



# Architecture of ML Systems 03 Size Inference and Rewrites

### **Matthias Boehm**

Graz University of Technology, Austria Computer Science and Biomedical Engineering Institute of Interactive Systems and Data Science BMK endowed chair for Data Management







Last update: Mar 17, 2022



# Announcements/Org

### #1 Video Recording

- Link in TeachCenter & TUbe (lectures will be public)
- https://tugraz.webex.com/meet/m.boehm



# #2 AMLS Project Selections

- Project selection by Mar 31 (see Lecture 02 for four alternatives)
- Discussion current status project selection (~6 students assigned)

https://issues.apache.org/jira/secure/Dashboard.jspa?selectPageId=12335852#Filter-Results/12365413
https://mboehm7.github.io/teaching/ss22\_amls/AMLS\_DAPHNE\_projects.pdf
http://sigmod2022contest.eastus.cloudapp.azure.com/index.shtml
https://mboehm7.github.io/teaching/ss22\_amls/AMLS\_2022\_Exercise.pdf





# Agenda

- Compilation Overview
- Size Inference and Cost Estimation
- Rewrites (and Operator Selection)







**SystemDS**, and several other ML systems





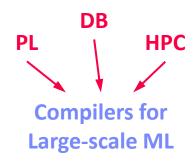
# **Compilation Overview**





# Recap: Linear Algebra Systems

- Comparison Query Optimization
  - Rule- and cost-based rewrites and operator ordering
  - Physical operator selection and query compilation
  - Linear algebra / other ML operators, DAGs, control flow, sparse/dense formats



- #1 Interpretation (operation at-a-time)
  - Examples: R, PyTorch, Morpheus [PVLDB'17]
- #2 Lazy Expression Compilation (DAG at-a-time)
  - Examples: RIOT [CIDR'09], TensorFlow [OSDI'16]
     Mahout Samsara [MLSystems'16], Dask
  - Examples w/ control structures: Weld [CIDR'17],
     OptiML [ICML'11], Emma [SIGMOD'15]
- #3 Program Compilation (entire program)
  - Examples: SystemML [ICDE'11/PVLDB'16], Julia,
     Cumulon [SIGMOD'13], Tupleware [PVLDB'15]

### **Optimization Scope**

```
1: X = read($1); # n x m matrix
2: y = read(\$2); # n x 1 vector
3: \max i = 50; lambda = 0.001;
4: intercept = $3;
   r = -(t(X) %*% y);
   norm r2 = sum(r * r); p = -r;
   w = matrix(0, ncol(X), 1); i = 0;
   while(i<maxi & norm r2>norm r2 trgt)
10: {
11:
      q = (t(X) %*% X %*% p)+lambda*p;
12:
       alpha = norm_r2 / sum(p * q);
13:
       w = w + alpha * p;
14:
       old norm r2 = norm r2;
15:
       r = r + alpha * a;
16:
       norm r2 = sum(r * r);
17:
       beta = norm r2 / old norm r2;
       p = -r + beta * p; i = i + 1;
18:
19: }
20: write(w, $4, format="text");
```



Block

# ML Program Compilation / Graphs

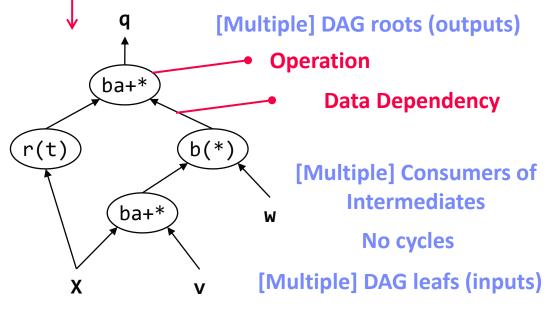
Script:

while(...) { Statement q = t(X) %\*% (w \* (X %\*% v)) ...Hierarchy

**Operator DAG** 

(today's lecture)

- a.k.a. "graph" (data flow graph)
- a.k.a. intermediate representation (IR)



### Runtime Plan

Compiled runtime plans Interpreted plans

SPARK mapmmchain X.MATRIX.DOUBLE w.MATRIX.DOUBLE v.MATRIX.DOUBLE mVar4.MATRIX.DOUBLE XtwXv

