

Architecture of ML Systems 03 Size Inference and Rewrites

Matthias Boehm

Graz University of Technology, Austria Computer Science and Biomedical Engineering Institute of Interactive Systems and Data Science BMK endowed chair for Data Management

Last update: Mar 17, 2022

Announcements/Org

#1 Video Recording

- Link in TeachCenter & TUbe (lectures will be public)
- https://tugraz.webex.com/meet/m.boehm

#2 AMLS Project Selections

- Project selection by Mar 31 (see Lecture 02 for four alternatives)
- Discussion current status project selection (~6 students assigned)

https://issues.apache.org/jira/secure/Dashboard.jspa?selectPageId=12335852#Filter-Results/12365413
https://mboehm7.github.io/teaching/ss22_amls/AMLS_DAPHNE_projects.pdf
http://sigmod2022contest.eastus.cloudapp.azure.com/index.shtml
https://mboehm7.github.io/teaching/ss22_amls/AMLS_2022_Exercise.pdf

Agenda

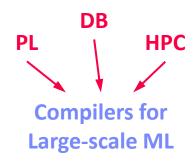
- Compilation Overview
- Size Inference and Cost Estimation
- Rewrites (and Operator Selection)

SystemDS, and several other ML systems

Compilation Overview

Recap: Linear Algebra Systems

- Comparison Query Optimization
 - Rule- and cost-based rewrites and operator ordering
 - Physical operator selection and query compilation
 - Linear algebra / other ML operators, DAGs, control flow, sparse/dense formats



- #1 Interpretation (operation at-a-time)
 - Examples: R, PyTorch, Morpheus [PVLDB'17]
- #2 Lazy Expression Compilation (DAG at-a-time)
 - Examples: RIOT [CIDR'09], TensorFlow [OSDI'16]
 Mahout Samsara [MLSystems'16], Dask
 - Examples w/ control structures: Weld [CIDR'17],
 OptiML [ICML'11], Emma [SIGMOD'15]
- #3 Program Compilation (entire program)
 - Examples: SystemML [ICDE'11/PVLDB'16], Julia,
 Cumulon [SIGMOD'13], Tupleware [PVLDB'15]

Optimization Scope

```
1: X = read($1); # n x m matrix
2: y = read(\$2); # n x 1 vector
3: \max i = 50; lambda = 0.001;
4: intercept = $3;
   r = -(t(X) %*% y);
   norm r2 = sum(r * r); p = -r;
   w = matrix(0, ncol(X), 1); i = 0;
   while(i<maxi & norm r2>norm r2 trgt)
10: {
11:
      q = (t(X) %*% X %*% p)+lambda*p;
12:
       alpha = norm_r2 / sum(p * q);
13:
       w = w + alpha * p;
14:
       old norm r2 = norm r2;
15:
       r = r + alpha * a;
16:
       norm r2 = sum(r * r);
17:
       beta = norm r2 / old norm r2;
       p = -r + beta * p; i = i + 1;
18:
19: }
20: write(w, $4, format="text");
```


Block

ML Program Compilation / Graphs

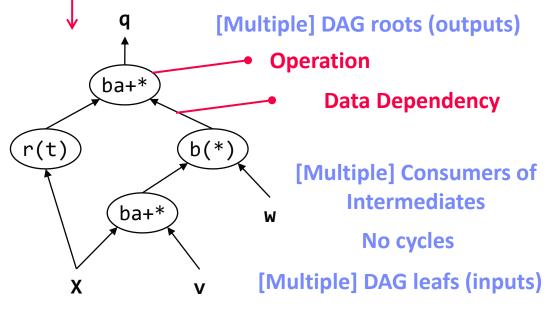
Script:

while(...) { Statement q = t(X) %*% (w * (X %*% v)) ...Hierarchy

Operator DAG

(today's lecture)

- a.k.a. "graph" (data flow graph)
- a.k.a. intermediate representation (IR)



Runtime Plan

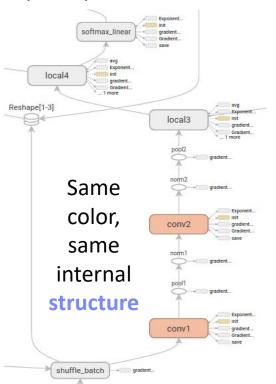
Compiled runtime plans Interpreted plans

SPARK mapmmchain X.MATRIX.DOUBLE w.MATRIX.DOUBLE v.MATRIX.DOUBLE mVar4.MATRIX.DOUBLE XtwXv

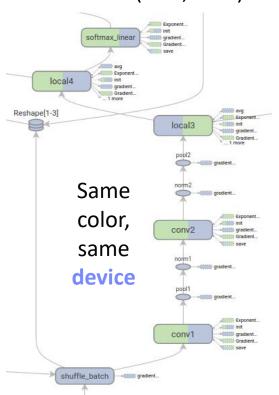
ML Program Compilation / Graphs, cont.

