

SCIENCE PASSION TECHNOLOGY

Architecture of ML Systems 01 Introduction and Overview

Matthias Boehm

Graz University of Technology, Austria Computer Science and Biomedical Engineering Institute of Interactive Systems and Data Science BMK endowed chair for Data Management

Announcements/Org

- #1 Video Recording
 - Link in TeachCenter & TUbe (lectures will be public)
 - Optional attendance (independent of COVID)
 - Hybrid, in-person, TUbe video-recording, and webex live: <u>https://tugraz.webex.com/meet/m.boehm</u>
 - Update: status ORANGE, max 50% capacity, 2.5G rule
- #2 Course Registrations (as of Mar 02)
 - Architecture of Machine Learning Systems (AMLS):
 - Bachelor/master/PhD ratio? CS/other ratio?
- #3 Gründungsgarage Volume XVIII
 - Academic Startup Accelerator
 - https://www.gruendungsgarage.at/
 - Next application deadline: Mar 13, 2022

cisco Webex

111 (7)

Agenda

- Data Management Group
- Motivation and Goals
- Course Organization
- Course Outline, and Projects
- Apache SystemDS and DAPHNE

Data Management Group

https://damslab.github.io/

About Me

- 2018-2022 TU Graz, Austria
 - BMK endowed chair for data management
 - Data management for data science

(ML systems internals, end-to-end data science lifecycle)

Center

- 2012-2018 IBM Research Almaden, USA
 - Declarative large-scale machine learning
 - Optimizer and runtime of Apache SystemML
- 2011 PhD TU Dresden, Germany
 - Cost-based optimization of integration flows
 - Systems support for time series forecasting
 - In-memory indexing and query processing

https://github.com/ apache/systemds

Data Management Courses

Motivation and Goals

Example ML Applications (Past/Present)

Transportation / Space

- Lemon car detection and reacquisition (classification, seq. mining)
- Airport passenger flows from WiFi data (time series forecasting)
- Data analysis for assisted driving (various use cases)
- Automotive vehicle development (ML-assisted simulations)
- Satellite senor analytics (regression and correlation)
- Earth observation and local climate zone classification and monitoring

Finance

- Water cost index based on various influencing factors (regression)
- Insurance claim cost per customer (model selection, regression)
- Financial analysts survey correlation (bivariate stats w/ new tests)

Health Care

- Breast cancer cell grow from histopathology images (classification)
- Glucose trends and warnings (clustering, classification)
- Emergency room diagnosis / patient similarity (classification, clustering)
- Patient survival analysis and prediction (Cox regression, Kaplan-Meier)

A Car Reacquisition Scenario

Example ML Applications (Past/Present), cont.

- Production/Manufacturing
 - Paper and fertilizer production (regression/classification, anomalies)
 - Semiconductor manufacturing, and material degradation modeling
 - Mixed waste sorting and recycling (composition, alignment, quality)
- Other Domains
 - Machine data: errors and correlation (bivariate stats, seq. mining)
 - Smart grid: energy demand/RES supply, weather models (forecasting)
 - Elastic flattening via sparse linear algebra (spring-mass system)
- Information Extraction
 - NLP contracts
 rights/obligations (classification, error analysis)
 - PDF table recognition and extraction, OCR (NMF clustering, custom)
 - Learning explainable linguistic expressions (learned FOL rules, classification)
- Algorithm Research (+ various state-of-the art algorithms)
 - User/product recommendations via various forms of NMF
 - Localized, supervised metric learning (dim reduction and classification)
 - Learning word embeddings via orthogonalized skip-gram

Motivation and Goals

11

What is an ML System?

What is an ML System?, cont.

- ML System
 - Narrow focus: SW system that executes ML applications
 - Broad focus: Entire system (HW, compiler/runtime, ML application)
 - → Trade-off runtime/resources vs accuracy
 - → Early days: no standardizations (except some exchange formats), lots of different languages and system architectures, but many shared concepts

Course Objectives

- Architecture and internals of modern (large-scale) ML systems
 - Microscopic view of ML system internals
 - Macroscopic view of ML pipelines and data science lifecycle
- #1 Understanding of characteristics → better evaluation / usage
- **#2** Understanding of effective techniques → build/extend ML systems

