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Announcements/Org
 #1 Video Recording 

 Link in TeachCenter & TUbe (lectures will be public)
 https://tugraz.webex.com/meet/m.boehm

 #2 AMLS Project Selections
 Project selection by Mar 31 (see Lecture 02 for four alternatives)
 Discussion current status project selection (~6 students assigned)

https://issues.apache.org/jira/secure/Dashboard.jspa?selectPageId=12335852#Filter-Results/12365413
https://mboehm7.github.io/teaching/ss22_amls/AMLS_DAPHNE_projects.pdf
http://sigmod2022contest.eastus.cloudapp.azure.com/index.shtml
https://mboehm7.github.io/teaching/ss22_amls/AMLS_2022_Exercise.pdf

https://tugraz.webex.com/meet/m.boehm
https://issues.apache.org/jira/secure/Dashboard.jspa?selectPageId=12335852#Filter-Results/12365413
https://mboehm7.github.io/teaching/ss22_amls/AMLS_DAPHNE_projects.pdf
http://sigmod2022contest.eastus.cloudapp.azure.com/index.shtml
https://mboehm7.github.io/teaching/ss22_amls/AMLS_2022_Exercise.pdf
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Agenda
 Compilation Overview
 Size Inference and Cost Estimation
 Rewrites (and Operator Selection)

SystemDS, and several 
other ML systems
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Compilation Overview
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Recap: Linear Algebra Systems
 Comparison Query Optimization

 Rule- and cost-based rewrites and operator ordering
 Physical operator selection and query compilation
 Linear algebra / other ML operators, DAGs, 

control flow, sparse/dense formats

 #1 Interpretation (operation at-a-time)
 Examples: R, PyTorch, Morpheus [PVLDB’17]

 #2 Lazy Expression Compilation (DAG at-a-time)
 Examples: RIOT [CIDR’09], TensorFlow [OSDI’16]

Mahout Samsara [MLSystems’16], Dask
 Examples w/ control structures: Weld [CIDR’17],

OptiML [ICML’11], Emma [SIGMOD’15]
 #3 Program Compilation (entire program)

 Examples: SystemML [ICDE’11/PVLDB’16], Julia,
Cumulon [SIGMOD’13], Tupleware [PVLDB’15]

Compilation Overview

Compilers for 
Large-scale ML

DB
PL HPC

1: X = read($1); # n x m matrix
2: y = read($2); # n x 1 vector
3: maxi = 50; lambda = 0.001; 
4: intercept = $3;
5: ...
6: r = -(t(X) %*% y); 
7: norm_r2 = sum(r * r); p = -r;
8: w = matrix(0, ncol(X), 1); i = 0;
9: while(i<maxi & norm_r2>norm_r2_trgt) 
10: {
11: q = (t(X) %*% X %*% p)+lambda*p;
12: alpha = norm_r2 / sum(p * q);
13: w = w + alpha * p;
14: old_norm_r2 = norm_r2;
15: r = r + alpha * q;
16: norm_r2 = sum(r * r);
17: beta = norm_r2 / old_norm_r2;
18: p = -r + beta * p; i = i + 1; 
19: }
20: write(w, $4, format="text");

Optimization Scope
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ML Program Compilation / Graphs
 Script:

 Operator DAG
(today’s lecture)
 a.k.a. “graph”

(data flow graph) 
 a.k.a. intermediate 

representation (IR)

 Runtime Plan
 Compiled runtime plans 

Interpreted plans

Compilation Overview

SPARK mapmmchain X.MATRIX.DOUBLE w.MATRIX.DOUBLE
v.MATRIX.DOUBLE _mVar4.MATRIX.DOUBLE XtwXv

while(...) {
q = t(X) %*% (w * (X %*% v)) ...

