
1
SCIENCE
PASSION

TECHNOLOGY

Architecture of ML Systems
01 Introduction and Overview
Matthias Boehm

Graz University of Technology, Austria

Institute of Interactive Systems and Data Science
Computer Science and Biomedical Engineering

BMK endowed chair for Data Management

Last update: Mar 02, 2022

2

706.550 Architecture of Machine Learning Systems – 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, SS 2022

Announcements/Org
 #1 Video Recording

 Link in TeachCenter & TUbe (lectures will be public)
 Optional attendance (independent of COVID)
 Hybrid, in-person, TUbe video-recording, and

webex live: https://tugraz.webex.com/meet/m.boehm
 Update: status ORANGE, max 50% capacity, 2.5G rule

 #2 Course Registrations (as of Mar 02)
 Architecture of Machine Learning Systems (AMLS):
 Bachelor/master/PhD ratio? CS/other ratio?

 #3 Gründungsgarage Volume XVIII
 Academic Startup Accelerator
 https://www.gruendungsgarage.at/
 Next application deadline: Mar 13, 2022

111 (7)

https://tugraz.webex.com/meet/m.boehm
https://www.gruendungsgarage.at/

3

706.550 Architecture of Machine Learning Systems – 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, SS 2022

Agenda
 Data Management Group
 Motivation and Goals
 Course Organization
 Course Outline, and Projects
 Apache SystemDS and DAPHNE

4

706.550 Architecture of Machine Learning Systems – 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, SS 2022

Data Management Group
https://damslab.github.io/

https://damslab.github.io/

5

706.550 Architecture of Machine Learning Systems – 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, SS 2022

About Me
 2018-2022 TU Graz, Austria

 BMK endowed chair for data management
 Data management for data science

(ML systems internals, end-to-end data science lifecycle)

 2012-2018 IBM Research – Almaden, USA
 Declarative large-scale machine learning
 Optimizer and runtime of Apache SystemML

 2011 PhD TU Dresden, Germany
 Cost-based optimization of integration flows
 Systems support for time series forecasting
 In-memory indexing and query processing

Data Management Group

DB group

https://github.com/
apache/systemds

https://github.com/apache/systemds

6

706.550 Architecture of Machine Learning Systems – 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, SS 2022

Data Management Courses

Data Management /
Databases

(DM, SS+WS)

Architecture of
Database Systems

(ADBS, WS)

Architecture of
ML Systems
(AMLS, SS)

Data Integration and
Large-Scale Analysis

(DIA, WS)

Master

Bachelor

Data management from
user/application perspective

Distributed
Data Management

ML system
internals

DB system
internals
+ prog. project

Prog. projects in SystemDS
[github.com/apache/systemds]

Data Management Group

Intro to Scientific
Writing (WS)

https://github.com/apache/systemds

7

706.550 Architecture of Machine Learning Systems – 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, SS 2022

Motivation and Goals

8

706.550 Architecture of Machine Learning Systems – 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, SS 2022

Example ML Applications (Past/Present)
 Transportation / Space

 Lemon car detection and reacquisition (classification, seq. mining)
 Airport passenger flows from WiFi data (time series forecasting)
 Data analysis for assisted driving (various use cases)
 Automotive vehicle development (ML-assisted simulations)
 Satellite senor analytics (regression and correlation)
 Earth observation and local climate zone classification and monitoring

 Finance
 Water cost index based on various influencing factors (regression)
 Insurance claim cost per customer (model selection, regression)
 Financial analysts survey correlation (bivariate stats w/ new tests)

 Health Care
 Breast cancer cell grow from histopathology images (classification)
 Glucose trends and warnings (clustering, classification)
 Emergency room diagnosis / patient similarity (classification, clustering)
 Patient survival analysis and prediction (Cox regression, Kaplan-Meier)

Motivation and Goals

9

706.550 Architecture of Machine Learning Systems – 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, SS 2022

A Car Reacquisition Scenario
Motivation and Goals

Warranty
Claims

Repair
History

Diagnostic
Readouts

Predictive
Models

Features Machine
Learning

Algorithm

Algorithm

Labels

Algorithm

Algorithm

• Class skew
• Low precision

 25x
improved
precision

+ custom loss functions
+ hyper-parameter tuning

10

706.550 Architecture of Machine Learning Systems – 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, SS 2022

Example ML Applications (Past/Present), cont.
 Production/Manufacturing

 Paper and fertilizer production (regression/classification, anomalies)
 Semiconductor manufacturing, and material degradation modeling
 Mixed waste sorting and recycling (composition, alignment, quality)

