
1
SCIENCE
PASSION

TECHNOLOGY

Architecture of ML Systems
02 Languages, Architectures, and
System Landscape
Matthias Boehm

Graz University of Technology, Austria

Institute of Interactive Systems and Data Science
Computer Science and Biomedical Engineering

BMK endowed chair for Data Management

Last update: Mar 10, 2022

2

706.550 Architecture of Machine Learning Systems – 02 System Architecture
Matthias Boehm, Graz University of Technology, SS 2022

Announcements/Org
 #1 Video Recording

 Link in TeachCenter & TUbe (lectures will be public)
 https://tugraz.webex.com/meet/m.boehm

 #2 Course Registrations (as of Mar 10)
 Architecture of Machine Learning Systems (AMLS)

 #3 SIGMOD Programming Context 2022
 Task: entity resolution blocking (recall, runtime limit)
 http://sigmod2022contest.eastus.cloudapp.azure.com/index.shtml
 Submission deadline: Apr 30
 Organized by: Georgia Tech / University of Modena
 Awards: XXX USD sponsored by Microsoft

113 (9)

https://tugraz.webex.com/meet/m.boehm
http://sigmod2022contest.eastus.cloudapp.azure.com/index.shtml

3

706.550 Architecture of Machine Learning Systems – 02 System Architecture
Matthias Boehm, Graz University of Technology, SS 2022

Projects / Exercises (project selection by Mar 31)

 #1 Apache SystemDS Projects
 https://issues.apache.org/jira/secure/Dashboard.jspa?selectPageId=12335852

#Filter-Results/12365413 (to be cleaned up by Mar 18)
 Features across the stack (built-in scripts, APIs, compiler, runtime)

 #2 DAPHNE Projects
 https://mboehm7.github.io/teaching/ss22_amls/AMLS_DAPHNE_projects.pdf
 OSS end 03/2022; Features at level of runtime, compiler, tools

 #3 Alternative 1: SIGMOD Programming Contest
 http://sigmod2022contest.eastus.cloudapp.azure.com/index.shtml
 Participate and build an ML-based ER blocking system

 #4 Alternative 2: Exercise on ML Pipelines
 https://mboehm7.github.io/teaching/ss22_amls/AMLS_2022_Exercise.pdf

Programming Projects or Exercises

https://issues.apache.org/jira/secure/Dashboard.jspa?selectPageId=12335852#Filter-Results/12365413
https://mboehm7.github.io/teaching/ss22_amls/AMLS_DAPHNE_projects.pdf
http://sigmod2022contest.eastus.cloudapp.azure.com/index.shtml
https://mboehm7.github.io/teaching/ss22_amls/AMLS_2022_Exercise.pdf

4

706.550 Architecture of Machine Learning Systems – 02 System Architecture
Matthias Boehm, Graz University of Technology, SS 2022

Agenda
 Data Science Lifecycle
 ML Systems Stack
 Language Abstractions
 ML Systems Benchmarks

5

706.550 Architecture of Machine Learning Systems – 02 System Architecture
Matthias Boehm, Graz University of Technology, SS 2022

Data Science Lifecycle

6

706.550 Architecture of Machine Learning Systems – 02 System Architecture
Matthias Boehm, Graz University of Technology, SS 2022

The Data Science Lifecycle
Data Science Lifecycle

Data/SW
Engineer

DevOps
Engineer

Data Integration
Data Cleaning

Data Preparation

Model Selection
Training

Hyper-parameters

Validate & Debug
Deployment

Scoring & Feedback

Data
Scientist

Data-centric View:
Application perspective
Workload perspective

System perspective

Exploratory Process
(experimentation, refinements, ML pipelines)

7

706.550 Architecture of Machine Learning Systems – 02 System Architecture
Matthias Boehm, Graz University of Technology, SS 2022

 Classic KDD Process (Knowledge Discovery in Databases)
 Descriptive (association rules, clustering) and predictive
 1990-2010

Select
Preprocess

Transform
Mining

Evaluate

The Data Science Lifecycle, cont.
Data Science Lifecycle

[Usama M. Fayyad, Gregory Piatetsky-Shapiro, Padhraic Smyth: From Data
Mining to Knowledge Discovery in Databases. AI Magazine 17(3) (1996)]

8

706.550 Architecture of Machine Learning Systems – 02 System Architecture
Matthias Boehm, Graz University of Technology, SS 2022

The Data Science Lifecycle, cont.
 CRISP-DM

 CRoss-Industry
Standard Process for
Data Mining

 Additional focus on
business understanding
and deployment

Data Science Lifecycle

[https://statistik-
dresden.de/archives/1128]

https://statistik-dresden.de/archives/1128

9

706.550 Architecture of Machine Learning Systems – 02 System Architecture
Matthias Boehm, Graz University of Technology, SS 2022

The 80% Argument
 Data Sourcing Effort

 Data scientists spend 80-90% time on finding
relevant datasets and data integration/cleaning.

