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Announcements/Org
 #1 Video Recording 

 Link in TeachCenter & TUbe (lectures will be public)
 Streaming: https://tugraz.webex.com/meet/m.boehm
 Corona traffic light RED until end of April

 #2 Programming Projects / Exercises (34/55)
 Apache SystemDS: 24 projects / 37 students
 DAPHNE: 2 projects / 2 students  
 Exercises: 8 projects / 16 students  TeachCenter
 Registration: Apr 02, Deadline: June 30 (soft)
 Kickoff meetings completed tonight

https://tugraz.webex.com/meet/m.boehm
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Agenda
 Motivation and Terminology
 Background MapReduce and Spark
 Data-Parallel Execution
 Task-Parallel Execution
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Motivation and Terminology
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Terminology Optimization Methods
 Problem: Given a continuous, differentiable function 𝒇𝒇(𝑫𝑫,𝜽𝜽), 

find optimal parameters 𝜽𝜽∗ = argmin 𝒇𝒇(𝑫𝑫,𝜽𝜽)

 #1 Gradient Methods (1st order)
 Pick a starting point, compute gradient, descent in 

opposite direction of gradient −𝛾𝛾𝛻𝛻𝒇𝒇(𝑫𝑫,𝜽𝜽)

 #2 Newton’s Method (2nd order)
 Pick a starting point, compute gradient, 

descend to where derivative = 0 (via 2nd derivate)
 Jacobian/Hessian matrices for multi-dimensional

 #3 Quasi-Newton Methods
 Incremental approximation of Hessian
 Algorithms: BFGS, L-BFGS, Conjugate Gradient (CG)
 Example: L-BFGS-B, AR(2), MSE, N=100

EnBW energy-demand time series 

Motivation and Terminology

θ2

θ1

x0x1x2 x3

θ1

Presenter
Presentation Notes
BFGS vs CG: https://pubsonline.informs.org/doi/abs/10.1287/moor.3.3.244



6

706.550 Architecture of Machine Learning Systems – 05 Execution Strategies
Matthias Boehm, Graz University of Technology, SS 2021 

Terminology Batch/Mini-batch
 Batch ML Algorithms

 Iterative ML algorithms, where each iteration
uses the entire dataset to compute gradients ΔW

 For (pseudo-)second-order methods, many features
 Dedicated optimizers for traditional ML algorithms 

 Mini-batch ML Algorithms
 Iterative ML algorithms, where each iteration

only uses a batch of rows to make the 
next model update (in epochs or w/ sampling)

 For large and highly redundant training sets
 Applies to almost all iterative, model-based 

ML algorithms (LDA, reg., class., factor., DNN)
 Stochastic Gradient Descent (SGD)

Motivation and Terminology

Data

Batch 2

Batch 1

Epoch

W’
W’’

Data
W’
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Recap: Central Data Abstractions
 #1 Files and Objects

 File: Arbitrarily large sequential data in specific file format (CSV, binary, etc)
 Object: binary large object, with certain meta data

 #2 Distributed Collections
 Logical multi-set (bag) of key-value pairs

(unsorted collection)
 Different physical representations
 Easy distribution of pairs

via horizontal partitioning
(aka shards, partitions)

 Can be created from single file,
or directory of files (unsorted)

Motivation and Terminology

Key Value
4 Delta
2 Bravo
1 Alfa
3 Charlie
5 Echo
6 Foxtrot
7 Golf
1 Alfa
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Terminology Parallelism
 Flynn’s Classification

 SISD, SIMD
 (MISD), MIMD

 Example: SIMD Processing
 Streaming SIMD Extensions (SSE)
 Process the same operation on 

multiple elements at a time
(packed vs scalar SSE instructions)

 Data parallelism 
(aka: instruction-level parallelism)

 Example: VFMADD132PD

Motivation and Terminology

SISD
(uni-core)

SIMD
(vector)

MISD
(pipelining)

MIMD
(multi-core)