}

X v

ba+*

ba+*

b(*)r(t)

w

q

Operation

Data Dependency

[Multiple] Consumers of 
Intermediates

[Multiple] DAG roots (outputs)

No cycles

[Multiple] DAG leafs (inputs)

Statement 
Block 

Hierarchy
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ML Program Compilation / Graphs, cont.
 Example TF TensorBoard

Compilation Overview

(Node) Structure View Device View (CPU, GPU)
Tensor Shapes and 

Runtime Statistics (time, mem)

[https://github.com/tensorflow/tensorboard/blob/master/docs/r1/graphs.md]

Same 
color, 
same 

internal 
structure

Same 
color, 
same 

device

Edge thickness 
 size, 

Color intensity 
 time

https://github.com/tensorflow/tensorboard/blob/master/docs/r1/graphs.md
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Compilation Chain
Compilation Overview

Parsing (syntactic analysis)

Live Variable Analysis

Validate (semantic analysis)

Script

Construct HOP DAGs

Compute Memory Estimates

Construct LOP DAGs 
(incl operator selection, hop-lop rewrites) 

Generate Runtime Program

[Matthias Boehm et al:
SystemML's Optimizer: 

Plan Generation for 
Large-Scale Machine 

Learning Programs. IEEE 
Data Eng. Bull 2014]

Multiple 
Rounds

Static/Dynamic Rewrites

Intra-/Inter-Procedural Analysis

Static/Dynamic Rewrites

Execution Plan

Language

HOPs

LOPs

Dynamic 
Recompilation

(lecture 04)
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Recap: Basic HOP and LOP DAG Compilation
Compilation Overview

LinregDS (Direct Solve)
X = read($1);
y = read($2);
intercept = $3; 
lambda = 0.001;
...
if( intercept == 1 ) {

ones = matrix(1, nrow(X), 1); 
X = append(X, ones);

}
I = matrix(1, ncol(X), 1);
A = t(X) %*% X + diag(I)*lambda;
b = t(X) %*% y;
beta = solve(A, b);
...
write(beta, $4);

HOP DAG
(after rewrites)

LOP DAG
(after rewrites)

Cluster Config:
• driver mem: 20 GB
• exec mem:   60 GB

dg(rand)
(103x1,103)

r(diag)

X
(108x103,1011)

y
(108x1,108)

ba(+*) ba(+*)

r(t)

b(+)
b(solve)

writeScenario: 
X: 108 x 103, 1011

y: 108 x 1, 108

 Hybrid Runtime Plans:
• Size propagation / memory estimates
• Integrated CP / Spark runtime
• Dynamic recompilation during runtime
 Distributed Matrices

• Fixed-size (squared) matrix blocks
• Data-parallel operations

800MB

800GB

800GB
8KB

172KB

1.6TB

1.6TB

16MB
8MB

8KB

CP

SP

CP

CP

CP

SP
SP

CP

1.6GB
800MB

16KB

X

y

r’(CP)

mapmm(SP) tsmm(SP)

r’(CP)

(persisted in 
MEM_DISK)

X1,1

X2,1

Xm,1
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Size Inference and Cost Estimation
Crucial for Generating Valid Execution Plans 

& Cost-based Optimization
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Constant and Size Propagation
 Size Information

 Dimensions (#rows, #columns)
 Sparsity (#nnz/(#rows * #columns))
memory estimates and costs

 Principle: Worst-case Assumption
 Necessary for guarantees (memory)

 DAG-level Size Propagation
 Input: Size information for leaves
 Output: size information for 

all operators, -1 if still unknown
 Propagation based on 

operation semantics (single 
bottom-up pass  over DAG)

Size Inference and Cost Estimation

X = read($1);
y = read($2);
I = matrix(0.001, ncol(X), 1);
A = t(X) %*% X + diag(I);
b = t(X) %*% y;
beta = solve(A, b);

dg(rand)

r(diag)

X
(108x103,1011)

y
(108x1,108)

ba(+*) ba(+*)

r(t)

b(+)
b(solve)

write

(103x103,103)

(103x108,
1011)

(103x103,-1)
(103x1,-1)

(103x1,-1)

(103x103,
-1)

(103x1,
-1)

u(ncol)

(103x1,103)

0.001
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Constant and Size Propagation, cont.
 Example SystemDS

 Hop refreshSizeInformation() (exact)
 Hop inferOutputCharacteristics()
 Compiler explicitly differentiates between

exact and other size information
 Note: ops like aggregate, ctable, rmEmpty

challenging but w/ upper bounds

 Example TensorFlow
 Operator registrations
 Shape inference functions

Size Inference and Cost Estimation

Example Relu
(rectified linear unit)