 Technical Debts in ML Systems

 Glue code, pipeline jungles, dead code paths
 Plain-old-data types, multiple languages, prototypes
 Abstraction and configuration debts
 Data testing, reproducibility, process management, and cultural debts

Data Science Lifecycle

[Michael Stonebraker, Ihab F. Ilyas:
Data Integration: The Current
Status and the Way Forward.

IEEE Data Eng. Bull. 41(2) (2018)]

[D. Sculley et al.:
Hidden Technical Debt

in Machine Learning
Systems. NIPS 2015]

ML

10

706.550 Architecture of Machine Learning Systems – 02 System Architecture
Matthias Boehm, Graz University of Technology, SS 2022

A Text Classification Scenario
 Example ML Pipeline

 Training and Scoring

Data Science Lifecycle

Sentence
Classification

Sentence
Classification

Feature Extraction
(e.g., doc structure, sentences,

tokenization, n-grams)

…
(e.g., ⨝, ∪)

ΔFX

M “Model”
(weights, meta data)

Token
FeaturesSentences

Scoring

Training

FY

BMY

Y

ΔŶ

FX transformencode X

MX

transformapplyΔFX ΔX

transformdecodeΔFŶ

large-scale,
distributed

training

embedded
scoring

11

706.550 Architecture of Machine Learning Systems – 02 System Architecture
Matthias Boehm, Graz University of Technology, SS 2022

ML Systems Stack

12

706.550 Architecture of Machine Learning Systems – 02 System Architecture
Matthias Boehm, Graz University of Technology, SS 2022

What is an ML System?

Machine
Learning

(ML)
Statistics Data

Mining

ML Applications
(entire KDD/DS

lifecycle)

Classification
Regression

Recommenders
Clustering

Dim Reduction
Neural Networks

ML System

HPC

Prog.
Language
Compilers

Compilation
TechniquesDistributed

Systems

Operating
Systems

Data
Management

Runtime Techniques
(Execution, Data Access)

HW
Architecture

Accelerators

Rapidly Evolving

ML Systems Stack

13

706.550 Architecture of Machine Learning Systems – 02 System Architecture
Matthias Boehm, Graz University of Technology, SS 2022

Driving Factors for ML
 Improved Algorithms and Models

 Success across data and application domains
(e.g., health care, finance, transport, production)

 More complex models which leverage large data

 Availability of Large Data Collections
 Increasing automation and monitoring  data

(simplified by cloud computing & services)
 Feedback loops, simulation/data prog./augmentation
 Trend: self-supervised learning

 HW & SW Advancements
 Higher performance of hardware and infrastructure (cloud)
 Open-source large-scale computation frameworks,

ML systems, and vendor-provides libraries

ML Systems Stack

Data

ModelUsage

Feedback Loop

[Credit: Andrew Ng’14]

14

706.550 Architecture of Machine Learning Systems – 02 System Architecture
Matthias Boehm, Graz University of Technology, SS 2022

Stack of ML Systems
ML Systems Stack

ML Apps & Algorithms

Language Abstractions

Fault Tolerance

Execution Strategies

Data Representations

HW & Infrastructure

Training

Eager interpretation, lazy
evaluation, prog. compilation

Approximation, lineage,
checkpointing, checksums, ECC

Supervised, unsupervised, RL
linear algebra, libs, AutoML

Validation &
Debugging

Deployment &
Scoring

Hyper-parameter
Tuning

Model and Feature
Selection

Data Preparation
(e.g., one-hot, binning)

Data Integration & Data
Cleaning

Data Programming &
Augmentation

Local, distributed, cloud
(data, task, parameter server)

Dense & sparse tensor/matrix;
compress, partition, cache

CPUs, NUMA, GPUs, FPGAs,
ASICs, RDMA, SSD/NVM

Improve accuracy vs. performance vs. resource requirements
 Specialization & Heterogeneity