Single Data Multiple Data

Single 
Instruction

Multiple 
Instruction

2009 Nehalem: 128b (2xFP64)
2012 Sandy Bridge: 256b (4xFP64)

2017 Skylake: 512b (8xFP64)

a
b
c

c = _mm512_fmadd_pd(a, b);

[Michael J. Flynn, Kevin W. 
Rudd: Parallel Architectures. 
ACM Comput. Surv. 28(1) 1996]
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Excursus: Peak Performance
 Example Scale-up Node (DM cluster)

 Peak := 2 Sockets * 28 Cores * 2.2 GHz 
* 2 FMA units * 16 FP32 slots (AVX512) * 2 (FMA)
= 7.7 TFLOP/s (FP32)  =  3.85 TFLOP/s (FP64)

Motivation and Terminology

SystemDS matmult
w/ BLAS (Intel MKL):
2.23 TFLOP/s (FP64)
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Terminology Parallelism, cont.
 Distributed, Data-Parallel 

Computation
 Parallel computation of function foo()  single instruction
 Collection X of data items (key-value pairs) multiple data
 Data parallelism similar to SIMD but more coarse-grained notion of 

“instruction” and “data”  SPMD (single program, multiple data)

 Additional Terminology
 BSP: Bulk Synchronous Parallel (global barriers)
 ASP: Asynchronous Parallel (no barriers, often with accuracy impact)
 SSP: Stale-synchronous parallel (staleness constraint on fastest-slowest)
 Other: Fork&Join, Hogwild!, event-based, decentralized

 Beware: data parallelism used in very different contexts (e.g., Param Server)

Motivation and Terminology

Y = X.map(x -> foo(x))

[Frederica Darema: The SPMD Model : Past, 
Present and Future. PVM/MPI 2001]
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Recap: Fault Tolerance & Resilience
 Resilience Problem

 Increasing error rates at scale
(soft/hard mem/disk/net errors)

 Robustness for preemption
 Need for cost-effective resilience

 Fault Tolerance in Large-Scale Computation
 Block replication in distributed file systems
 ECC; checksums for blocks, broadcast, shuffle
 Checkpointing (all task outputs / on request)
 Lineage-based recomputation for recovery in Spark

 ML-specific Approaches (exploit app characteristics)
 Estimate contribution from lost partition to avoid strugglers
 Example: user-defined “compensation” functions

Motivation and Terminology

[Google Data Center: 
https://www.youtube.com/watch?v=XZmGGAbHqa0]

https://www.youtube.com/watch?v=XZmGGAbHqa0
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Categories of Execution Strategies
Motivation and Terminology

07 Hybrid Execution and HW Accelerators [Apr 30]

05a Data-Parallel 
Execution
[Apr 03]

05b Task-Parallel 
Execution
[Apr 03]

06 Parameter Servers 
(data, model) 

[Apr 23]

Mini-batchBatch 
SIMD/SPMD

Batch/Mini-batch, 
Independent Tasks 

MIMD

05a Data-Parallel 
Execution
[Apr 16]

05b Task-Parallel 
Execution
[Apr 16]

08 Caching, Partitioning, Indexing, and Compression [May 07]
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Background MapReduce and Spark
(Data-Parallel Collection Processing)

Abstractions for Fault-tolerant, 
Distributed Storage and Computation
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Hadoop History and Architecture
 Recap: Brief History

 Google’s GFS [SOSP’03] + MapReduce
 Apache Hadoop (2006)

 Apache Hive (SQL), Pig (ETL), Mahout (ML), Giraph (Graph)

 Hadoop Architecture / Eco System
 Management (Ambari)
 Coordination / workflows

(Zookeeper, Oozie)
 Storage (HDFS)
 Resources (YARN)

[SoCC’13]
 Processing 

(MapReduce)

