

SCIENCE PASSION TECHNOLOGY

Architecture of ML Systems 08 Data Access Methods

Matthias Boehm

Graz University of Technology, Austria Computer Science and Biomedical Engineering Institute of Interactive Systems and Data Science BMK endowed chair for Data Management

Announcements/Org

- #1 Video Recording
 - Link in TeachCenter & TUbe (lectures will be public)
 - https://tugraz.webex.com/meet/m.boehm
 - Corona traffic light RED → May 17: ORANGE (but tests required)
- #2 Programming Projects / Exercises (36/57)
 - Apache SystemDS: 24 projects / 37 students
 - DAPHNE: 2 projects / 2 students
 - Exercises: 10 projects / 18 students → TeachCenter
 - Kickoff meetings completed
 - Deadline: June 30 (soft)

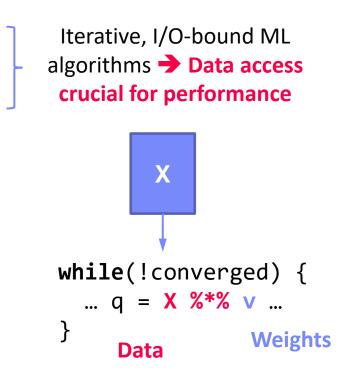
Categories of Execution Strategies

07 Hybrid Execution and HW Accelerators [Apr 30]

08 Caching, Partitioning, Indexing, and Compression [May 07]

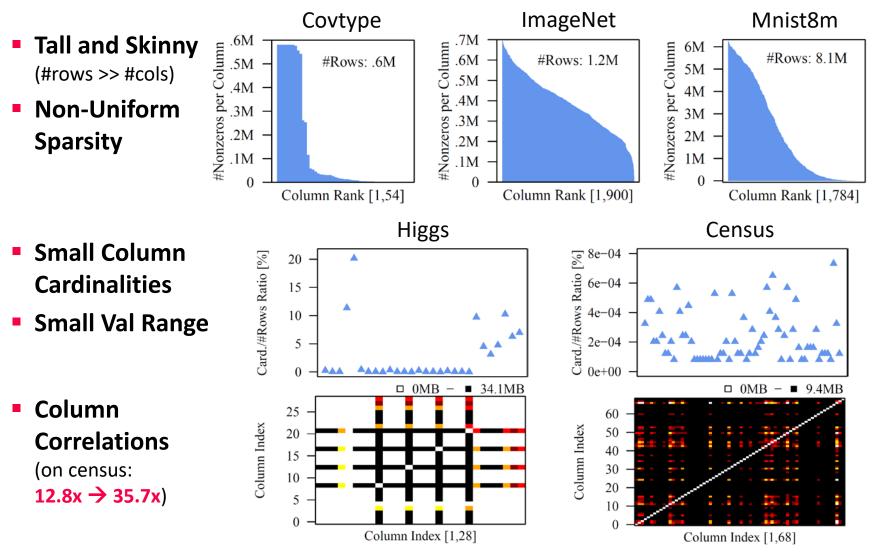
Agenda

- Motivation, Background, and Overview
- Caching, Partitioning, and Indexing
- Lossy and Lossless Compression



Motivation, Background, and Overview

Motivation: Data Characteristics



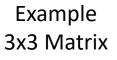
706.550 Architecture of Machine Learning Systems – 08 Data Access Methods Matthias Boehm, Graz University of Technology, SS 2021

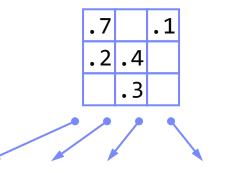
Recap: Matrix Formats

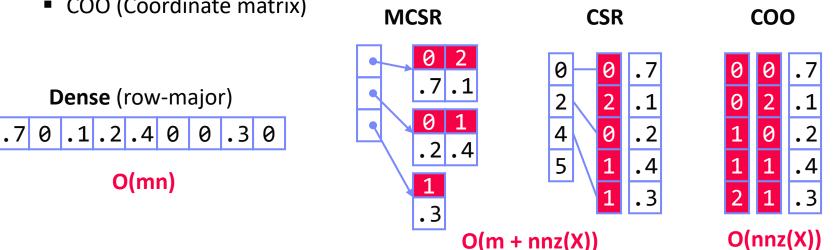
- Matrix Block (m x n)
 - A.k.a. tiles/chunks, most operations defined here
 - Local matrix: single block, different representations

Common Block Representations

- Dense (linearized arrays)
- MCSR (modified CSR)
- CSR (compressed sparse rows), CSC
- COO (Coordinate matrix)

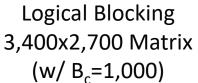






Recap: Distributed Matrix Representations

- Collection of "Matrix Blocks" (and keys)
 - Bag semantics (duplicates, unordered)
 - Logical (Fixed-Size) Blocking
 + join processing / independence
 (sparsity skew)
 - E.g., SystemDS on Spark: JavaPairRDD<MatrixIndexes,MatrixBlock>
 - Blocks encoded independently (dense/sparse)

