

SCIENCE PASSION TECHNOLOGY

Architecture of ML Systems 12 Model Deployment & Serving

Matthias Boehm

Graz University of Technology, Austria Computer Science and Biomedical Engineering Institute of Interactive Systems and Data Science BMK endowed chair for Data Management

Announcements/Org

- #1 Video Recording
 - Link in TeachCenter & TUbe (lectures will be public)
 - https://tugraz.webex.com/meet/m.boehm
 - Corona traffic light RED → May 17: ORANGE → Jul 01: YELLOW

#2 Programming Projects / Exercises

- Soft deadline: June 30 (w/ room for extension)
- Submission of exercises in TeachCenter
- Submission of projects as PRs in Apache SystemDS

#3 Exams

- Doodle w/ 42/~50 exam slots (45min each)
- July 7/8/9/12/13 (done via skype/webex)

#4 Course Evaluation

Please participate; open period: June 1 – July 15

Apache SystemOS Proje	19		
Overview Project Types	* 76	~	5
	•74	int .	
Programming Projects			-
Referenced until March 28 (bring you own if you start)	-	sie Langer	Γ
Project Selection by April 03	19506	i.	
	Cestive State Soften OS Proceed Cestive Projects Sefected Traces Programming Projects Sefected Traces Programming Projects Sefected Traces Project statedies by darl 02	Annube SofterCS Streets Annube SofterCS Streets Annube SofterCS Streets Programming Projects Modername and Status III Softer your own for yourse Programming Streets Softer Yourse Softer	Programming Projects.

Data Science Lifecycle

Agenda

- Model Exchange and Serving
- Model Monitoring and Updates

Model Exchange and Serving

Model Exchange Formats

- Definition Deployed Model
 - #1 Trained ML model (weight/parameter matrix)
 - #2 Trained weights AND operator graph / entire ML pipeline
 - → especially for DNN (many weight/bias tensors, hyper parameters, etc)
- Recap: Data Exchange Formats (model + meta data)
 - General-purpose formats: CSV, JSON, XML, Protobuf
 - Sparse matrix formats: matrix market, libsvm
 - Scientific formats: NetCDF, HDF5
 - ML-system-specific binary formats (e.g., SystemDS, PyTorch serialized)
- _

NatrixMarket matrix coordinate real general

nore comment lines

PYTÖRCH

1 1 1.000e+00 2 2 1.050e+01 3 3 1.500e-02

1 4 6.000e+00 4 2 2.505e+02 4 4 -2.800e+02 4 5 3.332e+01

5 5 1.200e+01

- Problem ML System Landscape
 - Different languages and frameworks, including versions

Model Exchange Formats, cont.

- Why Open Standards?
 - Open source allows inspection but no control
 - Open governance necessary for open standard
 - Cons: needs adoption, moves slowly

- #1 Predictive Model Markup Language (PMML)
 - Model exchange format in XML, created by Data Mining Group 1997
 - Package model weights, hyper parameters, and limited set of algorithms

#2 Portable Format for Analytics (PFA)

- Attempt to fix limitations of PMML, created by Data Mining Group
- JSON and AVRO exchange format
- Minimal functional math language → arbitrary custom models
- Scoring in JVM, Python, R

Lukas Timpl

python/systemds/

onnx systemds

Model Exchange Formats, cont.

- #3 Open Neural Network Exchange (ONNX)
 - Model exchange format (data and operator graph) via Protobuf
 - First Facebook and Microsoft, then IBM, Amazon → PyTorch, MXNet
 - Focused on deep learning and tensor operations
 - ONNX-ML: support for traditional ML algorithms
 - Scoring engine: <u>https://github.com/Microsoft/onnxruntime</u>
 - Cons: low level (e.g., fused ops), DNN-centric → ONNX-ML

TensorFlow Saved Models

- TensorFlow-specific exchange format for model and operator graph
- Freezes input weights and literals, for additional optimizations (e.g., constant folding, quantization, etc)
- Cloud providers may not be interested in open exchange standards

Apache

SystemML"

ML Systems for Serving

- #1 Embedded ML Serving
 - TensorFlow Lite and new language bindings (small footprint, dedicated HW acceleration, APIs, and models: MobileNet, SqueezeNet)
 - SystemML JMLC (Java ML Connector)

#2 ML Serving Services

- Motivation: Complex DNN models, ran on dedicated HW
- RPC/REST interface for applications
- TensorFlow Serving: configurable serving w/ batching
- Clipper: Decoupled multi-framework scoring, w/ batching and result caching
- Pretzel: Batching and multi-model optimizations in ML.NET
- Rafiki: Optimization for accuracy under latency constraints, and batching and multi-model optimizations