Data-Parallel Collection Processing

NameNode

Head Node

Worker Node 1

Resource 
Manager Node 

Manager

MR 
AM

MR 
task

MR 
task

MR 
task

Worker Node n

Node 
Manager

MR 
task

MR 
task

MR 
task

MR 
task

MR Client DataNode
1 3 2

DataNode
3 2 9

[Jeffrey Dean, Sanjay 
Ghemawat: MapReduce: 

Simplified Data Processing on 
Large Clusters. OSDI 2004]
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MapReduce – Programming Model
 Overview Programming Model

 Inspired by functional programming languages
 Implicit parallelism (abstracts distributed storage and processing)
 Map function: key/value pair  set of intermediate key/value pairs
 Reduce function: merge all intermediate values by key 

 Example

Data-Parallel Collection Processing

map(Long pos, String line) {
parts ß line.split(“,”)
emit(parts[1], 1)

}

Name Dep

X CS

Y CS

A EE

Z CS

CS 1

CS 1

EE 1

CS 1

SELECT Dep, count(*) FROM csv_files GROUP BY Dep

reduce(String dep, 
Iterator<Long> iter) {

total ß iter.sum();
emit(dep, total)

} CS 3

EE 1
Collection of 

key/value pairs
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MapReduce – Execution Model
Data-Parallel Collection Processing

CSV 
File 1

Input CSV files 
(stored in HDFS)

CSV 
File 2

CSV 
File 3

Output Files 
(HDFS)

Out 1

Out 2

Out 3

Split 11

Split 12

Split 21

Split 22

Split 31

Split 32

map 
task

map 
task
map 
task

map 
task

map 
task
map 
task
Sort, [Combine], [Compress]

Map-Phase

[Reduce-Phase]

reduce 
task

reduce 
task

reduce 
task

Shuffle, Merge, 
[Combine]

#1 Data Locality (delay sched., write affinity)
#2 Reduced shuffle (combine)
#3 Fault tolerance (replication, attempts)

w/ #reducers = 3
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Spark History and Architecture 
 Summary MapReduce

 Large-scale & fault-tolerant processing w/ UDFs and files  Flexibility
 Restricted functional APIs  Implicit parallelism and fault tolerance
 Criticism: #1 Performance, #2 Low-level APIs, #3 Many different systems

 Evolution to Spark (and Flink)
 Spark [HotCloud’10] + RDDs [NSDI’12]  Apache Spark (2014)
 Design: standing executors with in-memory storage, 

lazy evaluation, and fault-tolerance via RDD lineage
 Performance: In-memory storage and fast job scheduling (100ms vs 10s)
 APIs: Richer functional APIs and general computation DAGs, 

high-level APIs (e.g., DataFrame/Dataset), unified platform  

 But many shared concepts/infrastructure
 Implicit parallelism through dist. collections (data access, fault tolerance) 
 Resource negotiators (YARN, Mesos, Kubernetes)
 HDFS and object store connectors (e.g., Swift, S3)

Data-Parallel Collection Processing
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Spark History and Architecture, cont.
 High-Level Architecture

 Different language bindings:
Scala, Java, Python, R

 Different libraries:
SQL, ML, Stream, Graph

 Spark core (incl RDDs)
 Different cluster managers:

Standalone, Mesos, 
Yarn, Kubernetes

 Different file systems/
formats, and data sources:
HDFS, S3, SWIFT, DBs, NoSQL

 Focus on a unified platform 
for data-parallel computation (Apache Flink w/ similar goals)

Data-Parallel Collection Processing

[https://spark.apache.org/]

Standalone MESOS YARN Kubernetes

https://spark.apache.org/
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Spark Resilient Distributed Datasets (RDDs)
 RDD Abstraction

 Immutable, partitioned 
collections of key-value pairs

 Coarse-grained deterministic operations (transformations/actions) 
 Fault tolerance via lineage-based re-computation 

 Operations
 Transformations: 

define new RDDs
 Actions: return 

result to driver

 Distributed Caching
 Use fraction of worker memory for caching
 Eviction at granularity of individual partitions
 Different storage levels (e.g., mem/disk x serialization x compression)