 Other Domains
 Machine data: errors and correlation (bivariate stats, seq. mining)
 Smart grid: energy demand/RES supply, weather models (forecasting)
 Elastic flattening via sparse linear algebra (spring-mass system)

 Information Extraction
 NLP contracts  rights/obligations (classification, error analysis)
 PDF table recognition and extraction, OCR (NMF clustering, custom)
 Learning explainable linguistic expressions (learned FOL rules, classification)

 Algorithm Research (+ various state-of-the art algorithms)
 User/product recommendations via various forms of NMF
 Localized, supervised metric learning (dim reduction and classification)
 Learning word embeddings via orthogonalized skip-gram

Motivation and Goals

11

706.550 Architecture of Machine Learning Systems – 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, SS 2022

What is an ML System?

Machine
Learning

(ML)
Statistics Data

Mining

ML Applications
(entire KDD/DS

lifecycle)

Classification
Regression

Recommenders
Clustering

Dim Reduction
Neural Networks

ML System

HPC

Prog.
Language
Compilers

Compilation
TechniquesDistributed

Systems

Operating
Systems

Data
Management

Runtime Techniques
(Execution, Data Access)

HW
Architecture

Accelerators

Rapidly Evolving

Motivation and Goals

12

706.550 Architecture of Machine Learning Systems – 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, SS 2022

What is an ML System?, cont.
 ML System

 Narrow focus: SW system that executes ML applications
 Broad focus: Entire system (HW, compiler/runtime, ML application)
Trade-off runtime/resources vs accuracy
Early days: no standardizations (except some exchange formats), lots of

different languages and system architectures, but many shared concepts

 Course Objectives
 Architecture and internals of modern (large-scale) ML systems

 Microscopic view of ML system internals
 Macroscopic view of ML pipelines and data science lifecycle

 #1 Understanding of characteristics  better evaluation / usage
 #2 Understanding of effective techniques  build/extend ML systems

Motivation and Goals

13

706.550 Architecture of Machine Learning Systems – 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, SS 2022

Course Organization

14

706.550 Architecture of Machine Learning Systems – 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, SS 2022

Basic Course Organization
 Staff

 Lecturer: Univ.-Prof. Dr.-Ing. Matthias Boehm, ISDS
 Assistants: M.Sc. Shafaq Siddiqi, M.Sc. Sebastian Baunsgaard

 Language
 Lectures and slides: English
 Communication and examination: English/German

 Course Format
 VU 2/1, 5 ECTS (2x 1.5 ECTS + 1x 2 ECTS), bachelor/master
 Weekly lectures (start 12.15pm, including Q&A), attendance optional
 Mandatory programming project or exercises (2 ECTS)
 Recommended papers for additional reading on your own

 Prerequisites (preferred)
 Basic courses Data Management/Databases, and
 Basic courses on applied ML / Knowledge Discovery and Data Mining

Course Organization

15

706.550 Architecture of Machine Learning Systems – 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, SS 2022

Course Logistics
 Website

 https://mboehm7.github.io/teaching/ss22_amls/index.htm
 All course material (lecture slides) and dates

 Video Recording / Live Streaming Lectures (TUbe, webex)

 Communication
 Informal language (first name is fine)
 Please, immediate feedback (unclear content, missing background)
 Newsgroup: N/A – email is fine, summarized in following lectures
 Office hours: by appointment or after lecture

 Exam
 Completed programming project (checked by me/staff)
 Final written exam (oral exam if <=25 students take the exam)
 Grading (30% project/exercises completion, 70% exam)

Course Organization

https://mboehm7.github.io/teaching/ss22_amls/index.htm

16

706.550 Architecture of Machine Learning Systems – 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, SS 2022

Course Logistics, cont.
 Course Applicability

 Master programs computer science (CS), as well as
software engineering and management (SEM)
 Catalog Data Science (compulsory course in major, and elective)
 Catalog Machine Learning (elective course)
 Catalog Interactive and Visual Information Systems (elective course)
 Catalog Software Technology (elective course)

 PhD CS doctoral school list of courses
 Free subject course in any other study program or university