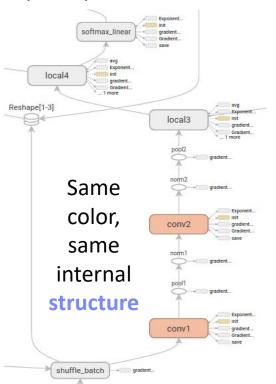


# ML Program Compilation / Graphs, cont.

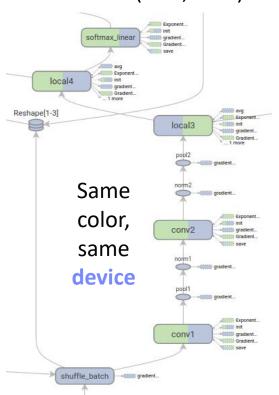


### Example TF TensorBoard

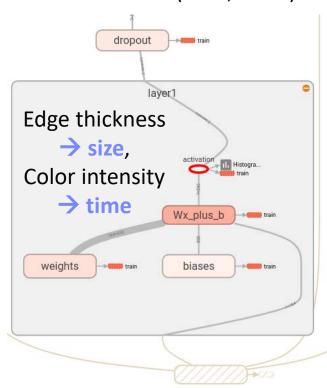
### (Node) Structure View



### **Device View (CPU, GPU)**



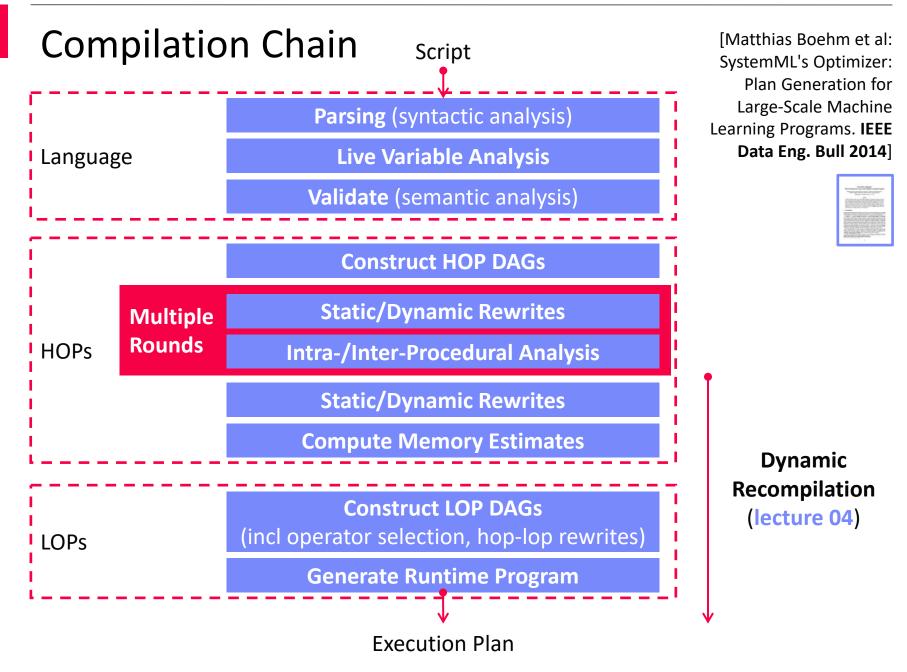
# Tensor Shapes and Runtime Statistics (time, mem)



[https://github.com/tensorflow/tensorboard/blob/master/docs/r1/graphs.md]









# Recap: Basic HOP and LOP DAG Compilation

### **LinregDS (Direct Solve)**

```
X = read($1);
y = read($2);
intercept = $3;
lambda = 0.001;
...

if( intercept == 1 ) {
   ones = matrix(1, nrow(X), 1);
   X = append(X, ones);
}

I = matrix(1, ncol(X), 1);
A = t(X) %*% X + diag(I)*lambda;
b = t(X) %*% y;
beta = solve(A, b);
...
write(beta, $4);
```

# HOP DAG (after rewrites) 8KB CP write • driver mem: 20 GB

8MB • exec mem: 60 GB
16MB CP b(solve)

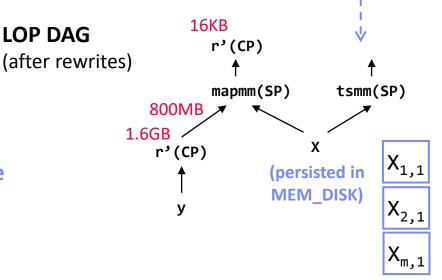
# 172KB CP r(diag) ba(+\*) SP ba(+\*) 800GB SP 1.6TB SP 1.6TB SP (103x1,103) (108x103,1011) (108x1,108) (108x1,108)

# → Hybrid Runtime Plans:

- Size propagation / memory estimates
- Integrated CP / Spark runtime
- Dynamic recompilation during runtime

### **→** Distributed Matrices

- Fixed-size (squared) matrix blocks
- Data-parallel operations





# Size Inference and Cost Estimation

Crucial for Generating Valid Execution Plans & Cost-based Optimization

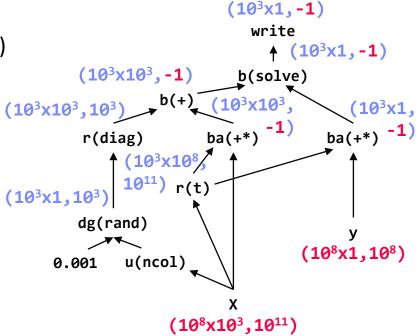




# **Constant and Size Propagation**

- Size Information
  - Dimensions (#rows, #columns)
  - Sparsity (#nnz/(#rows \* #columns))
  - memory estimates and costs
- Principle: Worst-case Assumption
  - Necessary for guarantees (memory)
- DAG-level Size Propagation
  - Input: Size information for leaves
  - Output: size information for all operators, -1 if still unknown
  - Propagation based on operation semantics (single bottom-up pass over DAG)

```
X = read($1);
y = read($2);
I = matrix(0.001, ncol(X), 1);
A = t(X) %*% X + diag(I);
b = t(X) %*% y;
beta = solve(A, b);
```







