TU

Grazm

SCIENCE
PASSION
TECHNOLOGY

Architecture of ML Systems
12 Model Deployment & Serving

Matthias Boehm

Graz University of Technology, Austria

Computer Science and Biomedical Engineering
Institute of Interactive Systems and Data Science
BMK endowed chair for Data Management

Last update: June 16, 2021 “ISDS

Ty

Announcements/Org

#1 Video Recording
= Link in TeachCenter & TUbe (lectures will be public)
" https://tugraz.webex.com/meet/m.boehm
= Corona traffic light RED - May 17: - Jul 01:

#2 Programming Projects / Exercises
= Soft deadline: June 30 (w/ room for extension)
= Submission of exercises in TeachCenter
= Submission of projects as PRs in Apache SystemDS

#3 Exams
= Doodle w/ 42/~50 exam slots (45min each)
= July 7/8/9/12/13 (done via skype/webex)

#4 Course Evaluation

= Please participate; open period: June 1 - July 15

706.550 Architecture of Machine Learning Systems — 12 Model Deployment & Serving
Matthias Boehm, Graz University of Technology, SS 2021

& TUbe

NI
cisco \Webex

“ISDS

https://tugraz.webex.com/meet/m.boehm

Data Science Lifecycle ﬁ-ley.

Recap: The Data Science Lifecycle pata-centric view:

Application perspective
Workload perspective

Data System perspective
Scientist

Data Integration Model Selection Validate & Debug
Data Cleaning Training Deployment
Data Preparation Hyper-parameters Scoring & Feedback

|

Exploratory Process
(experimentation, refinements, ML pipelines)

Data/SW DevOps
Engineer Engineer
706.550 Architecture of Machine Learning Systems — 12 Model Deployment & Serving .ISDS
Matthias Boehm, Graz University of Technology, SS 2021 B -

Ty

Agenda

= Model Exchange and Serving
= Model Monitoring and Updates

706.550 Architecture of Machine Learning Systems — 12 Model Deployment & Serving .ISDS
Matthias Boehm, Graz University of Technology, SS 2021

Ty

Model Exchange and Serving

706.550 Architecture of Machine Learning Systems — 12 Model Deployment & Serving
Matthias Boehm, Graz University of Technology, SS 2021

“ISDS

Model Exchange and Serving ﬁ-le-g.

Model Exchange Formats

= Definition Deployed Model
= #1 Trained ML model (weight/parameter matrix)
= #2 Trained weights AND operator graph / entire ML pipeline
=>» especially for DNN (many weight/bias tensors, hyper parameters, etc)

= Recap: Data Exchange Formats (model + meta data) S sk e
* General-purpose formats: CSV, ,) """""""""""""""""
= Sparse matrix formats: ,
= Scientific formats:) 55 2 raoesn

= ML-system-specific binary formats (e.g., SystemDS, PyTorch serialized)

PYTHRCH
= Problem ML System Landscape
= Different languages and frameworks, including versions
= Lack of standardization = DSLs for ML is wild west
R o "ISDS

Model Exchange and Serving ﬁ-lc:g-

Model Exchange Formats, cont.

= Why Open Standards?
= QOpen source allows inspection but no control

= Open governance necessary for open standard [Nick Pentreath: Open Standards
) for Machine Learning Deployment,
= Cons: needs adoption, moves slowly bbuzz 2019]

= #1 Predictive Model Markup Language (PMML)
= Model exchange format in XML, created by Data Mining Group 1997
= Package model weights, hyper parameters, and limited set of algorithms

= #2 Portable Format for Analytics (PFA)
= Attempt to fix limitations of PMIML, created by Data Mining Group
= JSON and AVRO exchange format
= —> arbitrary custom models
= Scoring in JVM, Python, R

706.550 Architecture of Machine Learning Systems — 12 Model Deployment & Serving .lSDS
Matthias Boehm, Graz University of Technology, SS 2021

Model Exchange and Serving ﬂ-lc:r%!-

Model Exchange Formats, cont.

