

SCIENCE PASSION TECHNOLOGY

Data Management 11 Distributed Storage & Analysis

Matthias Boehm

Graz University of Technology, Austria Computer Science and Biomedical Engineering Institute of Interactive Systems and Data Science BMK endowed chair for Data Management

Announcements/Org

#1 Video Recording

2

- Link in TeachCenter & TUbe (lectures will be public)
- https://tugraz.webex.com/meet/m.boehm
- Corona traffic light RED → May 17: ORANGE → Jul 01: YELLOW
- #2 Reminder Communication
 - Newsgroup: <u>news://news.tugraz.at/tu-graz.lv.dbase</u>
 - Office hours: Mo 12.30-1.30pm (<u>https://tugraz.webex.com/meet/m.boehm</u>)
- #3 Exercises/Exams
 - Grading: Exercise 1 done, Exercise 2 done
 - Submission: Exercise 3: start grading, Exercise 4: due Jun 22
 - Exams: Jun 30 5.30pm (i11, i12, i13), Jul 5 3.30pm (i13), 6.30 (i13)

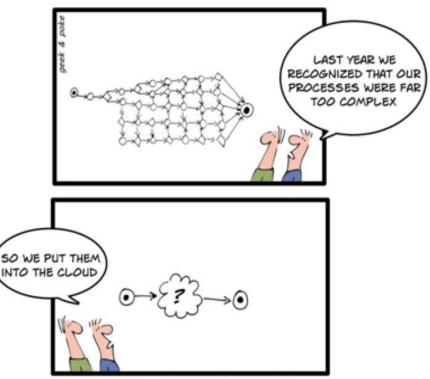
#4 Course Evaluation

Please participate; open period: June 1 – July 15

Agenda

- Cloud Computing Overview
- Distributed Data Storage
- Distributed Data Analysis

Data Integration and Large-Scale Analysis (DIA) (bachelor/master)



LET THE CLOUDS MAKE YOUR LIFE EASIER

Cloud Computing Overview

Motivation Cloud Computing

- Definition Cloud Computing
 - On-demand, remote storage and compute resources, or services
 - User: computing as a utility (similar to energy, water, internet services)
 - Cloud provider: computation in data centers / multi-tenancy
- Service Models
 - IaaS: Infrastructure as a service (e.g., storage/compute nodes)
 - PaaS: Platform as a service (e.g., distributed systems/frameworks)
 - SaaS: Software as a Service (e.g., email, databases, office, github)

Transforming IT Industry/Landscape

- Since ~2010 increasing move from on-prem to cloud resources
- System software licenses become increasingly irrelevant
- Few cloud providers dominate IaaS/PaaS/SaaS markets (w/ 2018 revenue): Microsoft Azure Cloud (\$ 32.2B), Amazon AWS (\$ 25.7B), Google Cloud (N/A), IBM Cloud (\$ 19.2B), Oracle Cloud (\$ 5.3B), Alibaba Cloud (\$ 2.1B)

Motivation Cloud Computing, cont.

- Argument #1: Pay as you go
 - No upfront cost for infrastructure
 - Variable utilization → over-provisioning
 - Pay per use or acquired resources
- Argument #2: Economies of Scale
 - Purchasing and managing IT infrastructure at scale
 Iower cost
 (applies to both HW resources and IT infrastructure/system experts)
 - Focus on scale-out on commodity HW over scale-up → lower cost

Argument #3: Elasticity

- Assuming perfect scalability, work done in constant time * resources
- Given virtually unlimited resources allows to reduce time as necessary

100 days @ 1 node

 \approx

(but beware Amdahl's law: max speedup **sp = 1/s**)

100%

Utili-

zation

ISE

7

Characteristics and Deployment Models

Extended Definition

 ANSI recommended definitions for service types, characteristics, deployment models [Peter Mell and Timothy Grance: The NIST Definition of Cloud Computing, **NIST 2011**]

Add an annual an annual an annual an annual an an annual an an annual an ann

Characteristics

- On-demand self service: unilateral resource provision
- Broad network access: network accessibility
- Resource pooling: resource virtualization / multi-tenancy
- Rapid elasticity: scale out/in on demand
- Measured service: utilization monitoring/reporting

Deployment Models

- Public cloud: general public, on premise of cloud provider
- Hybrid cloud: combination of two or more of the above
- Community cloud: single community (one or more orgs)
- Private cloud: single org, on/off premises