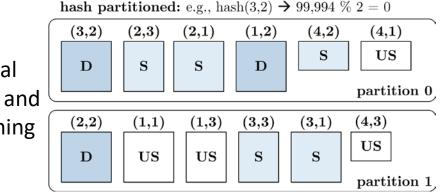


	C ·	
(1,1)	(1,2)	(1,3)
(2,1)	(2,2)	(2,3)
(3,1)	(3,2)	(3,3)
(4,1)	$\fbox{(4,2)}$	(4,3)

Partitioning

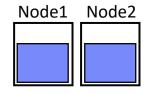
- Logical Partitioning (e.g., row-/column-wise)
- Physical Partitioning (e.g., hash / grid)

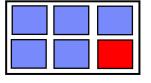
Physical Blocking and Partitioning

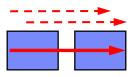


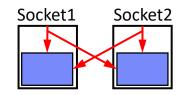
Overview Data Access Methods

- #1 (Distributed) Caching
 - Keep read only feature matrix in (distributed) memory
- #2 Buffer Pool Management
 - Graceful eviction of intermediates, out-of-core ops
- #3 Scan Sharing (and operator fusion)
 - Reduce the number of scans as well as read/writes
- #4 NUMA-Aware Partitioning and Replication
 - Matrix partitioning / replication \rightarrow data locality
- #5 Index Structures
 - Out-of-core data, I/O-aware ops, updates
- #6 Compression
 - Fit larger datasets into available memory









Caching, Partitioning, and Indexing

#2 Buffer Pool Management #3 Scan Sharing (and operator fusion) #4 NUMA-Aware Partitioning and Replication #5 Index Structures

RDDObject

BroadcastObject

Matrix

Object

Meta

Data

[MatrixBlock]

acquireRead

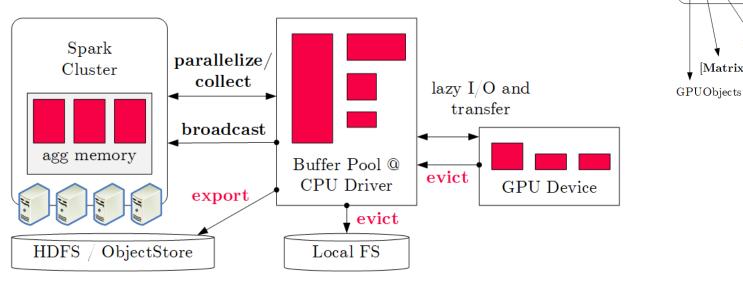
acquireModify

release

exportData

Buffer Pool Management

- **#1 Classic Buffer Management** (SystemDS)
 - Hybrid plans of in-memory and distributed ops
 - Graceful eviction of intermediate variables



#2 Algorithm-Specific Buffer Management

- Operations/algorithms over out-of-core matrices and factor graphs
- Examples: **RIOT** [CIDR'2009] (ops), **Elementary** [SIGMOD'13] (factor graphs)

Scan Sharing

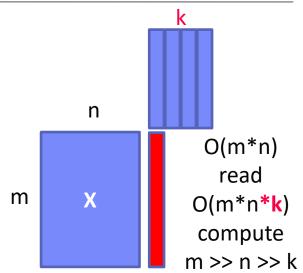
- #1 Batching
 - One-pass evaluation of multiple configurations
 - Use cases: EL, CV, feature selection, hyper parameter tuning, multi-user scoring
 - E.g.: TUPAQ [SoCC'16], Columbus [SIGMOD'14]

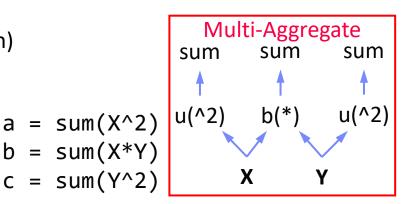
#2 Fused Operator DAGs

- Avoid unnecessary scans, (e.g., mmchain)
- Avoid unnecessary writes / reads
- Multi-aggregates, redundancy
- E.g.: SystemML codegen [PVLDB'18]

#3 Runtime Piggybacking

- Merge concurrent data-parallel jobs
- "Wait-Merge-Submit-Return"-loop
- E.g.: SystemML parfor [PVLDB'14]





```
parfor( i in 1:numModels )
  while( !converged )
    q = X %*% v; ...
```


In-Memory Partitioning (NUMA-aware)

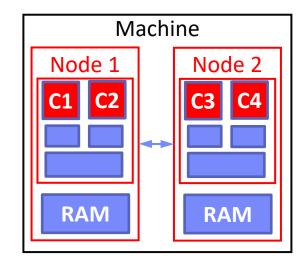
NUMA-Aware Model and Data Replication

- Model Replication (06 Parameter Servers)
 - PerCore (BSP epoch), PerMachine (Hogwild!), PerNode (hybrid)
- Data Replication
 - Partitioning (sharding)
 - Full replication

