
1
SCIENCE
PASSION

TECHNOLOGY

Data Management
11 Distributed Storage & Analysis
Matthias Boehm

Graz University of Technology, Austria

Institute of Interactive Systems and Data Science
Computer Science and Biomedical Engineering

BMK endowed chair for Data Management

Last update: Jun 05, 2021

2

INF.01017UF Data Management / 706.010 Databases – 11 Distributed Storage and Data Analytics
Matthias Boehm, Graz University of Technology, SS 2021

Announcements/Org
 #1 Video Recording

 Link in TeachCenter & TUbe (lectures will be public)
 https://tugraz.webex.com/meet/m.boehm
 Corona traffic light REDMay 17: ORANGE Jul 01: YELLOW

 #2 Reminder Communication
 Newsgroup: news://news.tugraz.at/tu-graz.lv.dbase
 Office hours: Mo 12.30-1.30pm (https://tugraz.webex.com/meet/m.boehm)

 #3 Exercises/Exams
 Grading: Exercise 1 – done, Exercise 2 – done
 Submission: Exercise 3: start grading, Exercise 4: due Jun 22
 Exams: Jun 30 5.30pm (i11, i12, i13), Jul 5 3.30pm (i13), 6.30 (i13)

 #4 Course Evaluation
 Please participate; open period: June 1 – July 15

https://tugraz.webex.com/meet/m.boehm
news://news.tugraz.at/tu-graz.lv.dbase
https://tugraz.webex.com/meet/m.boehm

3

INF.01017UF Data Management / 706.010 Databases – 11 Distributed Storage and Data Analytics
Matthias Boehm, Graz University of Technology, SS 2021

Agenda
 Cloud Computing Overview
 Distributed Data Storage
 Distributed Data Analysis

Data Integration and
Large-Scale Analysis (DIA)

(bachelor/master)

4

INF.01017UF Data Management / 706.010 Databases – 11 Distributed Storage and Data Analytics
Matthias Boehm, Graz University of Technology, SS 2021

Cloud Computing Overview

5

INF.01017UF Data Management / 706.010 Databases – 11 Distributed Storage and Data Analytics
Matthias Boehm, Graz University of Technology, SS 2021

Motivation Cloud Computing
 Definition Cloud Computing

 On-demand, remote storage and compute resources, or services
 User: computing as a utility (similar to energy, water, internet services)
 Cloud provider: computation in data centers / multi-tenancy

 Service Models
 IaaS: Infrastructure as a service (e.g., storage/compute nodes)
 PaaS: Platform as a service (e.g., distributed systems/frameworks)
 SaaS: Software as a Service (e.g., email, databases, office, github)

 Transforming IT Industry/Landscape
 Since ~2010 increasing move from on-prem to cloud resources
 System software licenses become increasingly irrelevant
 Few cloud providers dominate IaaS/PaaS/SaaS markets (w/ 2018 revenue):

Microsoft Azure Cloud ($ 32.2B), Amazon AWS ($ 25.7B), Google Cloud (N/A),
IBM Cloud ($ 19.2B), Oracle Cloud ($ 5.3B), Alibaba Cloud ($ 2.1B)

Cloud Computing Overview

6

INF.01017UF Data Management / 706.010 Databases – 11 Distributed Storage and Data Analytics
Matthias Boehm, Graz University of Technology, SS 2021

Motivation Cloud Computing, cont.
 Argument #1: Pay as you go

 No upfront cost for infrastructure
 Variable utilization  over-provisioning
 Pay per use or acquired resources

 Argument #2: Economies of Scale
 Purchasing and managing IT infrastructure at scale  lower cost

(applies to both HW resources and IT infrastructure/system experts)
 Focus on scale-out on commodity HW over scale-up  lower cost

 Argument #3: Elasticity
 Assuming perfect scalability, work done

in constant time * resources
 Given virtually unlimited resources

allows to reduce time as necessary

Cloud Computing Overview

Utili-
zation

Time

100%

100 days @ 1 node
≈

1 day @ 100 nodes

(but beware Amdahl’s law:
max speedup sp = 1/s)

7

INF.01017UF Data Management / 706.010 Databases – 11 Distributed Storage and Data Analytics
Matthias Boehm, Graz University of Technology, SS 2021