MS Azure Private Cloud

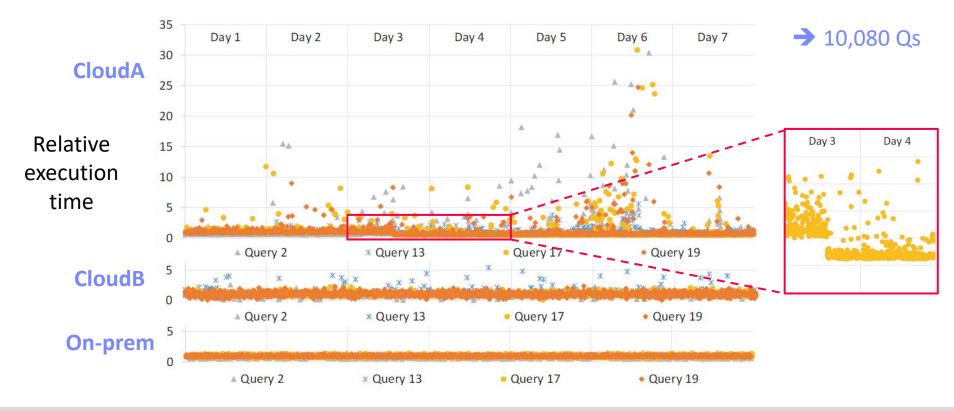
IBM Cloud Private

Excursus: 1 Query/Minute for 1 Week

Experimental Setup

 1GB TPC-H database, 4 queries on 2 cloud DBs / 1 on-prem DB

[[]Tim Kiefer, Hendrik Schön, Dirk Habich, Wolfgang Lehner: A Query, a Minute: Evaluating Performance Isolation in Cloud Databases. TPCTC 2014]



INF.01017UF Data Management / 706.010 Databases – 11 Distributed Storage and Data Analytics Matthias Boehm, Graz University of Technology, SS 2021

Anatomy of a Data Center

Commodity CPU: Xeon E5-2440: 6/12 cores Xeon Gold 6148: 20/40 cores

Multiple sockets,

RAM, disks

Rack: 16-64 servers + top-of-rack switch

Data Center: >100,000 servers

Cluster: Multiple racks + cluster switch

[Google

Fault Tolerance

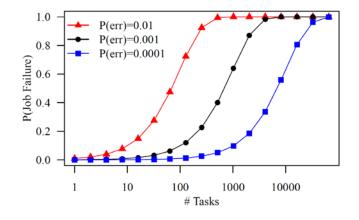
[Christos Kozyrakis and Matei Zaharia: CS349D: Cloud Computing Technology, lecture, **Stanford 2018**]

- Yearly Data Center Failures
 - ~0.5 overheating (power down most machines in <5 mins, ~1-2 days)
 - ~1 PDU failure (~500-1000 machines suddenly disappear, ~6 hrs)
 - ~1 rack-move (plenty of warning, ~500-1000 machines powered down, ~6 hrs)
 - ~1 network rewiring (rolling ~5% of machines down over 2-day span)
 - ~20 rack failures (40-80 machines instantly disappear, 1-6 hrs)
 - ~5 racks go wonky (40-80 machines see 50% packet loss)
 - ~8 network maintenances (~30-minute random connectivity losses)
 - ~12 router reloads (takes out DNS and external vIPs for a couple minutes)
 - ~3 router failures (immediately pull traffic for an hour)
 - ~dozens of minor 30-second blips for dns
 - ~1000 individual machine failures (2-4% failure rate, at least twice)
 - ~thousands of hard drive failures (1-5% of all disks will die)

Fault Tolerance, cont.

- Other Common Issues
 - Configuration issues, partial SW updates, SW bugs
 - Transient errors: no space left on device, memory corruption, stragglers
- Recap: Error Rates at Scale
 - Cost-effective commodity hardware
 - Error rate increases with increasing scale
 - Fault Tolerance for distributed/cloud storage and data analysis

- BASE (basically available, soft state, eventual consistency)
- Effective techniques
 - ECC (error correction codes), CRC (cyclic redundancy check) for detection
 - Resilient storage: replication/erasure coding, checkpointing, and lineage
 - Resilient compute: task re-execution / speculative execution



Containerization

- Docker Containers
 - Shipping container analogy
 - Arbitrary, self-contained goods, standardized units

- Containers reduced loading times → efficient international trade
- #1 Self-contained package of necessary SW and data (read-only image)
- #2 Lightweight virtualization w/ shared OS and resource isolation via cgroups

Cluster Schedulers

- Container orchestration: scheduling, deployment, and management
- Resource negotiation with clients
- Typical resource bundles (CPU, memory, device)
- Examples: Kubernetes, Mesos, (YARN), Amazon ECS, Microsoft ACS, Docker Swarm

[Brendan Burns, Brian Grant, David Oppenheimer, Eric Brewer, John Wilkes: Borg, Omega, and Kubernetes. **CACM 2016**]

from machine- to applicationoriented scheduling

Example Amazon Services – Pricing (current gen)

Amazon EC2 (Elastic Compute Cloud)

- IaaS offering of different node types and generations
- On-demand, reserved, and spot instances

	vCore	es	Mem		
m4.large	2	6.5	8 GiB	EBS Only	\$0.12 per Hour
m4.xlarge	4	13	16 GiB	EBS Only	\$0.24 per Hour
m4.2xlarge	8	26	32 GiB	EBS Only	\$0.48 per Hour
m4.4xlarge	16	53.5	64 GiB	EBS Only	\$0.96 per Hour
m4.10xlarge	40	124.5	160 GiB	EBS Only	\$2.40 per Hour
m4.16xlarge	64	188	256 GiB	EBS Only	\$3.84 per Hour

N / . . .