# Constant and Size Propagation, cont.

### Example SystemDS

- Hop refreshSizeInformation() (exact)
- Hop inferOutputCharacteristics()
- Compiler explicitly differentiates between exact and other size information
- Note: ops like aggregate, ctable, rmEmpty challenging but w/ upper bounds

# Example Relu (rectified linear unit) [32 x 1024, nnz=7645] b(max) [32 x 1024, nnz=7645] X

## Example TensorFlow

- Operator registrations
- Shape inference functions



```
REGISTER_OP("Relu")
```

```
.Input("features: T")
.Output("activations: T")
.Attr("T: {realnumbertype, qint8}")
.SetShapeFn(
    shape inference::UnchangedShape)
```

[Alex Passos: Inside TensorFlow – Eager execution runtime, <a href="https://www.youtube.com/watch?v=qjx65mD6nrc">https://www.youtube.com/watch?v=qjx65mD6nrc</a>, Dec 2019]





# Constant and Size Propagation, cont.

### Constant Propagation

- Relies on live variable analysis
- Propagate constant literals into read-only statement blocks

### Program-level Size Propagation

- Relies on constant propagation and DAG-level size propagation
- Propagate size information across conditional control flow: size in leafs,
   DAG-level prop, extract roots
- if: reconcile if and else branch outputs
- while/for: reconcile pre and post loop, reset if pre/post different

```
X = read(\$1); # n x m matrix
y = read($2); # n x 1 vector
maxi = 50; lambda = 0.001;
if(...){ }
r = -(t(X) %*% y);
r2 = sum(r * r);
                            # m x 1
p = -r;
                            # m x 1
w = matrix(0, ncol(X), 1);
i = 0:
while(i<maxi & r2>r2_trgt) {
   q = (t(X) %*% X %*% p)+lambda*p;
   alpha = norm r2 / sum(p * q);
   w = w + alpha * p;
                            # m x 1
   old norm_r2 = norm_r2;
   r = r + alpha * q;
   r2 = sum(r * r);
   beta = norm_r2 / old_norm_r2;
                            # m x 1
   p = -r + beta * p;
   i = i + 1;
write(w, $4, format="text");
```

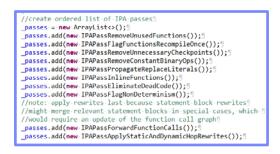




# Inter-Procedural Analysis

- Intra/Inter-Procedural Analysis (IPA)
  - Integrates all size propagation techniques (DAG+program, size+constants)
  - Intra-function and inter-function size propagation (called once, consistent sizes, consistent literals)

- Additional IPA Passes (selection)
  - Inline functions (single statement block, small)
  - Dead code elimination and simplification rewrites
  - Remove unused functions & flag recompile-once



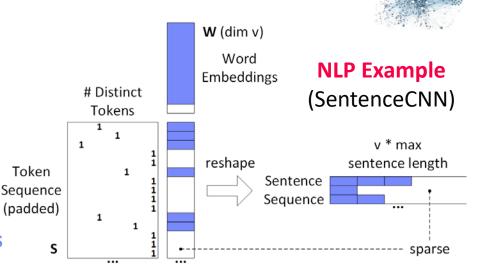




# **Sparsity Estimation Overview**

### Motivation

- Sparse input matrices from NLP, graph analytics, recommender systems, scientific computing
- Sparse intermediates (transform, selection, dropout)
- Selection/permutation matrices



### Problem Definition

- Sparsity estimates used for format decisions, output allocation, cost estimates
- Matrix A with sparsity  $s_A = nnz(A)/(mn)$  and matrix B with  $s_B = nnz(B)/(nl)$
- Estimate sparsity s<sub>C</sub> = nnz(C)/(ml) of matrix product C = A B; d=max(m,n,l)
- Assumptions
  - A1: No cancellation errors
  - A2: No not-a-number (NaN)

Common assumptions

**→** Boolean matrix product





# Sparsity Estimation – Estimators



### #1 Naïve Metadata Estimators

 Derive the output sparsity solely from the sparsity of inputs (e.g., SystemDS)

$$\hat{s}_c = 1 - (1 - s_A s_B)^n$$

$$\hat{s}_c = \min(1, s_A n) \cdot \min(1, s_B n)$$

### #2 Naïve Bitset Estimator

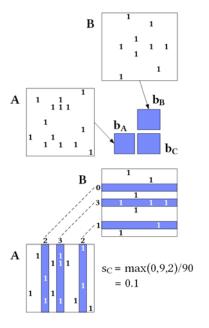
- Convert inputs to bitsets, perform Boolean mm (per row)
- Examples: SciDB [SSDBM'11], NVIDIA cuSparse, Intel MKL