Characteristics and Deployment Models
 Extended Definition

 ANSI recommended definitions for service
types, characteristics, deployment models

 Characteristics
 On-demand self service: unilateral resource provision
 Broad network access: network accessibility
 Resource pooling: resource virtualization / multi-tenancy
 Rapid elasticity: scale out/in on demand
 Measured service: utilization monitoring/reporting

 Deployment Models
 Public cloud: general public, on premise of cloud provider
 Hybrid cloud: combination of two or more of the above
 Community cloud: single community (one or more orgs)
 Private cloud: single org, on/off premises

Cloud Computing Overview

[Peter Mell and Timothy
Grance: The NIST Definition of
Cloud Computing, NIST 2011]

IBM Cloud Private

MS Azure
Private Cloud

8

INF.01017UF Data Management / 706.010 Databases – 11 Distributed Storage and Data Analytics
Matthias Boehm, Graz University of Technology, SS 2021

Excursus: 1 Query/Minute for 1 Week
 Experimental Setup

 1GB TPC-H database, 4 queries on
2 cloud DBs / 1 on-prem DB

Cloud Computing Overview

[Tim Kiefer, Hendrik Schön, Dirk Habich,
Wolfgang Lehner: A Query, a Minute:

Evaluating Performance Isolation in
Cloud Databases. TPCTC 2014]

Relative
execution

time

CloudA

CloudB

On-prem

 10,080 Qs

9

INF.01017UF Data Management / 706.010 Databases – 11 Distributed Storage and Data Analytics
Matthias Boehm, Graz University of Technology, SS 2021

Anatomy of a Data Center
Cloud Computing Overview

Commodity CPU:
Xeon E5-2440: 6/12 cores

Xeon Gold 6148: 20/40 cores Server:
Multiple sockets,

RAM, disks
Rack:

16-64 servers +
top-of-rack switch

Cluster:
Multiple racks + cluster switch

Data Center:
>100,000 servers

[Google
Data Center,
Eemshaven,
Netherlands]

10

INF.01017UF Data Management / 706.010 Databases – 11 Distributed Storage and Data Analytics
Matthias Boehm, Graz University of Technology, SS 2021

Fault Tolerance
 Yearly Data Center Failures

 ~0.5 overheating (power down most machines in <5 mins, ~1-2 days)
 ~1 PDU failure (~500-1000 machines suddenly disappear, ~6 hrs)
 ~1 rack-move (plenty of warning, ~500-1000 machines powered down, ~6 hrs)
 ~1 network rewiring (rolling ~5% of machines down over 2-day span)
 ~20 rack failures (40-80 machines instantly disappear, 1-6 hrs)
 ~5 racks go wonky (40-80 machines see 50% packet loss)
 ~8 network maintenances (~30-minute random connectivity losses)
 ~12 router reloads (takes out DNS and external vIPs for a couple minutes)
 ~3 router failures (immediately pull traffic for an hour)
 ~dozens of minor 30-second blips for dns
 ~1000 individual machine failures (2-4% failure rate, at least twice)
 ~thousands of hard drive failures (1-5% of all disks will die)

Cloud Computing Overview

[Christos Kozyrakis and Matei
Zaharia: CS349D: Cloud Computing

Technology, lecture, Stanford 2018]

11

INF.01017UF Data Management / 706.010 Databases – 11 Distributed Storage and Data Analytics
Matthias Boehm, Graz University of Technology, SS 2021

Fault Tolerance, cont.
 Other Common Issues

 Configuration issues, partial SW updates, SW bugs
 Transient errors: no space left on device, memory corruption, stragglers

 Recap: Error Rates at Scale
 Cost-effective commodity hardware
 Error rate increases with increasing scale
 Fault Tolerance for distributed/cloud

storage and data analysis

 Cost-effective Fault Tolerance
 BASE (basically available, soft state, eventual consistency)
 Effective techniques

 ECC (error correction codes), CRC (cyclic redundancy check) for detection
 Resilient storage: replication/erasure coding, checkpointing, and lineage
 Resilient compute: task re-execution / speculative execution

Cloud Computing Overview

12

INF.01017UF Data Management / 706.010 Databases – 11 Distributed Storage and Data Analytics
Matthias Boehm, Graz University of Technology, SS 2021