15

706.550 Architecture of Machine Learning Systems – 02 System Architecture
Matthias Boehm, Graz University of Technology, SS 2022

Accelerators (GPUs, FPGAs, ASICs)
 Memory- vs Compute-intensive

 CPU: dense/sparse, large mem, high
mem-bandwidth, moderate compute

 GPU: dense, small mem, slow PCI,
very high mem-bandwidth / compute

 Graphics Processing Units (GPUs)
 Extensively used for deep learning training and scoring
 NVIDIA Volta: “tensor cores” for 4x4 mm  64 2B FMA instruction

 Field-Programmable Gate Arrays (FPGAs)
 Customizable HW accelerators for prefiltering, compression, DL
 Examples: Microsoft Catapult/Brainwave Neural Processing Units (NPUs)

 Application-Specific Integrated Circuits (ASIC)
 Spectrum of chips: DL accelerators to computer vision
 Examples: Google TPUs (64K 2B FMA), NVIDIA DLA, Intel NNP, IBM TrueNorth

 Quantum Computers?
 Examples: IBM Q (Qiskit), Google Sycamore (Cirq TensorFlow Quantum)

ML Systems Stack

Apps
Lang

Faults
Exec
Data
HWOps

Operational Intensity

ML

DL

Roofline
Analysis

16

706.550 Architecture of Machine Learning Systems – 02 System Architecture
Matthias Boehm, Graz University of Technology, SS 2022

Data Representation
 ML- vs DL-centric Systems

 ML: dense and sparse matrices or tensors, different sparse
formats (CSR, CSC, COO), frames (heterogeneous)

 DL: mostly dense tensors, relies
on embeddings for NLP, graphs

 Data-Parallel Operations for ML
 Distributed matrices: RDD<MatrixIndexes,MatrixBlock>
 Data properties: distributed caching,

partitioning, compression

 Lossy Compression  Acc/Perf-Tradeoff
 Sparsification (reduce non-zero values)
 Quantization (reduce value domain), learned
 Data types: bfloat16, Intel Flexpoint (mantissa, exp)

ML Systems Stack

vec(Berlin) – vec(Germany)
+ vec(France) ≈ vec(Paris)

Node1 Node2

[Credit: Song Han’16]

Apps
Lang

Faults
Exec
Data
HW

17

706.550 Architecture of Machine Learning Systems – 02 System Architecture
Matthias Boehm, Graz University of Technology, SS 2022

Execution Strategies
 Batch Algorithms: Data and Task Parallel

 Data-parallel operations
 Different physical operators

 Mini-Batch Algorithms: Parameter Server
 Data-parallel and model-parallel PS
 Update strategies (e.g.,

async, sync, backup)
 Data partitioning strategies
 Federated ML (trend 2018)

 Lots of PS Decisions  Acc/Perf-Tradeoff
 Configurations (#workers, batch size/param schedules, update type/freq)
 Transfer optimizations: lossy compression, sparsification, residual accumulation,

gradient clipping, and momentum corrections

ML Systems Stack

Apps
Lang

Faults
Exec
Data
HW

18

706.550 Architecture of Machine Learning Systems – 02 System Architecture
Matthias Boehm, Graz University of Technology, SS 2022

Fault Tolerance & Resilience
 Resilience Problem

 Increasing error rates at scale
(soft/hard mem/disk/net errors)

 Robustness for preemption
 Need cost-effective resilience

 Fault Tolerance in Large-Scale Computation
 Block replication (min=1, max=3) in distributed file systems
 ECC; checksums for blocks, broadcast, shuffle
 Checkpointing (MapReduce: all task outputs; Spark/DL: on request)
 Lineage-based recomputation for recovery in Spark

 ML-specific Schemes (exploit app characteristics)
 Estimate contribution from lost partition to avoid strugglers
 Example: user-defined “compensation” functions

ML Systems Stack

Apps
Lang

Faults
Exec
Data
HW

19

706.550 Architecture of Machine Learning Systems – 02 System Architecture
Matthias Boehm, Graz University of Technology, SS 2022

Language Abstractions
 Optimization Scope

 #1 Eager Interpretation (debugging, no opt)
 #2 Lazy expression evaluation

(some opt, avoid materialization)
 #3 Program compilation (full opt, difficult)

 Optimization Objective
 Most common: min time s.t. memory constraints
 Multi-objective: min cost s.t. time, min time s.t. acc, max acc s.t. time