[Christopher Olston et al: TensorFlow-Serving: Flexible, High-Performance ML Serving. NIPS **ML Systems 2017**]

[Daniel Crankshaw et al: Clipper: A Low-Latency Online Prediction Serving System. **NSDI 2017**]

[Yunseong Lee et al.: PRETZEL: Opening the Black Box of Machine Learning Prediction Serving Systems. **OSDI 2018**]

[Wei Wang et al: Rafiki: Machine Learning as an Analytics Service System. **PVLDB 2018**]

Example: Google Translate 140B words/day → 82K GPUs in 2016

TensorFlowLite

[Joseph M. Hellerstein et al: Serverless Computing: One Step Forward, Two Steps Back. CIDR 2019]

Definition Serverless

Serverless Computing

- **FaaS:** functions-as-a-service (event-driven, stateless input-output mapping)
- Infrastructure for deployment and auto-scaling of APIs/functions
- Examples: Amazon Lambda, Microsoft Azure Functions, etc

Example

import com.amazonaws.services.lambda.runtime.Context; import com.amazonaws.services.lambda.runtime.RequestHandler;

public class MyHandler **implements RequestHandler**<Tuple, MyResponse> { @Override public MyResponse handleRequest(Tuple input, Context context) { return expensiveModelScoring(input); // with read-only model } }

11

Example SystemDS JMLC

- **Data size** (tiny ΔX , huge model M)
- Seamless integration & model consistency
- \rightarrow Latency \Rightarrow Throughput
- \rightarrow Minimize overhead per ΔX

Token inputs & outputs

Example SystemDS JMLC, cont.

Background: Frame

- Abstract data type with schema (boolean, int, double, string)
- Column-wise block layout
- Local/distributed operations:
 e.g., indexing, append, transform

Distributed representation: ? x ncol(F) blocks

(shuffle-free conversion of csv / datasets)

706.550 Architecture of Machine Learning Systems – 12 Model Deployment & Serving Matthias Boehm, Graz University of Technology, SS 2021

Example SystemML JMLC, cont.

- Motivation
 - Embedded scoring
 - → Latency ⇒ Throughput
 - **\rightarrow** Minimize overhead per ΔX

Example

Typical compiler/runtime overheads:

Script parsing and config:	~100ms
Validation, compile, IPA:	~10ms
HOP DAG (re-)compile:	~1ms
Instruction execute:	<0.1µs

// single-node, no evictions,

- 1: Connection conn = **new** Connection(); // no recompile, no multithread.
- 2: PreparedScript pscript = conn.prepareScript(
 getScriptAsString("glm-predict-extended.dml"),
 new String[]{"FX","MX","MY","B"}, new String[]{"FY"});
- 3: // ... Setup constant inputs
- 4: for(Document d : documents) {
- 5: FrameBlock FX = ...; //Input pipeline
- 6: pscript.setFrame("FX", FX);
- 7: FrameBlock FY = pscript.executeScript().getFrame("FY");
- 8: // ... Remaining pipeline
- 9: }

```
// execute precompiled script
// many times
```

Serving Optimizations – Batching

- Recap: Model Batching (see 08 Data Access)
 - One-pass evaluation of multiple configurations
 - EL, CV, feature selection, hyper parameter tuning
 - E.g.: TUPAQ [SoCC'16], Columbus [SIGMOD'14

Data Batching

- Batching to utilize the HW more efficiently under SLA
- Use case: multiple users use the same model (wait and collect user request and merge)
- Adaptive: additive increase, multiplicative decrease

n

Serving Optimizations – Quantization

- Quantization
 - Lossy compression via ultra-low precision / fixed-point
 - Ex.: 62.7% energy spent on data movement
- Quantization for Model Scoring
 - Usually much smaller data types (e.g., UINT8)
 - Quantization of model weights, and sometimes also activations
 → reduced memory requirements and better latency / throughput (SIMD)

```
import tensorflow as tf
converter = tf.lite.TFLiteConverter.from_saved_model(saved_model_dir)
converter.optimizations = [tf.lite.Optimize.OPTIMIZE_FOR_SIZE]
tflite_quant_model = converter.convert()
```

[Credit: https://www.tensorflow.org/lite/performance/post_training_quantization]

08 Data Access Methods

[Amirali Boroumand et al.: Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks. **ASPLOS 2018**]