Containerization
 Docker Containers

 Shipping container analogy
 Arbitrary, self-contained goods,

standardized units
 Containers reduced loading times  efficient international trade

 #1 Self-contained package of necessary SW and data (read-only image)
 #2 Lightweight virtualization w/ shared OS and resource isolation via cgroups

 Cluster Schedulers
 Container orchestration: scheduling,

deployment, and management
 Resource negotiation with clients
 Typical resource bundles (CPU, memory, device)
 Examples: Kubernetes, Mesos, (YARN),

Amazon ECS, Microsoft ACS, Docker Swarm

Cloud Computing Overview

[Brendan Burns, Brian Grant, David Oppen-
heimer, Eric Brewer, John Wilkes: Borg,
Omega, and Kubernetes. CACM 2016]

 from machine- to application-
oriented scheduling

13

INF.01017UF Data Management / 706.010 Databases – 11 Distributed Storage and Data Analytics
Matthias Boehm, Graz University of Technology, SS 2021

Example Amazon Services – Pricing (current gen)
 Amazon EC2 (Elastic

Compute Cloud)
 IaaS offering of different

node types and generations
 On-demand, reserved, and

spot instances

 Amazon ECS (Elastic Container Service)
 PaaS offering for Docker containers
 Automatic setup of Docker environment

 Amazon EMR (Elastic Map Reduce)
 PaaS offering for Hadoop workloads
 Automatic setup of YARN, HDFS, and

specialized frameworks like Spark
 Prices in addition to EC2 prices

Cloud Computing Overview

Pricing according to EC2
(in EC2 launch mode)

vCores Mem

14

INF.01017UF Data Management / 706.010 Databases – 11 Distributed Storage and Data Analytics
Matthias Boehm, Graz University of Technology, SS 2021

Distributed Data Storage
Cloud Object Storage

Distributed File Systems

15

INF.01017UF Data Management / 706.010 Databases – 11 Distributed Storage and Data Analytics
Matthias Boehm, Graz University of Technology, SS 2021

Data Lakes
 Concept “Data Lake”

 Store massive amounts of un/semi-structured, and structured data
(append only, no update in place)

 No need for architected schema or upfront costs (unknown analysis)
 Typically: file storage in open, raw formats (inputs and intermediates)
 Distributed storage and analytics for scalability and agility

 Criticism: Data Swamp
 Low data quality (lack of schema,

integrity constraints, validation)
 Missing meta data (context) and

data catalog for search
 Requires proper data curation / tools

According to priorities (data governance)

 Excursus: Research Data Management
 FAIR data principles: findable, accessible, interoperable, re-usable

Distributed Data Storage

[Credit: www.collibra.com]

http://www.collibra.com/

16

INF.01017UF Data Management / 706.010 Databases – 11 Distributed Storage and Data Analytics
Matthias Boehm, Graz University of Technology, SS 2021

Object Storage
 Recap: Key-Value Stores

 Key-value mapping, where values can be of a variety of data types
 APIs for CRUD operations; scalability via sharding (objects or object segments)

 Object Store
 Similar to key-value stores, but: optimized for large objects in GBs and TBs
 Object identifier (key), meta data, and object as binary large object (BLOB)
 APIs: often REST APIs, SDKs, sometimes implementation of DFS APIs

 Key Techniques
 Partitioning
 Replication &

Distribution
 Erasure Coding

(partitioning + parity)

Distributed Data Storage

D
D1
D2
D3

Partitioning Replication D11
D21
D31

D12
D22
D32

D11 D21 D31D12 D22D32

Distribution

Presenter
Presentation Notes
Note: erasure coding in Hadoop 3.0: https://blog.cloudera.com/introduction-to-hdfs-erasure-coding-in-apache-hadoop/

17

INF.01017UF Data Management / 706.010 Databases – 11 Distributed Storage and Data Analytics
Matthias Boehm, Graz University of Technology, SS 2021

Object Storage, cont.
 Example Object Stores / Protocols

 Amazon Simple Storage Service (S3)
 OpenStack Object Storage (Swift)
 IBM Object Storage
 Microsoft Azure Blob Storage

 Amazon S3
 Reliable object store for photos, videos, documents or any binary data
 Bucket: Uniquely named, static data container
http://s3.aws-eu-central-1.amazonaws.com/mboehm-b1