Example TF TensorBoard

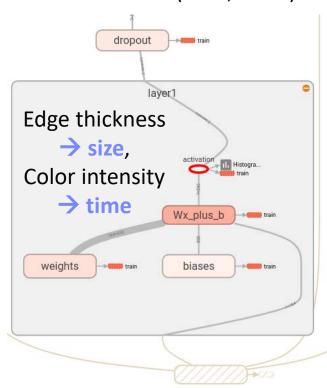
(Node) Structure View



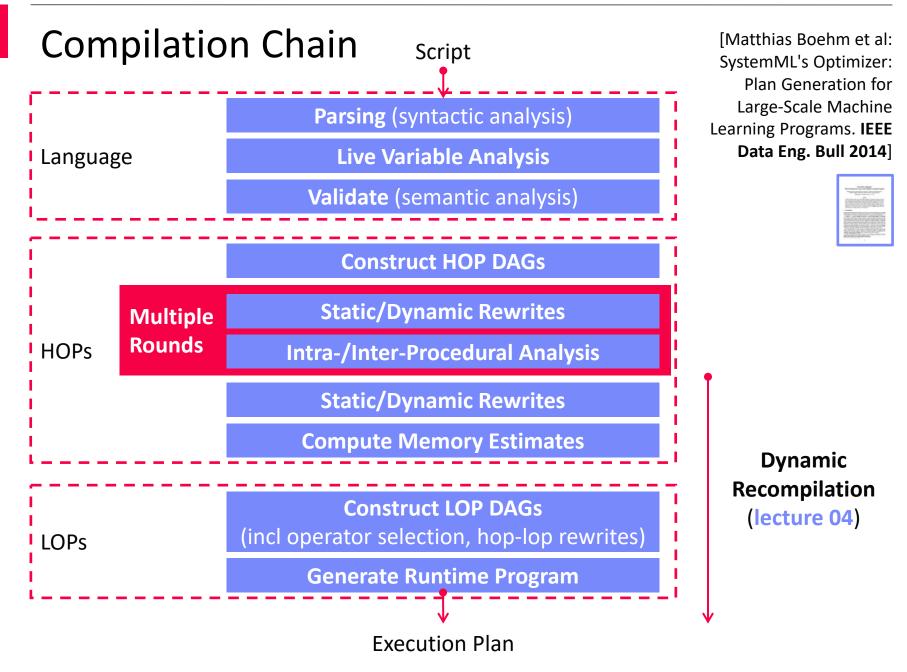
Device View (CPU, GPU)



Tensor Shapes and Runtime Statistics (time, mem)



[https://github.com/tensorflow/tensorboard/blob/master/docs/r1/graphs.md]



Recap: Basic HOP and LOP DAG Compilation

LinregDS (Direct Solve)

```
X = read($1);
y = read($2);
intercept = $3;
lambda = 0.001;
...

if( intercept == 1 ) {
   ones = matrix(1, nrow(X), 1);
   X = append(X, ones);
}

I = matrix(1, ncol(X), 1);
A = t(X) %*% X + diag(I)*lambda;
b = t(X) %*% y;
beta = solve(A, b);
...
write(beta, $4);
```

HOP DAG (after rewrites) 8KB CP write • driver mem: 20 GB

8MB • exec mem: 60 GB
16MB CP b(solve)

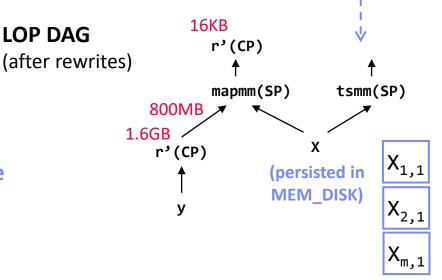
172KB CP r(diag) ba(+*) SP ba(+*) 800GB SP 1.6TB SP 1.6TB SP (103x1,103) (108x103,1011) (108x1,108) (108x1,108)

→ Hybrid Runtime Plans:

- Size propagation / memory estimates
- Integrated CP / Spark runtime
- Dynamic recompilation during runtime