Course Organization

¹⁴ Basic Course Organization

- Staff
 - Lecturer: Univ.-Prof. Dr.-Ing. Matthias Boehm, ISDS
 - Assistants: M.Sc. Shafaq Siddiqi, M.Sc. Sebastian Baunsgaard

Language

- Lectures and slides: English
- Communication and examination: English/German

Course Format

- VU 2/1, 5 ECTS (2x 1.5 ECTS + 1x 2 ECTS), bachelor/master
- Weekly lectures (start 12.15pm, including Q&A), attendance optional
- Mandatory programming project or exercises (2 ECTS)
- Recommended papers for additional reading on your own
- Prerequisites (preferred)
 - Basic courses Data Management/Databases, and
 - Basic courses on applied ML / Knowledge Discovery and Data Mining

Course Logistics

- Website
 - https://mboehm7.github.io/teaching/ss22_amls/index.htm
 - All course material (lecture slides) and dates

Video Recording / Live Streaming Lectures (TUbe, webex)

Communication

- Informal language (first name is fine)
- Please, immediate feedback (unclear content, missing background)
- Newsgroup: N/A email is fine, summarized in following lectures
- Office hours: by appointment or after lecture
- Exam
 - Completed programming project (checked by me/staff)
 - Final written exam (oral exam if <=25 students take the exam)
 - Grading (30% project/exercises completion, 70% exam)

Course Logistics, cont.

Course Applicability

- Master programs computer science (CS), as well as software engineering and management (SEM)
 - Catalog Data Science (compulsory course in major, and elective)
 - Catalog Machine Learning (elective course)
 - Catalog Interactive and Visual Information Systems (elective course)
 - Catalog Software Technology (elective course)
- PhD CS doctoral school list of courses
- Free subject course in any other study program or university

17

Course Outline and Projects

Partially based on

[Matthias Boehm, Arun Kumar, Jun Yang: Data Management in Machine Learning Systems. Synthesis Lectures on Data Management, Morgan & Claypool Publishers 2019]

Major updates in SS2020, SS2021, and SS2022

Part A: Overview and ML System Internals

- **01 Introduction and Overview** [Mar 04]
- 02 Languages, Architectures, and System Landscape [Mar 11]
- 03 Size Inference, Rewrites, and Operator Selection [Mar 18]
- 04 Operator Fusion and Runtime Adaptation [Mar 25]
- 05 Data- and Task-Parallel Execution [Apr 01]
- 06 Parameter Servers [Apr 08]
- 07 Hybrid Execution and HW Accelerators [Apr 29]
- **08 Caching, Partitioning, Indexing, and Compression** [May 06]

Part B: ML Lifecycle Systems

- 09 Data Acquisition, Cleaning, and Preparation [May 13]
- 10 Model Selection and Management [May 20]
- 11 Model Debugging, Fairness, and Explainability [Jun 03]
- 12 Model Serving Systems and Techniques [Jun 10]
- 13 Q&A and Exam Preparation

Programming Projects

Open Source Projects

- Programming project in context of open source projects
 - Apache SystemDS: <u>https://github.com/apache/systemds</u>
 - DAPHNE: <u>https://daphne-eu.eu/</u> (private repo but OSS release end 03/2022)
 - Other OSS projects possible, but harder to merge PRs
- Commitment to open source and open communication (PRs, mailing list)
- **Remark:** Don't be afraid to ask questions / develop code in public

Objectives

- Non-trivial feature in an ML system (2 ECTS → 50 hours)
- OSS processes: Break down into subtasks, code/tests/docs, PR per project, code review, incorporate review comments, etc

Team

Individuals or up to three-person teams (w/ separated responsibilities)

Alternative Exercise

- Task: ML Pipeline [to be published Mar 11]
 - Given the **TBD** dataset(s) (e.g., UCI/Kaggle Wine or others)
 - Data Prep: Setup train/test/validation splits; perform data validation, data augmentation, feature engineering
 - Modeling: Compare multiple baseline models using an OSS ML system
 - Tuning: hyper-parameter tuning and cross validation
 - Parallelization: parallelize your ML pipeline (at least the tuning part)
 - **Debugging:** Perform model debugging and investigate explainability

Objectives

- End-to-end development of an ML pipeline on real data
- Handle data issues, under-specified objectives, model training and debugging

Team

Individuals or up to three-person teams (w/ separated responsibilities)