Amazon ECS (Elastic Container Service)

- PaaS offering for Docker containers
- Automatic setup of Docker environment

Amazon EMR (Elastic Map Reduce)

- PaaS offering for Hadoop workloads
- Automatic setup of YARN, HDFS, and specialized frameworks like Spark
- Prices in addition to EC2 prices

Pricing according to EC2 (in EC2 launch mode)

m4.large	\$0.117 per Hour	\$0.03 per Hour
m4.xlarge	\$0.234 per Hour	\$0.06 per Hour
m4.2xlarge	\$0.468 per Hour	\$0.12 per Hour
m4.4xlarge	\$0.936 per Hour	\$0.24 per Hour
m4.10xlarge	\$2.34 per Hour	\$0.27 per Hour
m4.16xlarge	\$3.744 per Hour	\$0.27 per Hour

Distributed Data Storage

Cloud Object Storage Distributed File Systems

Data Lakes

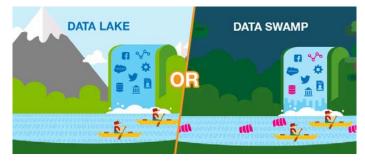
- Concept "Data Lake"
 - Store massive amounts of un/semi-structured, and structured data (append only, no update in place)
 - No need for architected schema or upfront costs (unknown analysis)
 - Typically: file storage in open, raw formats (inputs and intermediates)
 - → Distributed storage and analytics for scalability and agility

Criticism: Data Swamp

- Low data quality (lack of schema, integrity constraints, validation)
- Missing meta data (context) and data catalog for search
- Requires proper data curation / tools According to priorities (data governance)

Excursus: Research Data Management

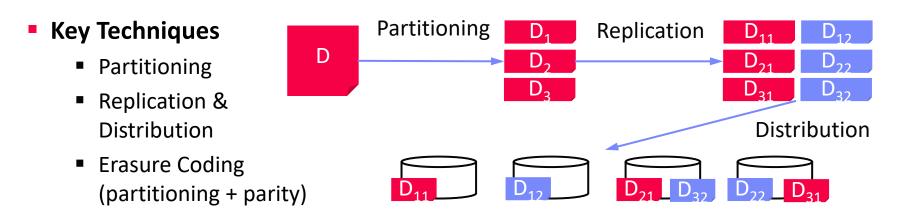
• FAIR data principles: findable, accessible, interoperable, re-usable



[[]Credit: www.collibra.com]

Object Storage

- Recap: Key-Value Stores
 - Key-value mapping, where values can be of a variety of data types
 - APIs for CRUD operations; scalability via sharding (objects or object segments)
- Object Store
 - Similar to key-value stores, but: optimized for large objects in GBs and TBs
 - Object identifier (key), meta data, and object as binary large object (BLOB)
 - APIs: often REST APIs, SDKs, sometimes implementation of DFS APIs



Object Storage, cont.

Example Object Stores / Protocols

- Amazon Simple Storage Service (S3)
- OpenStack Object Storage (Swift)
- IBM Object Storage
- Microsoft Azure Blob Storage

Amazon S3

- Reliable object store for photos, videos, documents or any binary data
- Bucket: Uniquely named, static data container http://s3.aws-eu-central-1.amazonaws.com/mboehm-b1
- Object: key, version ID, value, metadata, access control
- Single (5GB)/multi-part (5TB) upload and direct/BitTorrent download
- **Storage classes:** STANDARD, STANDARD_IA, GLACIER, DEEP_ARCHIVE
- **Operations:** GET/PUT/LIST/DEL, and SQL over CSV/JSON objects

Hadoop Distributed File System (HDFS)

Brief Hadoop History

Google's GFS + MapReduce [ODSI'04]
 → Apache Hadoop (2006)

[Sanjay Ghemawat, Howard Gobioff, Shun-Tak Leung: The Google file system. SOSP 2003]

- Apache Hive (SQL), Pig (ETL), Mahout/SystemML (ML), Giraph (Graph)

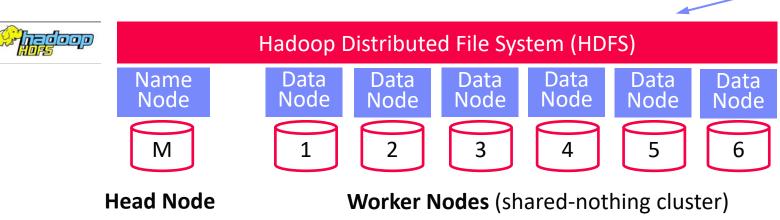
HDFS Overview

- Hadoop's distributed file system, for large clusters and datasets
- Implemented in Java, w/ native libraries for compression, I/O, CRC32
- Files split into 128MB blocks, replicated (3x), and distributed

Client

ISD

INF.01017UF Data Management / 706.010 Databases – 11 Distributed Storage and Data Analytics Matthias Boehm, Graz University of Technology, SS 2021



Hadoop Distributed File System, cont.

