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Announcements/Org
 #1 Video Recording 

 Link in TeachCenter & TUbe (lectures will be public)
 https://tugraz.webex.com/meet/m.boehm
 Corona traffic light REDMay 17: ORANGE Jul 01: YELLOW

 #2 Programming Projects / Exercises
 Soft deadline: June 30 (w/ room for extension)
 Submission of exercises in TeachCenter
 Submission of projects as PRs in Apache SystemDS

 #3 Exams
 Doodle w/ 42/~50 exam slots (45min each)
 July 7/8/9/12/13 (done via skype/webex)

 #4 Course Evaluation
 Please participate; open period: June 1 – July 15

https://tugraz.webex.com/meet/m.boehm
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Recap: The Data Science Lifecycle
Data Science Lifecycle

Data/SW 
Engineer

DevOps 
Engineer

Data Integration 
Data Cleaning 

Data Preparation

Model Selection
Training 

Hyper-parameters

Validate & Debug
Deployment

Scoring & Feedback

Data 
Scientist

Data-centric View:
Application perspective
Workload perspective

System perspective

Exploratory Process 
(experimentation, refinements, ML pipelines)
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Agenda
 Model Exchange and Serving
 Model Monitoring and Updates
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Model Exchange and Serving
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Model Exchange Formats
 Definition Deployed Model

 #1 Trained ML model (weight/parameter matrix)
 #2 Trained weights AND operator graph / entire ML pipeline

 especially for DNN (many weight/bias tensors, hyper parameters, etc)

 Recap: Data Exchange Formats (model + meta data)
 General-purpose formats: CSV, JSON, XML, Protobuf
 Sparse matrix formats: matrix market, libsvm
 Scientific formats: NetCDF, HDF5
 ML-system-specific binary formats (e.g., SystemDS, PyTorch serialized)

 Problem ML System Landscape
 Different languages and frameworks, including versions
 Lack of standardization  DSLs for ML is wild west

Model Exchange and Serving
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Model Exchange Formats, cont.
 Why Open Standards?

 Open source allows inspection but no control
 Open governance necessary for open standard
 Cons: needs adoption, moves slowly

 #1 Predictive Model Markup Language (PMML)
 Model exchange format in XML, created by Data Mining Group 1997
 Package model weights, hyper parameters, and limited set of algorithms

 #2 Portable Format for Analytics (PFA)
 Attempt to fix limitations of PMML, created by Data Mining Group
 JSON and AVRO exchange format
 Minimal functional math language arbitrary custom models
 Scoring in JVM, Python, R

Model Exchange and Serving

[Nick Pentreath: Open Standards 
for Machine Learning Deployment, 

bbuzz 2019]
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Model Exchange Formats, cont.
 #3 Open Neural Network Exchange (ONNX)

 Model exchange format (data and operator graph) via Protobuf
 First Facebook and Microsoft, then IBM, Amazon  PyTorch, MXNet
 Focused on deep learning and tensor operations
 ONNX-ML: support for traditional ML algorithms
 Scoring engine: https://github.com/Microsoft/onnxruntime
 Cons: low level (e.g., fused ops), DNN-centric  ONNX-ML

 TensorFlow Saved Models
 TensorFlow-specific exchange format for model and operator graph
 Freezes input weights and literals, for additional optimizations

(e.g., constant folding, quantization, etc)
 Cloud providers may not be interested in open exchange standards

Model Exchange and Serving

Lukas Timpl
python/systemds/
onnx_systemds

https://github.com/Microsoft/onnxruntime
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ML Systems for Serving
 #1 Embedded ML Serving

 TensorFlow Lite and new language bindings (small footprint, 
dedicated HW acceleration, APIs, and models: MobileNet, SqueezeNet)

 SystemML JMLC (Java ML Connector)

 #2 ML Serving Services
 Motivation: Complex DNN models, ran on dedicated HW
 RPC/REST interface for applications 
 TensorFlow Serving: configurable serving w/ batching
 Clipper: Decoupled multi-framework scoring, w/ batching and  result caching 
 Pretzel: Batching and multi-model optimizations in ML.NET
 Rafiki: Optimization for accuracy under latency constraints, and 

batching and multi-model optimizations

Model Exchange and Serving

Example:
Google Translate 
140B words/day

 82K GPUs in 2016

[Christopher Olston et al: 
TensorFlow-Serving: 
Flexible, High-
Performance ML Serving. 
NIPS ML Systems 2017]