AT MATRIX (Adaptive Tile Matrix)

- Recursive NUMA-aware partitioning into dense/sparse tiles
- Inter-tile (worker teams) and intra-tile (threads in team) parallelization
- Job scheduling framework from SAP HANA (horizontal range partitioning, socket-local queues with task-stealing)

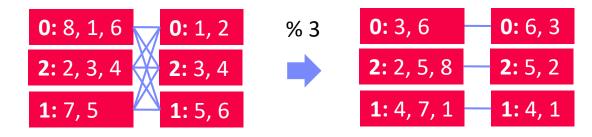
[Ce Zhang, Christopher Ré: DimmWitted: A Study of Main-Memory Statistical Analytics. **PVLDB 2014**]



[David Kernert, Wolfgang Lehner, Frank Köhler: Topology-aware optimization of big sparse matrices and matrix multiplications on mainmemory systems. **ICDE 2016**]

Distributed Partitioning

- Spark RDD Partitioning
 - Implicitly on every data shuffling
 - Explicitly via R.repartition(n)
- Distributed Joins
 - R3 = R1.join(R2)



- Single-Key Lookups v = C.lookup(k)
 - Without partitioning: scan all keys (reads/deserializes out-of-core data)
 - With partitioning: lookup partition, scan keys of partition
- Multi-Key Lookups
 - Without partitioning: scan all keys
 - With partitioning: lookup relevant partitions

```
//build hashset of required partition ids
HashSet<Integer> flags = new HashSet<>();
for( MatrixIndexes key : filter )
    flags.add(partitioner.getPartition(key));
```


Recap: B-Tree Overview

[Rudolf Bayer, Edward M. McCreight: Organization and Maintenance of Large Ordered Indices. Acta Inf. (1) 1972] The second secon

History B-Tree

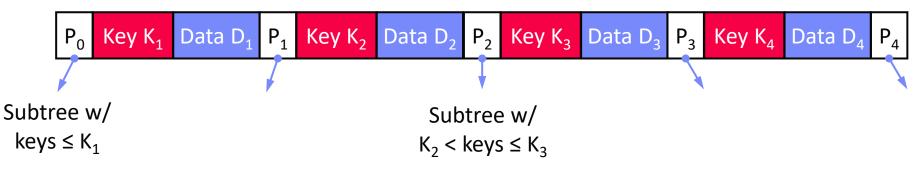
15

- Bayer and McCreight 1972, Block-based, Balanced, Boeing Labs
- Multiway tree (node size = page size); designed for DBMS
- Extensions: B+-Tree/B*-Tree (data only in leafs, double-linked leaf nodes)
- Definition B-Tree (k, h)
 - All paths from root to leafs have equal length h
 - All nodes (except root) have [k, 2k] key entries
 - All nodes (except root, leafs) have [k+1, 2k+1] successors
 - Data is a record or a reference to the record (RID)

 $\left\lceil \log_{2k+1}(n+1) \right\rceil \le h \le \left\lceil \log_{k+1}\left(\frac{n+1}{2}\right) \right\rceil + 1$

All nodes adhere to max constraints

k=2



42

41

45

Recap: B-Tree Overview, cont.

- Scan/binary search within nodes
- Descend along matching key ranges
- B-Tree Insertion
 - Insert into leaf nodes
 - Split the 2k+1 entries into two leaf nodes

B-Tree Deletion

- Lookup key and delete if existing
- Move entry from fullest successor; if underflow merge with sibling

10

25

30

40

TU Graz

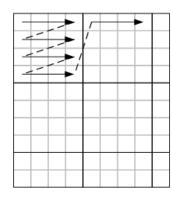
Linearized Array B-Tree (LAB-Tree)

- Basic Ideas
 - B-tree over linearized array representation (e.g., row-/col-major, Z-order, UDF)
- [Yi Zhang, Kamesh Munagala, Jun Yang: Storing Matrices on Disk: Theory and Practice Revisited. **PVLDB 2011**]

- New leaf splitting strategies; dynamic leaf storage format (sparse and dense)
- Various flushing policies for update batching (all, LRU, smallest page, largest page probabilistically, largest group)

#1 Example linearized

storage order



matrix A:

4 x 4 blocking row-major block order row-major cell order

#2 Example linearized

range query A[4:9,3:5] with column-major iterator order

[David Kernert, Wolfgang Lehner, Frank Köhler: Topology-aware optimization of big sparse matrices and matrix multiplications