 Trend: Fusion and Code Generation
 Custom fused operations
 Examples: SystemML,

Weld, Taco, Julia,
TF XLA,TVM, TensorRT

ML Systems Stack

Sparsity-Exploiting Operator

Apps
Lang

Faults
Exec
Data
HW

20

706.550 Architecture of Machine Learning Systems – 02 System Architecture
Matthias Boehm, Graz University of Technology, SS 2022

ML Applications
 ML Algorithms (cost/benefit – time vs acc)

 Unsupervised/supervised; batch/mini-batch; first/second-order ML
 Mini-batch DL: variety of NN architectures and SGD optimizers

 Specialized Apps: Video Analytics
in NoScope (time vs acc)
 Difference detectors / specialized

models for “short-circuit evaluation”
 AutoML (time vs acc)

 Not algorithms but tasks (e.g., doClassify(X, y) + search space)
 Examples: MLBase, Auto-WEKA, TuPAQ, Auto-sklearn, Auto-WEKA 2.0
 AutoML services at Microsoft Azure, Amazon AWS, Google Cloud

 Data Programming and Augmentation (acc?)
 Generate noisy labels for pre-training
 Exploit expert rules, simulation models,

rotations/shifting, and labeling IDEs (Software 2.0)

ML Systems Stack

Apps
Lang

Faults
Exec
Data
HW

[Credit:
Jonathan

Tremblay‘18]

[Credit: Daniel Kang‘17]

21

706.550 Architecture of Machine Learning Systems – 02 System Architecture
Matthias Boehm, Graz University of Technology, SS 2022

Language Abstractions and
System Architectures

22

706.550 Architecture of Machine Learning Systems – 02 System Architecture
Matthias Boehm, Graz University of Technology, SS 2022

Landscape of ML Systems
Language Abstractions and System Architectures

Mahout
Spark ML MADlib

Orion

Santoku

Bismarck

F

LibFM

TensorDB DeepDive

Spark R

ORE

ScalOps
SimSQL

Fa

SAP HANA

RIOT-DB
OptiML

SystemML

Cumulon

Mahout
Samsara

LINVIEW

Velox

Emma
Kasen

Tupleware
GraphLab

TensorFlow

SciDB

MlbaseTUPAQ

Cümülön(-D)

Brainwash

Zombie

KeystoneML

Hamlet

Longview

Sherlock ModelHub
ModelDB

AzureML

BigR

R
Matlab

Julia
Weka

SPSS
SAS

VW

Torch

TheanoCNTK
Singa DL4J

Caffe
Keras

Photon ML

Columbus

scikit-learn

MS (Rev) R

RIOT
DMac

HP
Distributed R

Hemingway

Glade

Flink ML

BigDL

MXNetBUDS

R4ML

PyTorch

SystemDS

Dask Ludwig
JAX AIDA

RAPIDS

23

706.550 Architecture of Machine Learning Systems – 02 System Architecture
Matthias Boehm, Graz University of Technology, SS 2022

Landscape of ML Systems, cont.
Language Abstractions and System Architectures

#3 Distribution

Local (single node)

HW accelerators
(GPUs, FPGAs, ASICs)

Distributed

#4 Data Types

Collections

Graphs

Matrices

Tensors

Frames

#1 Language Abstraction

Operator Libraries

Algorithm Libraries

Computation Graphs

Linear Algebra
Programs

#2 Execution Strategies

Data-Parallel
Operations

Task-Parallel
Constructs

Parameter Server
(Modell-Parallel)

24

706.550 Architecture of Machine Learning Systems – 02 System Architecture
Matthias Boehm, Graz University of Technology, SS 2022

UDF-based Systems
 User-defined Functions (UDF)

 Data type: Input usually collections of cells, rows, or blocks
 Implement loss and overall optimizer by yourself / UDF abstractions
 Examples: data-parallel (e.g., Spark MLlib)

or In-DBMS analytics (MADlib, AIDA)

 Example SQL

Language Abstractions and System Architectures

Matrix Product in SQL

SELECT A.i, B.j,
SUM(A.val*B.val)

FROM A, B
WHERE A.j = B.i
GROUP BY A.i, B.j;

Matrix Product w/ UDF

SELECT A.i, B.j,
dot(A.row, B.col)

FROM A, B;

Optimization w/ UDA

Init(state)
Accumulate(state,data)
Merge(state,data)
Finalize(state,data)

25

706.550 Architecture of Machine Learning Systems – 02 System Architecture
Matthias Boehm, Graz University of Technology, SS 2022

