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Announcements/Org
 #1 Video Recording 

 Link in TeachCenter & TUbe (lectures will be public)
 https://tugraz.webex.com/meet/m.boehm
 Corona traffic light REDMay 17: ORANGE Jul 01: YELLOW

 #2 Reminder Communication
 Newsgroup: news://news.tugraz.at/tu-graz.lv.dbase
 Office hours: Mo 12.30-1.30pm (https://tugraz.webex.com/meet/m.boehm)

 #3 Exercises/Exams
 Grading: Exercise 1 – done, Exercise 2 – done
 Submission: Exercise 3: start grading, Exercise 4: due Jun 22
 Exams: Jun 30 5.30pm (i11, i12, i13), Jul 5 3.30pm (i13), 6.30 (i13) 

 #4 Course Evaluation
 Please participate; open period: June 1 – July 15

https://tugraz.webex.com/meet/m.boehm
news://news.tugraz.at/tu-graz.lv.dbase
https://tugraz.webex.com/meet/m.boehm
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Agenda
 Cloud Computing Overview
 Distributed Data Storage
 Distributed Data Analysis

Data Integration and 
Large-Scale Analysis (DIA)

(bachelor/master)
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Cloud Computing Overview
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Motivation Cloud Computing 
 Definition Cloud Computing

 On-demand, remote storage and compute resources, or services
 User: computing as a utility (similar to energy, water, internet services)
 Cloud provider: computation in data centers / multi-tenancy

 Service Models 
 IaaS: Infrastructure as a service (e.g., storage/compute nodes)
 PaaS: Platform as a service (e.g., distributed systems/frameworks)
 SaaS: Software as a Service (e.g., email, databases, office, github)

 Transforming IT Industry/Landscape
 Since ~2010 increasing move from on-prem to cloud resources
 System software licenses become increasingly irrelevant
 Few cloud providers dominate IaaS/PaaS/SaaS markets (w/ 2018 revenue):

Microsoft Azure Cloud ($ 32.2B), Amazon AWS ($ 25.7B), Google Cloud (N/A), 
IBM Cloud ($ 19.2B), Oracle Cloud ($ 5.3B), Alibaba Cloud ($ 2.1B) 

Cloud Computing Overview
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Motivation Cloud Computing, cont.
 Argument #1: Pay as you go

 No upfront cost for infrastructure
 Variable utilization  over-provisioning
 Pay per use or acquired resources

 Argument #2: Economies of Scale
 Purchasing and managing IT infrastructure at scale  lower cost

(applies to both HW resources and IT infrastructure/system experts)
 Focus on scale-out on commodity HW over scale-up  lower cost

 Argument #3: Elasticity
 Assuming perfect scalability, work done 

in constant time * resources 
 Given virtually unlimited resources

allows to reduce time as necessary

Cloud Computing Overview

Utili-
zation

Time

100%

100 days @ 1 node
≈

1 day @ 100 nodes

(but beware Amdahl’s law: 
max speedup sp = 1/s)
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Characteristics and Deployment Models
 Extended Definition

 ANSI recommended definitions for service 
types, characteristics, deployment models 

 Characteristics
 On-demand self service: unilateral resource provision
 Broad network access: network accessibility
 Resource pooling: resource virtualization / multi-tenancy
 Rapid elasticity: scale out/in on demand
 Measured service: utilization monitoring/reporting

 Deployment Models
 Public cloud: general public, on premise of cloud provider
 Hybrid cloud: combination of two or more of the above
 Community cloud: single community (one or more orgs)
 Private cloud: single org, on/off premises

Cloud Computing Overview

[Peter Mell and Timothy 
Grance: The NIST Definition of 
Cloud Computing, NIST 2011]

IBM Cloud Private

MS Azure 
Private Cloud
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Excursus: 1 Query/Minute for 1 Week  
 Experimental Setup

 1GB TPC-H database, 4 queries on 
2 cloud DBs / 1 on-prem DB

Cloud Computing Overview

[Tim Kiefer, Hendrik Schön, Dirk Habich, 
Wolfgang Lehner: A Query, a Minute: 

Evaluating Performance Isolation in 
Cloud Databases. TPCTC 2014]

Relative 
execution 

time 

CloudA

CloudB

On-prem

 10,080 Qs
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Anatomy of a Data Center
Cloud Computing Overview

Commodity CPU:
Xeon E5-2440: 6/12 cores

Xeon Gold 6148: 20/40 cores Server:
Multiple sockets, 

RAM, disks
Rack:

16-64 servers + 
top-of-rack switch

Cluster:
Multiple racks + cluster switch

Data Center:
>100,000 servers

[Google 
Data Center, 
Eemshaven, 
Netherlands]
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Fault Tolerance
 Yearly Data Center Failures

 ~0.5 overheating (power down most machines in <5 mins, ~1-2 days)
 ~1 PDU failure (~500-1000 machines suddenly disappear, ~6 hrs)
 ~1 rack-move (plenty of warning, ~500-1000 machines powered down, ~6 hrs)
 ~1 network rewiring (rolling ~5% of machines down over 2-day span)
 ~20 rack failures (40-80 machines instantly disappear, 1-6 hrs)
 ~5 racks go wonky (40-80 machines see 50% packet loss)
 ~8 network maintenances (~30-minute random connectivity losses)
 ~12 router reloads (takes out DNS and external vIPs for a couple minutes)
 ~3 router failures (immediately pull traffic for an hour)
 ~dozens of minor 30-second blips for dns
 ~1000 individual machine failures (2-4% failure rate, at least twice)
 ~thousands of hard drive failures (1-5% of all disks will die)

Cloud Computing Overview

[Christos Kozyrakis and Matei
Zaharia: CS349D: Cloud Computing 

Technology, lecture, Stanford 2018]
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Fault Tolerance, cont.
 Other Common Issues

 Configuration issues, partial SW updates, SW bugs
 Transient errors: no space left on device, memory corruption, stragglers

 Recap: Error Rates at Scale
 Cost-effective commodity hardware
 Error rate increases with increasing scale
 Fault Tolerance for distributed/cloud 

storage and data analysis

 Cost-effective Fault Tolerance
 BASE (basically available, soft state, eventual consistency)
 Effective techniques

 ECC (error correction codes), CRC (cyclic redundancy check) for detection
 Resilient storage: replication/erasure coding, checkpointing, and lineage
 Resilient compute: task re-execution / speculative execution

Cloud Computing Overview
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Containerization
 Docker Containers

 Shipping container analogy
 Arbitrary, self-contained goods, 

standardized units
 Containers reduced loading times  efficient international trade

 #1 Self-contained package of necessary SW and data (read-only image)
 #2 Lightweight virtualization w/ shared OS and resource isolation via cgroups

 Cluster Schedulers
 Container orchestration: scheduling, 

deployment, and management 
 Resource negotiation with clients
 Typical resource bundles (CPU, memory, device)
 Examples: Kubernetes, Mesos, (YARN),

Amazon ECS, Microsoft ACS, Docker Swarm

Cloud Computing Overview

[Brendan Burns, Brian Grant, David Oppen-
heimer, Eric Brewer, John Wilkes: Borg, 
Omega, and Kubernetes. CACM 2016]

 from machine- to application-
oriented scheduling 
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Example Amazon Services – Pricing (current gen) 
 Amazon EC2 (Elastic 

Compute Cloud)
 IaaS offering of different 

node types and generations
 On-demand, reserved, and

spot instances

 Amazon ECS (Elastic Container Service)
 PaaS offering for Docker containers
 Automatic setup of Docker environment

 Amazon EMR (Elastic Map Reduce)
 PaaS offering for Hadoop workloads
 Automatic setup of YARN, HDFS, and

specialized frameworks like Spark
 Prices in addition to EC2 prices

Cloud Computing Overview

Pricing according to EC2 
(in EC2 launch mode)

vCores Mem
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Distributed Data Storage
Cloud Object Storage

Distributed File Systems
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Data Lakes
 Concept “Data Lake”

 Store massive amounts of un/semi-structured, and structured data
(append only, no update in place)

 No need for architected schema or upfront costs (unknown analysis)
 Typically: file storage in open, raw formats (inputs and intermediates)
 Distributed storage and analytics for scalability and agility

 Criticism: Data Swamp
 Low data quality (lack of schema, 

integrity constraints, validation)
 Missing meta data (context) and 

data catalog for search
 Requires proper data curation / tools

According to priorities (data governance)

 Excursus: Research Data Management
 FAIR data principles: findable, accessible, interoperable, re-usable

Distributed Data Storage

[Credit: www.collibra.com]

http://www.collibra.com/
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Object Storage
 Recap: Key-Value Stores

 Key-value mapping, where values can be of a variety of data types
 APIs for CRUD operations; scalability via sharding (objects or object segments)