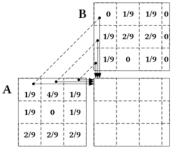
# #3 Sampling

- Take a sample of aligned columns of A and rows of B
- Sparsity estimated via max of count-products
- Examples: MatFast [ICDE'17], improvements in paper

# #4 Density Map

- Store sparsity per b x b block (default b = 256)
- MM-like estimator (average case estimator for \*, probabilistic propagation  $s_A + s_B s_A s_B$  for +)
- Example: SpMacho [EDBT'15], AT Matrix [ICDE'16]





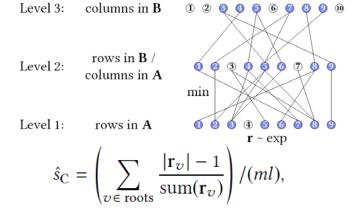


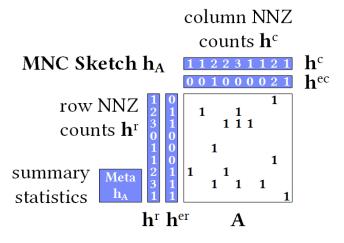
# Sparsity Estimation – Estimators, cont.

- #5 Layered Graph [J.Comb.Opt.'98]
  - Nodes: rows/columns in mm chain
  - Edges: non-zeros connecting rows/columns
  - Assign r-vectors ~ exp and propagate via min
  - Estimate over roots (output columns)
- #6 MNC Sketch (Matrix Non-zero Count)
  - Create MNC sketch for inputs A and B
  - Exploitation of structural properties
     (e.g., 1 non-zero per row, row sparsity)
  - Support for matrix expressions (reorganizations, elementwise ops)
  - Sketch propagation and estimation



[Johanna Sommer, Matthias Boehm, Alexandre V. Evfimievski, Berthold Reinwald, Peter J. Haas: MNC: Structure-Exploiting Sparsity Estimation for Matrix Expressions. **SIGMOD 2019**]





$$s_C = \hat{s}_C = h_A^c h_B^r / (ml)$$
  
if  $\max(h_A^r) \le 1 \vee \max(h_B^c) \le 1$ 





# Memory Estimates and Costing

### Memory Estimates

- Matrix memory estimate := based on the dimensions and sparsity, decide the format (sparse, dense) and estimate the size in memory
- Operation memory estimate := input, intermediates, output
- Worst-case sparsity estimates (upper bound)

# #1 Costing at Logical vs Physical Level

 Costing at physical level takes physical ops and rewrites into account but is much more costly

# #2 Costing Operators/Graphs vs Plans

- Costing plans requires heuristics for # iterations, branches in general
- #3 Analytical vs Trained Cost Models
  - Analytical: estimate I/O and compute workload
  - Training: build regression models for individual ops

### A Personal War Story

Physical, Plans, Trained [PVLDB 2014]





Physical, Plans, Analytical [SIGMOD 2015]





Logical, Graphs, Analytical [PVDLB 2018]







# **Excursus: Differentiable Programming**

### Overview Differentiable Programming

- Adoption of auto differentiation concept from ML systems to PLs
- Yann LeCun (Jan 2018)

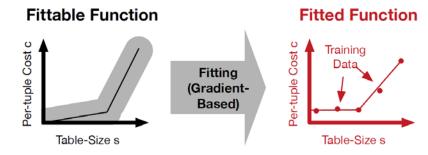
"It's really very much like a regular prog[r]am, except it's parameterized, automatically differentiated, and trainable/optimizable."

# Example DBMS Fitting

- Implement DBMS components as differentiable functions
- E.g.: cost model components
- Q: What about guarantees (memory, size)?



[Benjamin Hilprecht et al: DBMS Fitting: Why should we learn what we already know? **CIDR 2020**]



$$c(s) = \begin{cases} a_i \text{in} \cdot s + b_i \text{in if } s < \text{cache-size} \\ a_o \text{ut} \cdot s + b_o \text{ut if } s \ge \text{cache-size} \end{cases}$$

$$c(s) = \begin{cases} 0.0 \cdot s + 0.5 & \text{if } s < 30 \text{MB} \\ 1.2 \cdot s - 35.5 & \text{if } s \ge 30 \text{MB} \end{cases}$$





# Rewrites and Operator Selection

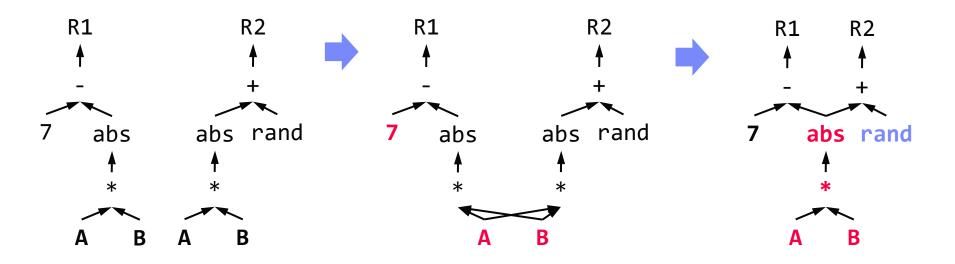




# Traditional PL Rewrites

- #1 Common Subexpression Elimination (CSE)
  - Step 1: Collect and replace leaf nodes (variable reads and literals)
  - Step 2: recursively remove CSEs bottom-up starting at the leafs by merging nodes with same inputs (beware non-determinism)
  - Example:

$$R1 = 7 - abs(A * B)$$
  
 $R2 = abs(A * B) + rand()$ 







# Traditional PL Rewrites, cont.

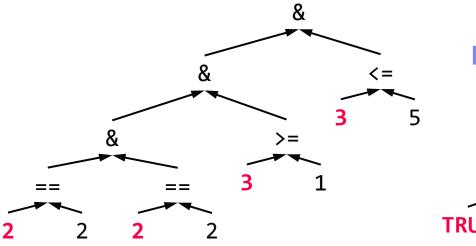
### #2 Constant Folding

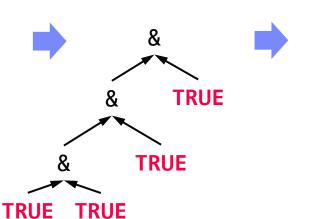
- After constant propagation, fold sub-DAGs over literals into a single literal
- Approach: recursively compile and execute runtime instructions with special handling of one-side constants

[A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers – Principles, Techniques, & Tools. Addison-Wesley, 2007]



Example (GLM Binomial probit):







TRUE



# Traditional PL Rewrites, cont.

### #3 Branch Removal

- Applied after constant propagation and constant folding
- True predicate: replace if statement block with if-body blocks
- False predicate: replace if statement block with else-body block, or remove

# #4 Merge of Statement Blocks

- Merge sequences of unconditional blocks (s1,s2) into a single block
- Connect matching DAG roots of s1 with DAG inputs of s2

### **LinregDS (Direct Solve)**

```
X = read($1);
y = read($2);
intercept = 0;
lambda = 0.001;
...     FALSE
if( intercept == 1 ) {
    ones = matrix(1, nrow(X), 1);
    X = cbind(X, ones);
}

I = matrix(1, ncol(X), 1);
A = t(X) %*% X + diag(I)*lambda;
b = t(X) %*% y;
beta = solve(A, b);
...
write(beta, $4);
```





# Static/Dynamic Simplification Rewrites

### Examples of Static Rewrites

- trace(X%\*%Y)  $\rightarrow$  sum(X\*t(Y))
- sum(X+Y)  $\rightarrow sum(X)+sum(Y)$
- $(X%*%Y)[7,3] \rightarrow X[7,]%*%Y[,3]$
- sum(t(X))  $\rightarrow sum(X)$
- sum(lambda\*X) → lambda \* sum(X);

> [Matthias Boehm et al: SystemML's Optimizer: Plan Generation for Large-Scale Machine Learning Programs. IEEE Data Eng. Bull 2014]



### Examples of Dynamic Rewrites

- t(X) %\*% y  $\rightarrow$  t(t(y) %\*% X) s.t. costs
- X[a:b,c:d]=Y → X = Y iff dims(X)=dims(Y)
- (...) \* X  $\rightarrow$  matrix(0, nrow(X), ncol(X)) iff nnz(X)=0
- $sum(X^2)$   $\rightarrow t(X)%*%X; rowSums(X) <math>\rightarrow X iff ncol(X)=1$
- sum(X%\*%Y) → sum(t(colSums(X))\*rowSums(Y)) iff ncol(X)>t





# Static/Dynamic Simplification Rewrites, cont.



### TF Constant Push-Down

- Add(c1,Add(x,c2))  $\rightarrow$  Add(x,c1+c2)
- ConvND(c1\*x,c2)  $\rightarrow$  ConvND(x,c1\*c2)

[Rasmus Munk Larsen, Tatiana Shpeisman: TensorFlow Graph Optimizations, Guest Lecture Stanford 2019]



## TF Arithmetic Simplifications

- Flattening:  $a+b+c+d \rightarrow AddN(a, b, c, d)$
- Hoisting: AddN(x \* a, b \* x, x \* c)  $\rightarrow$  x \* AddN(a+b+c)
- Reduce Nodes Numeric:  $x+x+x \rightarrow 3*x$
- Reduce Nodes Logicial:  $!(x > y) \rightarrow x <= y$

### TF Broadcast Minimization

■  $(M1+s1) + (M2+s2) \rightarrow (M1+M2) + (s1+s2)$ 

### SystemML/SystemDS

RewriteElementwise-MultChainOptimization (orders and collapses matrix, vector, scalar op chains)

### TF Better use of Intrinsics

■ Matmul(Transpose(X), Y) → Matmul(X, Y, transpose\_x=True)





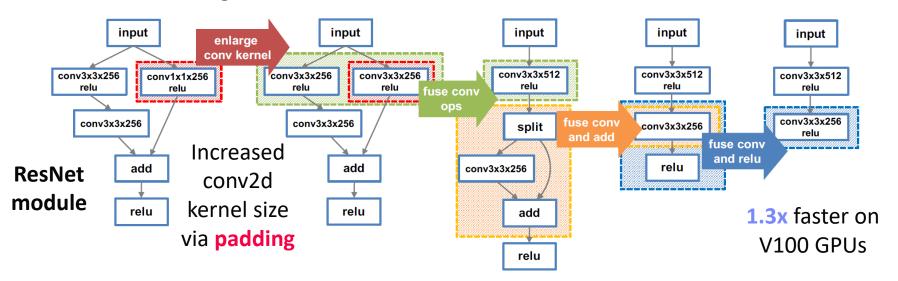
# Static/Dynamic Simplification Rewrites, cont.