= #3 Open Neural Network Exchange (ONNX)

Model exchange format (data and operator graph) via Protobuf

First Facebook and Microsoft, then IBM, Amazon = PyTorch, MXNet

Focused on deep learning and tensor operations

ONNX-ML: support for traditional ML algorithms

Scoring engine: https://github.com/Microsoft/onnxruntime Lukas Timpl

Cons: low level (e.g., fused ops), DNN-centric & ONNX-ML python/systemds/
onnx_systemds

= TensorFlow Saved Models

TensorFlow-specific exchange format for model and operator graph

Freezes input weights and literals, for additional optimizations
(e.g., constant folding, quantization, etc)

Cloud providers may not be interested in open exchange standards

706.550 Architecture of Machine Learning Systems — 12 Model Deployment & Serving .ISDS
Matthias Boehm, Graz University of Technology, SS 2021

https://github.com/Microsoft/onnxruntime

Model Exchange and Serving ﬁ-le-g.

ML Systems for Serving

- #1 Embedded ML Serving) | TensorFIowLiteApaChe

= and new language bindings (small footprint, SystemML™
dedicated HW acceleration, APls, and models: MobileNet, SqueezeNet)

= (Java ML Connector)
= #2 ML Serving Services Example:
= Motivation: Complex DNN models, ran on dedicated HW Google Translate
= RPC/REST interface for applications 140B words/day
. . . - 82K GPUs in 2016
= configurable serving w/ batching
= Decoupled multi-framework scoring, w/ batching and result caching
= Batching and multi-model optimizations in ML.NET

Optimization for accuracy under latency constraints, and
batching and multi-model optimizations

[Christopher OIs’Fon et al: — [Daniel Frankshaw [Yunseong Lee fat al.: ——— [Wei Wang et al: Rafiki:
Tens_orFIovy—Servmg: —aw | €t al: Clipper: A . PRETZEL: Opgnmg the_ Black Machine Learning as
Flexible, High- _ _ Low—_Latency Or.mlme Box gf l_\/lachlne_ Learning an Analytics Service
Performance ML Serving. Prediction Serving Prediction Serving Systems. System. PVLDB 2018]

NIPS ML Systems 2017] System. NSDI 2017] OSDI 2018]

Presenter
Presentation Notes
https://rise.cs.berkeley.edu/blog/a-short-history-of-prediction-serving-systems/

Model Exchange and Serving ﬁ-lt.‘:r%!-

Se rve rleSS Com putl ng [Joseph M. Hellerstein et al: Serverless

Computing: One Step Forward, Two
Steps Back. CIDR 2019]

= Definition Serverless
= FaaS: functions-as-a-service (event-driven, stateless input-output mapping)
» |nfrastructure for deployment and auto-scaling of APls/functions
= Examples: Amazon Lambda, Microsoft Azure Functions, etc \,DW < >

Lambda Functions
Event Source 31 :
(e.g., cloud — 1 — @ . _ Other APIs
orvi ﬁZ) and Services
SerV|CGS) Amazon API .
Gateway Auto scaling
Pay-per-request

= Example (1M x 100ms = 0.25)

import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestHandler;

public class MyHandler implements RequestHandler<Tuple, MyResponse> {
@Override
public MyResponse handleRequest(Tuple input, Context context) {
return expensiveModelScoring(input); // with read-only model

}

Model Exchange and Serving ﬁ-le-rLa!.

Example SystemDS JMLC

= Example Token Features

Scenario Sentences “

f Feature Extraction
i (e.g., doc structure, sentences,

tokenization, n-grams)

= Challenges

= Scoring part of larger end-to-end pipeline =» Embedded scoring
= External parallelization w/o materialization
= Simple synchronous scoring =» Latency = Throughput
= Data size (tiny AX, huge model M) =» Minimize overhead per AX
= Seamless integration & model consistency =» Token inputs & outputs
706.550 Architecture of Machine Learning Systems — 12 Model Deployment & Serving 1 ;
Matthias Boehm, Graz University of Technology, SS 2021 :‘ISDS

Model Exchange and Serving ﬁ-le-rg.

Example SystemDS JMLC, cont.

= Background: Frame

= Abstract data type with schema
(boolean, int, double, string)

= Column-wise block layout

= Local/distributed operations:
e.g., indexing, append, transform

Distributed
representation:
? x ncol(F) blocks

(shuffle-free
conversion of
csv / datasets)

= Data Preparation
via Transform

706.550 Architecture of Machine Learning Systems — 12 Model Deployment & Serving .ISDS
Matthias Boehm, Graz University of Technology, SS 2021 L

Model Exchange and Serving ﬁ-lt.‘:r%!-

Example SystemML JMLC, cont.

