks” (and keys) 3,400%2,700 Matrix
2 (duplicates, unordered) (w/ B,=1,000)
= lLogical (Fixed-Size) Blocking an || a,2) .3

+ join processing / independence
- (sparsity skew) (2,1) || (2:2) [|(2:3)

= E.g., SystemML on Spark:

JavaPairRDD<MatrixIndexes,MatrixBlock> (3:1) 1] (3:2) ||(3:3)

= Blocks encoded independently (dense/sparse) (4,1) || (4,2) ||(4,3)
™ Partitioning ) hash partitioned: e.g., hash(3,2) 2 99,994 % 2 = 0
. e (3,2)  (23) (2,1) (1,2) (42) (41)
= Logical Partitioning S US
. 1 D S S D
(e.g., row-/column-wise) Physical o
. I Blocking and \ par—oR >
= Physical Partitionin
y oning Partitioning [ 22 (L) (3) (3 @1 @)
(e.g., hash / grid) Us
D us us S S
L partition 1
706.550 Architecture of Machine Learning Systems — 05 Execution Strategies .lSDS
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Data-Parallel Execution

TU

Grazm

Distributed Matrix Representations, cont.

= #1 Block-partitioned Matrices
= Fixed-size, square or rectangular blocks

= Pros: Input/output alighment, block-local transpose,
amortize block overheads, bounded mem, cache-conscious

= Cons: Converting row-wise inputs (e.g., text) requires shuffle

= Examples: RIOT, PEGASUS, SystemMIL, SciDB, Cumulon,
Distributed R, DMac, Spark Mllib, Gilbert, MatFast, and SimSQL

= #2 Row/Column-partitioned Matrices
= Collection of row indexes and rows (or columns respectively)
= Pros: Seamless data conversion and access to entire rows
= Cons: Storage overhead in Java, and cache unfriendly operations
= Examples: Spark MLlib, Mahout Samsara, Emma, SimSQL
= #3 Algorithm-specific Partitioning
= Qperation and algorithm-centric data representations
= Examples: matrix inverse, matrix factorization

706.550 Architecture of Machine Learning Systems — 05 Execution Strategies
Matthias Boehm, Graz University of Technology, SS 2021
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Data-Parallel Execution ﬂErLa!.

Distributed Matrix Operations

Elementwise Multiplication . Matrix
(Hadamard Product) Transposition Multiplication
C=A*B C = t(X) C =X %*% W
T = — 2 | . . W
Ay [|Ape B ||Baa \\ X11) || X(12) // (1.1)

e
~
J

T
|
I
I
H
|l
I
s

— - — — — |+ —»
Apy) ||Apay Bpi1) || Bpa
— | === __ |l _g
A[’S 1) A[S_,?.j B[’S,ll B[S 2}

Note: also with
row/column vector rhs

Note: 1:N join

706.550 Architecture of Machine Learning Systems — 05 Execution Strategies "
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Data-Parallel Execution ﬂELa!.

Physical MM Operator Selection

= Common Selection Criteria
= Data and cluster characteristics (e.g., data size/shape, memory, parallelism)
= Matrix/operation properties (e.g., diagonal/symmetric, sparse-safe ops)
= Data flow properties (e.g., co-partitioning, co-location, data locality)

#0 Local Operators t(x) %*% (X%*%V)

= SystemML mm, tsmm, mmchain; Samsara/Mllib local 1t
pass

! I "

#3 Co-Partitioning-Based Operators (aka improved repartition join)
= SystemML zipmm; Emma, Samsara OpAtB

#1 Special Operators (special patterns/sparsity)
= SystemML tsmm, mapmmchain; Samsara AtA

#2 Broadcast-Based Operators (aka broadcast join)
= SystemML mapmm, mapmmchain

#4 Shuffle-Based Operators (aka repartition join)
= SystemML cpmm, rmm; Samsara OpAB



Data-Parallel Execution

Ty

Physical MM Operator Selection, cont.