HDFS NameNode

- Master daemon that manages file system namespace and access by clients
- Metadata for all files (e.g., replication, permissions, sizes, block ids, etc)
- **FSImage:** checkpoint of FS namespace

hadoop fs -ls ./data/mnist1m.bin

-rw-rr	3 mboehm hdfs	104510159 2018-10-20	22:59 /user/mboehm/data/mnistlm.bin/0-m-00000
-IM-II	3 mboehm hdfs	137887319 2018-10-20	22:59 /user/mboehm/data/mnistlm.bin/0-m-00001
-rw-rr	3 mboehm hdfs	139012247 2018-10-20	22:59 /user/mboehm/data/mnistlm.bin/0-m-00002
-I'W-I'I'	3 mboehm hdfs	139123247 2018-10-20	22:59 /user/mboehm/data/mnistlm.bin/0-m-00003
-rw-rr	3 mboehm hdfs	139053743 2018-10-20	22:59 /user/mboehm/data/mnistlm.bin/0-m-00004
-rw-rr	3 mboehm hdfs	138928955 2018-10-20	22:59 /user/mboehm/data/mnistlm.bin/0-m-00005
-rw-rr	3 mboehm hdfs	139016375 2018-10-20	22:59 /user/mboehm/data/mnist1m.bin/0-m-00006
-rw-rr	3 mboehm hdfs	139047923 2018-10-20	22:59 /user/mboehm/data/mnistlm.bin/0-m-00007
	3 mboehm hdfs	139042307 2018-10-20	22:59 /user/mboehm/data/mnist1m.bin/0-m-00008
-rw-rr	3 mboehm hdfs	139068143 2018-10-20	22:59 /user/mboehm/data/mnist1m.bin/0-m-00009
-rw-rr	3 mboehm hdfs	139029875 2018-10-20	22:59 /user/mboehm/data/mnistlm.bin/0-m-00010
rw-rr	3 mboehm hdfs	138901043 2018-10-20	22:59 /user/mboehm/data/mnistlm.bin/0-m-00011
-rw-rr	3 mboehm hdfs	139042763 2018-10-20	22:59 /user/mbochm/data/mnistlm.bin/0-m-00012
	3 mboehm hdfs	139030751 2018-10-20	22:59 /user/mboehm/data/mnistlm.bin/0-m-00013
-rw-rr	3 mboehm hdfs	139172051 2018-10-20	22:59 /user/mboehm/data/mnistlm.bin/0-m-00014
-rw-rr	3 mboehm hdfs	138962735 2018-10-20	22:59 /user/mboehm/data/mnistlm.bin/0-m-00015
-rw-rr	3 mboehm hdfs	139079495 2018-10-20	22:59 /user/mboehm/data/mnistlm.bin/0-m-00016
	3 mboehm hdfs	63417008 2018-10-20	22:59 /user/mbochm/data/mnist1m.bin/0-m-00017

EditLog: write-ahead-log (WAL) of file write operations (merged on startup)

HDFS DataNode

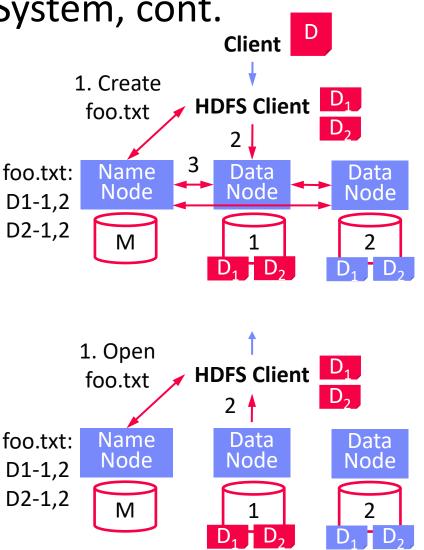
- Worker daemon per cluster node that manages block storage (list of disks)
- Block creation, deletion, replication as individual files in local FS
- On startup: scan local blocks and send block report to name node
- Serving block read and write requests
- Send heartbeats to NameNode (capacity, current transfers) and receives replies (replication, removal of block replicas)

Hadoop Distributed File System, cont.