Course Organization

17

706.550 Architecture of Machine Learning Systems – 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, SS 2022

Course Outline and Projects
Partially based on

[Matthias Boehm, Arun Kumar, Jun Yang: Data Management
in Machine Learning Systems. Synthesis Lectures on Data
Management, Morgan & Claypool Publishers 2019]

Major updates in SS2020, SS2021, and SS2022

18

706.550 Architecture of Machine Learning Systems – 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, SS 2022

Part A: Overview and ML System Internals
 01 Introduction and Overview [Mar 04]

 02 Languages, Architectures, and System Landscape [Mar 11]

 03 Size Inference, Rewrites, and Operator Selection [Mar 18]

 04 Operator Fusion and Runtime Adaptation [Mar 25]

 05 Data- and Task-Parallel Execution [Apr 01]

 06 Parameter Servers [Apr 08]

 07 Hybrid Execution and HW Accelerators [Apr 29]

 08 Caching, Partitioning, Indexing, and Compression [May 06]

Course Outline and Projects

19

706.550 Architecture of Machine Learning Systems – 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, SS 2022

Part B: ML Lifecycle Systems
 09 Data Acquisition, Cleaning, and Preparation [May 13]

 10 Model Selection and Management [May 20]

 11 Model Debugging, Fairness, and Explainability [Jun 03]

 12 Model Serving Systems and Techniques [Jun 10]

 13 Q&A and Exam Preparation

Course Outline and Projects

20

706.550 Architecture of Machine Learning Systems – 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, SS 2022

Programming Projects
 Open Source Projects

 Programming project in context of open source projects
 Apache SystemDS: https://github.com/apache/systemds
 DAPHNE: https://daphne-eu.eu/

(private repo but OSS release end 03/2022)
 Other OSS projects possible, but harder to merge PRs

 Commitment to open source and open communication (PRs, mailing list)
 Remark: Don’t be afraid to ask questions / develop code in public

 Objectives
 Non-trivial feature in an ML system (2 ECTS  50 hours)
 OSS processes: Break down into subtasks, code/tests/docs, PR per project,

code review, incorporate review comments, etc

 Team
 Individuals or up to three-person teams (w/ separated responsibilities)

Course Outline and Projects

https://github.com/apache/systemds
https://daphne-eu.eu/

21

706.550 Architecture of Machine Learning Systems – 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, SS 2022

Alternative Exercise
 Task: ML Pipeline [to be published Mar 11]

 Given the TBD dataset(s) (e.g., UCI/Kaggle Wine or others)
 Data Prep: Setup train/test/validation splits; perform

data validation, data augmentation, feature engineering
 Modeling: Compare multiple baseline models using an OSS ML system
 Tuning: hyper-parameter tuning and cross validation
 Parallelization: parallelize your ML pipeline (at least the tuning part)
 Debugging: Perform model debugging and investigate explainability

 Objectives
 End-to-end development of an ML pipeline on real data
 Handle data issues, under-specified objectives, model training and debugging

 Team
 Individuals or up to three-person teams (w/ separated responsibilities)

Course Outline and Projects

22

706.550 Architecture of Machine Learning Systems – 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, SS 2022

Apache SystemDS:
A Declarative ML System for the

End-to-End Data Science Lifecycle

Background and System Architecture
https://github.com/apache/systemds

https://github.com/apache/systemds

23

706.550 Architecture of Machine Learning Systems – 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, SS 2022

Landscape of ML Systems
 Existing ML Systems

 #1 Numerical computing frameworks
 #2 ML Algorithm libraries (local, large-scale)
 #3 Linear algebra ML systems (large-scale)
 #4 Deep neural network (DNN) frameworks
 #5 Model management, and deployment

 Exploratory Data-Science Lifecycle
 Open-ended problems w/ underspecified objectives
 Hypotheses, data integration, run analytics
 Unknown value  lack of system infrastructure
 Redundancy of manual efforts and computation

 Data Preparation Problem
 80% Argument: 80-90% time for finding, integrating, cleaning data
 Diversity of tools  boundary crossing, lack of optimization

“Take these datasets
and show value or

competitive advantage”

[NIPS 2015]
[DEBull 2018]