Apache SystemDS: A Declarative ML System for the End-to-End Data Science Lifecycle

Background and System Architecture https://github.com/apache/systemds

Landscape of ML Systems

- Existing ML Systems
 - #1 Numerical computing frameworks
 - #2 ML Algorithm libraries (local, large-scale)
 - #3 Linear algebra ML systems (large-scale)
 - #4 Deep neural network (DNN) frameworks
 - #5 Model management, and deployment
- Exploratory Data-Science Lifecycle
 - Open-ended problems w/ underspecified objectives
 - Hypotheses, data integration, run analytics
 - Unknown value → lack of system infrastructure
 → Redundancy of manual efforts and computation
- Data Preparation Problem
 - **80% Argument:** 80-90% time for finding, integrating, cleaning data
 - Diversity of tools → boundary crossing, lack of optimization

"Take these datasets and show value or competitive advantage"

[DEBull 201	[8]	1.000.000
data	New York Control of State Control of Sta	

[NIPS 2015]

Data-centric View:

25

Example: Linear Regression Conjugate Gradient

Note: #1 Data Independence #2 Implementation- Agnostic Operations	1: 2: 3: 4:	<pre>X = read(\$1); # n x m matrix y = read(\$2); # n x 1 vector maxi = 50; lambda = 0.001; intercept = \$3;</pre>	Read matrices from HDFS/S3
	5: 6: 7:	<pre> r = -(t(X) %*% y); norm_r2 = sum(r * r); p = -r;</pre>	Compute initial gradient
Compute conjugate gradient	8: 9: 10: 11: 12:	<pre>w = matrix(0, ncol(X), 1); i = 0; while(i<maxi &="" norm_r2="">norm_r2_trgt) { q = (t(X) %*% (X %*% p))+lambda*p alpha = norm_r2 / sum(p * q);</maxi></pre>	; Compute
Update model and residuals	13: 14: 15: 16: 17:	<pre>w = w + alpha * p; old_norm_r2 = norm_r2; r = r + alpha * q; norm_r2 = sum(r * r); beta = norm_r2 / old_norm_r2;</pre>	step size
	18: 19: 20:	<pre>p = -r + beta * p; 1 = 1 + 1; } write(w, \$4, format="text");</pre>	Separation of Concerns"

26

Apache SystemML/SystemDS

Basic HOP and LOP DAG Compilation

LinregDS (Direct Solve)

➔ Hybrid Runtime Plans:

- Size propagation / memory estimates
- Integrated CP / Spark runtime
- Dynamic recompilation during runtime

Distributed Matrices

- Fixed-size (squared) matrix blocks
- Data-parallel operations

Static and Dynamic Rewrites

- Example Static Rewrites (size-indep.)
 - Common Subexpression Elimination
 - Constant Folding / Branch Removal / Block Sequence Merge
 - Static Simplification Rewrites
 - Right/Left Indexing Vectorization
 - For Loop Vectorization
 - Spark checkpoint/repartition injection

- Dynamic Simplification Rewrites
- Matrix Mult Chain Optimization

rowSums(X) \rightarrow X, iff ncol(X)=1 sum(X^2) \rightarrow X%*%t(X), iff ncol(X)=1

 $sum(\lambda^*X) \rightarrow \lambda^*sum(X)$ $sum(X+Y) \rightarrow sum(X)+sum(Y)$

Apache SystemDS Design

- Objectives
 - Effective and efficient data preparation, ML, and model debugging at scale
 - High-level abstractions for different lifecycle tasks and users
- #1 Based on DSL for ML Training/Scoring
 - Hierarchy of abstractions for DS tasks
 - ML-based SotA, interleaved, performance

- System infrastructure for diversity of algorithm classes
- Different parallelization strategies and new architectures (Federated ML)
- Abstractions → redundancy → automatic optimization
- #3 Data Model: Heterogeneous Tensors
 - Data integration/prep requires generic data model

Apache SystemML (since 2010)

→ Apache SystemDS (07/2020)

→ SystemDS (09/2018)

Language Abstractions and APIs, cont.