- HDFS Write
 - #1 Client RPC to NameNode to create file → lease/replica DNs
 - #2 Write blocks to DNs, pipelined replication to other DNs
 - #3 DNs report to NN via heartbeat

HDFS Read

- #1 Client RPC to NameNode to open file → DNs for blocks
- #2 Read blocks sequentially from closest DN w/ block
- InputFormats and RecordReaders as abstraction for multi-part files (incl. compression/encryption)

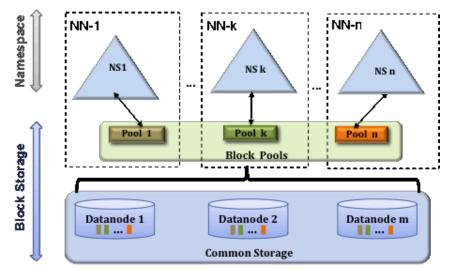


Hadoop Distributed File System, cont.

- Data Locality
 - HDFS is generally rack-aware (node-local, rack-local, other)
 - Schedule reads from closest data node
 - Replica placement (rep 3): local DN, other-rack DN, same-rack DN
 - MapReduce/Spark: locality-aware execution (function vs data shipping)

HDFS Federation

- Eliminate NameNode as namespace scalability bottleneck
- Independent NameNodes, responsible for name spaces
- DataNodes store blocks of all NameNodes
- Client-side mount tables



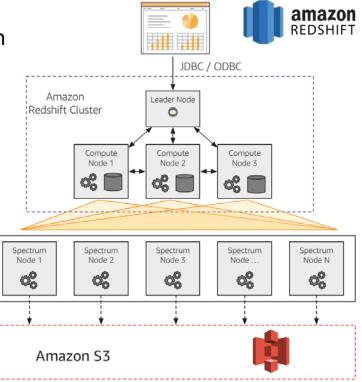
[Credit: <u>https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/Federation.html</u>]

Excursus: Amazon Redshift

- Motivation (release 02/2013)
 - Simplicity and cost-effectiveness (fully-managed DWH at petabyte scale)
- System Architecture
 - Data plane: data storage and SQL execution
 - Control plane: workflows for monitoring, and managing databases, AWS services
- Data Plane
 - Leader node + sliced compute nodes in EC2 with local storage
 - Replication across nodes + S3 backup
 - Query compilation in C++ code
 - Support for flat and nested files

[Anurag Gupta et al.: Amazon Redshift and the Case for Simpler Data Warehouses. **SIGMOD 2015**]

[Mengchu Cai et al.: Integrated Querying of SQL database data and S3 data in Amazon Redshift. IEEE Data Eng. Bull. 41(2) 2018]



Distributed Data Analysis

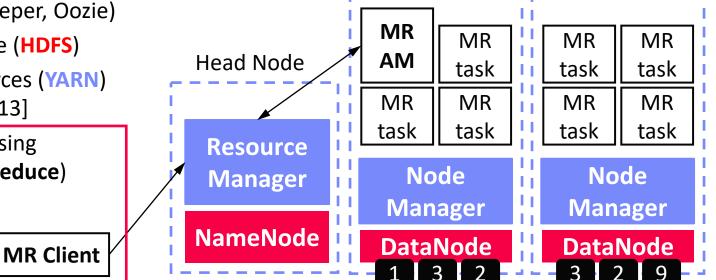
Data-Parallel Computation (MapReduce, Spark)

Hadoop History and Architecture

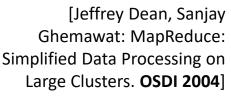
- **Recap: Brief History**
 - Google's GFS [SOSP'03] + MapReduce \rightarrow Apache Hadoop (2006)
 - Apache Hive (SQL), Pig (ETL), Mahout (ML), Giraph (Graph)

Hadoop Architecture / Eco System

- Management (Ambari)
- Coordination / workflows (Zookeeper, Oozie)
- Storage (HDFS)
- Resources (YARN) [SoCC'13]
- Processing (MapReduce)



Worker Node 1



Worker Node n

Central Data Abstractions

- #1 Files and Objects
 - File: Arbitrarily large sequential data in specific file format (CSV, binary, etc)
 - Object: binary large object, with certain meta data

#2 Distributed Collections

- Logical multi-set (bag) of key-value pairs (unsorted collection)
- Different physical representations
- Facilitates distribution of pairs via horizontal partitioning (aka shards, partitions)
- Can be created from single file, or directory of files (unsorted)