Graph-based Systems
 Google Pregel

 Name: Seven Bridges of Koenigsberg (Euler 1736)
 “Think-like-a-vertex” (vertex-centric processing)
 Iterative processing in super steps, comm.: message passing

 Programming Model
 Represent graph as collection of

vertices w/ edge (adjacency) lists
 Implement algorithms via Vertex API
 Terminate if all vertices halted / no more msgs

Language Abstractions and System Architectures

[Grzegorz Malewicz et al: Pregel:
a system for large-scale graph

processing. SIGMOD 2010]

public abstract class Vertex {
public String getID();
public long superstep();
public VertexValue getValue();

public compute(Iterator<Message> msgs);
public sendMsgTo(String v, Message msg);
public void voteToHalt();

}

1
2

4
3

5

7 6

Worker
1

Worker
2

[1, 3, 4]2
7
4
1
5
3
6

[5, 6]
[1, 2]
[1, 2, 4]

[6, 7]
[2]
[5, 7]

Presenter
Presentation Notes
Note: Euler showed 1736 that there cannot be a route that crosses every bridge just once (Seven Bridges of Koenigsberg) because there can be at most 2 nodes (begin, end) that have an uneven number of bridges (enter,exit).

26

706.550 Architecture of Machine Learning Systems – 02 System Architecture
Matthias Boehm, Graz University of Technology, SS 2022

Graph-based Systems, cont.
 Example1: Connected Components

 Determine connected components of a graph (subgraphs of connected nodes)
 Propagate max(current, msgs) if != current to neighbors, terminate if no msgs

 Example 2: Page Rank
 Ranking of webpages by importance / impact
 #1: Initialize vertices to 1/numVertices()
 #2: In each super step

 Compute current vertex value:
value = 0.15/numVertices()+0.85*sum(msg)

 Send to all neighbors:
value/numOutgoingEdges()

Language Abstractions and System Architectures

1
2

4
3

5

7 6

Step 0 4
4

4
3

7

7 7

Step 1 4
4

4
4

7

7 7

Step 2 Step 3
converged

[Credit: https://en.
wikipedia.org/wiki/PageRank]

https://en.wikipedia.org/wiki/PageRank

27

706.550 Architecture of Machine Learning Systems – 02 System Architecture
Matthias Boehm, Graz University of Technology, SS 2022

Graph-based Systems, cont.
 Excursus: Graph Processing via Sparse Linear Algebra

 SystemDS’
components()

 SystemDS’
pageRank()

Language Abstractions and System Architectures

initialize state with vertex ids
c = seq(1,nrow(G));
diff = Inf;
iter = 1;
iterative computation of connected components
while(diff > 0 & (maxi==0 | iter<=maxi)) {
u = max(rowMaxs(G * t(c)), c);
diff = sum(u != c)
c = u; # update assignment
iter = iter + 1;

}

alpha = ifdef(argAlpha, 0.85);
while(i < maxi) {
power iteration on G w/ Gij = 1/degree
p = alpha*(G %*% p) + (1-alpha)*(e %*% u %*% p);
i += 1;

}

[Jure Leskovec, Anand
Rajaraman, Jeffrey D.
Ullman: Mining of Massive
Datasets, Stanford 2014]

28

706.550 Architecture of Machine Learning Systems – 02 System Architecture
Matthias Boehm, Graz University of Technology, SS 2022

Linear Algebra Systems
 Comparison Query Optimization

 Rule- and cost-based rewrites and operator ordering
 Physical operator selection and query compilation
 Linear algebra / other ML operators, DAGs,

control flow, sparse/dense formats

 #1 Interpretation (operation at-a-time)
 Examples: R, PyTorch, Morpheus [PVLDB’17]

 #2 Lazy Expression Compilation (DAG at-a-time)
 Examples: RIOT [CIDR’09], TensorFlow [OSDI’16]

Mahout Samsara [MLSystems’16]
 Examples w/ control structures: Weld [CIDR’17],

OptiML [ICML’11], Emma [SIGMOD’15]
 #3 Program Compilation (entire program)

 Examples: SystemML [PVLDB’16], Julia
Cumulon [SIGMOD’13], Tupleware [PVLDB’15]