 Object: key, version ID, value, metadata, access control
 Single (5GB)/multi-part (5TB) upload and direct/BitTorrent download
 Storage classes: STANDARD, STANDARD_IA, GLACIER, DEEP_ARCHIVE
 Operations: GET/PUT/LIST/DEL, and SQL over CSV/JSON objects

Distributed Data Storage

18

INF.01017UF Data Management / 706.010 Databases – 11 Distributed Storage and Data Analytics
Matthias Boehm, Graz University of Technology, SS 2021

Hadoop Distributed File System (HDFS)
 Brief Hadoop History

 Google’s GFS + MapReduce [ODSI’04]
 Apache Hadoop (2006)

 Apache Hive (SQL), Pig (ETL), Mahout/SystemML (ML), Giraph (Graph)

 HDFS Overview
 Hadoop’s distributed file system, for large clusters and datasets
 Implemented in Java, w/ native libraries for compression, I/O, CRC32
 Files split into 128MB blocks, replicated (3x), and distributed

Distributed Data Storage

1 2 3 4 5 6M

Head Node Worker Nodes (shared-nothing cluster)

Hadoop Distributed File System (HDFS)

Client

Name
Node

Data
Node

Data
Node

Data
Node

Data
Node

Data
Node

Data
Node

[Sanjay Ghemawat, Howard
Gobioff, Shun-Tak Leung: The

Google file system. SOSP 2003]

19

INF.01017UF Data Management / 706.010 Databases – 11 Distributed Storage and Data Analytics
Matthias Boehm, Graz University of Technology, SS 2021

Hadoop Distributed File System, cont.
 HDFS NameNode

 Master daemon that manages file system
namespace and access by clients

 Metadata for all files (e.g., replication,
permissions, sizes, block ids, etc)

 FSImage: checkpoint of FS namespace
 EditLog: write-ahead-log (WAL) of file write operations (merged on startup)

 HDFS DataNode
 Worker daemon per cluster node that manages block storage (list of disks)
 Block creation, deletion, replication as individual files in local FS
 On startup: scan local blocks and send block report to name node
 Serving block read and write requests
 Send heartbeats to NameNode (capacity, current transfers) and

receives replies (replication, removal of block replicas)

Distributed Data Storage

hadoop fs -ls ./data/mnist1m.bin

20

INF.01017UF Data Management / 706.010 Databases – 11 Distributed Storage and Data Analytics
Matthias Boehm, Graz University of Technology, SS 2021

Hadoop Distributed File System, cont.
 HDFS Write

 #1 Client RPC to NameNode
to create file  lease/replica DNs

 #2 Write blocks to DNs, pipelined
replication to other DNs

 #3 DNs report to NN via heartbeat

 HDFS Read
 #1 Client RPC to NameNode

to open file  DNs for blocks
 #2 Read blocks sequentially from

closest DN w/ block
 InputFormats and RecordReaders

as abstraction for multi-part files
(incl. compression/encryption)

Distributed Data Storage

M

Name
Node

1 2

Data
Node

Data
Node

Client

HDFS Client D1
D2

1. Create
foo.txt

D

D1 D2

foo.txt:
D1-1,2
D2-1,2

D1 D2

M

Name
Node

1 2

Data
Node

Data
Node

HDFS Client D1
D2

1. Open
foo.txt

D1 D2

foo.txt:
D1-1,2
D2-1,2

D1 D2

2
3

2

21

INF.01017UF Data Management / 706.010 Databases – 11 Distributed Storage and Data Analytics
Matthias Boehm, Graz University of Technology, SS 2021

Hadoop Distributed File System, cont.
 Data Locality

 HDFS is generally rack-aware (node-local, rack-local, other)
 Schedule reads from closest data node
 Replica placement (rep 3): local DN, other-rack DN, same-rack DN
 MapReduce/Spark: locality-aware execution (function vs data shipping)

 HDFS Federation
 Eliminate NameNode as

namespace scalability bottleneck
 Independent NameNodes,

responsible for name spaces
 DataNodes store blocks of

all NameNodes
 Client-side mount tables

Distributed Data Storage

[Credit: https://hadoop.apache.org/docs/current/hadoop-
project-dist/hadoop-hdfs/Federation.html]

https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/Federation.html

22

INF.01017UF Data Management / 706.010 Databases – 11 Distributed Storage and Data Analytics
Matthias Boehm, Graz University of Technology, SS 2021