Кеу	Value
4	Delta
2	Bravo
1	Alfa
3	Charlie
5	Echo
6	Foxtrot
7	Golf
1	Alfa

26

MapReduce – Programming Model

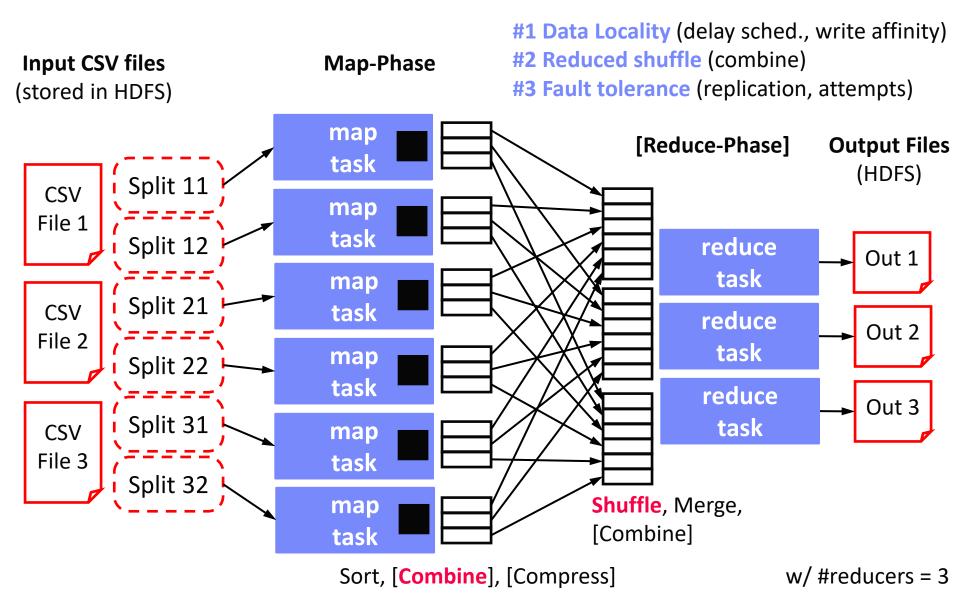
- Overview Programming Model
 - Inspired by functional programming languages
 - Implicit parallelism (abstracts distributed storage and processing)
 - Map function: key/value pair \rightarrow set of intermediate key/value pairs
 - Reduce function: merge all intermediate values by key

Example SELECT Dep, count(*) FROM csv_files GROUP BY Dep

Name	Dep	. –	-		g line) {		
Х	CS	parts · emit (pa		•	LL(,)		
Y	CS	}			<pre>reduce(String dep,</pre>		
А	EE		CS	1	Iterator <long></long>	iter)	{
Z	CS		CS	1	total ← iter.sum()	; ;	
	- C		EE	1	<pre>emit(dep, total)</pre>	CS	3
Collecti key/valu			CS	1	}	EE	1

27

MapReduce – Execution Model



Spark History and Architecture

- Summary MapReduce
 - Large-scale & fault-tolerant processing w/ UDFs and files
 Flexibility

 - Criticism: #1 Performance, #2 Low-level APIs, #3 Many different systems
- Evolution to Spark (and Flink)
 - Spark [HotCloud'10] + RDDs [NSDI'12] → Apache Spark (2014)

- Design: standing executors with in-memory storage, lazy evaluation, and fault-tolerance via RDD lineage
- Performance: In-memory storage and fast job scheduling (100ms vs 10s)
- APIs: Richer functional APIs and general computation DAGs, high-level APIs (e.g., DataFrame/Dataset), unified platform

➔ But many shared concepts/infrastructure

- Implicit parallelism through dist. collections (data access, fault tolerance)
- Resource negotiators (YARN, Mesos, Kubernetes)
- HDFS and object store connectors (e.g., Swift, S3)

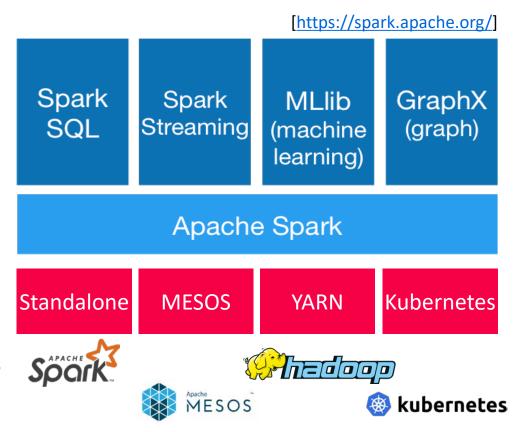
TU Graz

Spark History and Architecture, cont.