[Daniel Crankshaw
et al: Clipper: A 
Low-Latency Online 
Prediction Serving 
System. NSDI 2017]

[Yunseong Lee et al.: 
PRETZEL: Opening the Black 
Box of Machine Learning 
Prediction Serving Systems. 
OSDI 2018]

[Wei Wang et al: Rafiki: 
Machine Learning as 
an Analytics Service 
System. PVLDB 2018]

Presenter
Presentation Notes
https://rise.cs.berkeley.edu/blog/a-short-history-of-prediction-serving-systems/
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Serverless Computing
 Definition Serverless

 FaaS: functions-as-a-service (event-driven, stateless input-output mapping)
 Infrastructure for deployment and auto-scaling of APIs/functions
 Examples: Amazon Lambda, Microsoft Azure Functions, etc

 Example

Model Exchange and Serving

Event Source 
(e.g., cloud 

services)

Lambda Functions
Other APIs 

and Services
Auto scaling 

Pay-per-request 
(1M x 100ms = 0.2$)

import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestHandler;

public class MyHandler implements RequestHandler<Tuple, MyResponse> {
@Override
public MyResponse handleRequest(Tuple input, Context context) {

return expensiveModelScoring(input); // with read-only model
}

}

[Joseph M. Hellerstein et al: Serverless
Computing: One Step Forward, Two 

Steps Back. CIDR 2019]
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Example SystemDS JMLC
 Example

Scenario 

 Challenges
 Scoring part of larger end-to-end pipeline
 External parallelization w/o materialization
 Simple synchronous scoring
 Data size (tiny ΔX, huge model M) 
 Seamless integration & model consistency

Model Exchange and Serving

Sentence 
Classification

Sentence 
Classification

Feature Extraction
(e.g., doc structure, sentences, 

tokenization, n-grams)

…
(e.g., ⨝, ∪)

ΔX

M
“Model”

Token Features

Sentences

 Embedded scoring

 Latency ⇒ Throughput
Minimize overhead per ΔX
 Token inputs & outputs
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Example SystemDS JMLC, cont.
 Background: Frame

 Abstract data type with schema 
(boolean, int, double, string)

 Column-wise block layout
 Local/distributed operations:

e.g., indexing, append, transform

 Data Preparation 
via Transform

Model Exchange and Serving

Training

FY

BMY

YFX transformencode X

MX

Scoring
ΔŶ

transformapplyΔFX ΔX

transformdecodeΔFŶ

Schema

…

Distributed 
representation: 

? x ncol(F) blocks

(shuffle-free
conversion of 
csv / datasets)
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Example SystemML JMLC, cont.
 Motivation

 Embedded scoring
 Latency ⇒ Throughput
Minimize overhead per ΔX

 Example

Model Exchange and Serving

Typical compiler/runtime overheads:
Script parsing and config: ~100ms
Validation, compile, IPA: ~10ms
HOP DAG (re-)compile:  ~1ms
Instruction execute: <0.1μs

1: Connection conn = new Connection();
2: PreparedScript pscript = conn.prepareScript(

getScriptAsString(“glm-predict-extended.dml”), 
new String[]{“FX”,“MX”,“MY”,“B”}, new String[]{“FY”});

3: pscript.setFrame(“MX”, MX, true);
4: pscript.setFrame(“MY”, MY, true);
5: pscript.setMatrix(“B”, B, true);

// setup static inputs (for reuse)

1: Connection conn = new Connection();
2: PreparedScript pscript = conn.prepareScript(

getScriptAsString(“glm-predict-extended.dml”), 
new String[]{“FX”,“MX”,“MY”,“B”}, new String[]{“FY”});

3: // ... Setup constant inputs
4: for( Document d : documents ) {
5: FrameBlock FX = ...; //Input pipeline
6: pscript.setFrame(“FX”, FX);
7: FrameBlock FY = pscript.executeScript().getFrame(“FY”);
8: // ... Remaining pipeline 
9: }

// single-node, no evictions, 
// no recompile, no multithread.