* Motivation Typical compiler/runtime overheads:

=» Embedded scoring Script parsing and config: ~100ms
= Latency = Throughput » Validation, compile, IPA: ~10ms
HOP DAG (re-)compile: ~1ms

=» Minimize overhead per AX .
Instruction execute: <0.1ps

= Example
// single-node, no evictions,
1: Connection conn = new Connection(); //norecompile, no multithread.
2: PreparedScript pscript = conn.prepareScript(
getScriptAsString(“glm-predict-extended.dml”),
new String[J{“FX”,“MX”,“MY”,“B”}, new String[]{“FY”});
: // ... Setup constant inputs
: for(Document d : documents) {
FrameBlock FX = ...; //Input pipeline
pscript.setFrame(“FX”, FX);
FrameBlock FY = pscript.executeScript().getFrame(“FY”);

// ... Remaining pipeline // execute precompiled script

// many times

W o0 NOUVL b~ W

Model Exchange and Serving ﬁ-le-rg.

= Recap: Model Batching (see 08 Data Access)

Serving Optimizations — Batching .

= One-pass evaluation of multiple configurations O(m*n)
= EL, CV, feature selection, hyper parameter tuning read
Xk
= E.g.: TUPAQ [SOCC’16], Columbus [SIGMOD’ 14 O(m*n*k)
compute
m >>n >> k

= Data Batching
= Batching to utilize the HW more efficiently under SLA

= Use case: multiple users use the same model
(wait and collect user request and merge)

= Adaptive: additive increase, multiplicative decrease
Benefits for

15000
» m multi-class /
Q. 10000 |
53’ complex
o 5000 |- models
. c
[Cllpper @ a 00 5l0 160 1!30 260
14
NSDI'17] Batch size
706.550 Architecture of Machine Learning Systems — 12 Model Deployment & Serving .ISDS

Matthias Boehm, Graz University of Technology, SS 2021

Model Exchange and Serving ﬂ-lc:r%!-

Serving Optimizations — Quantization

= Quantization 08 Data Access

= Lossy compression via ultra-low precision / fixed-point Methods

= Ex.: 62.7% energy spent on data movement [Amirali Boroumand et al.: Google
Workloads for Consumer Devices:

Mitigating Data Movement
= Quantization for Model Scoring Bottlenecks. ASPLOS 2018]

= Usually much smaller data types (e.g., UINT8)

= Quantization of model weights, and sometimes also activations
- reduced memory requirements and better latency / throughput (SIMD)

import tensorflow as tf

converter = tf.lite.TFLiteConverter.from_saved_model(saved model dir)
converter.optimizations = [tf.lite.Optimize.OPTIMIZE FOR_SIZE]

tflite quant _model = converter.convert()

[Credit: https://www.tensorflow.org/lite/performance/post_training _quantization]

706.550 Architecture of Machine Learning Systems — 12 Model Deployment & Serving .ISDS
Matthias Boehm, Graz University of Technology, SS 2021

https://www.tensorflow.org/lite/performance/post_training_quantization

Model Exchange and Serving ﬁ-le-g.

Serving Optimizations — MQO

= Result Caching

= forX2>Y
(memoization of deterministic function evaluation)

Predict(m: Modelld, x: X) -> y: Y

= Multi Model Optimizations
= Same input fed into multiple partially redundant model evaluations

u between prediction programs

= Done during compilation or runtime (1] 6

- : : FrontEnd <+—
In - , programs c.omplled into
physical stages and registered ()X (3)[Inlined DAGS J Stages
with the runtime + caching for stages »@_)

(decided based on hashing the inputs)

~
Executp

\\)

[

\\ '
Executor

(4)
————»| Scheduler =

[Yunseong Lee et al.: PRETZEL: Opening
the Black Box of Machine Learning

o) Runtime
Prediction Serving Systems. OSDI 2018]
706.550 Architecture of Machine Learning Systems — 12 Model Deployment & Serving .ISDS
Matthias Boehm, Graz University of Technology, SS 2021

Model Exchange and Serving ﬁ!g.

Serving Optimizations — Compilation

~

= TensorFlow tf.compile .