Overview Apache SystemDS

24

706.550 Architecture of Machine Learning Systems – 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, SS 2022

The Data Science Lifecycle
aka KDD Process
aka CRISP-DM

Overview Apache SystemDS

Data/SW
Engineer

DevOps
Engineer

Data Integration
Data Cleaning

Data Preparation

Model Selection
Training

Hyper-parameters

Validate & Debug
Deployment

Scoring & Feedback

Data
Scientist

Data-centric View:
Application perspective
Workload perspective

System perspective

Exploratory Process
(experimentation, refinements, ML pipelines)

Key observation: SotA
data integration/cleaning based on ML

Data extraction, schema alignment, entity
resolution, data validation, data cleaning, outlier

detection, missing value imputation, semantic type
detection, data augmentation, feature selection,

feature engineering, feature transformations

Data Integration
Data Cleaning

Data Preparation

25

706.550 Architecture of Machine Learning Systems – 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, SS 2022

Example: Linear Regression Conjugate Gradient
Overview Apache SystemDS

1: X = read($1); # n x m matrix
2: y = read($2); # n x 1 vector
3: maxi = 50; lambda = 0.001;
4: intercept = $3;
5: ...
6: r = -(t(X) %*% y);
7: norm_r2 = sum(r * r); p = -r;
8: w = matrix(0, ncol(X), 1); i = 0;
9: while(i<maxi & norm_r2>norm_r2_trgt)
10: {
11: q = (t(X) %*% (X %*% p))+lambda*p;
12: alpha = norm_r2 / sum(p * q);
13: w = w + alpha * p;
14: old_norm_r2 = norm_r2;
15: r = r + alpha * q;
16: norm_r2 = sum(r * r);
17: beta = norm_r2 / old_norm_r2;
18: p = -r + beta * p; i = i + 1;
19: }
20: write(w, $4, format="text");

Compute
conjugate
gradient Compute

step size

Update
model and
residuals

Read matrices
from HDFS/S3

Compute initial
gradient

Note:
#1 Data Independence
#2 Implementation-
Agnostic Operations

 “Separation
of Concerns”

26

706.550 Architecture of Machine Learning Systems – 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, SS 2022

Apache SystemML/SystemDS
Overview Apache SystemDS

[SIGMOD’15,’17,’19,’21abc]
[PVLDB’14,’16ab,’18]
[ICDE’11,’12,’15]
[CIDR’17,’20]
[VLDBJ’18]
[DEBull’14]
[PPoPP’15]

Hadoop or Spark Cluster
(scale-out)

In-Memory Single Node
(scale-up)

Runtime

Compiler

Language

DML Scripts

since 2010/11since 2012 since 2015

APIs: Command line, JMLC,
Spark MLContext, Spark ML,

(20+ Scalable Algorithms)

In-Progress:

GPU

since 2014/16

07/2020 Renamed to SystemDS
05/2017 Apache Top-Level Project
11/2015 Apache Incubator Project
08/2015 Open Source Release

Write Once,
Run Anywhere

27

706.550 Architecture of Machine Learning Systems – 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, SS 2022

Basic HOP and LOP DAG Compilation
Overview Apache SystemDS

LinregDS (Direct Solve)
X = read($1);
y = read($2);
intercept = $3;
lambda = 0.001;
...
if(intercept == 1) {

ones = matrix(1, nrow(X), 1);
X = append(X, ones);

}
I = matrix(1, ncol(X), 1);
A = t(X) %*% X + diag(I)*lambda;
b = t(X) %*% y;
beta = solve(A, b);
...
write(beta, $4);

HOP DAG
(after rewrites)

LOP DAG
(after rewrites)

Cluster Config:
• driver mem: 20 GB
• exec mem: 60 GB

dg(rand)
(103x1,103)

r(diag)

X
(108x103,1011)

y
(108x1,108)

ba(+*) ba(+*)

r(t)

b(+)
b(solve)

writeScenario:
X: 108 x 103, 1011

y: 108 x 1, 108

 Hybrid Runtime Plans:
• Size propagation / memory estimates
• Integrated CP / Spark runtime
• Dynamic recompilation during runtime
 Distributed Matrices

• Fixed-size (squared) matrix blocks
• Data-parallel operations

800MB

800GB

800GB
8KB

172KB

1.6TB

1.6TB

16MB
8MB

8KB

CP

SP

CP

CP

CP

SP
SP

CP

1.6GB
800MB

16KB

X

y

r’(CP)

mapmm(SP) tsmm(SP)

r’(CP)

(persisted in
MEM_DISK)

X1,1

X2,1

Xm,1

28

706.550 Architecture of Machine Learning Systems – 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, SS 2022

Static and Dynamic Rewrites
 Example Static Rewrites (size-indep.)