Example: Stepwise Linear Regression

> 83,400 tests

> 8,500 DSL tests

[M. Boehm, I. Antonov, S. Baunsgaard, M. Dokter, R. Ginthör, K. Innerebner, F. Klezin, S. N. Lindstaedt, A. Phani, B. Rath, B. Reinwald, S. Siddiqui, S. Benjamin Wrede: SystemDS: A Declarative Machine Learning System for the End-to-End Data Science Lifecycle. **CIDR 2020**]

[WIP] WashHouse: Data Cleaning Benchmark

- Automatic Generation of Cleaning Pipelines
 - Library of robust, parameterized data cleaning primitives
 - Enumeration of DAGs of primitives & hyper-parameter optimization (HB, BO)

University	Country]	Univers
TU Graz	Austria]	TU Graz
TU Graz	Austria]	TU Graz
TU Graz	Germany]	TU Graz
IIT	India		IIT
IIT	IIT		IIT
IIT	Pakistan		IIT
IIT	India	1	IIT
SIBA	Pakistan	1	SIBA
SIBA	null	1	SIBA
STRA	null	1	STBA

Dirty Data

After imputeFD(0.5)

Α	В	С	D	
0.77	0.80	1	1	
0.96	0.12	1	1	
0.66	0.09	null	1	
0.23	0.04	17	1	
0.91	0.02	17	null	
0.21	0.38	17	1	
0.31	null	17	1	
0.75	0.21	20	1	
null	null	20	1	
0.19	0.61	20	1	
0.64	0.31	20	1	

~	U U	C	ע
0.77	0.80	1	1
0.96	0.12	1	1
0.66	0.09	17	1
0.23	0.04	17	1
0.91	0.02	17	1
0.21	0.38	17	1
0.31	0.29	17	1
0.75	0.21	20	1
0.41	0.24	20	1
0.19	0.61	20	1
0.64	0.31	20	1
	0.77 0.96 0.66 0.23 0.91 0.21 0.31 0.75 0.41 0.19 0.64	A B 0.77 0.80 0.96 0.12 0.66 0.09 0.23 0.04 0.91 0.02 0.21 0.38 0.31 0.29 0.75 0.21 0.41 0.24 0.19 0.61 0.64 0.31	R D C 0.77 0.80 1 0.96 0.12 1 0.66 0.09 17 0.23 0.04 17 0.91 0.02 17 0.21 0.38 17 0.31 0.29 17 0.75 0.21 20 0.41 0.24 20 0.19 0.61 20

Dirty Data

After **MICE**

line

SliceLine for Model Debugging

- Problem Formulation
 - Intuitive slice scoring function
 - Exact top-k slice finding
 - $|S| \ge \sigma \land sc(S) > 0$
 - $\alpha \in (0,1]$

Properties & Pruning

- Monotonicity of slice sizes, errors
- Upper bound sizes/errors/scores
 → pruning & termination

Linear-Algebra-based Slice Finding

- Recoded matrix X, error vector e
- Vectorized implementation in linear algebra (join & eval via sparse-sparse matrix multiply)
- Local and distributed task/data-parallel execution

slice error

slice size

Multi-Level Lineage Tracing & Reuse

- Lineage as Key Enabling Technique
 - Trace lineage of operations (incl. non-determinism), dedup for loops/functions

Х

t(X)

- Model versioning, data reuse, incremental maintenance, autodiff, debugging
- Full Reuse of Intermediates

34

- Before executing instruction, probe output lineage in cache Map<Lineage, MatrixBlock>
- Cost-based/heuristic caching and eviction decisions (compiler-assisted)

Partial Reuse of Intermediates

- Problem: Often partial result overlap
- Reuse partial results via dedicated rewrites (compensation plans)
- Example: stepIm

for(i in 1:numModels)
R[,i] = lm(X, y, lambda[i,], ...)

m_lmDS = function(...) {
 l = matrix(reg,ncol(X),1)
 A = t(X) %*% X + diag(1)
 b = t(X) %*% y
 beta = solve(A, b) ...}

Compressed Linear Algebra Extended

Lossless Matrix Compression

Improved general applicability (compression time, new compression schemes, new kernels, intermediates, workload-aware) Uncompressed Input Matrix

[under submission]

8.5

8.5

3 0 4 3

- Sparsity \rightarrow Redundancy exploitation (data redundancy, structural redundancy)
- Workload-aware Compression
 - Workload summary \rightarrow compression
 - Compression \rightarrow execution planning

Compressed Matrix M DDC{1,3} RLE{2} (OLE{4}) 2.58.5} {9 {2.5} {3} 3 2 0 2 5 4 3 7 2.5 8 10 0