Excursus: Amazon Redshift
 Motivation (release 02/2013)

 Simplicity and cost-effectiveness
(fully-managed DWH at petabyte scale)

 System Architecture
 Data plane: data storage and SQL execution
 Control plane: workflows for monitoring,

and managing databases, AWS services

 Data Plane
 Leader node + sliced compute nodes

in EC2 with local storage
 Replication across nodes + S3 backup
 Query compilation in C++ code
 Support for flat and nested files

 Similar
Systems

Distributed Data Storage

[Anurag Gupta et al.: Amazon
Redshift and the Case for Simpler

Data Warehouses. SIGMOD 2015]

[Mengchu Cai et al.: Integrated
Querying of SQL database data

and S3 data in Amazon Redshift.
IEEE Data Eng. Bull. 41(2) 2018]

Microsoft

23

INF.01017UF Data Management / 706.010 Databases – 11 Distributed Storage and Data Analytics
Matthias Boehm, Graz University of Technology, SS 2021

Distributed Data Analysis
Data-Parallel Computation

(MapReduce, Spark)

24

INF.01017UF Data Management / 706.010 Databases – 11 Distributed Storage and Data Analytics
Matthias Boehm, Graz University of Technology, SS 2021

Hadoop History and Architecture
 Recap: Brief History

 Google’s GFS [SOSP’03] + MapReduce
 Apache Hadoop (2006)

 Apache Hive (SQL), Pig (ETL), Mahout (ML), Giraph (Graph)

 Hadoop Architecture / Eco System
 Management (Ambari)
 Coordination / workflows

(Zookeeper, Oozie)
 Storage (HDFS)
 Resources (YARN)

[SoCC’13]
 Processing

(MapReduce)

Distributed Data Analysis

NameNode

Head Node

Worker Node 1

Resource
Manager Node

Manager

MR
AM

MR
task

MR
task

MR
task

Worker Node n

Node
Manager

MR
task

MR
task

MR
task

MR
task

MR Client DataNode
1 3 2

DataNode
3 2 9

[Jeffrey Dean, Sanjay
Ghemawat: MapReduce:

Simplified Data Processing on
Large Clusters. OSDI 2004]

25

INF.01017UF Data Management / 706.010 Databases – 11 Distributed Storage and Data Analytics
Matthias Boehm, Graz University of Technology, SS 2021

Central Data Abstractions
 #1 Files and Objects

 File: Arbitrarily large sequential data in specific file format (CSV, binary, etc)
 Object: binary large object, with certain meta data

 #2 Distributed Collections
 Logical multi-set (bag) of key-value pairs

(unsorted collection)
 Different physical representations
 Facilitates distribution of pairs

via horizontal partitioning
(aka shards, partitions)

 Can be created from single file,
or directory of files (unsorted)

Distributed Data Analysis

Key Value
4 Delta
2 Bravo
1 Alfa
3 Charlie
5 Echo
6 Foxtrot
7 Golf
1 Alfa

26

INF.01017UF Data Management / 706.010 Databases – 11 Distributed Storage and Data Analytics
Matthias Boehm, Graz University of Technology, SS 2021

MapReduce – Programming Model
 Overview Programming Model

 Inspired by functional programming languages
 Implicit parallelism (abstracts distributed storage and processing)
 Map function: key/value pair  set of intermediate key/value pairs
 Reduce function: merge all intermediate values by key

 Example

Distributed Data Analysis

map(Long pos, String line) {
parts  line.split(“,”)
emit(parts[1], 1)

}

Name Dep

X CS

Y CS

A EE

Z CS

CS 1

CS 1

EE 1

CS 1

SELECT Dep, count(*) FROM csv_files GROUP BY Dep

reduce(String dep,
Iterator<Long> iter) {

total  iter.sum();
emit(dep, total)

} CS 3

EE 1
Collection of

key/value pairs

27

INF.01017UF Data Management / 706.010 Databases – 11 Distributed Storage and Data Analytics
Matthias Boehm, Graz University of Technology, SS 2021