REGISTER_OP(“Relu”)
.Input(“features: T”)
.Output(“activations: T”)
.Attr(“T: {realnumbertype, qint8}”)
.SetShapeFn(
shape_inference::UnchangedShape)

X

b(max)

0
[32 x 1024, 
nnz=7645]

[32 x 1024, 
𝐧𝐧𝐧𝐧𝐧𝐧=7645]

[Alex Passos: Inside TensorFlow – Eager execution runtime, 
https://www.youtube.com/watch?v=qjx65mD6nrc, Dec 2019]

https://www.youtube.com/watch?v=qjx65mD6nrc
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Constant and Size Propagation, cont. 
 Constant Propagation

 Relies on live variable analysis
 Propagate constant literals into

read-only statement blocks

 Program-level Size Propagation
 Relies on constant propagation

and DAG-level size propagation
 Propagate size information across

conditional control flow: size in leafs,
DAG-level prop, extract roots 

 if: reconcile if and else branch outputs
 while/for: reconcile pre and post loop,

reset if pre/post different 

Size Inference and Cost Estimation

X = read($1); # n x m matrix
y = read($2); # n x 1 vector
maxi = 50; lambda = 0.001; 
if(...){ }
r = -(t(X) %*% y); 
r2 = sum(r * r); 
p = -r;                     
w = matrix(0, ncol(X), 1); 
i = 0;
while(i<maxi & r2>r2_trgt) {

q = (t(X) %*% X %*% p)+lambda*p;
alpha = norm_r2 / sum(p * q);
w = w + alpha * p;
old_norm_r2 = norm_r2;
r = r + alpha * q;
r2 = sum(r * r);
beta = norm_r2 / old_norm_r2;
p = -r + beta * p;
i = i + 1; 

}
write(w, $4, format="text");

# m x 1
# m x 1

# m x 1

# m x 1
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Inter-Procedural Analysis
 Intra/Inter-Procedural Analysis (IPA)

 Integrates all size propagation techniques (DAG+program, size+constants)
 Intra-function and inter-function size propagation 

(called once, consistent sizes, consistent literals)

 Additional IPA Passes (selection)
 Inline functions (single statement block, small)
 Dead code elimination and simplification rewrites
 Remove unused functions & flag recompile-once 

Size Inference and Cost Estimation

X = read($X1)
X = foo(X);
if( $X2 != “ ” ) {
X2 = cbind(X,   
matrix(1,n,1));

X2 = foo(X2);
}...
eval(“foo”, X)

foo = function (Matrix[Double] A) 
return (Matrix[Double] B)

{
B = A – colSums(A);
if( sum(B!=B)>0 )
print(“NaNs encountered.”); 

}

1M x 1

1M x 2

? x ?
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Sparsity Estimation Overview
 Motivation

 Sparse input matrices from NLP, 
graph analytics, recommender 
systems, scientific computing

 Sparse intermediates
(transform, selection, dropout)

 Selection/permutation matrices

 Problem Definition
 Sparsity estimates used for format decisions, output allocation, cost estimates
 Matrix A with sparsity sA = nnz(A)/(mn) and matrix B with sB = nnz(B)/(nl)
 Estimate sparsity sC = nnz(C)/(ml) of matrix product C = A B; d=max(m,n,l)
 Assumptions

 A1: No cancellation errors
 A2: No not-a-number (NaN)

Size Inference and Cost Estimation

NLP Example
(SentenceCNN)

Common assumptions
 Boolean matrix product
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Sparsity Estimation – Estimators
 #1 Naïve Metadata Estimators

 Derive the output sparsity solely
from the sparsity of inputs (e.g., SystemDS)

 #2 Naïve Bitset Estimator
 Convert inputs to bitsets, perform Boolean mm (per row)  
 Examples: SciDB [SSDBM’11], NVIDIA cuSparse, Intel MKL

 #3 Sampling
 Take a sample of aligned columns of A and rows of B
 Sparsity estimated via max of count-products 
 Examples: MatFast [ICDE’17], improvements in paper