Serving Optimizations – MQO

- Result Caching
 - Establish a function cache for X → Y
 (memoization of deterministic function evaluation)
 Predict(m: ModelId, x: X) -> y: Y
- Multi Model Optimizations
 - Same input fed into multiple partially redundant model evaluations
 - Common subexpression elimination between prediction programs
 - Done during compilation or runtime
 - In PRETZEL, programs compiled into physical stages and registered with the runtime + caching for stages (decided based on hashing the inputs)

		- C -
-121-4		2
Enterior	-	a-
	1833	22
111120-000		1221
		523
		7-0
7/5/104.09		2253

[Yunseong Lee et al.: PRETZEL: Opening the Black Box of Machine Learning Prediction Serving Systems. **OSDI 2018**]

Runtime

a = torch.rand(5)

for i in range(10):

jitfunc.save("func.pt")

x = x * x # unrolled into graph

def func(x):

return x

¹⁷ Serving Optimizations – Compilation

- TensorFlow tf.compile
 - Compile entire TF graph into binary function w/ low footprint
 - Input: Graph, config (feeds+fetches w/ fixes shape sizes)
 - Output: x86 binary and C++ header (e.g., inference)
 - Specialization for frozen model and sizes

PyTorch Compile

- Compile Python functions into ScriptModule/ScriptFunction
- Lazily collect operations, optimize, and JIT compile
- Explicit jit.script call or@torch.jit.script

```
[Vincent Quenneville-Bélair:
How PyTorch Optimizes
Deep Learning Computations,
Guest Lecture Stanford 2020]
```


TF Dev Summit 2017]

[Chris Leary, Todd Wang:

XLA – TensorFlow, Compiled!,

04 Adaptation,

Fusion, and **JIT**


```
РҮТ<mark></mark>КСН
```


Serving Optimizations – Model Vectorization

- HummingBird [https://github.com/microsoft/hummingbird]
 - Compile ML scoring pipelines into tensor ops
 - Tree-based models (GEMM, 2x tree traversal)

[Supun Nakandala et al: A Tensor Compiler for Unified Machine Learning Prediction Serving. **OSDI 2020**]

Model Distillation

- Ensembles of models → single NN model
- Specialized models for different classes (found via differences to generalist model)
- Trained on soft targets (softmax w/ temperature T)

An and a second second

 $q_i = \frac{exp(z_i/T)}{\sum exp(z_i/T)}$

Dean: Distilling the Knowledge in a

Neural Network. CoRR 2015]

706.550 Architecture of Machine Learning Systems – 12 Model Deployment & Serving Matthias Boehm, Graz University of Technology, SS 2021

bus present?

Serving Optimizations – Specialization

NoScope Architecture

- Baseline: YOLOv2 on 1 GPU per video camera @30fps
- **Optimizer to find filters**

	LTTL2
ANA!	1
102343	
(ALARDARD)	(1809) (1809)

[Daniel Kang et al: NoScope: **Optimizing Deep CNN-Based** Queries over Video Streams at Scale. **PVLDB 2017**]

#1 Model Specialization

- Given query and baseline model
- Trained shallow NN (based on AlexNet) on output of baseline model

Query: "bus"

target video

Query:

"bus"

target video

- Short-circuit if prediction with high confidence
- #2 Difference Detection
 - Compute difference to ref-image/earlier-frame
 - Short-circuit w/ ref label if no significant difference

Traditional Deep Neural Network Inference (Frame by Frame)

Reference NN 30-60 fps

NoScope: Inference-Optimized Model Search

short-circuit evaluation

reference

100K fps

frame

Model Monitoring and Updates

Part of Model Management and MLOps (see 10 Model Selection & Management)

21

Model Deployment Workflow

Monitoring Deployed Models

 Goals: Robustness (e.g., data, latency) and model accuracy

[Neoklis Polyzotis, Sudip Roy, Steven Whang, Martin Zinkevich: Data Management Challenges in Production Machine Learning, **SIGMOD 2017**]

age should have a

the previous day...

Kolmogorov distance of less than 0.1 from

During serving:

0.11?

#1 Check Deviations Training/Serving Data

- Different data distributions, distinct items → impact on model accuracy?
- → See **09 Data Acquisition and Preparation** (Data Validation)

#2 Definition of Alerts

- Understandable and actionable
- Sensitivity for alerts (ignored if too frequent)

#3 Data Fixes

- Identify problematic parts
- Impact of fix on accuracy
- How to backfill into training data

"The question is not whether something is 'wrong'. The question is whether it gets fixed"

Monitoring Deployed Models, cont.