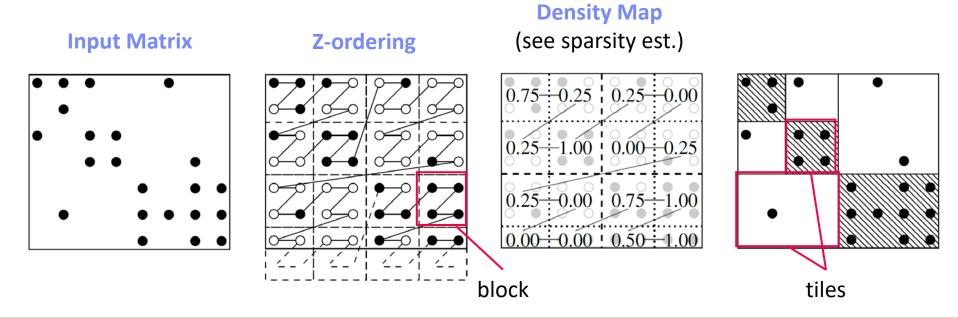
on main-memory systems. ICDE 2016]

Adaptive Tile (AT) Matrix

Basic Ideas

18

- Two-level blocking and NUMA-aware range partitioning (tiles, blocks)
- Z-order linearization, and recursive quad-tree partitioning to find var-sized tiles (tile contains N blocks)



706.550 Architecture of Machine Learning Systems – 08 Data Access Methods Matthias Boehm, Graz University of Technology, SS 2021

ISDS

- 19 **TileDB Storage Manager**
 - **Basic Ideas**

0

a

2

8

10

1

2

3

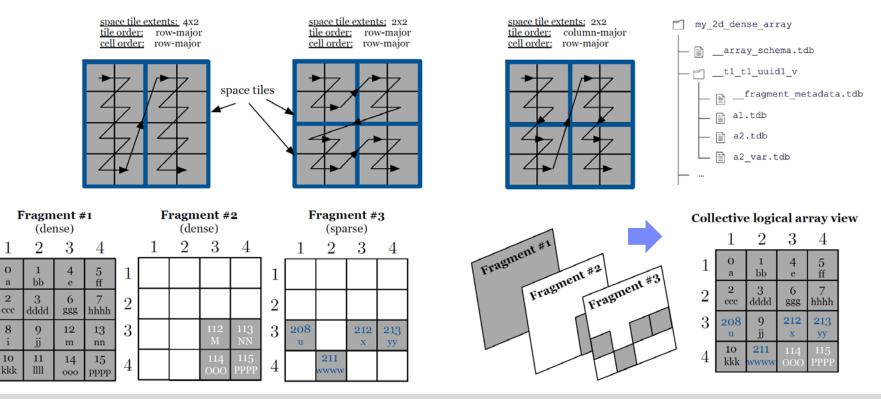
4

- Storage manager for 2D arrays of different data types (incl. vector, 3D)
- [Stavros Papadopoulos, Kushal Datta, Samuel Madden, Timothy G. Mattson: The TileDB Array Data Storage Manager. PVLDB 2016]

ISDS

https://docs.tiledb.com

Two-level blocking (space/data tiles), update batching via fragments



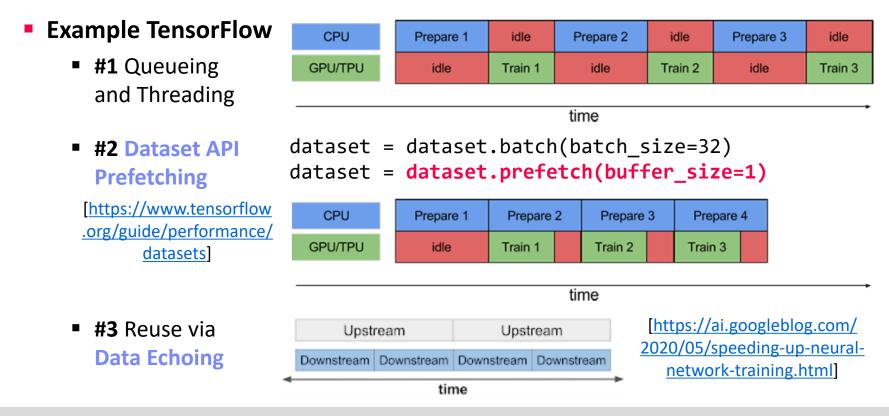
706.550 Architecture of Machine Learning Systems – 08 Data Access Methods Matthias Boehm, Graz University of Technology, SS 2021

Pipelining for Mini-batch Algorithms

Motivation

20

- Overlap data access and computation in mini-batch algorithms (e.g., DNN)
- Simple pipelining of I/O and compute via queueing / prefetching



Lossy and Lossless Compression

#6 Compression

Recap: Database Compression Schemes

- Null Suppression
 - Compress integers by omitting leading zero bytes/bits (e.g., NS, gamma)
- Run-Length Encoding
 - Compress sequences of equal values by runs of (value, start, run length)

Dictionary Encoding

 Compress column w/ few distinct values as pos in dictionary (→ code size)

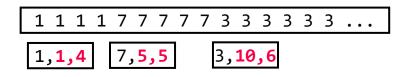
Delta Encoding

 Compress sequence w/ small changes by storing deltas to previous value

Frame-of-Reference Encoding

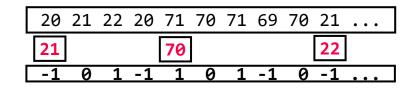
 Compress values by storing delta to reference value (outlier handling)