Data-Parallel Collection Processing

JavaPairRDD<MatrixIndexes,MatrixBlock>

Type Examples

Transformation
(lazy)

map, hadoopFile, textFile, 
flatMap, filter, sample, join, 

groupByKey, cogroup, reduceByKey, 
cross, sortByKey, mapValues

Action reduce, save,
collect, count, lookupKey

Node1 Node2
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Spark Resilient Distributed Datasets (RDDs), cont.
 Lifecycle of an RDD

 Note: can’t broadcast 
an RDD directly

Data-Parallel Collection Processing

File on DFS

Distributed 
Collection

Local Data
(value, collection)

sc.parallelize(lst)

lst = X.collect()
v = X.reduce(foo())

X.filter(foo())
X.mapValues(foo())
X.reduceByKey(foo())
X.cache()/X.persist(…)

X.saveAsObjectFile(f)
X.saveAsTextFile(f)

sc.hadoopFile(f)
sc.textFile(f)
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Spark Partitions and Implicit/Explicit Partitioning
 Spark Partitions

 Logical key-value collections are split into physical partitions
 Partitions are granularity of tasks, I/O, shuffling, evictions

 Partitioning via Partitioners
 Implicitly on every data shuffling
 Explicitly via R.repartition(n)

 Partitioning-Preserving
 All operations that are guaranteed to keep keys unchanged 

(e.g. mapValues(), mapPartitions() w/ preservesPart flag)

 Partitioning-Exploiting
 Join: R3 = R1.join(R2)
 Lookups: 
v = C.lookup(k)

Data-Parallel Collection Processing

Example Hash Partitioning:
For all (k,v) of R: 
pid = hash(k) % n 

0: 8, 1, 6

1: 7, 5

2: 2, 3, 4

0: 1, 2

1: 5, 6

2: 3, 4

0: 3, 6

1: 4, 7, 1

2: 2, 5, 8

0: 6, 3

1: 4, 1

2: 5, 2

% 3
⋈ ⋈

Hash partitioned

~128MB
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Spark Lazy Evaluation, Caching, and Lineage
Data-Parallel Collection Processing

join
union

groupBy

Stage 3

Stage 1

Stage 2

A B

C D F

G

map

partitioning-
aware

E

[Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy 
McCauly, Michael J. Franklin, Scott Shenker, Ion Stoica: Resilient Distributed Datasets: A 

Fault-Tolerant Abstraction for In-Memory Cluster Computing. NSDI 2012]

reduce

cached

Presenter
Presentation Notes
Notes:
Dryad-­‐like DAGs 
Pipelines functions within a stage 
Locality & data reuse aware 
Partitioning-­‐aware to avoid shuffles 
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Data-Parallel Execution
Batch ML Algorithms
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Background: Matrix Formats
 Matrix Block (m x n)

 A.k.a. tiles/chunks, most operations defined here
 Local matrix: single block, different representations

 Common Block Representations
 Dense (linearized arrays)
 MCSR (modified CSR)
 CSR (compressed sparse rows), CSC
 COO (Coordinate matrix)

Data-Parallel Execution

.7 .1

.2 .4
.3

Example 
3x3 Matrix

.7 0 .1 .2 .4 0 0 .3 0
Dense (row-major)

.7

.1

.2

.4

.3

0
2
0
1
1

0
2
4
5

CSR

.7

.1

.2

.4

.3

0
2
0
1
1

COO

0
0
1
1
2

.7 .1
2

MCSR

0

.2 .4
10

.3
1O(mn)

O(m + nnz(X)) O(nnz(X))
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Distributed Matrix Representations
 Collection of “Matrix Blocks” (and keys)

 Bag semantics (duplicates, unordered)
 Logical (Fixed-Size) Blocking 

+ join processing / independence
- (sparsity skew)