 Common Subexpression Elimination
 Constant Folding / Branch Removal /

Block Sequence Merge
 Static Simplification Rewrites
 Right/Left Indexing Vectorization
 For Loop Vectorization
 Spark checkpoint/repartition injection

 Example Dynamic Rewrites (size-dep.)
 Dynamic Simplification Rewrites
 Matrix Mult Chain Optimization

Overview Apache SystemDS


t(X)

1kx1k
X

1kx1k
Z
1

2,002 MFLOPs

sum(λ*X)  λ*sum(X)
sum(X+Y)  sum(X)+sum(Y)

X

Y

X Y ┬*

trace(X%*%Y)  sum(X*t(Y))

O(n3) O(n2)

rowSums(X)  X, iff ncol(X)=1
sum(X^2)  X%*%t(X), iff ncol(X)=1

t(X)
1kx1k

X
1kx1k

p
1

4 MFLOPs

Size propagation
and sparsity
estimation

29

706.550 Architecture of Machine Learning Systems – 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, SS 2022

Apache SystemDS Design
 Objectives

 Effective and efficient data preparation, ML, and model debugging at scale
 High-level abstractions for different lifecycle tasks and users

 #1 Based on DSL for ML Training/Scoring
 Hierarchy of abstractions for DS tasks
 ML-based SotA, interleaved, performance

 #2 Hybrid Runtime Plans and Optimizing Compiler
 System infrastructure for diversity of algorithm classes
 Different parallelization strategies and new architectures (Federated ML)
 Abstractions  redundancy  automatic optimization

 #3 Data Model: Heterogeneous Tensors
 Data integration/prep requires generic data model

Overview Apache SystemDS

Apache SystemML (since 2010)
 SystemDS (09/2018)
 Apache SystemDS (07/2020)

30

706.550 Architecture of Machine Learning Systems – 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, SS 2022

Language Abstractions and APIs, cont.
 Example: Stepwise Linear Regression

Overview Apache SystemDS

X = read(‘features.csv’)
Y = read(‘labels.csv’)
[B,S] = steplm(X, Y,

icpt=0, reg=0.001)
write(B, ‘model.txt’)

User Script
m_steplm = function(...) {

while(continue) {
parfor(i in 1:n) {

if(!fixed[1,i]) {
Xi = cbind(Xg, X[,i])
B[,i] = lm(Xi, y, ...)

} }
add best to Xg
(AIC)

} }

Built-in Functions

m_lm = function(...) {
if(ncol(X) > 1024)

B = lmCG(X, y, ...)
else

B = lmDS(X, y, ...)
}

m_lmCG = function(...) {
while(i<maxi&nr2>tgt) {

q = (t(X) %*% (X %*% p))
+ lambda * p

beta = ... }
}

m_lmDS = function(...) {
l = matrix(reg,ncol(X),1)
A = t(X) %*% X + diag(l)
b = t(X) %*% y
beta = solve(A, b) ...}

Linear
Algebra

Programs

ML
Algorithms

Feature
Selection

Facilitates optimization
across data science

lifecycle tasks

31

706.550 Architecture of Machine Learning Systems – 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, SS 2022

Apache SystemDS Architecture
Overview Apache SystemDS

Command
Line JMLC ML Context Python, R, and Java

Language BindingsAPIs1

Optimizations
(e.g., IPA, rewrites,
operator ordering,
operator selection,

codegen)

Command
Line JMLC ML Context Python, R, and Java

Language Bindings

Parser/Language (syntactic/semantic)

High-Level Operators (HOPs)

Low-Level Operators (LOPs)

Built-in
Functions for
entire Lifecycle

APIs

Compiler2

1

Optimizations
(e.g., IPA, rewrites,
operator ordering,
operator selection,

codegen)

Command
Line JMLC ML Context Python, R, and Java

Language Bindings

Parser/Language (syntactic/semantic)

High-Level Operators (HOPs)

Low-Level Operators (LOPs)

Control Program

Recompiler Runtime
Program

Lineage & Reuse Cache

Buffer Pool

Mem/FS
I/O

Built-in
Functions for
entire Lifecycle

Codegen
I/O

DFS
I/O

APIs

Compiler2

1

3

Optimizations
(e.g., IPA, rewrites,
operator ordering,
operator selection,

codegen)

Command
Line JMLC ML Context Python, R, and Java

Language Bindings

Parser/Language (syntactic/semantic)

High-Level Operators (HOPs)

Low-Level Operators (LOPs)

Control Program

Recompiler Runtime
Program

Lineage & Reuse Cache

Buffer Pool

Mem/FS
I/O

ParFor
Optimizer/Runtime

Parameter
Server

TensorBlock Library
(single/multi-threaded, different value types,

homogeneous/heterogeneous tensors)

CP
Inst.