00000000	00000000	00000000	01101010
		11	01101010



1 7	'7	3	1	7	1	3	3	7	1	3	3	7	3	• • •
1,3	,7	d	ict	ior	nar	у (СО	de	si	ze	2	bit)	
1 3	3	2	1	3	1	2	2	3	1	2	2	3	2	





106

TU Graz

Overview Lossless Compression Techniques

#1 Block-Level General-Purpose Compression

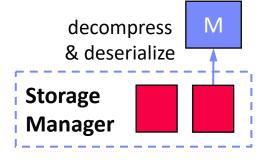
- Heavyweight or lightweight compression schemes
- Decompress matrices block-wise for each operation
- E.g.: Spark RDD compression (Snappy/LZ4), SciDB SM [SSDBM'11], TileDB SM [PVLDB'16], scientific formats NetCDF, HDF5 at chunk granularity

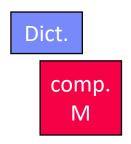
#2 Block-Level Matrix Compression

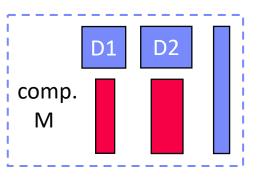
- Compress matrix block with homogeneous encoding scheme
- Perform LA ops over compressed representation
- E.g.: CSR-VI (dict) [CF'08], cPLS (grammar) [KDD'16], TOC (LZW w/ trie) [SIGMOD'19]

#3 Column-Group-Level Matrix Compression

- Compress column groups w/ heterogeneous schemes
- Perform LA ops over compressed representation
- E.g.: SystemML CLA (RLE, OLE, DDC, UC) [PVLDB'16]







CLA: Compressed Linear Algebra

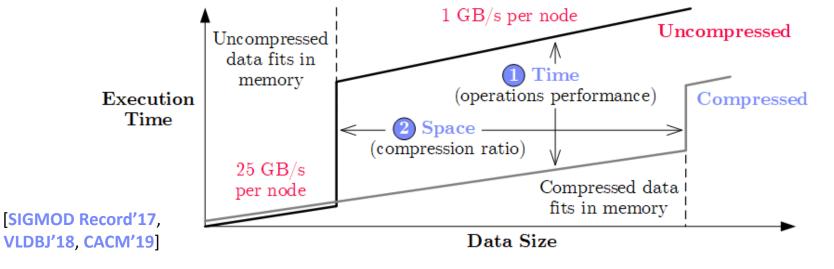
Key Idea

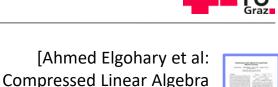
24

- Use lightweight database compression techniques
- Perform LA operations on compressed matrices

Goals of CLA

- Operations performance close to uncompressed
- Good compression ratios





for Large-Scale Machine Learning. **PVLDB 2016**]

X

}

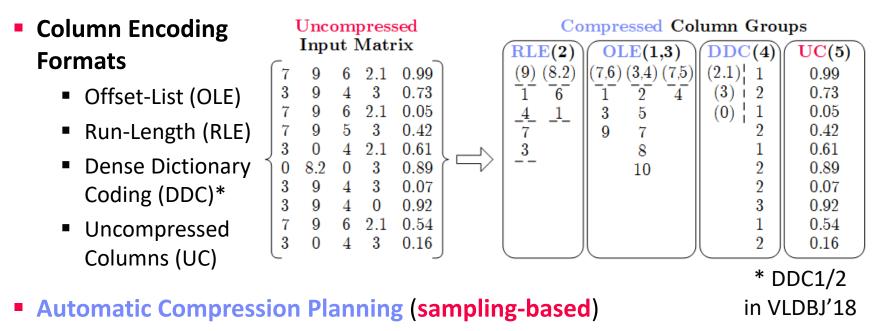
while(!converged) {

... q = X %*% v ...

CLA: Compressed Linear Algebra, cont. (2)

Overview Compression Framework

- Column-wise matrix compression (values + compressed offsets / references)
- Column co-coding (column groups, encoded as single unit)
- Heterogeneous column encoding formats (w/ dedicated physical encodings)



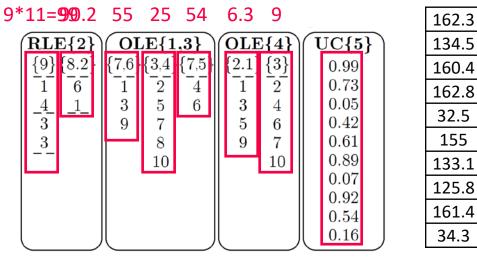
Select column groups and formats per group (data dependent)

CLA: Compressed Linear Algebra, cont. (3)

Matrix-Vector Multiplication

Naïve: for each tuple, pre-aggregate values, add values at offsets to q

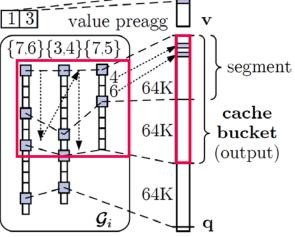
Example: q = X v, with v = (7, 11, 1, 3, 2)