 E.g., SystemML on Spark:
JavaPairRDD<MatrixIndexes,MatrixBlock>

 Blocks encoded independently (dense/sparse)

 Partitioning
 Logical Partitioning 

(e.g., row-/column-wise)
 Physical Partitioning

(e.g., hash / grid)

Data-Parallel Execution

Logical Blocking 
3,400x2,700 Matrix 

(w/ Bc=1,000)

Physical 
Blocking and 
Partitioning 
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Distributed Matrix Representations, cont.
 #1 Block-partitioned Matrices

 Fixed-size, square or rectangular blocks
 Pros: Input/output alignment, block-local transpose, 

amortize block overheads, bounded mem, cache-conscious
 Cons: Converting row-wise inputs (e.g., text) requires shuffle
 Examples: RIOT, PEGASUS, SystemML, SciDB, Cumulon, 

Distributed R, DMac, Spark Mllib, Gilbert, MatFast, and SimSQL
 #2 Row/Column-partitioned Matrices

 Collection of row indexes and rows (or columns respectively)
 Pros: Seamless data conversion and access to entire rows
 Cons: Storage overhead in Java, and cache unfriendly operations
 Examples: Spark MLlib, Mahout Samsara, Emma, SimSQL

 #3 Algorithm-specific Partitioning
 Operation and algorithm-centric data representations
 Examples: matrix inverse, matrix factorization

Data-Parallel Execution
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Distributed Matrix Operations
Data-Parallel Execution

Elementwise Multiplication
(Hadamard Product) Transposition

Matrix
Multiplication

Note: also with 
row/column vector rhs

Note: 1:N join
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Physical MM Operator Selection
 Common Selection Criteria

 Data and cluster characteristics (e.g., data size/shape, memory, parallelism)
 Matrix/operation properties (e.g., diagonal/symmetric, sparse-safe ops)
 Data flow properties (e.g., co-partitioning, co-location, data locality)

 #0 Local Operators
 SystemML mm, tsmm, mmchain; Samsara/Mllib local

 #1 Special Operators (special patterns/sparsity)
 SystemML tsmm, mapmmchain; Samsara AtA

 #2 Broadcast-Based Operators (aka broadcast join)
 SystemML mapmm, mapmmchain

 #3 Co-Partitioning-Based Operators (aka improved repartition join)
 SystemML zipmm; Emma, Samsara OpAtB

 #4 Shuffle-Based Operators (aka repartition join)
 SystemML cpmm, rmm; Samsara OpAB

Data-Parallel Execution

X

v

X

1st

pass 2nd

pass

q┬

t(X) %*% (X%*%v)
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 Examples  Distributed MM Operators

Physical MM Operator Selection, cont.
Data-Parallel Execution

X1,1

X2,1

X3,1

X1,2

X2,2

X3,2

X4,1 X4,2

Y
1,1

Y
2,1

Y1,1

Y2,1

Y3,1

Y1,2

Y2,2

Y3,2

Y4,1 Y4,2

X1,1

X2,1

X1,3X1,2

X2,2

X1,4

X2,3 X2,4

Broadcast-based
MM (mapmm)

Shuffle-based
MM (cpmm)
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Partitioning-Preserving Operations
 Shuffle is major bottleneck for ML on Spark
 Preserve Partitioning 

 Op is partitioning-preserving if keys unchanged (guaranteed)
 Implicit: Use restrictive APIs (mapValues() vs mapToPair())
 Explicit: Partition computation w/ declaration of partitioning-preserving

 Exploit Partitioning
 Implicit: Operations based on join, cogroup, etc
 Explicit: Custom operators (e.g., zipmm)

 Example: 
Multiclass SVM
 Vectors fit 

neither into 
driver nor 
broadcast

 ncol(X) ≤ Bc

Data-Parallel Execution

parfor(iter_class in 1:num_classes) {
Y_local = 2 * (Y == iter_class) - 1
g_old = t(X) %*% Y_local
...
while( continue ) {