### **Relaxed DNN Graph Substitutions**

- Allow substitutions that preserve semantics, no matter if faster/slower
- Backtracking search

[Zhihao Jia, James J. Thomas, Todd Warszawski, Mingyu Gao, Matei Zaharia, Alex Aiken: Optimizing DNN Computation with Relaxed Graph Substitutions. MLSys 2019]





# **Additional Algorithms**

- Partial order of substitutions w/ pruning
- Dynamic programming  $\rightarrow$  substitutions

[Jingzhi Fang, Yanyan Shen, Yue Wang, Lei Chen: Optimizing DNN Computation Graph using Graph Substitutions. **PVLDB 13(11) 2020**]







# Static/Dynamic Simplification Rewrites, cont.

Rewrites in PyTorch (Torch Script JIT)

**PYT**ORCH

- Misc: Canonicalization, erase number types and no-ops
- Fuse linear, fuse relu, fuse graph pipeline
- Peephole simplifications (e.g., for dtype management)
- Inlining and loop unrolling
- Concatenation and fusion rewrites:

[https://github.com/pytorch/pytorch/blob/master
 /torch/csrc/jit/passes/subgraph rewrite.cpp]

```
void SubgraphRewriter::RegisterDefaultPatterns() {
36
      // TODO: Add actual patterns (like Conv-Relu).
37
      RegisterRewritePattern(
38
          R"IR(
39
    graph(%x, %w, %b):
40
      %c = aten::conv(%x, %w, %b)
41
      %r = aten::relu(%c)
42
      return (%r))IR",
43
          R"IR(
44
    graph(%x, %w, %b):
45
      %r = aten::convrelu(%x, %w, %b)
46
      return (%r))IR",
                            subgraph rewrite.cpp
          {{"r", "c"}});
48
                             (extracted Mar 17, 2022)
49
```





# Vectorization and Incremental Computation

## Loop Transformations

- Loop vectorization
- Loop hoisting

$$X[a:b,1] = Y[a:b,2] + Z[a:b,1]$$

# Incremental Computations

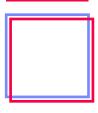
- Delta update rules (e.g., LINVIEW, factorized)
- Incremental iterations (e.g., Flink)

$$A = t(X) \%*\% X + t(\Delta X) \%*\% \Delta X$$
  
 $b = t(X) \%*\% y + t(\Delta X) \%*\% \Delta y$ 

"Decremental"/Unlearning (GDPR)



**t(X)** 



X





[Sebastian Schelter: "Amnesia" -Machine Learning Models That Can Forget User Data Very Fast. CIDR 2020]

[Sebastian Schelter, Stefan Grafberger, Ted Dunning: HedgeCut: Maintaining Randomised Trees for Low-Latency Machine Unlearning. SIGMOD 2021]





# Update-in-place

- Example: Cumulative Aggregate via Strawman Scripts
  - But: R, Julia, Matlab, SystemDS, NumPy all provide cumsum(X), etc

```
cumsumN2 = function(Matrix[Double] A)
                                               1: cumsumNlogN = function(Matrix[Double] A)
     return(Matrix[Double] B)
                                                    return(Matrix[Double] B)
2:
                                               2:
3: {
                                               3: {
     B = A; csums = matrix(0,1,ncol(A));
                                                    B = A; m = nrow(A); k = 1;
4:
                                               4:
     for( i in 1:nrow(A) ) {
                                                    while( k < m ) {</pre>
5:
                                               5:
       csums = csums + A[i,];
                                                       B[(k+1):m,] = B[(k+1):m,] + B[1:(m-k),];
6:
                                                      k = 2 * k;
7:
       B[i,] = csums;
                                               7:
8:
                                               8:
        copy-on-write \rightarrow O(n^2)
                                                                                   \rightarrow O(n log n)
9:
                                               9: }
```

- Update in place (w/ O(n))
  - SystemDS: via rewrites (why do the above scripts apply?)
  - R: via reference counting
  - Julia: by default, otherwise explicit B = copy(A) necessary







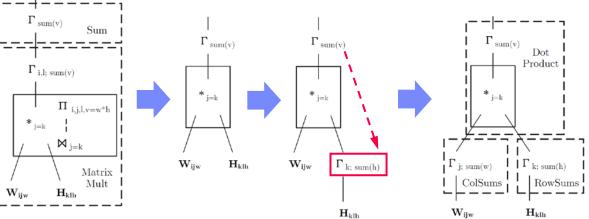
# **Excursus: Automatic Rewrite Generation**