= Examples Distributed MM Operators

Y
Broadcast-based [

MM (mapmm) v

706.550 Architecture of Machine Learning Systems — 05 Execution Strategies
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X2,1

Shuffle-based
MM (cpmm)

X2,2

3,1

Yi1 || Y2
Y Y

3,2

Y4, 1

Y4, 2

X2,3

X2,4
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Data-Parallel Execution ﬁ!g.

Partitioning-Preserving Operations

Shuffle is major bottleneck for ML on Spark

Preserve Partitioning
= QOp is partitioning-preserving if keys unchanged (guaranteed)
» Implicit: Use restrictive APIs (mapValues() vs mapToPair())
= Explicit: Partition computation w/ declaration of partitioning-preserving

Exploit Partitioning
= Implicit: Operations based on join, cogroup, etc
= Explicit: Custom operators (e.g., zipmm)
repart, chkpt X MEM_DISK

= Example: parfor(iter_class in 1:num_classes) {

Multiclass SVM Y_local = 2 * (Y == iter_class) - 1
g old = t(X) %*% Y_local

= Vectors fit chkpty local MEM_DISK

neither into while( continue ) {
. = %*%
driver nor Xd .X %*% s chkpt Xd, Xw MEM_DISK
. inner while loop (compute step sz)
broadcast Xw = Xw + step_sz * Xd;
= ncol(X)<B out = 1 - Y_local * Xw;
< B, _

(out > @) * out;
g new = t(X) %*% (out * Y_local) ...



Data-Parallel Execution ﬁ!g.

DaS k /7 DASK [Matthew Rocklin: Dask: Parallel Computation with Blocked
algorithms and Task Scheduling, Python in Science 2015]

[Dask Development Team: Dask: Library for dynamic task
scheduling, 2016, https://dask.org]

= Overview Dask

= Multi-threaded and distributed operations for arrays, bags, and dataframes

= dask.array: Numpy Pandas

list of numpy n-dim arrays E Y
= dask.dataframe:

list of pandas data frames
= dask.bag:unordered list of tuples (second order functions)

= |ocal and distributed schedulers:
threads, processes, YARN, Kubernetes, containers, HPC, and cloud, GPUs

= Execution import dask.array as da

= X = da.random.random(

(10000,10000), chunks=(1000,1000))
y = X + X.T
y.persist() # cache in memory

= Limitation: requires
static size inference

= Triggered via z = y[::2, 5000:].mean(axis=1) # colMeans
compute() ret = z. () # returns NumPy array
706.550 Architecture of Machine Learning Systems — 05 Execution Strategies .lSDS
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Presenter
Presentation Notes
Note: somewhat in competition w/ PySpark (but not out-of-core), scalable ML algorithms via https://ml.dask.org/ (partnering with scikit-learn, XGBoost)

https://dask.org/

Task-Parallel Execution

Parallel Computation of Independent Tasks,
Emulation of Data-Parallel Operations/Programs

. o
‘\ MATLAB . R gssatc;ﬁML” juli®a +

Tensor

706.550 Architecture of Machine Learning Systems — 05 Execution Strategies
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Task-Parallel Execution ﬁ!g.

Overview Task-Parallelism

= Historic Perspective

= Since 1980s: various parallel Fortran extensions, especially in HPC

(independent iterations)

= OpenMP (since 1997, #pragma omp parallel for reduction(+: nnz)
Open Multi-Processing)  for (int i = @; i < Nj i++) {
int threadID = omp_get_thread_num();
OpenMP R[i] = foo(A[i]);
nnz += (R[i]!=0) ? 1 : ©;
}

= Motivation: Independent Tasks in ML Workloads

Ensemble learning, cross validation, hyper-parameter tuning,
complex models with disjoint/overlapping/all data per task

= Challenge #1: Adaptation to data and cluster characteristics
= Challenge #2: Combination with data-parallelism

706.550 Architecture of Machine Learning Systems — 05 Execution Strategies .lSDS
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Task-Parallel Execution ﬁ!g.