Xd = X %*% s
... inner while loop (compute step_sz)
Xw = Xw + step_sz * Xd;
out = 1 - Y_local * Xw;
out = (out > 0) * out;
g_new = t(X) %*% (out * Y_local) ...

repart, chkpt X MEM_DISK

chkpt y_local MEM_DISK

zipmm

chkpt Xd, Xw MEM_DISK
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Dask
 Overview Dask

 Multi-threaded and distributed operations for arrays, bags, and dataframes
 dask.array:

list of numpy n-dim arrays
 dask.dataframe:

list of pandas data frames
 dask.bag:unordered list of tuples (second order functions)
 Local and distributed schedulers:

threads, processes, YARN, Kubernetes, containers, HPC, and cloud, GPUs

 Execution
 Lazy evaluation
 Limitation: requires 

static size inference
 Triggered via
compute()

Data-Parallel Execution

[Matthew Rocklin: Dask: Parallel Computation with Blocked 
algorithms and Task Scheduling, Python in Science 2015]
[Dask Development Team: Dask: Library for dynamic task 

scheduling, 2016, https://dask.org]

import dask.array as da

x = da.random.random(
(10000,10000), chunks=(1000,1000))

y = x + x.T
y.persist() # cache in memory
z = y[::2, 5000:].mean(axis=1) # colMeans
ret = z.compute() # returns NumPy array

Presenter
Presentation Notes
Note: somewhat in competition w/ PySpark (but not out-of-core), scalable ML algorithms via https://ml.dask.org/ (partnering with scikit-learn, XGBoost)

https://dask.org/
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Task-Parallel Execution
Parallel Computation of Independent Tasks,

Emulation of Data-Parallel Operations/Programs
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Overview Task-Parallelism 
 Historic Perspective 

 Since 1980s: various parallel Fortran extensions, especially in HPC
 DOALL parallel loops (independent iterations)
 OpenMP (since 1997,

Open Multi-Processing)

 Motivation: Independent Tasks in ML Workloads
 Use cases: Ensemble learning, cross validation, hyper-parameter tuning, 

complex models with disjoint/overlapping/all data per task
 Challenge #1: Adaptation to data and cluster characteristics
 Challenge #2: Combination with data-parallelism

Task-Parallel Execution

#pragma omp parallel for reduction(+: nnz)
for (int i = 0; i < N; i++) {
int threadID = omp_get_thread_num();
R[i] = foo(A[i]);
nnz += (R[i]!=0) ? 1 : 0;    

}
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Parallel For Loops (ParFor) 
 Hybrid Parallelization Strategies

 Combination of data- and task-parallel ops
 Combination of local and distributed computation

 Key Aspects
 Dependency Analysis
 Task partitioning
 Data partitioning, scan

sharing, various rewrites
 Execution strategies
 Result agg strategies
 ParFor optimizer 

Task-Parallel Execution

reg = 10^(seq(-1,-10))
B_all = matrix(0, nrow(reg), n)

parfor( i in 1:nrow(reg) ) {
B = lm(X, y, reg[i,1]);
B_all[i,] = t(B);

}

Local ParFor
(multi-threaded),

w/ local ops

Remote ParFor
(distributed 
Spark job)

Local ParFor,
w/ concurrent 
distributed ops

[M. Boehm et al.: Hybrid Parallelization 
Strategies for Large-Scale Machine Learning 

in SystemML. PVLDB 2014]

Presenter
Presentation Notes
NOTE: dependency analysis (constant, greatest common denominator if dependency possible, Banerjee if dependencies in loop bounds)
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Additional ParFor Examples
 Pairwise Pearson Correlation 

 In practice: uni/bivariate stats
 Pearson‘s R, Anova F, Chi-squared, 

Degree of freedom, P-value, 
Cramers V, Spearman, etc)

 Batch-wise CNN Scoring 
 Emulate data-parallelism

for complex functions

 Conceptual Design: 
Coordinator/worker (task: group of parfor iterations)