MapReduce – Execution Model
Distributed Data Analysis

CSV
File 1

Input CSV files
(stored in HDFS)

CSV
File 2

CSV
File 3

Output Files
(HDFS)

Out 1

Out 2

Out 3

Split 11

Split 12

Split 21

Split 22

Split 31

Split 32

map
task

map
task
map
task

map
task

map
task
map
task
Sort, [Combine], [Compress]

Map-Phase

[Reduce-Phase]

reduce
task

reduce
task

reduce
task

Shuffle, Merge,
[Combine]

#1 Data Locality (delay sched., write affinity)
#2 Reduced shuffle (combine)
#3 Fault tolerance (replication, attempts)

w/ #reducers = 3

28

INF.01017UF Data Management / 706.010 Databases – 11 Distributed Storage and Data Analytics
Matthias Boehm, Graz University of Technology, SS 2021

Spark History and Architecture
 Summary MapReduce

 Large-scale & fault-tolerant processing w/ UDFs and files  Flexibility
 Restricted functional APIs  Implicit parallelism and fault tolerance
 Criticism: #1 Performance, #2 Low-level APIs, #3 Many different systems

 Evolution to Spark (and Flink)
 Spark [HotCloud’10] + RDDs [NSDI’12]  Apache Spark (2014)
 Design: standing executors with in-memory storage,

lazy evaluation, and fault-tolerance via RDD lineage
 Performance: In-memory storage and fast job scheduling (100ms vs 10s)
 APIs: Richer functional APIs and general computation DAGs,

high-level APIs (e.g., DataFrame/Dataset), unified platform

 But many shared concepts/infrastructure
 Implicit parallelism through dist. collections (data access, fault tolerance)
 Resource negotiators (YARN, Mesos, Kubernetes)
 HDFS and object store connectors (e.g., Swift, S3)

Distributed Data Analysis

29

INF.01017UF Data Management / 706.010 Databases – 11 Distributed Storage and Data Analytics
Matthias Boehm, Graz University of Technology, SS 2021

Spark History and Architecture, cont.
 High-Level Architecture

 Different language bindings:
Scala, Java, Python, R

 Different libraries:
SQL, ML, Stream, Graph

 Spark core (incl RDDs)
 Different cluster managers:

Standalone, Mesos,
Yarn, Kubernetes

 Different file systems/
formats, and data sources:
HDFS, S3, SWIFT, DBs, NoSQL

 Focus on a unified platform
for data-parallel computation

Distributed Data Analysis

[https://spark.apache.org/]

Standalone MESOS YARN Kubernetes

https://spark.apache.org/

30

INF.01017UF Data Management / 706.010 Databases – 11 Distributed Storage and Data Analytics
Matthias Boehm, Graz University of Technology, SS 2021

Resilient Distributed Datasets (RDDs)
 RDD Abstraction

 Immutable, partitioned
collections of key-value pairs

 Coarse-grained deterministic operations (transformations/actions)
 Fault tolerance via lineage-based re-computation

 Operations
 Transformations:

define new RDDs
 Actions: return

result to driver

 Distributed Caching
 Use fraction of worker memory for caching
 Eviction at granularity of individual partitions
 Different storage levels (e.g., mem/disk x serialization x compression)

Distributed Data Analysis

JavaPairRDD
<MatrixIndexes,MatrixBlock>

Type Examples

Transformation
(lazy)

map, hadoopFile, textFile,
flatMap, filter, sample, join,

groupByKey, cogroup, reduceByKey,
cross, sortByKey, mapValues

Action reduce, save,
collect, count, lookupKey

Node1 Node2

31

INF.01017UF Data Management / 706.010 Databases – 11 Distributed Storage and Data Analytics
Matthias Boehm, Graz University of Technology, SS 2021

Resilient Distributed Datasets (RDDs), cont.
 RDD Abstraction & Lifecycle

 Immutable, partitioned collections of KV pairs
 Coarse-grained transformations and actions

Distributed Data Analysis

File on DFS

Distributed
Collection

Local Data
(value, collection)

sc.parallelize(lst)

lst = X.collect()
v = X.reduce(foo())

X.filter(foo())
X.mapValues(foo())
X.reduceByKey(foo())
X.cache()/X.persist(…)