GPU
Inst.

Spark
Inst.

Feder-
ated
Inst.

Built-in
Functions for
entire Lifecycle

Codegen
I/O

DFS
I/O

APIs

Compiler2

1

3 4

[M. Boehm, I. Antonov, S. Baunsgaard, M. Dokter, R. Ginthör, K. Innerebner, F. Klezin, S. N. Lindstaedt,
A. Phani, B. Rath, B. Reinwald, S. Siddiqui, S. Benjamin Wrede: SystemDS: A Declarative Machine Learning
System for the End-to-End Data Science Lifecycle. CIDR 2020]

> 83,400 tests
> 8,500 DSL tests

32

706.550 Architecture of Machine Learning Systems – 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, SS 2022

Data Cleaning Pipelines
 Automatic Generation of Cleaning Pipelines

 Library of robust, parameterized data cleaning primitives
 Enumeration of DAGs of primitives & hyper-parameter optimization (HB, BO)

Apache SystemDS: Selected Features and Research

P1: gmm  imputeFDmergeDup delML Pn: outlierBySdmice  delDup voting

LPn

PP1

LP2LP1

PPn PPnPPnPP1

O

PP1

…

…

……

Outlier Detection MVI  Deduplication  Resolve Mislabels

Debugging

University Country
TU Graz Austria
TU Graz Austria
TU Graz Germany
IIT India
IIT IIT
IIT Pakistan
IIT India
SIBA Pakistan
SIBA null
SIBA null

University Country
TU Graz Austria
TU Graz Austria
TU Graz Austria
IIT India
IIT India
IIT India
IIT India
SIBA Pakistan
SIBA Pakistan
SIBA Pakistan

A B C D
0.77 0.80 1 1
0.96 0.12 1 1
0.66 0.09 null 1
0.23 0.04 17 1
0.91 0.02 17 null
0.21 0.38 17 1
0.31 null 17 1
0.75 0.21 20 1
null null 20 1
0.19 0.61 20 1
0.64 0.31 20 1

A B C D
0.77 0.80 1 1
0.96 0.12 1 1
0.66 0.09 17 1
0.23 0.04 17 1
0.91 0.02 17 1
0.21 0.38 17 1
0.31 0.29 17 1
0.75 0.21 20 1
0.41 0.24 20 1
0.19 0.61 20 1
0.64 0.31 20 1

Dirty Data After imputeFD(0.5) After MICE

Data
Samples

Target
App

Dirty Data

Rules/Objectives

Top-k
Pipelines

Data- and Task-parallel
Computation

Logical

Physical

[WIP] WashHouse:
Data Cleaning Benchmark

33

706.550 Architecture of Machine Learning Systems – 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, SS 2022

SliceLine for Model Debugging
 Problem Formulation

 Intuitive slice
scoring function

 Exact top-k slice finding
 𝑆𝑆 ≥ 𝜎𝜎 ∧ 𝑠𝑠𝑠𝑠 𝑆𝑆 > 0
 𝛼𝛼 ∈ (0,1]

 Properties & Pruning
 Monotonicity of slice sizes, errors
 Upper bound sizes/errors/scores
 pruning & termination

 Linear-Algebra-based Slice Finding
 Recoded matrix X, error vector e
 Vectorized implementation in linear algebra

(join & eval via sparse-sparse matrix multiply)
 Local and distributed task/data-parallel execution

Apache SystemDS: Selected Features and Research

[Credit: sliceline,
Silicon Valley, HBO]

𝑠𝑠𝑐𝑐 = 𝛼𝛼
𝑒̅𝑒(𝑆𝑆)
𝑒̅𝑒(𝑋𝑋)