= Compile entire TF graph into binary function w/ low footprint Tensor x

» |nput: Graph, config (feeds+fetches w/ fixes shape sizes)

.) Chris Leary, Todd Wang:
= Qutput: x86 binary and C++ header (e.g., inference) XLA_[TensorFlo\\/N Comp”edg!

n TF Dev Summit 2017]

= PyTorch Compile PYTHRCH
= Compile Python functions into ScriptModule/ScriptFunction

= Lazily collect operations,

optimize, and JIT compile a = torch.rand(5)
def func(x):

= Explicit jit.script call for i in range(10):

or @torch.jit.script X = X ¥ x # unrolled into graph
return Xx
[Vincent Quenneville-Bélair: N
How PyTorch Optimizes jitfunc = torch.jit.script(func) # JIT
Deep Learning Computations, jitfunc.save("func.pt")
Guest Lecture Stanford 2020]
706.550 Architecture of Machine Learning Systems — 12 Model Deployment & Serving "
Matthias Boehm, Graz University of Technology, SS 2021 ISDS

Model Exchange and Serving ﬂ-lc:r%!-

Serving Optimizations — Model Vectorization

] HummingBird [https://github.com/microsoft/hummingbird] [Supun Nakandala et al: A

= Compile ML scoring pipelines into tensor ops Tensor Compiler for Unified
Machine Learning Prediction

= Tree-based models (GEMIM, 2x tree traversal) Serving. OSDI 2020]

— Input = node pred

X 0o B Iy I I3 1,
o] 1]l <[os[20]ss[2a]= [0]o|1][1]
oo :
1[0

oo
BE
[01]46 |19 o8]3s|x[7 [0
oo
oo

CICZ
==lzf fzfs]o]=[oo 1 ToTo] x = (o]

— ool o1 path > -
Bucket paths: Bucket-class

-1 (lhs) /0 /1 (rhs) mapping

= Model Distillation [Geoffrey E. Hinton, Oriol Vinyals, Jeffrey
Dean: Distilling the Knowledge in a

= Ensembles of models = single NN model Neural Network. CoRR 2015]

(=1 =1 I e =]

.
0
D L, L, Ly L, Le 0
,
1

Ll=]e|ls
R = I

= Specialized models for different classes exp(zi/T)
(found via differences to generalist model) q;i = P\
>_jexp(z;/T)

" Trained on soft targets (softmax w/ temperature T)

706.550 Architecture of Machine Learning Systems — 12 Model Deployment & Serving .ISDS
Matthias Boehm, Graz University of Technology, SS 2021

Presenter
Presentation Notes
Note: motivation HummingBird similar to SystemDS; tree traversal w/ batches of records

https://github.com/microsoft/hummingbird

Model Exchange and Serving

Ty

Serving Optimizations — Specialization

Traditional Deep Neural Network Inference (Frame by Frame)

= NoScope Architecture

Query: r
. “bus” ! !
= Baseline: YOLOv2 on 1 GPU P— ~—— bus present?
] target video : " |
per video camera @30fps ﬁ L e __ 77 dn "N | e
i . i . Reference NN 30-60 fps
= Optimizer to find filters irmIT

NoScope: Inference-Optimized Model Search

reference short-circuit evaluation

[Daniel Kang et al: NoScope: o
Optimizing Deep CNN-Based Query:

Queries over Video Streams at “bus”

Scale. PVLDB 2017] farget video|

Specialized Model
27K fps

Cascade Architecture Search via Cost-Based Optimization

Difference Detector
100K fps

= #1 Model Specialization ﬁ

0s 30s B60s a0s

A A A A
D N p—

| B

Reference NN

— bus
present?

30-60 fps

= Given query and baseline model

= Trained shallow NN (based on AlexNet) on output of baseline model

= Short-circuit if prediction with high confidence

= #2 Difference Detection
= Compute difference to ref-image/earlier-frame
= Short-circuit w/ ref label if no significant difference

706.550 Architecture of Machine Learning Systems — 12 Model Deployment & Serving
Matthias Boehm, Graz University of Technology, SS 2021

“ISDS

Model Monitoring and Updates

Part of Model Management and MLOps
(see 10 Model Selection & Management)

706.550 Architecture of Machine Learning Systems — 12 Model Deployment & Serving
Matthias Boehm, Graz University of Technology, SS 2021

“ISDS

Model Monitoring and Updates ﬁ-ley.