// execute precompiled script
// many times
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Serving Optimizations – Batching 
 Recap: Model Batching (see 08 Data Access)

 One-pass evaluation of multiple configurations
 EL, CV, feature selection, hyper parameter tuning
 E.g.: TUPAQ [SoCC’16], Columbus [SIGMOD’14

 Data Batching
 Batching to utilize the HW more efficiently under SLA
 Use case: multiple users use the same model

(wait and collect user request and merge)
 Adaptive: additive increase, multiplicative decrease

Model Exchange and Serving

Xm

n

k

O(m*n) 
read

O(m*n*k) 
compute

m >> n >> k

X1

m

n

X2

X3

Benefits for 
multi-class / 

complex 
models

[Clipper @ 
NSDI’17]
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Serving Optimizations – Quantization 
 Quantization

 Lossy compression via ultra-low precision / fixed-point 
 Ex.: 62.7% energy spent on data movement

 Quantization for Model Scoring
 Usually much smaller data types (e.g., UINT8)
 Quantization of model weights, and sometimes also activations
 reduced memory requirements and better latency / throughput (SIMD)

Model Exchange and Serving

import tensorflow as tf
converter = tf.lite.TFLiteConverter.from_saved_model(saved_model_dir)
converter.optimizations = [tf.lite.Optimize.OPTIMIZE_FOR_SIZE]
tflite_quant_model = converter.convert()

[Credit: https://www.tensorflow.org/lite/performance/post_training_quantization ]

08 Data Access 
Methods

[Amirali Boroumand et al.: Google 
Workloads for Consumer Devices: 

Mitigating Data Movement 
Bottlenecks. ASPLOS 2018]

https://www.tensorflow.org/lite/performance/post_training_quantization
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Serving Optimizations – MQO 
 Result Caching

 Establish a function cache for X  Y
(memoization of deterministic function evaluation)

 Multi Model Optimizations
 Same input fed into multiple partially redundant model evaluations
 Common subexpression elimination between prediction programs
 Done during compilation or runtime
 In PRETZEL, programs compiled into 

physical stages and registered 
with the runtime + caching for stages
(decided based on hashing the inputs)

Model Exchange and Serving

[Yunseong Lee et al.: PRETZEL: Opening 
the Black Box of Machine Learning 
Prediction Serving Systems. OSDI 2018]
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Serving Optimizations – Compilation
 TensorFlow tf.compile

 Compile entire TF graph into binary function w/ low footprint
 Input: Graph, config (feeds+fetches w/ fixes shape sizes)
 Output: x86 binary and C++ header (e.g., inference)
 Specialization for frozen model and sizes

 PyTorch Compile
 Compile Python functions into ScriptModule/ScriptFunction
 Lazily collect operations, 

optimize, and JIT compile
 Explicit jit.script call

or @torch.jit.script

Model Exchange and Serving

a = torch.rand(5)
def func(x):
for i in range(10):
x = x * x # unrolled into graph

return x

jitfunc = torch.jit.script(func) # JIT
jitfunc.save("func.pt")

[Vincent Quenneville-Bélair: 
How PyTorch Optimizes
Deep Learning Computations, 
Guest Lecture Stanford 2020]

[Chris Leary, Todd Wang: 
XLA – TensorFlow, Compiled!, 

TF Dev Summit 2017]

04 Adaptation, 
Fusion, and JIT
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Serving Optimizations – Model Vectorization
 HummingBird

 Compile ML scoring pipelines  into tensor ops
 Tree-based models (GEMM, 2x tree traversal)

 Model Distillation
 Ensembles of models  single NN model
 Specialized models for different classes 

(found via differences to generalist model)
 Trained on soft targets (softmax w/ temperature T)

Model Exchange and Serving

[Geoffrey E. Hinton, Oriol Vinyals, Jeffrey 
Dean: Distilling the Knowledge in a 

Neural Network. CoRR 2015]

input node pred

Bucket paths: 
-1 (lhs) / 0 / 1 (rhs)

Bucket-class 
mapping

path ∑

[https://github.com/microsoft/hummingbird] [Supun Nakandala et al: A 
Tensor Compiler for Unified 

Machine Learning Prediction 
Serving. OSDI 2020]