Alert Guidelines

23

- Make them actionable missing field, field has new values, distribution changes
- **Question** data AND constraints
- Combining repairs: principle of minimality

[Neoklis Polyzotis, Sudip Roy, Steven Whang, Martin Zinkevich: Data Management Challenges in Production Machine Learning, **SIGMOD 2017**]

[George Beskales et al: On the relative trust between inconsistent data and inaccurate constraints. **ICDE 2013**

[Xu Chu, Ihab F. Ilyas: Qualitative Data Cleaning. Tutorial, PVLDB 2016]

Complex Data Lifecycle

Adding new features to production ML pipelines is a complex process

less

actionable

- Data does not live in a DBMS; data often resides in **multiple storage systems** that have different characteristics
- Collecting data for training can be hard and expensive

Concept Drift

 [A. Bifet, J. Gama, M. Pechenizkiy, I. Žliobaitė: Handling Concept Drift:
 Importance, Challenges & Solutions, PAKDD 2011]

- **Recap Concept Drift** (features → labels)
 - Change of statistical properties / dependencies (features-labels)
 - Requires re-training, parametric approaches for deciding when to retrain
- #1 Input Data Changes
 - Population change (gradual/sudden), but also new categories, data errors
 - Covariance shift p(x) with constant p(y|x)
- #2 Output Data Changes
 - Label shift p(y)
 - Constant conditional feature distributed p(x|y)

Goals: Fast adaptation; noise vs change, recurring contexts, small overhead

Concept Drift, cont.

[A. Bifet, J. Gama, M. Pechenizkiy, I. Žliobaitė: Handling Concept Drift: Importance, Challenges & Solutions, **PAKDD 2011**]

- **Approach 1: Periodic Re-Training**
 - Training: window of latest data + data selection/weighting
 - Alternatives: incremental maintenance, warm starting, online learning

Approach 2: Event-based Re-Training

- **Change detection** (supervised, unsupervised)
- Often model-dependent, specific techniques for time series
- **Drift Detection Method:** binomial distribution, if error outside scaled standard-deviation \rightarrow raise warnings and alters
- Adaptive Windowing (ADWIN): window W, append data to W, drop old values until avg windows W=W1-W2 similar (below epsillon), raise alerts
- Kolmogorov-Smirnov distance / Chi-Squared: univariate statistical tests training/serving

[Albert Bifet, Ricard Gavaldà: Learning from Time-Changing Data

[https://scikitmultiflow.readthedocs.io/ en/stable/api/generated/ skmultiflow.drift detection.ADWIN.html]

with Adaptive Windowing. **SDM 2007**]

Concept Drift, cont.

- Model-agnostic Performance Predictor
 - Approach 2: Event-based Re-Training
 - User-defined error generators

[Sebastian Schelter, Tammo Rukat, Felix Bießmann: Learning to Validate the Predictions of Black Box Classifiers on Unseen Data. **SIGMOD 2020**]

- Synthetic data corruption \rightarrow impact on black-box model
- Train performance predictor (regression/classification at threshold t) for expected prediction quality on percentiles of target variable ŷ

Results PPM

GDPR (General Data Protection Regulation)

GDPR "Right to be Forgotten"

- Recent laws such as GDPR require companies and institutions to delete user data upon request
- Personal data must not only be deleted from primary data stores but also from ML models trained on it (Recital 75)

[https://gdpr.eu/article-17-right-to-be-forgotten/]

Example Deanonymization

- Recommender systems: models retain user similarly
- Social network data / clustering / KNN
- Large language models (e.g., GPT-3)

[Sebastian Schelter: "Amnesia" -Machine Learning Models That Can Forget User Data Very Fast. **CIDR 2020**]

GDPR, cont.

[Sebastian Schelter, Stefan Grafberger, Ted Dunning: HedgeCut: Maintaining Randomised Trees for Low-Latency Machine Unlearning, SIGMOD 2021]

HedgeCut Overview

- Extremely Randomized Trees (ERT): ensemble of DTs w/ randomized attributes and cut-off points
- Online unlearning requests < 1ms w/o retraining for few points

Handling of Non-robust Splits

706.550 Architecture of Machine Learning Systems – 12 Model Deployment & Serving Matthias Boehm, Graz University of Technology, SS 2021

Summary and Conclusions

- Model Exchange and Serving
- Model Monitoring and Updates
- #1 Finalize Programming Projects by ~June 30
- #2 Oral Exam
 - Doodle for July 7/8/9/12/13, 45min each (done via skype/webex)
 - Part 1: Describe you programming project, warm-up questions
 - Part 2: Questions on 2-3 topics of 11 lectures (basic understanding of the discussed topics / techniques)