Model Deployment Workflow

Data Integration Model Selection

#1 Model
Deployment

[&

Data Cleaning Training
Data Preparation Hyper-parameters

#2 Continuous Data Validation /
Prediction Concept Drift Detection

Requests

Model Serving

#3 Model
Monitoring

#4 Periodic / Event-based

. . DevOps

Re-Training & Updates .

. . Engineer

(automatic / semi-manual)
706.550 Architecture of Machine Learning Systems — 12 Model Deployment & Serving "
Matthias Boehm, Graz University of Technology, SS 2021 1|SDS

Model Monitoring and Updates ﬁl—g_

Monitoring Deployed Models

= Goals: (e.g., data, latency) [Neoklis Polyzotis, Sudip Roy, Steven Whang,
and model accuracy Martin Zinkevich: Data Management Challenges

in Production Machine Learning, SIGMOD 2017]

= #1 Check Deviations Training/Serving Data
= Different data distributions, distinct items = impact on model accuracy?
- See (Data Validation)

age should have a
Kolmogorov distance
of less than 0.1 from
the previous day..

= #2 Definition of Alerts
= Understandable and actionable

= Sensitivity for alerts (ignored if too frequent) - During serving:
_ 0.11?
= #3 Data Fixes

= |dentify problematic parts
= |Impact of fix on accuracy
= How to backfill into training data

706.550 Architecture of Machine Learning Systems — 12 Model Deployment & Serving "

Matthias Boehm, Graz University of Technology, SS 2021 ISDS

Presenter
Presentation Notes
Note: Kolmogorov-Smirnov Test for equality of probability distributions

Model Monitoring and Updates ﬁ!g.

Monitoring Deployed Models, cont.

= Alert Guidelines [Neoklis Polyzotis, Sudip Roy, Steven Whang,
. Martin Zinkevich: Data Management Challenges
" Make them actionable in Production Machine Learning, SIGMOD 2017]
missing field, less
field has new values, .
actionable

distribution Changes [George Beskales et al: On the relative

= Question data AND constraints trust between inconsistent data and
inaccurate constraints. ICDE 2013]

= Combining repairs:
.. & p . . [Xu Chu, Ihab F. llyas: Qualitative Data
principle of minimality Cleaning. Tutorial, PVLDB 2016]

= Complex Data Lifecycle
= Adding new features to production ML pipelines is a complex process

= Data does not live in a DBMS; data often resides in multiple storage systems
that have different characteristics

= Collecting data for training can be hard and expensive

706.550 Architecture of Machine Learning Systems — 12 Model Deployment & Serving .ISDS
Matthias Boehm, Graz University of Technology, SS 2021

Model Monitoring and Updates ﬁ!g.

Zliobaité: Handling Concept Drift:
Importance, Challenges & Solutions,

= Recap Concept Drift (features = labels) PAKDD 2011]
= Change of statistical properties / dependencies (features-labels)

CO nce pt D rlft [A. Bifet, J. Gama, M. Pechenizkiy, |. [~ aszms

= Requires re-training, parametric approaches for deciding when to retrain

= #1 Input Data Changes
= Population change (gradual/sudden), but also new categories, data errors
= Covariance shift p(x) with constant p(y|x)

= #2 Output Data Changes
= Label shift p(y)

= Constant conditional
feature distributed p(x|y) . b ki

source: Evonik Industries

= @oals: Fast adaptation; noise vs change, recurring contexts, small overhead

706.550 Architecture of Machine Learning Systems — 12 Model Deployment & Serving .lSDS
Matthias Boehm, Graz University of Technology, SS 2021

Model Monitoring and Updates ﬁl—g_

CO nce pt D rlft’ cont. [A. Bifet, J. Gama, M. Pechenizkiy, . ~m‘m

Zliobaité: Handling Concept Drift:
Importance, Challenges & Solutions,

" Periodic Re-Training PAKDD 2011]

* Training: window of latest data + data selection/weighting

= Alternatives: incremental maintenance, warm starting, online learning

- Event-based Re-Training
= Change detection (supervised, unsupervised)
= Often model-dependent, specific techniques for time series

= Drift Detection Method: binomial distribution, if error outside scaled
standard-deviation = raise warnings and alters