Presenter
Presentation Notes
Note: motivation HummingBird similar to SystemDS; tree traversal w/ batches of records

https://github.com/microsoft/hummingbird
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Serving Optimizations – Specialization  
 NoScope Architecture

 Baseline: YOLOv2 on 1 GPU
per video camera @30fps

 Optimizer to find filters

 #1 Model Specialization
 Given query and baseline model
 Trained shallow NN (based on AlexNet) on output of baseline model 
 Short-circuit if prediction with high confidence

 #2 Difference Detection
 Compute difference to ref-image/earlier-frame
 Short-circuit w/ ref label if no significant difference

Model Exchange and Serving

[Daniel Kang et al: NoScope:  
Optimizing Deep CNN-Based 
Queries over Video Streams at 
Scale. PVLDB 2017]
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Model Monitoring and Updates 
Part of Model Management and MLOps

(see 10 Model Selection & Management)
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Model Deployment Workflow
Model Monitoring and Updates 

Data Integration 
Data Cleaning 

Data Preparation

Model Selection
Training 

Hyper-parameters

Model Serving 

BMYMX

#1 Model
Deployment

DevOps 
Engineer

#2 Continuous Data Validation / 
Concept Drift Detection

#3 Model
Monitoring

#4 Periodic / Event-based 
Re-Training & Updates

(automatic / semi-manual)

Prediction 
Requests
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Monitoring Deployed Models 
 Goals:

 #1 Check Deviations Training/Serving Data
 Different data distributions, distinct items  impact on model accuracy?
 See 09 Data Acquisition and Preparation (Data Validation)

 #2 Definition of Alerts
 Understandable and actionable 
 Sensitivity for alerts (ignored if too frequent)

 #3 Data Fixes
 Identify problematic parts
 Impact of fix on accuracy
 How to backfill into training data

Model Monitoring and Updates 

Robustness (e.g., data, latency) 
and model accuracy

During serving: 
0.11?

“The question is not whether 
something is ‘wrong’. The question is 

whether it gets fixed”

[Neoklis Polyzotis, Sudip Roy, Steven Whang, 
Martin Zinkevich: Data Management Challenges 
in Production Machine Learning, SIGMOD 2017]

Presenter
Presentation Notes
Note: Kolmogorov-Smirnov Test for equality of probability distributions
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Monitoring Deployed Models, cont.
 Alert Guidelines

 Make them actionable
missing field, 
field has new values, 
distribution changes

 Question data AND constraints
 Combining repairs: 

principle of minimality

 Complex Data Lifecycle
 Adding new features to production ML pipelines is a complex process
 Data does not live in a DBMS; data often resides in multiple storage systems 

that have different characteristics
 Collecting data for training can be hard and expensive

Model Monitoring and Updates 

[Xu Chu, Ihab F. Ilyas: Qualitative Data 
Cleaning. Tutorial, PVLDB 2016]

[Neoklis Polyzotis, Sudip Roy, Steven Whang, 
Martin Zinkevich: Data Management Challenges 
in Production Machine Learning, SIGMOD 2017]

less 
actionable

[George Beskales et al: On the relative 
trust between inconsistent data and 

inaccurate constraints. ICDE 2013]
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Concept Drift
 Recap Concept Drift (features  labels)

 Change of statistical properties / dependencies (features-labels)
 Requires re-training, parametric approaches for deciding when to retrain 

 #1 Input Data Changes
 Population change (gradual/sudden), but also new categories, data errors
 Covariance shift p(x) with constant p(y|x)

 #2 Output Data Changes
 Label shift p(y)
 Constant conditional 

feature distributed p(x|y)

 Goals: Fast adaptation; noise vs change, recurring contexts, small overhead

Model Monitoring and Updates 

[A. Bifet, J. Gama, M. Pechenizkiy, I. 
Žliobaitė: Handling Concept Drift: 

Importance, Challenges & Solutions, 
PAKDD 2011]
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Concept Drift, cont.
 Approach 1: Periodic Re-Training

 Training: window of latest data + data selection/weighting
 Alternatives: incremental maintenance, warm starting, online learning