 #4 Density Map
 Store sparsity per b x b block (default b = 256)
 MM-like estimator (average case estimator for *,

probabilistic propagation 𝑠𝑠𝐴𝐴 + 𝑠𝑠𝐵𝐵 − 𝑠𝑠𝐴𝐴𝑠𝑠𝐵𝐵 for +) 
 Example: SpMacho [EDBT’15], AT Matrix [ICDE’16]

Size Inference and Cost Estimation

𝑠̂𝑠𝑐𝑐 = 1 − (1 − 𝑠𝑠𝐴𝐴𝑠𝑠𝐵𝐵)𝑛𝑛
𝑠̂𝑠𝑐𝑐 = min 1, 𝑠𝑠𝐴𝐴𝑛𝑛 ⋅ min(1, 𝑠𝑠𝐵𝐵𝑛𝑛)

Tradeoffs
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Sparsity Estimation – Estimators, cont.
 #5 Layered Graph [J.Comb.Opt.’98]

 Nodes: rows/columns in mm chain
 Edges: non-zeros connecting rows/columns
 Assign r-vectors ~ exp and propagate via min
 Estimate over roots (output columns)

 #6 MNC Sketch (Matrix Non-zero Count)
 Create MNC sketch for inputs A and B
 Exploitation of structural properties

(e.g., 1 non-zero per row, row sparsity)
 Support for matrix expressions

(reorganizations, elementwise ops)
 Sketch propagation and estimation

Size Inference and Cost Estimation

𝑠𝑠𝐶𝐶 = 𝑠̂𝑠𝐶𝐶 = ℎ𝐴𝐴𝑐𝑐ℎ𝐵𝐵𝑟𝑟 /(𝑚𝑚𝑚𝑚)
if max ℎ𝐴𝐴𝑟𝑟 ≤ 1 ∨ max ℎ𝐵𝐵𝑐𝑐 ≤ 1

[Johanna Sommer, Matthias Boehm, Alexandre V. Evfimievski, 
Berthold Reinwald, Peter J. Haas: MNC: Structure-Exploiting 
Sparsity Estimation for Matrix Expressions. SIGMOD 2019]
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Memory Estimates and Costing
 Memory Estimates

 Matrix memory estimate := based on the dimensions and sparsity, decide the 
format (sparse, dense) and estimate the size in memory

 Operation memory estimate := input, intermediates, output
 Worst-case sparsity estimates (upper bound)

 #1 Costing at Logical vs Physical Level
 Costing at physical level takes physical ops 

and rewrites into account but is much more costly

 #2 Costing Operators/Graphs vs Plans 
 Costing plans requires heuristics for 

# iterations, branches in general

 #3 Analytical vs Trained Cost Models
 Analytical: estimate I/O and compute workload
 Training: build regression models for individual ops

Size Inference and Cost Estimation

Physical, Plans, 
Trained

[PVLDB 2014]

Physical, Plans, 
Analytical

[SIGMOD 2015]

A Personal War Story

Logical, Graphs, 
Analytical

[PVDLB 2018]
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Excursus: Differentiable Programming
 Overview Differentiable Programming

 Adoption of auto differentiation concept from ML systems to PLs
 Yann LeCun

(Jan 2018) 

 Example DBMS Fitting
 Implement DBMS components 

as differentiable functions
 E.g.: cost model components
 Q: What about guarantees

(memory, size)?

Size Inference and Cost Estimation

“It's really very much like a regular prog[r]am, 
except it's parameterized, automatically 

differentiated, and trainable/optimizable.”

[Benjamin Hilprecht et al: DBMS 
Fitting: Why should we learn what 
we already know? CIDR 2020]
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Rewrites and Operator Selection
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Traditional PL Rewrites
 #1 Common Subexpression Elimination (CSE)

 Step 1: Collect and replace leaf nodes (variable reads and literals)
 Step 2: recursively remove CSEs bottom-up starting at the leafs

by merging nodes with same inputs (beware non-determinism)
 Example:

Rewrites and Operator Selection

R1 = 7 – abs(A * B)
R2 = abs(A * B) + rand()

7

-

R1

A B

abs

*

A B

+

rand

R2

abs

*

7

-

R1

abs

*

A B

+

rand

R2

abs

*

7

-

R1

+

rand

R2

A B

abs

*
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Traditional PL Rewrites, cont.
 #2 Constant Folding