Language Abstractions and System Architectures

Compilers for
Large-scale ML

DB
PL HPC

1: X = read($1); # n x m matrix
2: y = read($2); # n x 1 vector
3: maxi = 50; lambda = 0.001;
4: intercept = $3;
5: ...
6: r = -(t(X) %*% y);
7: norm_r2 = sum(r * r); p = -r;
8: w = matrix(0, ncol(X), 1); i = 0;
9: while(i<maxi & norm_r2>norm_r2_trgt)
10: {
11: q = (t(X) %*% X %*% p)+lambda*p;
12: alpha = norm_r2 / sum(p * q);
13: w = w + alpha * p;
14: old_norm_r2 = norm_r2;
15: r = r + alpha * q;
16: norm_r2 = sum(r * r);
17: beta = norm_r2 / old_norm_r2;
18: p = -r + beta * p; i = i + 1;
19: }
20: write(w, $4, format="text");

Optimization Scope

29

706.550 Architecture of Machine Learning Systems – 02 System Architecture
Matthias Boehm, Graz University of Technology, SS 2022

Linear Algebra Systems, cont.
 Some Examples …

Language Abstractions and System Architectures

X = read("./X");
y = read("./y");
p = t(X) %*% y;
w = matrix(0,ncol(X),1);

while(...) {
q = t(X) %*% X %*% p;
...

}

var X = drmFromHDFS("./X")
val y = drmFromHDFS("./y")
var p = (X.t %*% y).collect
var w = dense(...)
X = X.par(256).checkpoint()

while(...) {
q = (X.t %*% X %*% p)

.collect
...

}

read via queues
sess = tf.Session()
...
w = tf.Variable(tf.zeros(...,

dtype=tf.float64))

while ...:
v1 = tf.matrix_transpose(X)
v2 = tf.matmult(X, p)
v3 = tf.matmult(v1, v2)
q = sess.run(v3)
...

The picture can't be displayed.

(Custom DSL
w/ R-like syntax;

program compilation)

(Embedded DSL in Scala;
lazy evaluation)

(Embedded DSL in Python;
lazy [and eager] evaluation)

(1.x)

Note: TF 2.0
[Dan Moldovan et al.: AutoGraph:

Imperative-style Coding with Graph-
based Performance. SysML 2019.]

30

706.550 Architecture of Machine Learning Systems – 02 System Architecture
Matthias Boehm, Graz University of Technology, SS 2022

ML Libraries
 Fixed algorithm implementations

 Often on top of existing linear algebra or UDF abstractions

Language Abstractions and System Architectures

Single-node Example (Python)

from numpy import genfromtxt
from sklearn.linear_model \
import LinearRegression

X = genfromtxt('X.csv')
y = genfromtxt('y.csv')

reg = LinearRegression()
.fit(X, y)

out = reg.score(X, y)

Distributed Example (Spark Scala)

import org.apache.spark.ml
.regression.LinearRegression

val X = sc.read.csv('X.csv')
val y = sc.read.csv('y.csv')
val Xy = prepare(X, y).cache()

val reg = new LinearRegression()
.fit(Xy)

val out reg.transform(Xy)

SparkML/
MLlib

31

706.550 Architecture of Machine Learning Systems – 02 System Architecture
Matthias Boehm, Graz University of Technology, SS 2022

DNN Frameworks
 High-level DNN Frameworks

 Language abstraction for DNN construction and model fitting
 Examples: Caffe, Keras

 Low-level DNN Frameworks
 Examples: TensorFlow, MXNet, PyTorch, CNTK

Language Abstractions and System Architectures

model = Sequential()
model.add(Conv2D(32, (3, 3),
padding='same',

input_shape=x_train.shape[1:]))
model.add(Activation('relu'))
model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(
MaxPooling2D(pool_size=(2, 2)))

model.add(Dropout(0.25))
...

opt = keras.optimizers.rmsprop(
lr=0.0001, decay=1e-6)

Let's train the model using RMSprop
model.compile(loss='cat…_crossentropy',

optimizer=opt,
metrics=['accuracy'])

model.fit(x_train, y_train,
batch_size=batch_size,
epochs=epochs,
validation_data=(x_test, y_test),
shuffle=True)

32

706.550 Architecture of Machine Learning Systems – 02 System Architecture
Matthias Boehm, Graz University of Technology, SS 2022

Feature-centric Tools
 DeepDive

 Knowledge base construction via SQL/MLNs
 Grounding: SQL queries  factor graph
 Inference: statistical inference on factor graph
 Incremental maintenance via sampling / variational approach

 Overton (Apple)
 Building, monitoring, improving ML pipelines
 High-level abstractions: tasks and payloads
 Data slicing, multi-task learning, data augmentation