X.saveAsObjectFile(f)
X.saveAsTextFile(f)

sc.hadoopFile(f)
sc.textFile(f)

32

INF.01017UF Data Management / 706.010 Databases – 11 Distributed Storage and Data Analytics
Matthias Boehm, Graz University of Technology, SS 2021

Partitions and Implicit/Explicit Partitioning
 Spark Partitions

 Logical key-value collections are split into physical partitions
 Partitions are granularity of tasks, I/O, shuffling, evictions

 Partitioning via Partitioners
 Implicitly on every data shuffling
 Explicitly via R.repartition(n)

 Partitioning-Preserving
 All operations that are guaranteed to keep keys unchanged

(e.g. mapValues(), mapPartitions() w/ preservesPart flag)

 Partitioning-Exploiting
 Join: R3 = R1.join(R2)
 Lookups:
v = C.lookup(k)

Distributed Data Analysis

Example Hash Partitioning:
For all (k,v) of R:
pid = hash(k) % n

0: 8, 1, 6

1: 7, 5

2: 2, 3, 4

0: 1, 2

1: 5, 6

2: 3, 4

0: 3, 6

1: 4, 7, 1

2: 2, 5, 8

0: 6, 3

1: 4, 1

2: 5, 2

% 3
⋈ ⋈

Hash partitioned

~128MB

33

INF.01017UF Data Management / 706.010 Databases – 11 Distributed Storage and Data Analytics
Matthias Boehm, Graz University of Technology, SS 2021

Spark Lazy Evaluation, Caching, and Lineage
Distributed Data Analysis

join
union

groupBy

Stage 3

Stage 1

Stage 2

A B

C D F

G

map

partitioning-
aware

E

[Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy
McCauly, Michael J. Franklin, Scott Shenker, Ion Stoica: Resilient Distributed Datasets: A

Fault-Tolerant Abstraction for In-Memory Cluster Computing. NSDI 2012]

reduce

cached

Presenter
Presentation Notes
Notes:
Dryad-­‐like DAGs
Pipelines functions within a stage
Locality & data reuse aware
Partitioning-­‐aware to avoid shuffles

34

INF.01017UF Data Management / 706.010 Databases – 11 Distributed Storage and Data Analytics
Matthias Boehm, Graz University of Technology, SS 2021

Example: k-Means Clustering
 k-Means Algorithm

 Given dataset D and number of clusters k, find cluster centroids
(“mean” of assigned points) that minimize within-cluster variance

 Euclidean distance: sqrt(sum((a-b)^2))

 Pseudo Code

Distributed Data Analysis

function Kmeans(D, k, maxiter) {
C‘ = randCentroids(D, k);
C = {};
i = 0; //until convergence
while(C‘ != C & i<=maxiter) {
C = C‘;
i = i + 1;
A = getAssignments(D, C);
C‘ = getCentroids(D, A, k);

}
return C‘

}

35

INF.01017UF Data Management / 706.010 Databases – 11 Distributed Storage and Data Analytics
Matthias Boehm, Graz University of Technology, SS 2021

Example: K-Means Clustering in Spark
Distributed Data Analysis

// create spark context (allocate configured executors)
JavaSparkContext sc = new JavaSparkContext();

Note: Existing library algorithm
[https://github.com/apache/spark/blob/master/mllib/src/

main/scala/org/apache/spark/mllib/clustering/KMeans.scala]

// read and cache data, initialize centroids
JavaRDD<Row> D = sc.textFile(“hdfs:/user/mboehm/data/D.csv“)
.map(new ParseRow()).cache(); // cache data in spark executors

Map<Integer,Mean> C = asCentroidMap(D.takeSample(false, k));

// until convergence
while(!equals(C, C2) & i<=maxiter) {
C2 = C; i++;
// assign points to closest centroid, recompute centroid
Broadcast<Map<Integer,Row>> bC = sc.broadcast(C)
C = D.mapToPair(new NearestAssignment(bC))

.foldByKey(new Mean(0), new IncComputeCentroids())

.collectAsMap();
}

return C;

Presenter
Presentation Notes
Spark Local Mode
Download and unzip Spark https://spark.apache.org/downloads.html,�or pull dependency into IDE project via maven or similar tools
Setup prerequisites and path variables
Test spark-shell, spark-submit, or in your IDE
NOTE: in local mode, operations run in driver JVM and I/O to local FS