 Object Store
 Similar to key-value stores, but: optimized for large objects in GBs and TBs
 Object identifier (key), meta data, and object as binary large object (BLOB)
 APIs: often REST APIs, SDKs, sometimes implementation of DFS APIs

 Key Techniques
 Partitioning
 Replication & 

Distribution
 Erasure Coding

(partitioning + parity)

Distributed Data Storage

D
D1
D2
D3

Partitioning Replication D11
D21
D31

D12
D22
D32

D11 D21 D31D12 D22D32

Distribution

Presenter
Presentation Notes
Note: erasure coding in Hadoop 3.0: https://blog.cloudera.com/introduction-to-hdfs-erasure-coding-in-apache-hadoop/ 
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Object Storage, cont. 
 Example Object Stores / Protocols

 Amazon Simple Storage Service (S3)
 OpenStack Object Storage (Swift)
 IBM Object Storage
 Microsoft Azure Blob Storage

 Amazon S3
 Reliable object store for photos, videos, documents or any binary data
 Bucket: Uniquely named, static data container 
http://s3.aws-eu-central-1.amazonaws.com/mboehm-b1

 Object: key, version ID, value, metadata, access control
 Single (5GB)/multi-part (5TB) upload and direct/BitTorrent download 
 Storage classes: STANDARD, STANDARD_IA, GLACIER, DEEP_ARCHIVE
 Operations: GET/PUT/LIST/DEL, and SQL over CSV/JSON objects

Distributed Data Storage
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Hadoop Distributed File System (HDFS)
 Brief Hadoop History

 Google’s GFS + MapReduce [ODSI’04] 
 Apache Hadoop (2006)

 Apache Hive (SQL), Pig (ETL), Mahout/SystemML (ML), Giraph (Graph)

 HDFS Overview
 Hadoop’s distributed file system, for large clusters and datasets
 Implemented in Java, w/ native libraries for compression, I/O, CRC32
 Files split into 128MB blocks, replicated (3x), and distributed

Distributed Data Storage

1 2 3 4 5 6M

Head Node Worker Nodes (shared-nothing cluster)

Hadoop Distributed File System (HDFS)

Client

Name 
Node

Data 
Node

Data 
Node

Data 
Node

Data 
Node

Data 
Node

Data 
Node

[Sanjay Ghemawat, Howard 
Gobioff, Shun-Tak Leung: The 

Google file system. SOSP 2003]
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Hadoop Distributed File System, cont.
 HDFS NameNode

 Master daemon that manages file system 
namespace and access by clients

 Metadata for all files (e.g., replication, 
permissions, sizes, block ids, etc)

 FSImage: checkpoint of FS namespace
 EditLog: write-ahead-log (WAL) of file write operations (merged on startup)

 HDFS DataNode
 Worker daemon per cluster node that manages block storage (list of disks)
 Block creation, deletion, replication as individual files in local FS
 On startup: scan local blocks and send block report to name node
 Serving block read and write requests
 Send heartbeats to NameNode (capacity, current transfers) and

receives replies (replication, removal of block replicas)

Distributed Data Storage

hadoop fs -ls ./data/mnist1m.bin
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Hadoop Distributed File System, cont.
 HDFS Write

 #1 Client RPC to NameNode
to create file  lease/replica DNs

 #2 Write blocks to DNs, pipelined 
replication to other DNs

 #3 DNs report to NN via heartbeat

 HDFS Read
 #1 Client RPC to NameNode

to open file  DNs for blocks
 #2 Read blocks sequentially from

closest DN w/ block
 InputFormats and RecordReaders

as abstraction for multi-part files
(incl. compression/encryption) 

Distributed Data Storage

M

Name 
Node

1 2

Data 
Node

Data 
Node

Client

HDFS Client D1
D2

1. Create 
foo.txt

D

D1 D2

foo.txt: 
D1-1,2
D2-1,2

D1 D2

M

Name 
Node

1 2

Data 
Node

Data 
Node

HDFS Client D1
D2

1. Open 
foo.txt

D1 D2

foo.txt: 
D1-1,2
D2-1,2

D1 D2

2
3

2
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Hadoop Distributed File System, cont.
 Data Locality

 HDFS is generally rack-aware (node-local, rack-local, other)
 Schedule reads from closest data node
 Replica placement (rep 3): local DN, other-rack DN, same-rack DN 
 MapReduce/Spark: locality-aware execution (function vs data shipping) 