 After constant propagation, fold sub-DAGs over literals into a single literal
 Approach: recursively compile and 

execute runtime instructions with 
special handling of one-side constants

 Example (GLM 
Binomial probit):

Rewrites and Operator Selection

ncol_y == 2 & dist_type == 2 
& link_type >= 1 & link_type <= 5

2 == 2 & 2 == 2 & 3 >= 1 & 3 <= 5

2 2

==

&

2 2

== 3 1

>=
3 5

<=&

&

TRUE

&

TRUE

TRUE

TRUE&

& TRUE

[A. V. Aho, M. S. Lam, R. Sethi, and J. D. 
Ullman. Compilers – Principles, Techniques, 

& Tools. Addison-Wesley, 2007]

Turing Award ‘20
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Traditional PL Rewrites, cont.
 #3 Branch Removal

 Applied after constant propagation
and constant folding

 True predicate: replace if  statement 
block with if-body blocks

 False predicate: replace if statement 
block with else-body block, or remove

 #4 Merge of Statement Blocks
 Merge sequences of unconditional

blocks (s1,s2) into a single block
 Connect matching DAG roots of s1

with DAG inputs of s2

Rewrites and Operator Selection

LinregDS (Direct Solve)
X = read($1);
y = read($2);
intercept = 0; 
lambda = 0.001;
...
if( intercept == 1 ) {

ones = matrix(1, nrow(X), 1); 
X = cbind(X, ones);

}
I = matrix(1, ncol(X), 1);
A = t(X) %*% X + diag(I)*lambda;
b = t(X) %*% y;
beta = solve(A, b);
...
write(beta, $4);

FALSE
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Static/Dynamic Simplification Rewrites
 Examples of Static Rewrites

 trace(X%*%Y)   sum(X*t(Y))
 sum(X+Y)       sum(X)+sum(Y)
 (X%*%Y)[7,3]   X[7,]%*%Y[,3]
 sum(t(X))      sum(X)
 rand()*7       rand(,min=0,max=7)
 sum(lambda*X)  lambda * sum(X); 

 Examples of Dynamic Rewrites
 t(X) %*% y     t(t(y) %*% X) s.t. costs
 X[a:b,c:d]=Y  X = Y iff dims(X)=dims(Y)
 (...) * X  matrix(0, nrow(X), ncol(X)) iff nnz(X)=0
 sum(X^2)      t(X)%*%X; rowSums(X)  X iff ncol(X)=1
 sum(X%*%Y)    sum(t(colSums(X))*rowSums(Y)) iff ncol(X)>t

Rewrites and Operator Selection

X

Y

X Y ┬*

O(n3) O(n2)

[Matthias Boehm et al: 
SystemML's Optimizer: Plan 

Generation for Large-Scale 
Machine Learning Programs. 

IEEE Data Eng. Bull 2014]



25

706.550 Architecture of Machine Learning Systems – 03 Compilation
Matthias Boehm, Graz University of Technology, SS 2022 

Static/Dynamic Simplification Rewrites, cont.
 TF Constant Push-Down

 Add(c1,Add(x,c2))  Add(x,c1+c2)
 ConvND(c1*x,c2)  ConvND(x,c1*c2)

 TF Arithmetic Simplifications
 Flattening: a+b+c+d  AddN(a, b, c, d)
 Hoisting: AddN(x * a, b * x, x * c)  x * AddN(a+b+c)
 Reduce Nodes Numeric: x+x+x  3*x
 Reduce Nodes Logicial: !(x > y)  x <= y

 TF Broadcast Minimization
 (M1+s1) + (M2+s2)  (M1+M2) + (s1+s2)

 TF Better use of Intrinsics
 Matmul(Transpose(X), Y)  Matmul(X, Y, transpose_x=True)

Rewrites and Operator Selection

SystemML/SystemDS
RewriteElementwise-
MultChainOptimization
(orders and collapses matrix, 

vector, scalar op chains)

[Rasmus Munk Larsen, Tatiana Shpeisman: 
TensorFlow Graph Optimizations, 

Guest Lecture Stanford 2019]
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Static/Dynamic Simplification Rewrites, cont.
 Relaxed DNN Graph Substitutions 