High-Level Architecture

- Different language bindings: Scala, Java, Python, R
- Different libraries:
 SQL, ML, Stream, Graph
- Spark core (incl RDDs)
- Different cluster managers: Standalone, Mesos, Yarn, Kubernetes
- Different file systems/ formats, and data sources: HDFS, S3, SWIFT, DBs, NoSQL

Focus on a unified platform for data-parallel computation



30

Resilient Distributed Datasets (RDDs)

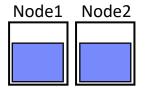
- **RDD** Abstraction
 - **Immutable**, partitioned collections of key-value pairs
 - **Coarse-grained** deterministic operations (transformations/actions)
 - Fault tolerance via lineage-based re-computation

 Operations 	
--------------------------------	--

- Transformations: define new RDDs
- Actions: return result to driver
- **Distributed Caching**
 - Use fraction of worker memory for caching
 - Eviction at granularity of individual partitions
 - **Different storage levels** (e.g., mem/disk x serialization x compression)

	Туре	Examples
5	Transformation (lazy)	<pre>map, hadoopFile, textFile, flatMap, filter, sample, join, groupByKey, cogroup, reduceByKey cross, sortByKey, mapValues</pre>
	Action	<pre>reduce, save, collect, count, lookupKey</pre>

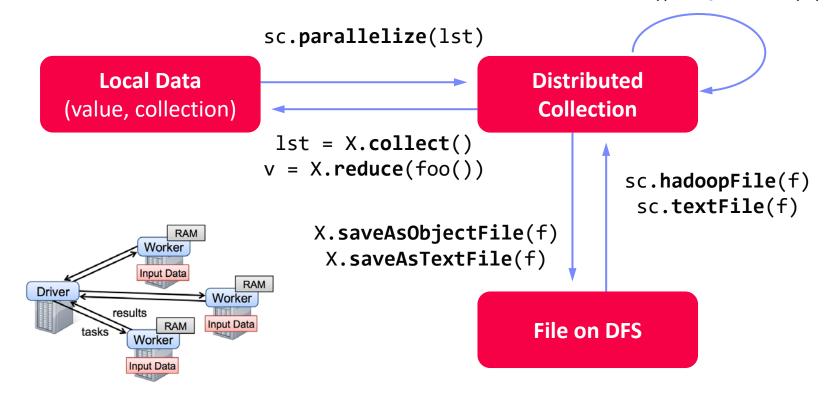
JavaPairRDD <MatrixIndexes,MatrixBlock>



Resilient Distributed Datasets (RDDs), cont.

- RDD Abstraction & Lifecycle
 - Immutable, partitioned collections of KV pairs
 - Coarse-grained transformations and actions

X.filter(foo())
X.mapValues(foo())
X.reduceByKey(foo())
X.cache()/X.persist(...)

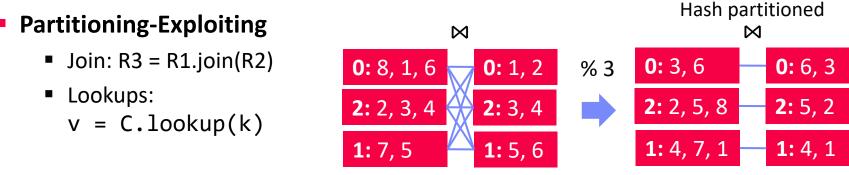


Partitions and Implicit/Explicit Partitioning

Spark Partitions

32

- Logical key-value collections are split into physical partitions
- Partitions are granularity of tasks, I/O, shuffling, evictions
- Partitioning via Partitioners
 - Implicitly on every data shuffling
 - Explicitly via R.repartition(n)
- Partitioning-Preserving
 - All operations that are guaranteed to keep keys unchanged (e.g. mapValues(), mapPartitions() w/ preservesPart flag)

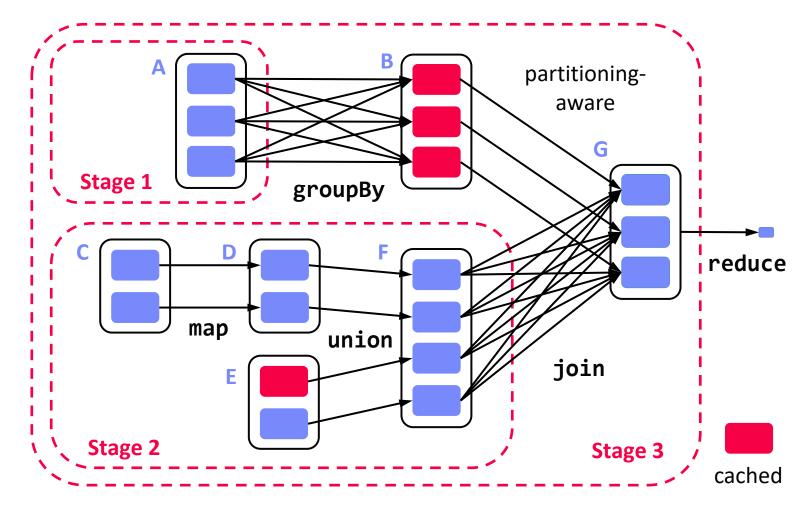


~128MB

Example Hash Partitioning:

For all (k,v) of R: pid = hash(k) % n

Spark Lazy Evaluation, Caching, and Lineage



[Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauly, Michael J. Franklin, Scott Shenker, Ion Stoica: Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing. **NSDI 2012**]