 HDFS Federation
 Eliminate NameNode as 

namespace scalability bottleneck
 Independent NameNodes, 

responsible for name spaces
 DataNodes store blocks of

all NameNodes
 Client-side mount tables

Distributed Data Storage

[Credit: https://hadoop.apache.org/docs/current/hadoop-
project-dist/hadoop-hdfs/Federation.html]

https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/Federation.html
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Excursus: Amazon Redshift
 Motivation (release 02/2013)

 Simplicity and cost-effectiveness
(fully-managed DWH at petabyte scale)

 System Architecture
 Data plane: data storage and SQL execution
 Control plane: workflows for monitoring, 

and managing databases, AWS services

 Data Plane
 Leader node + sliced compute nodes 

in EC2 with local storage
 Replication across nodes + S3 backup
 Query compilation in C++ code
 Support for flat and nested files

 Similar
Systems

Distributed Data Storage

[Anurag Gupta et al.: Amazon 
Redshift and the Case for Simpler 

Data Warehouses. SIGMOD 2015]

[Mengchu Cai et al.: Integrated 
Querying of SQL database data 

and S3 data in Amazon Redshift. 
IEEE Data Eng. Bull.  41(2) 2018]

Microsoft
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Distributed Data Analysis
Data-Parallel Computation

(MapReduce, Spark)
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Hadoop History and Architecture
 Recap: Brief History

 Google’s GFS [SOSP’03] + MapReduce
 Apache Hadoop (2006)

 Apache Hive (SQL), Pig (ETL), Mahout (ML), Giraph (Graph)

 Hadoop Architecture / Eco System
 Management (Ambari)
 Coordination / workflows

(Zookeeper, Oozie)
 Storage (HDFS)
 Resources (YARN)

[SoCC’13]
 Processing 

(MapReduce)

Distributed Data Analysis

NameNode

Head Node

Worker Node 1

Resource 
Manager Node 

Manager

MR 
AM

MR 
task

MR 
task

MR 
task

Worker Node n

Node 
Manager

MR 
task

MR 
task

MR 
task

MR 
task

MR Client DataNode
1 3 2

DataNode
3 2 9

[Jeffrey Dean, Sanjay 
Ghemawat: MapReduce: 

Simplified Data Processing on 
Large Clusters. OSDI 2004]



25

INF.01017UF Data Management / 706.010 Databases – 11 Distributed Storage and Data Analytics
Matthias Boehm, Graz University of Technology, SS 2021 

Central Data Abstractions
 #1 Files and Objects

 File: Arbitrarily large sequential data in specific file format (CSV, binary, etc)
 Object: binary large object, with certain meta data

 #2 Distributed Collections
 Logical multi-set (bag) of key-value pairs

(unsorted collection)
 Different physical representations
 Facilitates distribution of pairs

via horizontal partitioning
(aka shards, partitions)

 Can be created from single file,
or directory of files (unsorted)

Distributed Data Analysis

Key Value
4 Delta
2 Bravo
1 Alfa
3 Charlie
5 Echo
6 Foxtrot
7 Golf
1 Alfa
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MapReduce – Programming Model
 Overview Programming Model

 Inspired by functional programming languages
 Implicit parallelism (abstracts distributed storage and processing)
 Map function: key/value pair  set of intermediate key/value pairs
 Reduce function: merge all intermediate values by key 

 Example

Distributed Data Analysis

map(Long pos, String line) {
parts  line.split(“,”)
emit(parts[1], 1)

}

Name Dep

X CS

Y CS

A EE

Z CS

CS 1

CS 1

EE 1

CS 1

SELECT Dep, count(*) FROM csv_files GROUP BY Dep

reduce(String dep, 
Iterator<Long> iter) {

total  iter.sum();
emit(dep, total)

} CS 3

EE 1
Collection of 

key/value pairs
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MapReduce – Execution Model
Distributed Data Analysis

CSV 
File 1

Input CSV files 
(stored in HDFS)

CSV 
File 2

CSV 
File 3

Output Files 
(HDFS)

Out 1

Out 2

Out 3

Split 11

Split 12

Split 21

Split 22

Split 31

Split 32

map 
task

map 
task
map 
task

map 
task

map 
task
map 
task
Sort, [Combine], [Compress]

Map-Phase

[Reduce-Phase]

reduce 
task

reduce 
task

reduce 
task

Shuffle, Merge, 
[Combine]

#1 Data Locality (delay sched., write affinity)
#2 Reduced shuffle (combine)
#3 Fault tolerance (replication, attempts)

w/ #reducers = 3
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Spark History and Architecture 
 Summary MapReduce