Task-Parallel Execution

D = read("./input/D");
R = matrix(0, ncol(D), ncol(D));
parfor(i in 1:(ncol(D)-1)) {

X = D[ ,i];
sX = sd(X);
parfor(j in (i+1):ncol(D)) {

Y = D[ ,j];
sY = sd(Y);
R[i,j] = cov(X,Y)/(sX*sY);

} }
write(R, "./output/R");

prob = matrix(0, Ni, Nc)
parfor( i in 1:ceil(Ni/B) ) {

Xb = X[((i-1)*B+1):min(i*B,Ni),];
prob[((i-1)*B+1):min(i*B,Ni),] =

... # CNN scoring
}
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parfor(i in 1:(ncol(D)-1)) {
X = D[ ,i];
sX = sd(X);
parfor(j in (i+1):ncol(D)) {

Y = D[ ,j];

ParFor Execution Strategies
 #1 Task Partitioning

 Fixed-size schemes: 
naive (1) , static (n/k), fixed (m)

 Self-scheduling: e.g.,  
guided self scheduling, factoring

 #2 Data Partitioning
 Local or remote row/column 

partitioning (incl locality)

 #3 Task Execution
 Local (multi-core) execution
 Remote (MR/Spark) execution 

 #4 Result Aggregation
 With and without compare (non-empty output variable)
 Local in-memory / remote MR/Spark result aggregation

Task-Parallel Execution

Local 
ParWorker k

ParFOR (local)

Local 
ParWorker 1

 while(wßdeq())
  foreach pi ∈ w
   execute(prog(pi))

Task Partitioning

Parallel Result Aggregation

Task Queue

...

w5: i, {11}
w4: i, {9,10}
w3: i, {7, 8 }
w2: i, {4,5,6}
w1: i, {1,2,3}

Hadoop
ParWorker 
Mapper k

ParFOR (remote)

 ParWorker 
Mapper 1

 map(key,value)
  wßparse(value)
  foreach pi ∈ w
   execute(prog(pi))

Task Partitioning

Parallel Result Aggregation

...

…
A|MATRIX|./out/A7tmp

w5: i, {11}
w4: i, {9,10}
w3: i, {7, 8 }
w2: i, {4,5,6}
w1: i, {1,2,3}

Factoring (n=101, k=4)

(13,13,13,13, 7,7,7,7, 3,3,3,3, 2,2,2,2, 1)



37

706.550 Architecture of Machine Learning Systems – 05 Execution Strategies
Matthias Boehm, Graz University of Technology, SS 2021 

ParFor Optimizer Framework 
 Design: Runtime optimization for each top-level parfor

 Plan Tree P
 Nodes NP

 Exec type et
 Parallelism k
 Attributes A

 Height h
 Exec contexts ECP

 Plan Tree 
Optimization 
Objective

 Heuristic optimizer w/ transformation-based search strategy
 Cost and memory estimates w/ plan tree aggregate statistics

Task-Parallel Execution

ParFOR

b(cm)

Generic ParFOR

Generic

RIX LIX b(cov)...

RIX b(cm)...

ec0 ParFOR

b(cm)

Generic ParFOR

ec1 Generic

RIX LIX b(cov)...

RIX b(cm)... cmec = 600 MB
ckec   = 1

cmec = 1024 MB
ckec   = 16

MR

ec  … execution context
cm … memory constraint
ck  … parallelism constraint 
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Task-Parallelism in R
 Multi-Threading

 doMC as multi-threaded
foreach backend

 Foreach w/ parallel (%dopar%) 
or sequential (%do%) execution

 Distribution
 doSNOW as distributed 

foreach backend
 MPI/SOCK as comm methods

Task-Parallel Execution

library(doMC)
registerDoMC(32)
R <- foreach(i=1:(ncol(D)-1), 

.combine=rbind) %dopar% {
X = D[,i]; sX = sd(X);
Ri = matrix(0, 1, ncol(D))
for(j in (i+1):ncol(D)) {