Apache SystemDS

ex_dra

DDAI

- Federated Learning
 - Federated Backend
 - Federated data (matrices/frames) as meta data objects
 - Federated linear algebra, (and federated parameter server)
 - X = federated(addresses=list(node1, node2, node3), ranges=list(list(0,0), list(40K,70), ..., list(80K,0), list(100K,70)));

Federated Requests: READ, PUT, GET, EXEC_INST, EXEC_UDF, CLEAR

Integrated Data Analysis Pipelines for Large-scale Data Management, HPC, and Machine Learning; DAPHNE daughter of river god Peneus (fountains, streams), chased by Apollo [Louvre, Paris]

The DAPHNE project is funded by the European Union's Horizon 2020 research and innovation program under grant agreement number 957407 for the time period from Dec/2020 through Nov/2024.

An Open and Extensible System Infrastructure for Integrated Data Analysis Pipelines

https://daphne-eu.eu/

DAPHNE Project

DAPHNE Overall Objective: Open and extensible system infrastructure

Motivation

- Integrated Data Analysis Pipelines
 - Open data formats, query processing
 - Data preprocessing and cleaning
 - ML model training and scoring
 - HPC, custom codes, and simulations

Hardware Challenges

- DM+ML+HPC share compilation and runtime techniques / converging cluster hardware
- End of Dennard scaling:
 P = α CFV² (power density 1)
- End of Moore's law
- Amdahl's law: sp = 1/s
- ➔ Increasing Specialization

Deployment Challenges

DAPHNE Use Cases

- DLR Earth Observation
 - ESA Sentinel-1/2 datasets → 4PB/year
 - Training of local climate zone classifiers on So2Sat LCZ42 (15 experts, 400K instances, 10 labels each, 85% confidence, ~55GB H5)
 - ML pipeline: preprocessing, ResNet18, climate models

[Xiao Xiang Zhu et al: So2Sat LCZ42: A Benchmark Dataset for the Classification of Global Local Climate Zones. **GRSM 2020**]

AVL 3

[So2Sat LC42 Dataset https://mediatum.ub.tum.de/1454690]

nfineon

- IFAT Semiconductor Ion Beam Tuning
- KAI Semiconductor Material Degradation
- AVL Vehicle Dev Process (ejector geometries, KPIs)
- ML-assisted simulations, data cleaning, augmentation

40

DAPHNE System Architecture

[Patrick Damme et al.: DAPHNE: An Open and Extensible System Infrastructure for Integrated Data Analysis Pipelines, CIDR 2022]

DAPHNE Project

41

Vectorized (Tiled) Execution

(%9, %10) = fusedPipeline1(%X, %y, %colmu, %colsd) {

Default Parallelization Frame & Matrix Ops

Locality-aware, Multi-device Scheduling Fused Operator Pipelines on Tiles/Scalars + Codegen

DAPHNE Project

Combine

(Σ)

Vectorized (Tiled) Execution, cont.

#1 Zero-copy Input Slicing

- Create view on sliced input (no-op)
- All kernels work on views
- #2 Sparse Intermediates
 - Reuse dense/sparse kernels
 - Sparse pipeline intermediates for free
- #3 Fine-grained Control
 - Task sizes (dequeue, data access) vs data binding (cache-conscious ops)
 - Scheduling for load balance (e.g., sparse operations)

#4 Computational Storage

Task queues connect eBPF programs, async I/O into buffers, and op pipelines

(%9, %10) = fusedPipeline1(%X, %y, %colmu, %colsd) {

GPU/FPGA Workers

Tiles \rightarrow Tasks

Summary & Q&A

- Data Management Group
- Motivation and Goals
- Course Organization
- Course Outline, and Projects
- Apache SystemDS and DAPHNE
- Next Lectures (Part A)

- 03 Size Inference, Rewrites, and Operator Selection [Mar 18]
- **04 Operator Fusion and Runtime Adaptation** [Mar 25]
- 05 Data- and Task-Parallel Execution [Apr 01]
- 06 Parameter Servers [Apr 08]
- 07 Hybrid Execution and HW Accelerators [Apr 29]
- 08 Caching, Partitioning, Indexing and Compression [May 06]

Programming Projects in **Apache SystemDS, DAPHNE**, or Exercise on ML Pipeline

Thanks