 Large-scale & fault-tolerant processing w/ UDFs and files  Flexibility
 Restricted functional APIs  Implicit parallelism and fault tolerance
 Criticism: #1 Performance, #2 Low-level APIs, #3 Many different systems

 Evolution to Spark (and Flink)
 Spark [HotCloud’10] + RDDs [NSDI’12]  Apache Spark (2014)
 Design: standing executors with in-memory storage, 

lazy evaluation, and fault-tolerance via RDD lineage
 Performance: In-memory storage and fast job scheduling (100ms vs 10s)
 APIs: Richer functional APIs and general computation DAGs, 

high-level APIs (e.g., DataFrame/Dataset), unified platform  

 But many shared concepts/infrastructure
 Implicit parallelism through dist. collections (data access, fault tolerance) 
 Resource negotiators (YARN, Mesos, Kubernetes)
 HDFS and object store connectors (e.g., Swift, S3)

Distributed Data Analysis
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Spark History and Architecture, cont.
 High-Level Architecture

 Different language bindings:
Scala, Java, Python, R

 Different libraries:
SQL, ML, Stream, Graph

 Spark core (incl RDDs)
 Different cluster managers:

Standalone, Mesos, 
Yarn, Kubernetes

 Different file systems/
formats, and data sources:
HDFS, S3, SWIFT, DBs, NoSQL

 Focus on a unified platform 
for data-parallel computation

Distributed Data Analysis

[https://spark.apache.org/]

Standalone MESOS YARN Kubernetes

https://spark.apache.org/
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Resilient Distributed Datasets (RDDs)
 RDD Abstraction

 Immutable, partitioned 
collections of key-value pairs

 Coarse-grained deterministic operations (transformations/actions) 
 Fault tolerance via lineage-based re-computation 

 Operations
 Transformations: 

define new RDDs
 Actions: return 

result to driver

 Distributed Caching
 Use fraction of worker memory for caching
 Eviction at granularity of individual partitions
 Different storage levels (e.g., mem/disk x serialization x compression)

Distributed Data Analysis

JavaPairRDD
<MatrixIndexes,MatrixBlock>

Type Examples

Transformation
(lazy)

map, hadoopFile, textFile, 
flatMap, filter, sample, join, 

groupByKey, cogroup, reduceByKey, 
cross, sortByKey, mapValues

Action reduce, save,
collect, count, lookupKey

Node1 Node2
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Resilient Distributed Datasets (RDDs), cont.
 RDD Abstraction & Lifecycle

 Immutable, partitioned collections of KV pairs
 Coarse-grained transformations and actions 

Distributed Data Analysis

File on DFS

Distributed 
Collection

Local Data
(value, collection)

sc.parallelize(lst)

lst = X.collect()
v = X.reduce(foo())

X.filter(foo())
X.mapValues(foo())
X.reduceByKey(foo())
X.cache()/X.persist(…)

X.saveAsObjectFile(f)
X.saveAsTextFile(f)

sc.hadoopFile(f)
sc.textFile(f)
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Partitions and Implicit/Explicit Partitioning
 Spark Partitions

 Logical key-value collections are split into physical partitions
 Partitions are granularity of tasks, I/O, shuffling, evictions

 Partitioning via Partitioners
 Implicitly on every data shuffling
 Explicitly via R.repartition(n)

 Partitioning-Preserving
 All operations that are guaranteed to keep keys unchanged 

(e.g. mapValues(), mapPartitions() w/ preservesPart flag)

 Partitioning-Exploiting
 Join: R3 = R1.join(R2)
 Lookups: 
v = C.lookup(k)

Distributed Data Analysis

Example Hash Partitioning:
For all (k,v) of R: 
pid = hash(k) % n 

0: 8, 1, 6

1: 7, 5

2: 2, 3, 4

0: 1, 2

1: 5, 6

2: 3, 4

0: 3, 6

1: 4, 7, 1

2: 2, 5, 8

0: 6, 3

1: 4, 1

2: 5, 2

% 3
⋈ ⋈

Hash partitioned

~128MB
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Spark Lazy Evaluation, Caching, and Lineage
Distributed Data Analysis

join
union

groupBy

Stage 3

Stage 1

Stage 2

A B

C D F

G

map

partitioning-
aware

E

[Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy 
McCauly, Michael J. Franklin, Scott Shenker, Ion Stoica: Resilient Distributed Datasets: A 