 Ludwig (Uber AI)
 Data types and configuration files
 Encoders, combiners, decoders
 Example “visual question answering”:

Language Abstractions and System Architectures

[Christopher Ré et al: Overton:
A Data System for Monitoring

and Improving Machine-
Learned Products, CIDR 2020]

[Jaeho Shin et al:
Incremental Knowledge

Base Construction Using
DeepDive. PVLDB 2015]

[Piero Molino, Yaroslav Dudin,
Sai Sumanth Miryala: Ludwig: a

type-based declarative deep
learning toolbox. CoRR 2019]

Presenter
Presentation Notes
MLN: markov logic networks
Bi-LSTM: bidirectional long-term short-term memory
Variational approach: store sparse factor graph (with fewer factors) to approximate distribution

33

706.550 Architecture of Machine Learning Systems – 02 System Architecture
Matthias Boehm, Graz University of Technology, SS 2022

ML Systems Benchmarks

34

706.550 Architecture of Machine Learning Systems – 02 System Architecture
Matthias Boehm, Graz University of Technology, SS 2022

“Big Data” Benchmarks w/ ML Components
 BigBench

 30 workloads (6 statistics, 17 data mining)
 Different data sources, processing types
 Note: TPCx-BB, TPCx-HS [TPCTC 2016]

 HiBench (Intel)
 MapReduce Micro benchmarks (WC, TeraSort)
 IR/ML (e.g., PageRank, K-means, Naïve Bayes)

 GenBase
 Preprocessing and ML in array databases

 SparkBench
 Existing library algorithms (ML, Graph, SQL, stream)
 ML: LogReg, SVM, matrix factorization, PageRank

ML Systems Benchmarks

[Lan Yi, Jinquan Dai: Experience
from Hadoop Benchmarking

with HiBench: From Micro-
Benchmarks Toward End-to-End

Pipelines. WBDB 2013]

[Ahmad Ghazal et al:
BigBench: towards an industry

standard benchmark for big
data analytics. SIGMOD 2013]

[Rebecca Taft et al: GenBase: a
complex analytics genomics
benchmark. SIGMOD 2014]

[Dakshi Agrawal et al:
SparkBench - A Spark

Performance Testing Suite.
TPCTC 2015]

35

706.550 Architecture of Machine Learning Systems – 02 System Architecture
Matthias Boehm, Graz University of Technology, SS 2022

Linear Algebra and DNN Benchmarks
 SLAB: Scalable LA Benchmark (UCSD)

 Ops: TRANS, NORM, GRM, MVM, ADD, GMM
 Pipelines/Decompositions: MMC, SVD
 Algorithms: OLS, LogReg, NMF, HRSE

 DAWNBench (Stanford)
 Image Classification ImageNet: 93% top-5 val err
 Image Classification CIFAR10: 94% test accuracy
 Question Answering SQuAD: 0.75 F1 measure

 MLPerf
 Image classification ImageNet, object detection

COCO, translation WMT En-Ger, recommendation
MovieLens, reinforcement learning GO

 Train to target accuracy
 Open (diff model) vs closed divisions

ML Systems Benchmarks

[Anthony Thomas, Arun
Kumar: A Comparative

Evaluation of Systems for
Scalable Linear Algebra-based

Analytics. PVLDB 2018]

[Peter Mattson et al.:
MLPerf Training

Benchmark, MLSys 2020]

[Cody Coleman et al.:
DAWNBench: An End-to-End

Deep Learning Benchmark
and Competition, ML

Systems Workshop 2017]

[https://mlcommons.org/en/training-normal-11/,
https://mlcommons.org/en/training-hpc-10/]

https://mlcommons.org/en/training-normal-11/
https://mlcommons.org/en/training-hpc-10/

36

706.550 Architecture of Machine Learning Systems – 02 System Architecture
Matthias Boehm, Graz University of Technology, SS 2022

DNN Benchmarks, cont.
ML Systems Benchmarks

[MLPerf v0.6: https://mlperf.org/training-results-0-6/,
MLPerf v0.7: https://mlperf.org/training-results-0-7]

96 x DGX-2H = 96 * 16 = 1536 V100 GPUs
 ~ 96 * $400K = $35M – $40M

[https://www.forbes.com/sites/tiriasresearch/2019/
06/19/nvidia-offers-a-turnkey-supercomputer-the-

dgx-superpod/#693400f43ee5]