 Cache-conscious: Horizontal, segment-aligned scans, maintain positions

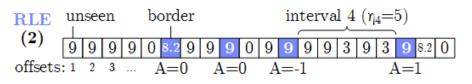
Vector-Matrix Multiplication

- Naïve: cache-unfriendly on input (v)
- Cache-conscious: again use horizontal, segment-aligned scans



CLA: Compressed Linear Algebra, cont. (4)

- Estimating Compressed Size: S^C = min(S^{OLE}, S^{RLE}, S^{DDC})
 - # of distinct tuples d_i: "Hybrid generalized jackknife" estimator [JASA'98]
 - # of non-zero tuples z_i: Scale from sample with "coverage" adjustment
 - # of runs r_{ij}: maxEnt model + independent-interval approx. (~ Ising-Stevens)



Compression Planning

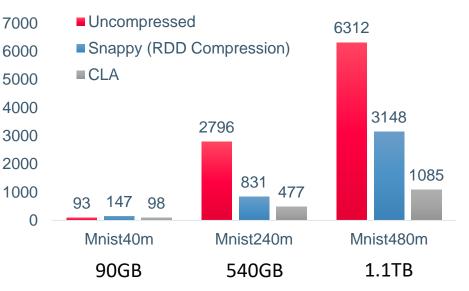
- #1 Classify compressible columns
 - Draw random sample of rows (from transposed X)
 - Classify C^C and C^{UC} based on estimate compression ratio
- #2 Group compressible columns (exhaustive O(m^m), greedy O(m³))
 - Bin-packing-based column partitioning
 - Greedy grouping per bin w/ pruning and memoization O(m²)
- #3 Compression
 - Extract uncompressed offset lists and exact compression ratio
 - Graceful corrections and UC group creation

CLA: Compressed Linear Algebra, cont. (5)

- Experimental Setup
 - LinregCG, 10 iterations (incl. compression), InfiMNIST data generator
 - 1+6 node cluster (216GB aggregate memory), Spark 2.3, SystemML 1.1

Dataset	Gzip	Snappy	CLA
Higgs	1.93	1.38	2.17
Census	17.11	6.04	35.69
Covtype	10.40	6.13	18.19
ImageNet	5.54	3.35	7.34
Mnist8m	4.12	2.60	7.32
Airline78	7.07	4.28	7.44

Compression Ratios



Open Challenges

- Ultra-sparse datasets, tensors, automatic operator fusion
- Operations beyond matrix-vector/unary, applicability to deep learning?

End-to-End Performance [sec]

29

[WIP] Extended CLA Framework

- #1 Program-aware Compression Planning
 - Lossless and lossy compressed column groups
 - Extended operations (e.g., matrix-matrix multiplication), extended co-coding (e.g., for millions of columns)
 - LA program-aware compression planning (where, how)

#2 Compression Pushdown into Data Preparation Pipelines

- Leverage transformation-encode intermediates (e.g., distinct items)
- Push compression in data preparation pipelines

 (e.g., for avoiding blow-up of temporary intermediates)

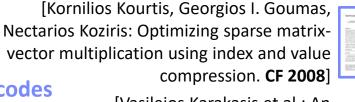
#3 Federated Learning (in ExDRa)

- Federated linear algebra and federated parameter servers
- Coordinator and standing federated workers (stateful server)
- Async compression planning and data reorganization on free cycles

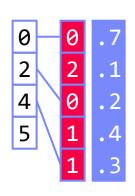
Block-level Compression w/ D-VI, CSR-VI, CSX

- CSR-VI (CSR-Value Indexed) / D-VI
 - Create dictionary for distinct values
 - Encode 8 byte values as 1, 2, or 4-byte codes (positions in the dictionary)
 - Extensions w/ delta coding of indexes
 - Example CSR-VI matrix-vector multiply
 c = A %*% b

```
for(int i=0; i<a.nrow; i++) {
    int pos = A.rptr[i];
    int end = A.rptr[i+1];
    for(int k=pos; k<end; k++)
        b[i] += dict[A.val[k]] * b[A.ix[k]];
}
    value decoding
    (MV over compressed
        representation)</pre>
```



[Vasileios Karakasis et al.: An Extended Compression Format for the Optimization of Sparse Matrix-Vector Multiplication. IEEE Trans. Parallel Distrib. Syst. 2013]