 Allow substitutions that preserve 
semantics, no matter if faster/slower

 Backtracking search

 Additional Algorithms
 Partial order of substitutions w/ pruning
 Dynamic programming  substitutions

Rewrites and Operator Selection

ResNet
module

Increased 
conv2d

kernel size 
via padding 

1.3x faster on 
V100 GPUs

[Zhihao Jia, James J. Thomas, Todd Warszawski, 
Mingyu Gao, Matei Zaharia, Alex Aiken: 

Optimizing DNN Computation with Relaxed 
Graph Substitutions. MLSys 2019]

[Jingzhi Fang, Yanyan Shen, Yue Wang, 
Lei Chen: Optimizing DNN Computation 

Graph using Graph Substitutions. 
PVLDB 13(11) 2020]

Presenter
Presentation Notes
Note: MetaFlow w/ backtracking search



27

706.550 Architecture of Machine Learning Systems – 03 Compilation
Matthias Boehm, Graz University of Technology, SS 2022 

Static/Dynamic Simplification Rewrites, cont.
 Rewrites in PyTorch (Torch Script JIT)

 Misc: Canonicalization, 
erase number types and no-ops

 Fuse linear, fuse relu, fuse graph pipeline
 Peephole simplifications

(e.g., for dtype management)
 Inlining and loop unrolling
 Concatenation and fusion

rewrites:

Rewrites and Operator Selection

[https://github.com/pytorch/pytorch/blob/master
/torch/csrc/jit/passes/subgraph_rewrite.cpp]

subgraph_rewrite.cpp 
(extracted Mar 17, 2022)

https://github.com/pytorch/pytorch/blob/master/torch/csrc/jit/passes/subgraph_rewrite.cpp
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Vectorization and Incremental Computation
 Loop Transformations

(e.g., OptiML, SystemML)
 Loop vectorization
 Loop hoisting

 Incremental Computations
 Delta update rules (e.g., LINVIEW, factorized)
 Incremental iterations (e.g., Flink)

 “Decremental”/Unlearning (GDPR)

Rewrites and Operator Selection

for(i in a:b)
X[i,1] = Y[i,2] + Z[i,1]

X[a:b,1] = Y[a:b,2] + Z[a:b,1]

A = t(X) %*% X + t(∆X) %*% ∆X 
b = t(X) %*% y + t(∆X) %*% ∆y

X

t(X)

y

[Sebastian Schelter: "Amnesia" –
Machine Learning Models That Can 
Forget User Data Very Fast. CIDR 2020]

[Sebastian Schelter, Stefan Grafberger, Ted Dunning:  
HedgeCut: Maintaining Randomised Trees for Low-
Latency Machine Unlearning. SIGMOD 2021]

Presenter
Presentation Notes
Note: “HedgeCut is a variation of the well-established “Extremely Randomised Trees” (ERT) approach [17], which learns an ensemble of randomized decision trees where attributes and cut-off points to split the data are chosen at random.” ref bottom-right

“It essentially consists of randomizing strongly both attribute and cut-point choice while splitting a tree node. In the extreme case, it builds totally randomized trees whose structures are independent of the output values of the learning sample. The strength of the randomization can be tuned to problem specifics by the appropriate choice of a parameter.”
https://orbi.uliege.be/bitstream/2268/9357/1/geurts-mlj-advance.pdf
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Update-in-place
 Example: Cumulative Aggregate via Strawman Scripts

 But: R, Julia, Matlab, SystemDS, NumPy all provide cumsum(X), etc

 Update in place (w/ O(n))
 SystemDS: via rewrites (why do the above scripts apply?)
 R: via reference counting
 Julia: by default, otherwise explicit B = copy(A) necessary

Rewrites and Operator Selection

1: cumsumN2 = function(Matrix[Double] A)
2:   return(Matrix[Double] B)
3: {
4:   B = A; csums = matrix(0,1,ncol(A));
5:   for( i in 1:nrow(A) ) {
6:     csums = csums + A[i,];
7:     B[i,] = csums;
8: }
9: }

1: cumsumNlogN = function(Matrix[Double] A)
2:   return(Matrix[Double] B)
3: {
4:   B = A; m = nrow(A); k = 1;
5:   while( k < m ) {
6:     B[(k+1):m,] = B[(k+1):m,] + B[1:(m‐k),];
7:     k = 2 * k;
8:   }
9: }copy-on-write  O(n^2)  O(n log n)
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Excursus: Automatic Rewrite Generation
 SPOOF/SPORES (Sum-Product Optim.)