− 1 − 1 − 𝛼𝛼
𝑋𝑋
𝑆𝑆
− 1

= 𝛼𝛼
𝑋𝑋
𝑆𝑆
⋅
∑𝑖𝑖=1

|𝑆𝑆| 𝑒𝑒𝑠𝑠𝑖𝑖
∑𝑖𝑖=1

|𝑋𝑋| 𝑒𝑒𝑖𝑖
− 1 − 1 − 𝛼𝛼

𝑋𝑋
𝑆𝑆
− 1

slice error slice size

[SIGMOD’21c]

34

706.550 Architecture of Machine Learning Systems – 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, SS 2022

Multi-Level Lineage Tracing & Reuse
 Lineage as Key Enabling Technique

 Trace lineage of operations (incl. non-determinism), dedup for loops/functions
 Model versioning, data reuse, incremental maintenance, autodiff, debugging

 Full Reuse of Intermediates
 Before executing instruction,

probe output lineage in cache
Map<Lineage, MatrixBlock>

 Cost-based/heuristic caching
and eviction decisions (compiler-assisted)

 Partial Reuse of Intermediates
 Problem: Often partial result overlap
 Reuse partial results via dedicated

rewrites (compensation plans)
 Example: steplm

Apache SystemDS: Selected Features and Research

for(i in 1:numModels)
R[,i] = lm(X, y, lambda[i,], ...)

m_lmDS = function(...) {
l = matrix(reg,ncol(X),1)
A = t(X) %*% X + diag(l)
b = t(X) %*% y
beta = solve(A, b) ...}

m_steplm = function(...) {
while(continue) {

parfor(i in 1:n) {
if(!fixed[1,i]) {

Xi = cbind(Xg, X[,i])
B[,i] = lm(Xi, y, ...)

} }
add best to Xg
(AIC)

} }

X

t(X)

m>>n

[SIGMOD’21a]

35

706.550 Architecture of Machine Learning Systems – 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, SS 2022

Compressed Linear Algebra Extended
 Lossless Matrix Compression

 Improved general applicability (compression time, new compression schemes,
new kernels, intermediates, workload-aware)

 Sparsity  Redundancy exploitation
(data redundancy, structural redundancy)

 Workload-aware Compression
 Workload summary  compression
 Compression  execution planning

Apache SystemDS: Selected Features and Research

[under submission]

36

706.550 Architecture of Machine Learning Systems – 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, SS 2022

Federated Learning
 Federated Backend

 Federated data (matrices/frames) as meta data objects
 Federated linear algebra, (and federated parameter server)

 Federated Requests: READ, PUT, GET, EXEC_INST, EXEC_UDF, CLEAR

Apache SystemDS

X = federated(addresses=list(node1, node2, node3),
ranges=list(list(0,0), list(40K,70), ..., list(80K,0), list(100K,70)));

[SIGMOD 2021b]

37

706.550 Architecture of Machine Learning Systems – 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, SS 2022

An Open and Extensible System Infrastructure
for Integrated Data Analysis Pipelines

https://daphne-eu.eu/

Integrated Data Analysis Pipelines
for Large-scale Data Management,

HPC, and Machine Learning;
DAPHNE daughter of river god Peneus
(fountains, streams), chased by Apollo

The DAPHNE project is funded by the
European Union's Horizon 2020 research
and innovation program under grant
agreement number 957407 for the time
period from Dec/2020 through Nov/2024. [Louvre, Paris]

https://daphne-eu.eu/

38

706.550 Architecture of Machine Learning Systems – 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, SS 2022

Motivation
 Integrated Data Analysis Pipelines

 Open data formats, query processing
 Data preprocessing and cleaning
 ML model training and scoring
 HPC, custom codes, and simulations

 Hardware Challenges
 DM+ML+HPC share compilation

and runtime techniques /
converging cluster hardware

 End of Dennard scaling:
P = α CFV2 (power density 1)

 End of Moore’s law
 Amdahl’s law: sp = 1/s
 Increasing Specialization

DAPHNE Project  DAPHNE Overall Objective:
Open and extensible system infrastructure

39

706.550 Architecture of Machine Learning Systems – 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, SS 2022

DAPHNE Use Cases
 DLR Earth Observation

 ESA Sentinel-1/2 datasets  4PB/year
 Training of local climate zone classifiers on

So2Sat LCZ42 (15 experts, 400K instances,
10 labels each, 85% confidence, ~55GB H5)