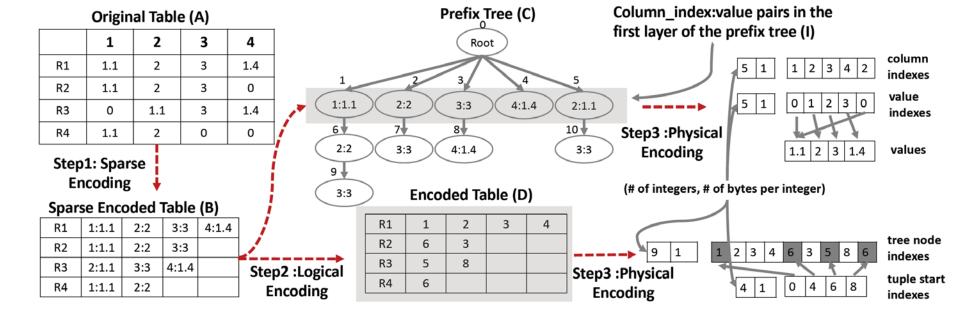
ISD

CSR

Effective compression for small batches (#rows)

Tuple-oriented Compression (TOC)

- Motivation
 - DNN and ML often trained with mini-batch SGD

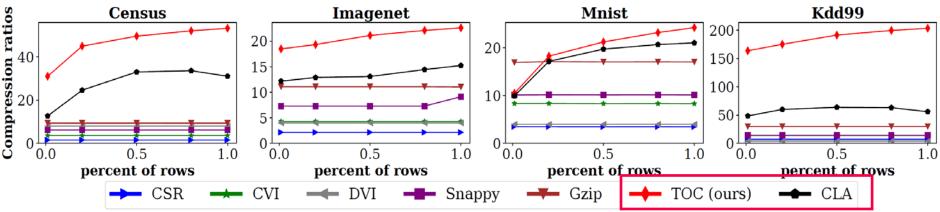


Tuple-oriented Compression (TOC), cont.

Example
 Compression Ratios

[Fengan Li, Lingjiao Chen, Yijing Zeng, Arun Kumar, Xi Wu, Jeffrey F. Naughton, Jignesh M. Patel: Tupleoriented Compression for Large-scale Mini-batch Stochastic Gradient Descent, SIGMOD 2019]

dense baseline?



Take-away: specialized lossless matrix compression
→ reduce memory bandwidth requirements and #FLOPs

Lossy Compression

- Overview
 - Extensively used in DNN (runtime vs accuracy) -> data format + compute
 - Careful manual application regarding data and model
 - Note: ML algorithms approximate by nature + noise generalization effect
- Background Floating Point Numbers (IEEE 754)
 - Sign s, Mantissa m, Exponent e: value = s * m * 2^e (simplified)

Precision	Sign	Mantissa	Exponent	
Double (FP64)	1	52	11	[bits]
Single (FP32)	1	23	8	
Half (FP16)	1	10	5	
Quarter (FP8)	1	3	4	
Half-Quarter (FP4)	1	1	2	

Low and Ultra-low FP Precision

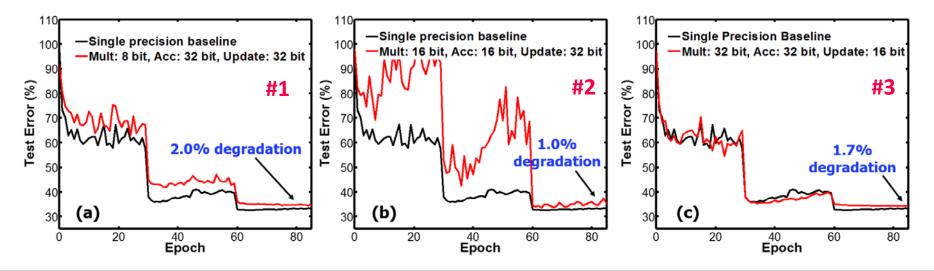
- Model Training w/ low FP Precision
 - Trend: from FP32/FP16 to FP8
 - #1: Precision of intermediates (weights, act, errors, grad) → loss in accuracy
 - #2: Precision of accumulation → impact on convergence (swamping s+L)
 - #3: Precision of weight updates → loss in accuracy
- Example ResNet18 over ImageNet

[Naigang Wang et al.: Training Deep Neural Networks with 8-bit Floating Point Numbers. NeurIPS 2018]

see 05 Execution Strategies, SIMD

 \rightarrow speedup/reduced energy

	- 10		
		nin'	
		12	
3010			
1.5			



706.550 Architecture of Machine Learning Systems – 08 Data Access Methods Matthias Boehm, Graz University of Technology, SS 2021

Low and Ultra-low FP Precision, cont.

Numerical Stable Accumulation

- #1 Sorting ASC + Summation
- #2 Kahan Summation w/ error independent of number of values n

[Yuanyuan Tian, Shirish Tatikonda, Berthold Reinwald: Scalable and Numerically Stable Descriptive Statistics in SystemML. **ICDE 2012**]

- uak+: 5.00000005E17 //sum(seq(1,1e9))

corr = (input + corr) - (sum - sumOld);

ua+: 5.000000109721722E17

sum = sum + (input + corr);

- ua+: 5.000000262154688E17 //rev
- #3 Pairwise Summation (divide & conquer)
 - (divide & conquer)
- #4 Chunk-based Accumulation
 - Divide long dot products into smaller chunks
 - Hierarchy of partial sums → FP16 accumulators
- #5 Stochastic Rounding
 - Replace nearest w/ prob. rounding