 Break up LA ops into basic ops (RA)
 Elementary sum-product/RA rewrites
 Example:
sum(W%*%H)

 TASO (Super Optimization)
 List of operator specifications and properties
 Automatic generation/verification of graph 

substitutions and data layouts via cost-based backtracking search

Rewrites and Operator Selection

[Tarek Elgamal et al: SPOOF: Sum-Product 
Optimization and Operator Fusion for 

Large-Scale Machine Learning. CIDR 2017]

[Yisu Remy Wang et al: SPORES: Sum-Product 
Optimization via Relational Equality Saturation for 

Large Scale Linear Algebra. PVLDB 13(11) 2020]

[Zhihao Jia et al: TASO: optimizing 
deep learning computation with 

automatic generation of graph 
substitutions. SOSP 2019]
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Matrix Multiplication Chain Optimization
 Optimization Problem

 Matrix multiplication chain of n matrices M1, M2, …Mn (associative)
 Optimal parenthesization of the product M1M2 … Mn

 Search Space Characteristics
 Naïve exhaustive: Catalan numbers  Ω(4n / n3/2))
 DP applies: (1) optimal substructure, 

(2) overlapping subproblems
 Textbook DP algorithm: Θ(n3) time, Θ(n2) space

 Examples: SystemML ‘14, 
RIOT (‘09 I/O costs), SpMachO (‘15 sparsity)

 Best known: O(n log n)

Rewrites and Operator Selection


t(X)

1kx1k
X

1kx1k
Z
1

2,002  MFLOPs

t(X)
1kx1k

X
1kx1k

p
1

4  MFLOPs

Size propagation 
and sparsity 
estimation

n Cn-1

5 14

10 4,862

15 2,674,440

20 1,767,263,190

25 1,289,904,147,324

[T. C. Hu, M. T. Shing: Computation of Matrix Chain 
Products. Part II. SIAM J. Comput. 13(2): 228-251, 1984]

Presenter
Presentation Notes
Ω .. Lower bound, Θ tight bound, O upper bound
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Matrix Multiplication Chain Optimization, cont. 
Rewrites and Operator Selection

M1 M2 M3 M4 M5

10x7 7x5 5x1 1x3 3x9

M1 M2 M3 M4 M5

Cost matrix 
m

0 0 0 0 0

1

2

3

4

5 1

2

3

4

5

j i

350 35 15 27

105 56 72

135 125

222

m[1,3] = min(
m[1,1] + m[2,3] + p1p2p4,
m[1,2] + m[3,3] + p1p3p4 )

= min(
0 + 35 + 10*7*1, 
350 + 0 + 10*5*1 )

= min(
105,
400 )

[T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. 
Stein: Introduction to Algorithms, Third Edition, 
The MIT Press, pages 370-377, 2009]
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Matrix Multiplication Chain Optimization, cont.
Rewrites and Operator Selection

Optimal split 
matrix s

1 2 3 4
2 41 3 3

3 3

3

M1 M2 M3 M4 M5

10x7 7x5 5x1 1x3 3x9

M1 M2 M3 M4 M5

Cost matrix 
m

0 0 0 0 0

1

2

3

4

5 1

2

3

4

5

j i

350 35 15 27

105 56 72

135 125

222

( M1 M2 M3 M4 M5 )
( ( M1 M2 M3 ) ( M4 M5 ) )

( ( M1 ( M2 M3 ) ) ( M4 M5 ) )

 ((M1 (M2 M3)) (M4 M5))

getOpt(s,1,5)
getOpt(s,1,3)
getOpt(s,4,5)

 Open questions: DAGs; other operations, sparsity
joint opt w/ rewrites, CSE, fusion, and physical operators
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Matrix Multiplication Chain Optimization, cont.
 Sparsity-aware

mmchain Opt
 Additional n x n 

sketch matrix e

 Sketch propagation for optimal subchains (currently for all chains)
 Modified cost computation via MNC sketches