Amazon AWS EMR (Elastic Map Reduce)

https://github.com/apache/spark/blob/master/mllib/src/main/scala/org/apache/spark/mllib/clustering/KMeans.scala

36

INF.01017UF Data Management / 706.010 Databases – 11 Distributed Storage and Data Analytics
Matthias Boehm, Graz University of Technology, SS 2021

Spark DataFrames and DataSets
 Overview Spark DataFrame

 DataFrame is distributed collection of rows
with named/typed columns

 Relational operations (e.g., projection,
selection, joins, grouping, aggregation)

 DataSources (e.g., json, jdbc, parquet, hdfs, s3, avro, hbase, csv, cassandra)

 DataFrame and Dataset APIs
 DataFrame was introduced as basis for Spark SQL
 DataSets allow more customization and compile-time analysis errors (Spark 2)

 Example
DataFrame

Distributed Data Analysis

DataFrame = Dataset[Row]

logs = spark.read.format("json").open("s3://logs")
logs.groupBy(logs.user_id).agg(sum(logs.time))

.write.format("jdbc").save("jdbc:mysql//...")

[Michael Armbrust: Structuring Apache Spark – SQL,
DataFrames, Datasets, and Streaming, Spark Summit 2016]

37

INF.01017UF Data Management / 706.010 Databases – 11 Distributed Storage and Data Analytics
Matthias Boehm, Graz University of Technology, SS 2021

Serverless Computing
 Definition Serverless

 FaaS: functions-as-a-service (event-driven, stateless input-output mapping)
 Infrastructure for deployment and auto-scaling of APIs/functions
 Examples: Amazon Lambda, Microsoft Azure Functions, etc

 Example

Distributed Data Analysis

Event Source
(e.g., cloud

services)

Lambda Functions
Other APIs

and Services
Auto scaling

Pay-per-request
(1M x 100ms = 0.2$)

import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestHandler;

public class MyHandler implements RequestHandler<Tuple, MyResponse> {
@Override
public MyResponse handleRequest(Tuple input, Context context) {

return expensiveStatelessComputation(input);
}

}

[Joseph M. Hellerstein et al: Serverless
Computing: One Step Forward, Two

Steps Back. CIDR 2019]

38

INF.01017UF Data Management / 706.010 Databases – 11 Distributed Storage and Data Analytics
Matthias Boehm, Graz University of Technology, SS 2021

Conclusions and Q&A
 Cloud Computing Overview
 Distributed Data Storage
 Distributed Data Analysis

 Next Lectures (Part B: Modern Data Management)
 12 Data Stream Processing Systems and Q&A [Jun 14]
 Office hours until Jun 28 (exercise submissions, exams)
 Written Exam Jun 30 5.30pm (i11, i12, i13), Jul 5 3.30pm (i13), 6.30 (i13)

	Data Management�11 Distributed Storage & Analysis
	Announcements/Org
	Agenda
	Cloud Computing Overview
	Motivation Cloud Computing
	Motivation Cloud Computing, cont.
	Characteristics and Deployment Models
	Excursus: 1 Query/Minute for 1 Week
	Anatomy of a Data Center
	Fault Tolerance
	Fault Tolerance, cont.
	Containerization
	Example Amazon Services – Pricing (current gen)
	Distributed Data Storage
	Data Lakes
	Object Storage
	Object Storage, cont.
	Hadoop Distributed File System (HDFS)
	Hadoop Distributed File System, cont.
	Hadoop Distributed File System, cont.
	Hadoop Distributed File System, cont.
	Excursus: Amazon Redshift
	Distributed Data Analysis
	Hadoop History and Architecture
	Central Data Abstractions
	MapReduce – Programming Model
	MapReduce – Execution Model
	Spark History and Architecture
	Spark History and Architecture, cont.
	Resilient Distributed Datasets (RDDs)
	Resilient Distributed Datasets (RDDs), cont.
	Partitions and Implicit/Explicit Partitioning
	Spark Lazy Evaluation, Caching, and Lineage
	Example: k-Means Clustering
	Example: K-Means Clustering in Spark
	Spark DataFrames and DataSets
	Serverless Computing
	Conclusions and Q&A