[N. Wang et al.: Training Deep Neural Networks with 8-bit Floating Point Numbers. NeurIPS 2018]

 $Round(x) = \begin{cases} s \cdot 2^{e} \cdot (1 + \lfloor m \rfloor + \epsilon) & \text{with probability } \frac{m - \lfloor m \rfloor}{\epsilon}, \\ s \cdot 2^{e} \cdot (1 + \lfloor m \rfloor) & \text{with probability } 1 - \frac{m - \lfloor m \rfloor}{\epsilon}, \end{cases}$

sumOld = sum;

Low and Ultra-low FP Precision – New Datatypes

- Google bfloat16
 - "Brain" Float16 w/ range of FP32
 - Drop in replacement for FP32, no need for loss scaling

[Brennan Saeta: Training Performance A user's guide to converge faster, **TF Dev Summit 2018**]

- Intel FlexPoint
 - Blocks of values w/ shared exponent (N=16bit w/ M=5bit exponent) (or
 - Example: flex16+5

[Urs Köster et al.: Flexpoint: An Adaptive Numerical Format for Efficient Training of Deep Neural Networks. **NeurIPS 2017**]

1000	140.17	
-		
	-	
2050		
- 2565		
100.00		
		8

• NVIDIA TF32

Range of FP32
 w/ precision of FP16



[NVIDIA A100 Tensor Core GPU Architecture - UNPRECEDENTED ACCELERATION AT EVERY SCALE, Whitepaper, Aug 2020]

Fixed-Point Arithmetic

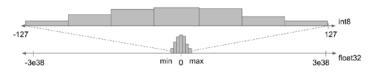
Recommended "Reading"

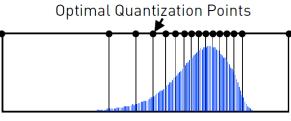
[Inside TensorFlow: Model Optimization Toolkit (Quantization and Pruning), **YouTube, 2020**] Tensor

- Motivation
 - Forward-pass for model scoring (inference) can be done in UINT8 and below
 - Static, dynamic, and learned quantization schemes (weights and inputs)
- Quantization (reduce value domain)
 - Split value domain into N buckets such that k = log₂ N can encode the data
 - a) Static Quantization (e.g., min/max) per tensor or per tensor channel
 - b) Learned Quantization Schemes
 - Dynamic programming
 - Various heuristics
 - Example systems: ZipML, SketchML

[Hantian Zhang, Jerry Li, Kaan Kara, Dan Alistarh, Ji Liu, Ce Zhang: ZipML: Training Linear Models with End-to-End Low Precision, and a Little Bit of Deep Learning. **ICML 2017**]

[https://blog.tensorflow.org/2020/04/ quantization-aware-training-with-tensorflowmodel-optimization-toolkit.html]





37

38

Other Lossy Techniques

- #1 Sparsification/Pruning (reduce #non-zeros)
 - Value clipping: zero-out very small values below a threshold to reduce size of weights
 - Training w/ target sparsity: remove connections

#2 Mantissa Truncation

- Truncate m of FP32 from 23bit to 16bit
- E.g., TensorFlow (transfers), PStore

#3 Aggregated Data Representations

- a) Dim reduction (e.g., auto encoders)
- b) No FK-PK joins in Factorized Learning (foreign key as lossy compressed rep)

#4 Sampling

- User specifies approximation contract for error (regression/classification) and scale
- Min sample size for max likelihood estimators

[https://blog.tensorflow.org/2019/05/tfmodel-optimization-toolkit-pruning-API.html]

Sparse Accuracy	NNZ
78.1% @ sp=1.0	27.1M
78.0% @ sp=0.5	13.6M
76.1% @ sp=0.25	6.8M
74.6% @ sp=0.125	3.3M

[Souvik Bhattacherjee et al: PStore: an efficient storage framework for managing scientific data. **SSDBM 2014**]

> [Amir Ilkhechi et al: DeepSqueeze: Deep Semantic Compression for Tabular Data, **SIGMOD 2020**]

[Arun Kumar et al: To Join or Not to Join?: Thinking Twice about Joins before Feature Selection. **SIGMOD 2016**]

> [Yongjoo Park et al: BlinkML: Efficient Maximum Likelihood Estimation with Probabilistic Guarantees. **SIGMOD 2019**]

Summary and Conclusions

- Motivation, Background, and Overview
- Caching, Partitioning, and Indexing
- Lossy and Lossless Compression

Next Lectures

- May 14: Ascension Day (Christi Himmelfahrt) + "Rektorstag"
- 09 Data Acquisition, Cleaning, and Preparation [May 21]
- 10 Model Selection and Management [May 28]
- 11 Model Debugging, Fairness, Explainability [Jun 04]
- 12 Model Serving Systems and Techniques [Jun 11]

(**Part B:** ML Lifecycle Systems)

High Impact on

Performance/Energy