= Adaptive Windowing (ADWIN): [Albert Bifet, Ricard Gavalda:
window W, append data to W, drop _t;‘j;‘(;””lfg f“\’/\“/*,‘ EmefCha;‘g;\;gzgg;?
)] Wi aptive Windowing.
old values until avg windows W=W1-W2
similar (below epsillon) raise alerts [https://scikitmultiflow.readthedocs.io/

. . . en/stable/api/generated/
= Kolmogorov-Smirnov distance / Chi-Squared: skmultiflow.drift detection., ADWIN.html]

univariate statistical tests training/serving

706.550 Architecture of Machine Learning Systems — 12 Model Deployment & Serving .ISDS
Matthias Boehm, Graz University of Technology, SS 2021

Presenter
Presentation Notes
Note: scikit-multiflow .. A machine learning package for streaming data in Python, The other ancestor of River.

https://scikit-multiflow.readthedocs.io/en/stable/api/generated/skmultiflow.drift_detection.ADWIN.html

Model Monitoring and Updates ﬂErLa!.

F1 - Score
o o [=] [=] -
N R o @ o

©
o

Concept Drift, cont.

[Sebastian Schelter, Tammo Rukat, Felix
BieBmann: Learning to Validate the

= Model-agnostic Performance Predictor Predictions of Black Box Classifiers on
Unseen Data. SIGMOD 2020]

= Approach 2: Event-based Re-Training
= User-defined error generators
= Synthetic data corruption = impact on black-box model

= Train performance predictor (regression/classification at threshold t)
for expected prediction quality on percentiles of target variable y

= Results PPM

t=0.03 t =0.05 t=0.1
I PPM BBSE-h I PPM BBSE-h I PPM BBSE-h
BN BBSE EEE REL 1.04 BN BBSE EEE REL 10 BN BESE EEE REL
o 0.8 w 0.8
_ —
o o
R 06 B 06
— —
w 04 o 04
0.2 0.2
v v o £ fg £ ¥ _ M5 xoT 00y e v bo ke ¥ xg oxe 00T o w_ £ P pm ¥ wm oy
E~ ET ET 8T £% SE£ ST ©H SE E- ET ET BE 58 EBEE SZ 5B SE Ec ES ET 8 59 5 S 5o SE
g= 88 8z £ 2% 28 o7 85X 5% 8= 9f g5 2% 22 22 &7 5x 3B 8= gF 8s &% 22 g2 a2~ 85X 3%
£ g~ £~ £ £~ £~ £ g~ £~
706.550 Architecture of Machine Learning Systems — 12 Model Deployment & Serving .ISDS

Matthias Boehm, Graz University of Technology, SS 2021

Presenter
Presentation Notes
Note baselines:
• Relational shift detection (REL): This baseline approach
applies shift detection techniques to the raw input data
instead of the model outputs.We apply multiple univariate
shift detection tests between the columns of the training
and serving data (Kolmogorov-Smirnov tests for numeric
columns, and χ2-tests for categorical columns).
• Black Box-Shift Detection (BBSE) for assigned class probabilities
from Lipton et al. [13], which evaluates a Kolmogorov-
Smirnov test between the softmax outputs of the black box
model on the test and serving data.
• Black Box-Shift Detection (BBSEh) [20] for predicted classes,
which evaluates a χ2-test between the counts of the predicted
classes of the black box model on the test and serving
data.

Model Monitoring and Updates ﬁ-IG-rE!-

GDPR (General Data Protection Regulation)

= GDPR “Right to be Forgotten”
= Recent laws such as GDPR require

Art. 17 GDPR
Right to erasure (‘right to be forgotten’)

companies and institutions to e e o g e s
undue delay of the following grounds applies:
delete user data upon request U
atherwise process

b, the data subject withdraws consent on which the processing is based according to point (3) of Article 6(1).
= Personal data must not only be deleted or ol oo Al 32 where here o e g ground for e
[0 the processing pursuant to Article 2101) and there are no overniding legitimate
fro m p ri m a ry d ata Sto res b ut a I S O fro m E. or the data subject objects to the processing pursuant to Article 21(2);

M L models tra i n ed O n it (Recita I 75) . :W pKr n:c::‘ar vai:s p':r:?edfcrmrnpia'\reﬂ-thangalohlfgati:n:nU";onork.lemh«Sta.'pIaw

L. ve been collected in relation to the offer of information sodiety services referred w in

[https://gdpr.eu/article-17-right-to-be-forgotten/]