Parallel For Loops (ParFor) SystomML"

[M. Boehm et al.: Hybrid Parallelization | ==

n Hybrid Parallelization Strategies Strategies for Large-Scale Machine Learning

. in SystemML. PVLDB 2014]
Combination of data- and task-parallel ops

Combination of local and distributed computation

= Key Aspects reg = 10" (seq(-1,-10))

Dependency Analysis B_all = matrix(@, nrow(reg), n)

Task partitioning .
parfor( i in 1l:nrow(reg) ) {
= 1m(X, Y, Peg[iJl]);
B _all[i,] = t(B);

Data partitioning, scan
sharing, various rewrites

Execution strategies }
Result agg strategies

U

(multi-threaded), (distributed w/ concurrent
w/ local ops Spark job) distributed ops
706.550 Architecture of Machine Learning Systems — 05 Execution Strategies "
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Presentation Notes
NOTE: dependency analysis (constant, greatest common denominator if dependency possible, Banerjee if dependencies in loop bounds)


Task-Parallel Execution ﬁ-le-g.

Additional ParFor Examples SystomML"

read("./input/D");

= Pairwise Pearson Correlation D
R

» |n practice: uni/bivariate stats

= Pearson‘s R, Anova F, Chi-squared,

matrix(0, ncol(D), ncol(D));
parfor(i in 1:(ncol(D)-1)) {
X = 5

Degree of freedom, P-value, sX = sd(X);

Cramers V, Spearman, etc) parfor(j in (i+1):ncol(D)) {
Y = 5
sY = sd(Y);

R[1,j] = cov(X,Y)/(sX*sY);

P}
write(R, "./output/R");

= Batch-wise CNN Scoring prob = matrix(@, Ni, Nc)

parfor( i in 1:ceil(Ni/B) ) {
Xb = X[((i-1)*B+1) :min(i*B,Ni), ];
prob[ ((i-1)*B+1):min(i*B,Ni),] =

= Emulate data-parallelism
for complex functions

=» Conceptual Design: ;
Coordinator/worker (task: group of parfor iterations)
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Task-Parallel Execution

Ty

ParFor Execution Strategies

= #1 Task Partitioning

= Fixed-size schemes:
naive (1), static (n/k), fixed (m)

= Self-scheduling: e.g.,
guided self scheduling, factoring

= #2 Data Partitioning

= Local or remote row/column
partitioning (incl locality)

= #3 Task Execution
= Local (multi-core) execution
= Remote (MR/Spark) execution

= #4 Result Aggregation

= With and without compare (non-empty output variable)
= |Local in-memory / remote MR/Spark result aggregation

RO — Na
Rit1 =

Factoring (n=101, k=4)

R;

T
—k-li, " |xi-k

(

Apache
SystemML™

1\ N
)

(13,13,13,13,7,7,7,7, 3,3,3,3, 2,2,2,2, 1)

—_—— e — - — — —

'ParFOR (local)

Task Partitioning  ws: i, {11} }

wy: i, {9,10} ‘
ws 1, {7,8} ‘

sk Queue |7 {4.56}

Local 4

ParWorker 1

while(w<¢deq())
foreach p; € w

execute(prog(p;))

- Local

ParWorker k

Parallel Result Aggregation

wi: i, {1,2,3} ‘

-
ParFOR (remote)

s i, {11} !

itioning W4l {910} ]|

Task Partitioning wii{r8) ]|

v w456y ]

rdlonn T wa i, {1,2,3) { \
ParWorker ParWorker
Mapper 1 Mapper k

map(key,value)
wé€parse(value)
foreach p; € w
execute(prog(pi))

AMATRIX|. /out/A7tmp

Parallel Result Aggregation
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Task-Parallel Execution ﬁ-lc:g-

ParFor Optimizer Framework SystemL"

= Design: Runtime optimization for each top-level parfor

= Plan Tree P
= Nodes N,

ParFOR

= Exec type et

ParFOR

_— —_— — — — —

= Attributes A
= Height h
= Exec contexts EC,

ec ... execution context
cm ... memory constraint
ck ... parallelism constraint

|
|
|
|
|
|
= Parallelism k |
|
|
|
|
|
|

"PlanTree . win T((P)

Optimization R

Objective st. VYece &Cp:M(r(ec)) <cme. N K(r(ec)) < ckec.
- w/ transformation-based search strategy