V0.6

Presenter
Presentation Notes
V07: up to 4096 (regular), 16384 (HPC)

https://mlperf.org/training-results-0-6/
https://mlperf.org/training-results-0-7
https://www.forbes.com/sites/tiriasresearch/2019/06/19/nvidia-offers-a-turnkey-supercomputer-the-dgx-superpod/#693400f43ee5

37

706.550 Architecture of Machine Learning Systems – 02 System Architecture
Matthias Boehm, Graz University of Technology, SS 2022

AutoML and Data Cleaning
 MLBench

 Compare AutoML w/ human experts (Kaggle)
 Classification, regression; AUC vs Runtime

 (Open Source) AutoML Benchmark
 39 classification datasets, AUC metric, 10-fold CV
 Extensible metrics, OS AutoML frameworks, datasets

 CleanML
 Train/Test on dirty vs clean data (2x2)
 Missing values, outliers, duplicates, mislabels

 Meta Worlds Benchmark
 Meta-reinforcement and multi-task learning
 50 robotic tasks (e.g., get coffee, open window)

 Feature Type Inference
 Dirty/clean ML model training/test

ML Systems Benchmarks

[Yu Liu et.al: MLBench:
Benchmarking Machine

Learning Services Against
Human Experts. PVLDB 2018]

[Pieter Gijsbers et al.:
An Open Source AutoML

Benchmark. Automated ML
Workshop 2019]

[Peng Li et al: CleanML: A
Benchmark for Joint Data

Cleaning and Machine
Learning, ICDE 2021]

[Tianhe Yu et al: Meta-World: A
Bench-mark and Evaluation for

Multi-Task and Meta Reinforce-
ment Learning, CoRL 2019]

[Vraj Shah et al.: Towards Benchmarking
Feature Type Inference for AutoML

Platforms, SIGMOD 2021]

38

706.550 Architecture of Machine Learning Systems – 02 System Architecture
Matthias Boehm, Graz University of Technology, SS 2022

AutoML and Data Cleaning, cont.
 Excursus: ML-Commons Working Groups

 Including DataPerf
Working Group

ML Systems Benchmarks

[https://mlcommons.org/en/
groups/research-dataperf/]

https://mlcommons.org/en/groups/research-dataperf/

39

706.550 Architecture of Machine Learning Systems – 02 System Architecture
Matthias Boehm, Graz University of Technology, SS 2022

Summary and Q&A
 Data Science Lifecycle
 ML Systems Stack
 Language Abstractions
 ML System Benchmarks

 Recommended Reading (a critical perspective
on a broad sense of ML systems)
 [M. Jordan: SysML: Perspectives and

Challenges. Keynote at SysML 2018]
 “ML […] is far from being a solid engineering

discipline that can yield robust, scalable solutions
to modern data-analytic problems”

 https://www.youtube.com/watch?v=4inIBmY8dQI

 Others: https://nautil.us/deep-learning-is-hitting-a-wall-14467/ (Mar 10, 2022)

https://www.youtube.com/watch?v=4inIBmY8dQI
https://nautil.us/deep-learning-is-hitting-a-wall-14467/

	Architecture of ML Systems�02 Languages, Architectures, and System Landscape
	Announcements/Org
	Projects / Exercises (project selection by Mar 31)
	Agenda
	Data Science Lifecycle
	The Data Science Lifecycle
	The Data Science Lifecycle, cont.
	The Data Science Lifecycle, cont.
	The 80% Argument
	A Text Classification Scenario
	ML Systems Stack
	What is an ML System?
	Driving Factors for ML
	Stack of ML Systems
	Accelerators (GPUs, FPGAs, ASICs)
	Data Representation
	Execution Strategies
	Fault Tolerance & Resilience
	Language Abstractions
	ML Applications
	Language Abstractions and�System Architectures
	Landscape of ML Systems
	Landscape of ML Systems, cont.
	UDF-based Systems
	Graph-based Systems
	Graph-based Systems, cont.
	Graph-based Systems, cont.
	Linear Algebra Systems
	Linear Algebra Systems, cont.
	ML Libraries
	DNN Frameworks
	Feature-centric Tools
	ML Systems Benchmarks
	“Big Data” Benchmarks w/ ML Components
	Linear Algebra and DNN Benchmarks
	DNN Benchmarks, cont.
	AutoML and Data Cleaning
	AutoML and Data Cleaning, cont.
	Summary and Q&A