Fault-Tolerant Abstraction for In-Memory Cluster Computing. NSDI 2012]

reduce

cached

Presenter
Presentation Notes
Notes:
Dryad-­‐like DAGs 
Pipelines functions within a stage 
Locality & data reuse aware 
Partitioning-­‐aware to avoid shuffles 
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Example: k-Means Clustering
 k-Means Algorithm

 Given dataset D and number of clusters k, find cluster centroids 
(“mean” of assigned points) that minimize within-cluster variance

 Euclidean distance: sqrt(sum((a-b)^2))

 Pseudo Code

Distributed Data Analysis

function Kmeans(D, k, maxiter) {
C‘ = randCentroids(D, k);
C = {};
i = 0; //until convergence
while( C‘ != C & i<=maxiter ) {
C = C‘;
i = i + 1;
A = getAssignments(D, C);
C‘ = getCentroids(D, A, k);

}
return C‘

}
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Example: K-Means Clustering in Spark
Distributed Data Analysis

// create spark context (allocate configured executors)
JavaSparkContext sc = new JavaSparkContext();

Note: Existing library algorithm
[https://github.com/apache/spark/blob/master/mllib/src/

main/scala/org/apache/spark/mllib/clustering/KMeans.scala] 

// read and cache data, initialize centroids
JavaRDD<Row> D = sc.textFile(“hdfs:/user/mboehm/data/D.csv“)
.map(new ParseRow()).cache(); // cache data in spark executors

Map<Integer,Mean> C = asCentroidMap(D.takeSample(false, k));

// until convergence
while( !equals(C, C2) & i<=maxiter ) {
C2 = C; i++;
// assign points to closest centroid, recompute centroid
Broadcast<Map<Integer,Row>> bC = sc.broadcast(C)
C = D.mapToPair(new NearestAssignment(bC))

.foldByKey(new Mean(0), new IncComputeCentroids())

.collectAsMap();
}

return C;

Presenter
Presentation Notes
Spark Local Mode
Download and unzip Spark https://spark.apache.org/downloads.html,�or pull dependency into IDE project via maven or similar tools
Setup prerequisites and path variables 
Test spark-shell, spark-submit, or in your IDE
NOTE: in local mode, operations run in driver JVM and I/O to local FS

Amazon AWS EMR (Elastic Map Reduce)


https://github.com/apache/spark/blob/master/mllib/src/main/scala/org/apache/spark/mllib/clustering/KMeans.scala
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Spark DataFrames and DataSets
 Overview Spark DataFrame

 DataFrame is distributed collection of rows
with named/typed columns

 Relational operations (e.g., projection, 
selection, joins, grouping, aggregation)

 DataSources (e.g., json, jdbc, parquet, hdfs, s3, avro, hbase, csv, cassandra)

 DataFrame and Dataset APIs
 DataFrame was introduced as basis for Spark SQL 
 DataSets allow more customization and compile-time analysis errors (Spark 2)

 Example 
DataFrame

Distributed Data Analysis

DataFrame = Dataset[Row]

logs = spark.read.format("json").open("s3://logs")
logs.groupBy(logs.user_id).agg(sum(logs.time))

.write.format("jdbc").save("jdbc:mysql//...")

[Michael Armbrust: Structuring Apache Spark – SQL, 
DataFrames, Datasets, and Streaming, Spark Summit 2016]
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Serverless Computing
 Definition Serverless

 FaaS: functions-as-a-service (event-driven, stateless input-output mapping)
 Infrastructure for deployment and auto-scaling of APIs/functions
 Examples: Amazon Lambda, Microsoft Azure Functions, etc

 Example

Distributed Data Analysis

Event Source 
(e.g., cloud 

services)

Lambda Functions
Other APIs 

and Services
Auto scaling 

Pay-per-request 
(1M x 100ms = 0.2$)

import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestHandler;

public class MyHandler implements RequestHandler<Tuple, MyResponse> {
@Override
public MyResponse handleRequest(Tuple input, Context context) {

return expensiveStatelessComputation(input);
}

}

[Joseph M. Hellerstein et al: Serverless
Computing: One Step Forward, Two 

Steps Back. CIDR 2019]
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Conclusions and Q&A
 Cloud Computing Overview
 Distributed Data Storage
 Distributed Data Analysis

 Next Lectures (Part B: Modern Data Management)
 12 Data Stream Processing Systems and Q&A [Jun 14]
 Office hours until Jun 28 (exercise submissions, exams)
 Written Exam Jun 30 5.30pm (i11, i12, i13), Jul 5 3.30pm (i13), 6.30 (i13) 
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