= Example Deanonymization ____u
= Recommender systems: models - -
retain user similarly u Uv

= Social network data / clustering / KNN

= Large language models (e.g., GPT-3) [Sebastian Schelter: "Amnesia" -
Machine Learning Models That Can
Forget User Data Very Fast. CIDR 2020]

706.550 Architecture of Machine Learning Systems — 12 Model Deployment & Serving .ISDS
Matthias Boehm, Graz University of Technology, SS 2021

Presenter
Presentation Notes
Note: As mentioned, the GDPR consists of two components: the articles and recitals. The articles constitute the legal requirements organizations must follow to demonstrate compliance. The recitals provide additional information and supporting context to supplement the articles

https://gdpr.eu/article-17-right-to-be-forgotten/

28

Model Monitoring and Updates ﬁ!g.

G D P R CO nt [Sebastian Schelter, Stefan Grafberger, Ted Dunning:
/) HedgeCut: Maintaining Randomised Trees for Low-

Latency Machine Unlearning, SIGMOD 2021]

= HedgeCut Overview

Qur approach

= Extremely Randomized Trees (ERT): | &
o ate GOPE . .) online GDPR
ensemble of DTs w/ randomized oo™ | retee ™ nSeningsysm | mode depoyed [mitweont
. . every n days [mitisscond in ser.lfing system responses]
attributes and cut-off points - resporses]
o . deletion requests _______r > :-::ueer::I:j ?:;ig; :I!;aletion
= Online unlearning requests < 1ms —[l a =
w/o retraining for few points o —— heaw.waghgelm

data updates . e
i data in highly retraining and deployment

secured network [executed every n days |

= Handling of Non-robust Splits

: eRObUSt split decisions Non-robust splits might switch to a
- , never need to be revised subtree variant with higher Gini gain
Non-robust split, for which we —
age <p70 educat|on e {0 3} | maintain a subtree variant age <p70 education € {0,3}
i —
educallon € {7,9} balance < p45 age < p55 b// ' educatlon S {7 9} balance < p45 age <pbs5 Q

age < p60 |[balance < p73
unlearn(user) balance <p85 i \ balance <p25 [g%,.n 0_553 M gain 0_075 D

balance < p85 balance < p25 [ag%if, 5?30] [ba';‘;]fﬁ ;5?73]]
/'\ S)
balance < p45 ; age <p80 balance < p45 age < p80
)/\(® @ O,))\E
count-=1 S

Unlearning request to forget @ @
user data triggers tree adjustment minus-=1

i i . t-=1
and recalculation of leaf weights tree ensemble after unlearning coun

tree ensemble before unlearning

706.550 Architecture of Machine Learning Systems — 12 Model Deployment & Serving .ISDS
Matthias Boehm, Graz University of Technology, SS 2021

Ty

Summary and Conclusions

Model Exchange and Serving

Model Monitoring and Updates

#1 Finalize Programming Projects by ~June 30
#2 Oral Exam

= Doodle for July 7/8/9/12/13, 45min each (done via skype/webex)
u Describe you programming project, warm-up questions

= Questions on 2-3 topics of 11 lectures
(basic understanding of the discussed topics / techniques)

706.550 Architecture of Machine Learning Systems — 12 Model Deployment & Serving .ISDS
Matthias Boehm, Graz University of Technology, SS 2021

	Architecture of ML Systems�12 Model Deployment & Serving
	Announcements/Org
	Recap: The Data Science Lifecycle
	Agenda
	Model Exchange and Serving
	Model Exchange Formats
	Model Exchange Formats, cont.
	Model Exchange Formats, cont.
	ML Systems for Serving
	Serverless Computing
	Example SystemDS JMLC
	Example SystemDS JMLC, cont.
	Example SystemML JMLC, cont.
	Serving Optimizations – Batching
	Serving Optimizations – Quantization
	Serving Optimizations – MQO
	Serving Optimizations – Compilation
	Serving Optimizations – Model Vectorization
	Serving Optimizations – Specialization
	Model Monitoring and Updates
	Model Deployment Workflow
	Monitoring Deployed Models
	Monitoring Deployed Models, cont.
	Concept Drift
	Concept Drift, cont.
	Concept Drift, cont.
	GDPR (General Data Protection Regulation)
	GDPR, cont.
	Summary and Conclusions