 ML pipeline: preprocessing, ResNet18,
climate models

 IFAT Semiconductor Ion Beam Tuning
 KAI Semiconductor Material Degradation
 AVL Vehicle Dev Process (ejector geometries, KPIs)

 ML-assisted simulations, data cleaning, augmentation

DAPHNE Project

[So2Sat LC42 Dataset
https://mediatum.ub.tum.de/1454690]

[Xiao Xiang Zhu et al: So2Sat LCZ42: A
Benchmark Dataset for the Classification of

Global Local Climate Zones. GRSM 2020]

https://mediatum.ub.tum.de/1454690

40

706.550 Architecture of Machine Learning Systems – 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, SS 2022

DAPHNE System Architecture
DAPHNE Project

[Patrick Damme et al.: DAPHNE:
An Open and Extensible System

Infrastructure for Integrated Data
Analysis Pipelines, CIDR 2022]

41

706.550 Architecture of Machine Learning Systems – 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, SS 2022

Vectorized (Tiled) Execution
DAPHNE Project

Default Parallelization
Frame & Matrix Ops

Fused Operator Pipelines
on Tiles/Scalars + Codegen

Locality-aware,
Multi-device Scheduling

42

706.550 Architecture of Machine Learning Systems – 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, SS 2022

Vectorized (Tiled) Execution, cont.
 #1 Zero-copy Input Slicing

 Create view on sliced input (no-op)
 All kernels work on views

 #2 Sparse Intermediates
 Reuse dense/sparse kernels
 Sparse pipeline intermediates for free

 #3 Fine-grained Control
 Task sizes (dequeue, data access) vs data binding (cache-conscious ops)
 Scheduling for load balance (e.g., sparse operations)

 #4 Computational Storage
 Task queues connect eBPF programs,

async I/O into buffers, and op pipelines

DAPHNE Project

Presenter
Presentation Notes
eBPF … Extended Berkeley Packet Filter

43

706.550 Architecture of Machine Learning Systems – 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, SS 2022

Summary & Q&A
 Data Management Group
 Motivation and Goals
 Course Organization
 Course Outline, and Projects
 Apache SystemDS and DAPHNE

 Next Lectures (Part A)
 02 Languages, Architectures, and System Landscape [Mar 11] + projects
 03 Size Inference, Rewrites, and Operator Selection [Mar 18]
 04 Operator Fusion and Runtime Adaptation [Mar 25]
 05 Data- and Task-Parallel Execution [Apr 01]
 06 Parameter Servers [Apr 08]
 07 Hybrid Execution and HW Accelerators [Apr 29]
 08 Caching, Partitioning, Indexing and Compression [May 06]

Programming Projects in
Apache SystemDS, DAPHNE,

or Exercise on ML Pipeline

Thanks

	Architecture of ML Systems�01 Introduction and Overview
	Announcements/Org
	Agenda
	Data Management Group
	About Me
	Data Management Courses
	Motivation and Goals
	Example ML Applications (Past/Present)
	A Car Reacquisition Scenario
	Example ML Applications (Past/Present), cont.
	What is an ML System?
	What is an ML System?, cont.
	Course Organization
	Basic Course Organization
	Course Logistics
	Course Logistics, cont.
	Course Outline and Projects
	Part A: Overview and ML System Internals
	Part B: ML Lifecycle Systems
	Programming Projects
	Alternative Exercise
	Apache SystemDS: �A Declarative ML System for the �End-to-End Data Science Lifecycle
	Landscape of ML Systems
	The Data Science Lifecycle��aka KDD Process�aka CRISP-DM
	Example: Linear Regression Conjugate Gradient
	Apache SystemML/SystemDS
	Basic HOP and LOP DAG Compilation
	Static and Dynamic Rewrites
	Apache SystemDS Design
	Language Abstractions and APIs, cont.
	Apache SystemDS Architecture
	Data Cleaning Pipelines
	SliceLine for Model Debugging
	Multi-Level Lineage Tracing & Reuse
	Compressed Linear Algebra Extended
	Federated Learning
	�An Open and Extensible System Infrastructure �for Integrated Data Analysis Pipelines�https://daphne-eu.eu/
	Motivation
	DAPHNE Use Cases
	DAPHNE System Architecture
	Vectorized (Tiled) Execution
	Vectorized (Tiled) Execution, cont.
	Summary & Q&A