- **SPOOF/SPORES (Sum-Product Optim.)** 
  - Break up LA ops into basic ops (RA)
  - **Elementary sum-product/RA rewrites**
  - **Example: sum**(W%\*%H)

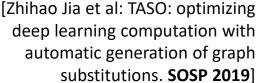
Optimization and Operator Fusion for Large-Scale Machine Learning. CIDR 2017

[Tarek Elgamal et al: SPOOF: Sum-Product

[Yisu Remy Wang et al: SPORES: Sum-Product Optimization via Relational Equality Saturation for Large Scale Linear Algebra. PVLDB 13(11) 2020]



- **TASO (Super Optimization)** 
  - List of operator specifications and properties
  - Automatic generation/verification of graph substitutions and data layouts via cost-based backtracking search











# Matrix Multiplication Chain Optimization

# Optimization Problem

- Matrix multiplication chain of n matrices M<sub>1</sub>, M<sub>2</sub>, ...M<sub>n</sub> (associative)
- Optimal parenthesization of the product M<sub>1</sub>M<sub>2</sub> ... M<sub>n</sub>



Size propagation and sparsity estimation

# Search Space Characteristics

- Naïve exhaustive: Catalan numbers  $\rightarrow \Omega(4^n / n^{3/2})$
- DP applies: (1) optimal substructure,(2) overlapping subproblems
- Textbook DP algorithm:  $\Theta(n^3)$  time,  $\Theta(n^2)$  space
  - Examples: SystemML '14,RIOT ('09 I/O costs), SpMachO ('15 sparsity)

|  | Best | known: | 0 | (n | log n | ) |
|--|------|--------|---|----|-------|---|
|--|------|--------|---|----|-------|---|



 n
 C<sub>n-1</sub>

 5
 14

 10
 4,862

 15
 2,674,440

 20
 1,767,263,190

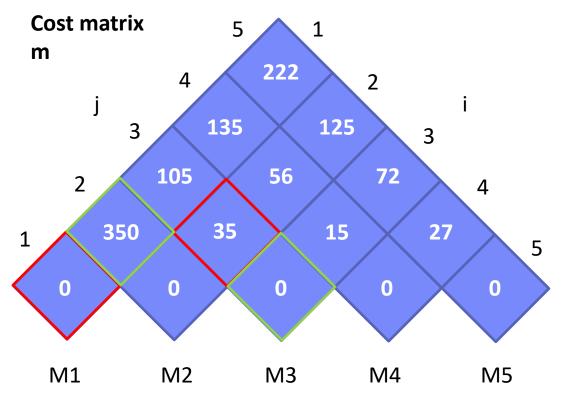
 25
 1,289,904,147,324

[T. C. Hu, M. T. Shing: Computation of Matrix Chain Products. Part II. **SIAM J. Comput.** 13(2): 228-251, 1984]



# Matrix Multiplication Chain Optimization, cont.

| M1   | M2  | М3  | M4  | M5  |
|------|-----|-----|-----|-----|
| 10x7 | 7x5 | 5x1 | 1x3 | 3x9 |



$$m[1,3] = min($$
 $m[1,1] + m[2,3] + p1p2p4,$ 
 $m[1,2] + m[3,3] + p1p3p4)$ 
 $= min($ 
 $0 + 35 + 10*7*1,$ 
 $350 + 0 + 10*5*1)$ 
 $= min($ 

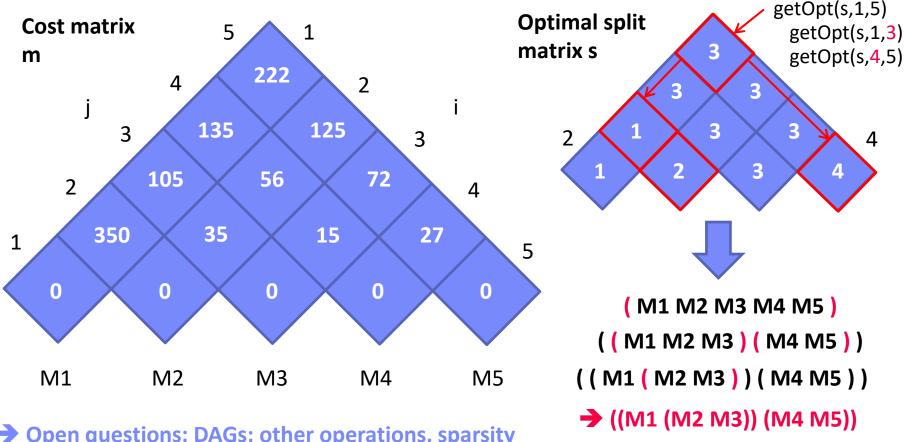
[T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein: Introduction to Algorithms, Third Edition, **The MIT Press**, pages 370-377, 2009]





# Matrix Multiplication Chain Optimization, cont.

| M1   | M2  | М3  | M4  | M5  |
|------|-----|-----|-----|-----|
| 10x7 | 7x5 | 5x1 | 1x3 | 3x9 |



→ Open questions: DAGs; other operations, sparsity joint opt w/ rewrites, CSE, fusion, and physical operators



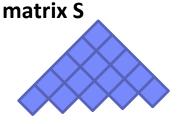
# Matrix Multiplication Chain Optimization, cont.