Y = D[,j]; sY = sd(Y)
Ri[1,j] = cov(X,Y)/(sX*sY);

}  
return(Ri);

}

[https://cran.r-project.org/web/packages/
doMC/vignettes/gettingstartedMC.pdf]

[https://cran.r-project.org/web/packages/
doSNOW/doSNOW.pdf]

library(doSNOW)
clust = makeCluster(

c(“192.168.0.1”, “192.168.0.2”,
“192.168.0.3”), type=“SOCK”);

registerDoSNOW(clust);
... %dopar% ...
stopCluster(clust);

https://cran.r-project.org/web/packages/doMC/vignettes/gettingstartedMC.pdf
https://cran.r-project.org/web/packages/doSNOW/doSNOW.pdf
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Task-Parallelism in Other Systems
 MATLAB

 Parfor loops for 
multi-process &
distributed loops

 Use-defined par

 Julia
 Dedicated macros:
@threads
@distributed

 TensorFlow
 User-defined parallel iterations, responsible for 

correct results or acceptable approximate results

Task-Parallel Execution

tf.while_loop(cond, body, loop_vars, parallel_iterations=10,
swap_memory=False, maximum_iterations=None, ...)

[Gaurav Sharma, Jos Martin: 
MATLAB®: A Language for 

Parallel Computing. Int. Journal 
on Parallel Prog. 2009]

matlabpool 32
c = pi; z = 0;
r = rand(1,10)
parfor i = 1 : 10
z = z+1;  # reduction
b(i) = r(i); # sliced

end

a = zeros(1000)
@threads for i in 1:1000
a[i] = rand(r[threadid()])

end

[https://docs.julialang.
org/en/v1/manual/

parallel-computing/]

[https://www.tensorflow.org/
api_docs/python/tf/while_loop]

https://docs.julialang.org/en/v1/manual/parallel-computing/
https://www.tensorflow.org/api_docs/python/tf/while_loop
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Task-Parallelism in Other Systems, cont.
 sk-dist [https://pypi.org/project/sk-dist/]

 Distributed training of local scikit-learn models (via PySpark)
 Grid Search / Cross Validation (hyper-parameter optimization)
 Multi-class Training (one-against the rest)
 Tree Ensembles (many decision trees)

 Model Hopper Parallelism (MOP)
 Given a dataset D, p workers, and 

several NN configurations S 
 Partition D into worker-local partitions Dp

 Schedule tasks for sub-epochs of 𝑆𝑆′ ⊆ 𝑆𝑆 on p
without moving the partitioned data

 Checkpointing of models between tasks

 Reinforcement Learning Frameworks  next lecture

Task-Parallel Execution

[https://docs.ray.io/en/
stable/rllib.html]

[Supun Nakandala, Yuhao Zhang, Arun
Kumar: Cerebro: Efficient and Reproducible 
Model Selection on Deep Learning Systems. 

DEEM@SIGMOD 2019]

[Supun Nakandala, Yuhao
Zhang, Arun Kumar: Cerebro: 
A Data System for Optimized 

Deep Learning Model 
Selection. PVLDB 2020]

https://pypi.org/project/sk-dist/
https://docs.ray.io/en/stable/rllib.html
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Summary and Q&A
 Categories of Execution Strategies

 Data-parallel execution for batch ML algorithms
 Task-parallel execution for custom parallelization of independent tasks
 Parameter servers (data-parallel vs model-parallel) 

for mini-batch ML algorithms

 #1 Different strategies (and systems) for different ML workloads
 Specialization and abstraction

 #2 Awareness of underlying execution frameworks
 #3 Awareness of effective compilation and runtime techniques

 Next Lectures
 06 Parameter Servers [Apr 23]
 07 Hybrid Execution and HW Accelerators [Apr 30]
 08 Caching, Partitioning, Indexing and Compression [May 07]
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