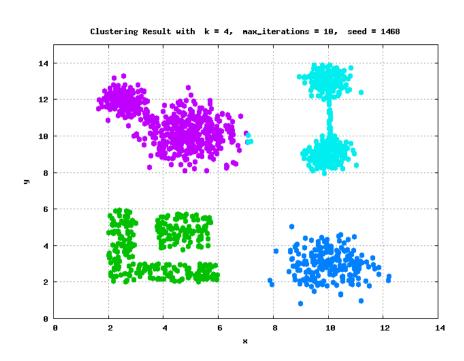
Example: k-Means Clustering

k-Means Algorithm

- Given dataset D and number of clusters k, find cluster centroids ("mean" of assigned points) that minimize within-cluster variance
- Euclidean distance: sqrt(sum((a-b)^2))

Pseudo Code

```
function Kmeans(D, k, maxiter) {
    C' = randCentroids(D, k);
    C = {};
    i = 0; //until convergence
    while( C' != C & i<=maxiter ) {
        C = C';
        i = i + 1;
        A = getAssignments(D, C);
        C' = getCentroids(D, A, k);
    }
    return C'
}</pre>
```



Example: K-Means Clustering in Spark

// create spark context (allocate configured executors)
JavaSparkContext sc = new JavaSparkContext();

```
// read and cache data, initialize centroids
JavaRDD<Row> D = sc.textFile("hdfs:/user/mboehm/data/D.csv")
.map(new ParseRow()).cache(); // cache data in spark executors
Map<Integer,Mean> C = asCentroidMap(D.takeSample(false, k));
```

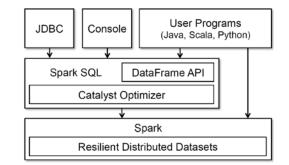
```
// until convergence
while( !equals(C, C2) & i<=maxiter ) {
   C2 = C; i++;
   // assign points to closest centroid, recompute centroid
   Broadcast<Map<Integer,Row>> bC = sc.broadcast(C)
   C = D.mapToPair(new NearestAssignment(bC))
        .foldByKey(new Mean(0), new IncComputeCentroids())
        .collectAsMap();
}
Note: Existing library algorithm
```

return C;

[https://github.com/apache/spark/blob/master/mllib/src/ main/scala/org/apache/spark/mllib/clustering/KMeans.scala]

Spark DataFrames and DataSets

- Overview Spark DataFrame
 - DataFrame is distributed collection of rows with named/typed columns
 - Relational operations (e.g., projection, selection, joins, grouping, aggregation)



DataSources (e.g., json, jdbc, parquet, hdfs, s3, avro, hbase, csv, cassandra)

DataFrame and Dataset APIs
DataFrame = Dataset[Row]

- DataFrame was introduced as basis for Spark SQL
- DataSets allow more customization and compile-time analysis errors (Spark 2)

Example DataFrame

```
logs = spark.read.format("json").open("s3://logs")
logs.groupBy(logs.user_id).agg(sum(logs.time))
.write.format("jdbc").save("jdbc:mysql//...")
```


[Michael Armbrust: Structuring Apache Spark – SQL, DataFrames, Datasets, and Streaming, **Spark Summit 2016**]

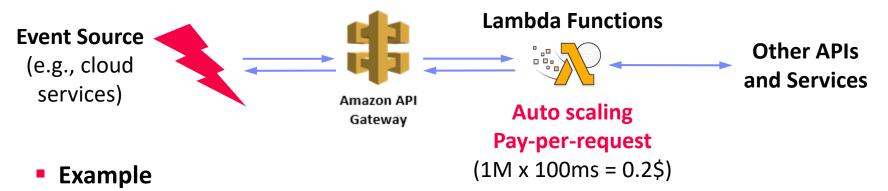
Serverless Computing

[Joseph M. Hellerstein et al: Serverless Computing: One Step Forward, Two Steps Back. CIDR 2019]

Definition Serverless

}

- FaaS: functions-as-a-service (event-driven, stateless input-output mapping)
- Infrastructure for deployment and auto-scaling of APIs/functions
- Examples: Amazon Lambda, Microsoft Azure Functions, etc



```
import com.amazonaws.services.lambda.runtime.Context;
```

import com.amazonaws.services.lambda.runtime.RequestHandler;

public class MyHandler implements RequestHandler<Tuple, MyResponse> {
 @Override
 public MyResponse handleRequest(Tuple input, Context context) {
 return expensiveStatelessComputation(input);
 }

Conclusions and Q&A

- Cloud Computing Overview
- Distributed Data Storage
- Distributed Data Analysis
- Next Lectures (Part B: Modern Data Management)
 - 12 Data Stream Processing Systems and Q&A [Jun 14]
 - Office hours until Jun 28 (exercise submissions, exams)
 - Written Exam Jun 30 5.30pm (i11, i12, i13), Jul 5 3.30pm (i13), 6.30 (i13)