- Sparsity-aware mmchain Opt
  - Additional n x n sketch matrix e

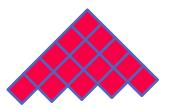




Optimal split



**Sketch matrix E** 

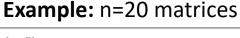


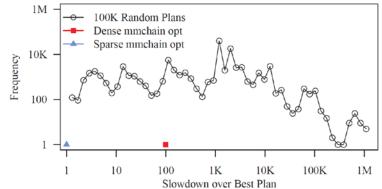
- Sketch propagation for optimal subchains (currently for all chains)
- Modified cost computation via MNC sketches (number FLOPs for sparse instead of dense mm)

$$C_{i,j} = \min_{k \in [i,j-1]} \frac{(C_{i,k} + C_{k+1,j})}{(C_{i,k} + C_{k+1,j})} + \frac{(C_{i,k} + C_{k+$$



[Johanna Sommer, Matthias Boehm, Alexandre V. Evfimievski, Berthold Reinwald, Peter J. Haas: MNC: Structure-Exploiting Sparsity Estimation for Matrix Expressions. **SIGMOD 2019**]









# Physical Rewrites and Optimizations

### Distributed Caching

- Redundant compute vs. memory consumption and I/O
- #1 Cache intermediates w/ multiple refs (Emma)
- #2 Cache initial read and read-only loop vars (SystemML)

### Partitioning

- Many frameworks exploit co-partitioning for efficient joins
- #1 Partitioning-exploiting operators (SystemML, Emma, Samsara)
- #2 Inject partitioning to avoid shuffle per iteration (SystemML)
- #3 Plan-specific data partitioning (SystemML, Dmac, Kasen)

### Other Data Flow Optimizations (Emma)

- #1 Exists unnesting (e.g., filter w/ broadcast → join)
- #2 Fold-group fusion (e.g., groupByKey → reduceByKey)

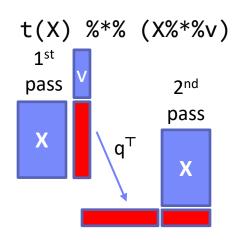
# Physical Operator Selection





# **Physical Operator Selection**

- Common Selection Criteria
  - Data and cluster characteristics (e.g., data size/shape, memory, parallelism)
  - Matrix/operation properties (e.g., diagonal/symmetric, sparse-safe ops)
  - Data flow properties (e.g., co-partitioning, co-location, data locality)
- #0 Local Operators
  - SystemML mm, tsmm, mmchain; Samsara/Mllib local
- #1 Special Operators (special patterns/sparsity)
  - SystemML tsmm, mapmmchain; Samsara AtA
- #2 Broadcast-Based Operators (aka broadcast join)
  - SystemML mapmm, mapmmchain
- #3 Co-Partitioning-Based Operators (aka improved repartition join)
  - SystemML zipmm; Emma, Samsara OpAtB
- #4 Shuffle-Based Operators (aka repartition join)
  - SystemML cpmm, rmm; Samsara OpAB

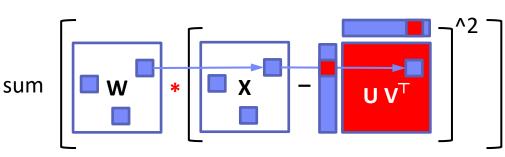




# **Sparsity-Exploiting Operators**

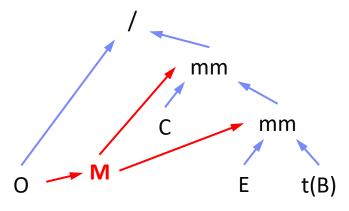
- Goal: Avoid dense intermediates and unnecessary computation
- #1 Fused Physical Operators
  - E.g., SystemML [PVLDB'16] wsloss, wcemm, wdivmm
  - Selective computation over non-zeros of "sparse driver"

sum(W \* (X - U %\*% t(V))^2)



- #2 Masked Physical Operators
  - E.g., Cumulon MaskMult [SIGMOD'13]
  - Create mask of "sparse driver"
  - Pass mask to single masked matrix multiply operator









# **Conclusions**

### Summary

- Basic compilation overview
- Size inference and cost estimation
- Rewrites and operator selection

# Impact of Size Inference and Costs

 Advanced optimization of LA programs requires size inference for cost estimation and validity constraints

# Ubiquitous Rewrite Opportunities

- Linear algebra programs have plenty of room for optimization
- Potential for changed asymptotic behavior

### Next Lectures (next week: bye)

O4 Operator Fusion and Runtime Adaptation [Apr 01]
 (advanced compilation, operator scheduling, JIT compilation, operator fusion / codegen, MLIR)