(number FLOPs for sparse instead of dense mm)

Rewrites and Operator Selection

Optimal split 
matrix S

Cost matrix 
M

Sketch matrix E

𝐶𝐶𝑖𝑖,𝑗𝑗 = min
𝑘𝑘∈ 𝑖𝑖,𝑗𝑗−1

(𝐶𝐶𝑖𝑖,𝑘𝑘 + 𝐶𝐶𝑘𝑘+1,𝑗𝑗
+𝑬𝑬𝒊𝒊,𝒌𝒌.𝒉𝒉𝒄𝒄𝑬𝑬𝒌𝒌+𝟏𝟏,𝒋𝒋.𝒉𝒉𝒓𝒓)

[Johanna Sommer, Matthias Boehm, Alexandre 
V. Evfimievski, Berthold Reinwald, Peter J. Haas: 
MNC: Structure-Exploiting Sparsity Estimation 
for Matrix Expressions. SIGMOD 2019]

Example: n=20 matrices
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Physical Rewrites and Optimizations
 Distributed Caching

 Redundant compute vs. memory consumption and I/O
 #1 Cache intermediates w/ multiple refs (Emma)
 #2 Cache initial read and read-only loop vars (SystemML) 

 Partitioning
 Many frameworks exploit co-partitioning for efficient joins
 #1 Partitioning-exploiting operators (SystemML, Emma, Samsara)
 #2 Inject partitioning to avoid shuffle per iteration (SystemML)
 #3 Plan-specific data partitioning (SystemML, Dmac, Kasen)

 Other Data Flow Optimizations (Emma)
 #1 Exists unnesting (e.g., filter w/ broadcast  join)
 #2 Fold-group fusion (e.g., groupByKey reduceByKey)

 Physical Operator Selection

Rewrites and Operator Selection
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Physical Operator Selection
 Common Selection Criteria

 Data and cluster characteristics (e.g., data size/shape, memory, parallelism)
 Matrix/operation properties (e.g., diagonal/symmetric, sparse-safe ops)
 Data flow properties (e.g., co-partitioning, co-location, data locality)

 #0 Local Operators
 SystemML mm, tsmm, mmchain; Samsara/Mllib local

 #1 Special Operators (special patterns/sparsity)
 SystemML tsmm, mapmmchain; Samsara AtA

 #2 Broadcast-Based Operators (aka broadcast join)
 SystemML mapmm, mapmmchain

 #3 Co-Partitioning-Based Operators (aka improved repartition join)
 SystemML zipmm; Emma, Samsara OpAtB

 #4 Shuffle-Based Operators (aka repartition join)
 SystemML cpmm, rmm; Samsara OpAB

Rewrites and Operator Selection

X

v

X

1st

pass 2nd

pass

q┬

t(X) %*% (X%*%v)
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Sparsity-Exploiting Operators
 Goal: Avoid dense intermediates and unnecessary computation

 #1 Fused Physical Operators 
 E.g., SystemML [PVLDB’16]

wsloss, wcemm, wdivmm
 Selective computation 

over non-zeros of 
“sparse driver”

 #2 Masked Physical Operators
 E.g., Cumulon MaskMult [SIGMOD’13]
 Create mask of “sparse driver”
 Pass mask to single masked

matrix multiply operator

Rewrites and Operator Selection

U V┬W –sum X

^2

*

sum(W * (X – U %*% t(V))^2)

O / (C %*% E %*% t(B))
/

O E t(B)

mm

mm

C

M
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Conclusions
 Summary

 Basic compilation overview
 Size inference and cost estimation
 Rewrites and operator selection

 Impact of Size Inference and Costs
 Advanced optimization of LA programs requires size inference 

for cost estimation and validity constraints

 Ubiquitous Rewrite Opportunities
 Linear algebra programs have plenty of room for optimization
 Potential for changed asymptotic behavior

 Next Lectures (next week: bye)
 04 Operator Fusion and Runtime Adaptation [Apr 01]

(advanced compilation, operator scheduling, JIT compilation,
operator fusion / codegen, MLIR)
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