 Approach 2: Event-based Re-Training
 Change detection (supervised, unsupervised)
 Often model-dependent, specific techniques for time series
 Drift Detection Method: binomial distribution, if error outside scaled 

standard-deviation  raise warnings and alters
 Adaptive Windowing (ADWIN): 

window W, append data to W, drop 
old values until avg windows W=W1-W2 
similar (below epsillon), raise alerts

 Kolmogorov-Smirnov distance / Chi-Squared: 
univariate statistical tests training/serving

Model Monitoring and Updates 

[A. Bifet, J. Gama, M. Pechenizkiy, I. 
Žliobaitė: Handling Concept Drift: 

Importance, Challenges & Solutions, 
PAKDD 2011]

[https://scikitmultiflow.readthedocs.io/
en/stable/api/generated/

skmultiflow.drift_detection.ADWIN.html]

[Albert Bifet, Ricard Gavaldà:
Learning from Time-Changing Data 

with Adaptive Windowing. SDM 2007]

Presenter
Presentation Notes
Note: scikit-multiflow .. A machine learning package for streaming data in Python, The other ancestor of River. 

https://scikit-multiflow.readthedocs.io/en/stable/api/generated/skmultiflow.drift_detection.ADWIN.html
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Concept Drift, cont.
 Model-agnostic Performance Predictor

 Approach 2: Event-based Re-Training
 User-defined error generators
 Synthetic data corruption  impact on black-box model
 Train performance predictor (regression/classification at threshold t)

for expected prediction quality on percentiles of target variable ŷ

 Results PPM

Model Monitoring and Updates 

[Sebastian Schelter, Tammo Rukat, Felix 
Bießmann: Learning to Validate the 

Predictions of Black Box Classifiers on 
Unseen Data. SIGMOD 2020]

Presenter
Presentation Notes
Note baselines:• Relational shift detection (REL): This baseline approachapplies shift detection techniques to the raw input datainstead of the model outputs.We apply multiple univariateshift detection tests between the columns of the trainingand serving data (Kolmogorov-Smirnov tests for numericcolumns, and χ2-tests for categorical columns).• Black Box-Shift Detection (BBSE) for assigned class probabilitiesfrom Lipton et al. [13], which evaluates a Kolmogorov-Smirnov test between the softmax outputs of the black boxmodel on the test and serving data.• Black Box-Shift Detection (BBSEh) [20] for predicted classes,which evaluates a χ2-test between the counts of the predictedclasses of the black box model on the test and servingdata.
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GDPR (General Data Protection Regulation)
 GDPR “Right to be Forgotten”

 Recent laws such as GDPR require
companies and institutions to
delete user data upon request

 Personal data must not only be deleted
from primary data stores but also from 
ML models trained on it (Recital 75)

 Example Deanonymization
 Recommender systems: models 

retain user similarly 
 Social network data / clustering / KNN
 Large language models (e.g., GPT-3)

Model Monitoring and Updates 

[https://gdpr.eu/article-17-right-to-be-forgotten/]

U V┬≈X

[Sebastian Schelter: "Amnesia" -
Machine Learning Models That Can 

Forget User Data Very Fast. CIDR 2020]

Presenter
Presentation Notes
Note: As mentioned, the GDPR consists of two components: the articles and recitals. The articles constitute the legal requirements organizations must follow to demonstrate compliance. The recitals provide additional information and supporting context to supplement the articles

https://gdpr.eu/article-17-right-to-be-forgotten/
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GDPR, cont.
 HedgeCut Overview

 Extremely Randomized Trees (ERT):
ensemble of DTs w/ randomized 
attributes and cut-off points

 Online unlearning requests < 1ms
w/o retraining for few points

 Handling of Non-robust Splits

Model Monitoring and Updates 

[Sebastian Schelter, Stefan Grafberger, Ted Dunning: 
HedgeCut: Maintaining Randomised Trees for Low-

Latency Machine Unlearning, SIGMOD 2021]
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Summary and Conclusions
 Model Exchange and Serving
 Model Monitoring and Updates

 #1 Finalize Programming Projects by ~June 30
 #2 Oral Exam

 Doodle for July 7/8/9/12/13, 45min each (done via skype/webex)
 Part 1: Describe you programming project, warm-up questions
 Part 2: Questions on 2-3 topics of 11 lectures

(basic understanding of the discussed topics / techniques)
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