= Cost and memory estimates w/ plan tree aggregate statistics
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Task-Parallel Execution ﬂ-lc:r%!-

Task-Parallelism in R R

= Multi-Threading library(doMC)
= doMC as multi-threaded rengterDOMC(?z)
; h backend R <- foreach(i=1:(ncol(D)-1),
oreéach backen .combine=rbind) %dopar% {
= Foreach w/ parallel (%dopar%) X = D[,1i]; sX = sd(X);

Ri = matrix(0, 1, ncol(D))

or sequential (%do%) execution
for(j in (i+1):ncol(D)) {

[https://cran.r-project.org/web/packages/ v
doMC/vignettes/gettingstartedMC.pdf] Y ) =D [ 315 sY = sd(Y)
Ri[1,j] = cov(X,Y)/(sX*sY);
}
return(Ri);
}
= Distribution library(doSNOW)
= doSNOW as distributed clust = makeCluster(
foreach backend c(“192.168.0.1”, “192.168.0.27,
“192.168.0.3”), type=“S0CK”);

= MPI/SOCK as comm methods registerDoSNOW(clust);
. %dopar% ...

[https://cran.r-project.org/web/packages/
doSNOW/doSNOW.pdf] stopCluster(clust);
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Task-Parallel Execution

Ty

Task-Parallelism in Other Systems

= MATLAB

= Parfor loops for
multi-process &
distributed loops

= Use-defined par

= Julia

= Dedicated macros:
@threads
@distributed

= TensorFlow

= User-defined parallel iterations, responsible for
correct results or acceptable approximate results

matlabpool 32
cC =pi; z = 0;
r = rand(1,10)
parfor 1 =1 : 10
z = z+1; # reduction
b(i) = r(i); # sliced
end

‘DJWXHAB

[Gaurav Sharma, Jos Martin:
MATLAB®: A Language for
Parallel Computing. Int. Journal
on Parallel Prog. 2009]

a = zeros(1000)

@threads for i in 1:1000
a[i] = rand(r[threadid()])

end

® J%
julia
[https://docs.julialang.

org/en/vl/manual/
parallel-computing/]

N

3
Tensor

[https://www.tensorflow.org/

api docs/python/tf/while loop]

tf.while_loop(cond, body, loop vars, parallel_iterations=10,
swap_memory=False, maximum_iterations=None, ...)
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Task-Parallel Execution ﬁ-le-g.

Task-Parallelism in Other Systems, cont.

= sk-dist [https://pypi.org/project/sk-dist/] . leann
= Distributed training of local scikit-learn models (via PySpark) Spcﬁ(‘sz
- / (hyper-parameter optimization)
. (one-against the rest)
. (many decision trees)
= Model Hopper Parallelism (MOP) [Supun Nakandala, Yuhao Zhang, Arun

Kumar: Cerebro: Efficient and Reproducible

" Given a dataset D, P workers, and Model Selection on Deep Learning Systems.

several NN configurations S DEEM@SIGMOD 2019]
= Partition D into worker-local partitions D, [Supun Nakandala, Yuhao
Zhang, Arun Kumar: Cerebro:

= of S"S Sonp &, £irtn A

. . . A Data System for Optimized
without moving the partitioned data Deep Learning Model

= Checkpointing of models between tasks Selection. PVLDB 2020]

[https://docs.ray.io/en/

= Reinforcement Learning Frameworks = next lecture stable/rllib.html]
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Summary and Q&A

Categories of Execution Strategies
= Data-parallel execution for batch ML algorithms
= Task-parallel execution for custom parallelization of independent tasks

= Parameter servers (data-parallel vs model-parallel)
for mini-batch ML algorithms

#1 Different strategies (and systems) for different ML workloads
=» Specialization and abstraction

#2 Awareness of underlying execution frameworks

#3 Awareness of effective compilation and runtime techniques

Next Lectures
= 06 Parameter Servers [Apr 23]
= 07 Hybrid Execution and HW Accelerators [Apr 30]
= 08 Caching, Partitioning, Indexing and Compression [May 07]
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