→ Distributed Matrices

- Fixed-size (squared) matrix blocks
- Data-parallel operations



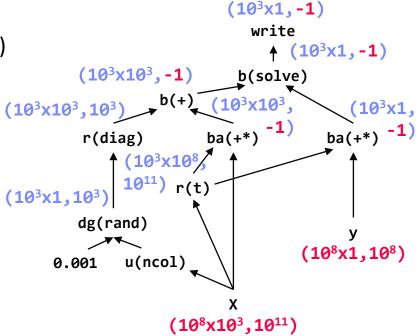
Size Inference and Cost Estimation

Crucial for Generating Valid Execution Plans & Cost-based Optimization

Constant and Size Propagation

- Size Information
 - Dimensions (#rows, #columns)
 - Sparsity (#nnz/(#rows * #columns))
 - memory estimates and costs
- Principle: Worst-case Assumption
 - Necessary for guarantees (memory)
- DAG-level Size Propagation
 - Input: Size information for leaves
 - Output: size information for all operators, -1 if still unknown
 - Propagation based on operation semantics (single bottom-up pass over DAG)

```
X = read($1);
y = read($2);
I = matrix(0.001, ncol(X), 1);
A = t(X) %*% X + diag(I);
b = t(X) %*% y;
beta = solve(A, b);
```



Constant and Size Propagation, cont.

Example SystemDS

- Hop refreshSizeInformation() (exact)
- Hop inferOutputCharacteristics()
- Compiler explicitly differentiates between exact and other size information
- Note: ops like aggregate, ctable, rmEmpty challenging but w/ upper bounds

Example Relu (rectified linear unit) [32 x 1024, nnz=7645] b(max) [32 x 1024, nnz=7645] X

Example TensorFlow

- Operator registrations
- Shape inference functions


```
REGISTER_OP("Relu")
```

```
.Input("features: T")
.Output("activations: T")
.Attr("T: {realnumbertype, qint8}")
.SetShapeFn(
    shape inference::UnchangedShape)
```

[Alex Passos: Inside TensorFlow – Eager execution runtime, https://www.youtube.com/watch?v=qjx65mD6nrc, Dec 2019]

Constant and Size Propagation, cont.

Constant Propagation

- Relies on live variable analysis
- Propagate constant literals into read-only statement blocks

Program-level Size Propagation

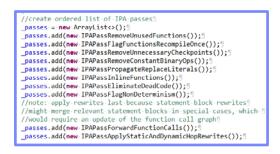
- Relies on constant propagation and DAG-level size propagation
- Propagate size information across conditional control flow: size in leafs,
 DAG-level prop, extract roots
- if: reconcile if and else branch outputs
- while/for: reconcile pre and post loop, reset if pre/post different

```
X = read(\$1); # n x m matrix
y = read($2); # n x 1 vector
maxi = 50; lambda = 0.001;
if(...){ }
r = -(t(X) %*% y);
r2 = sum(r * r);
                            # m x 1
p = -r;
                            # m x 1
w = matrix(0, ncol(X), 1);
i = 0:
while(i<maxi & r2>r2_trgt) {
   q = (t(X) %*% X %*% p)+lambda*p;
   alpha = norm r2 / sum(p * q);
   w = w + alpha * p;
                            # m x 1
   old norm_r2 = norm_r2;
   r = r + alpha * q;
   r2 = sum(r * r);
   beta = norm_r2 / old_norm_r2;
                            # m x 1
   p = -r + beta * p;
   i = i + 1;
write(w, $4, format="text");
```


Inter-Procedural Analysis

- Intra/Inter-Procedural Analysis (IPA)
 - Integrates all size propagation techniques (DAG+program, size+constants)
 - Intra-function and inter-function size propagation (called once, consistent sizes, consistent literals)

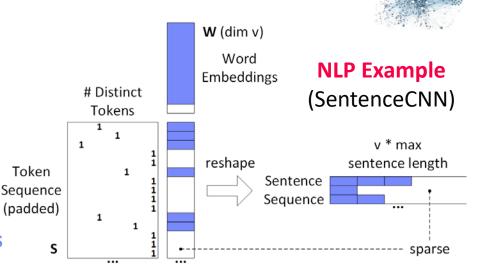
- Additional IPA Passes (selection)
 - Inline functions (single statement block, small)
 - Dead code elimination and simplification rewrites
 - Remove unused functions & flag recompile-once



Sparsity Estimation Overview

Motivation

- Sparse input matrices from NLP, graph analytics, recommender systems, scientific computing
- Sparse intermediates (transform, selection, dropout)
- Selection/permutation matrices



Problem Definition

- Sparsity estimates used for format decisions, output allocation, cost estimates
- Matrix A with sparsity $s_A = nnz(A)/(mn)$ and matrix B with $s_B = nnz(B)/(nl)$
- Estimate sparsity s_C = nnz(C)/(ml) of matrix product C = A B; d=max(m,n,l)
- Assumptions
 - A1: No cancellation errors
 - A2: No not-a-number (NaN)

Common assumptions

→ Boolean matrix product

Sparsity Estimation – Estimators

#1 Naïve Metadata Estimators

 Derive the output sparsity solely from the sparsity of inputs (e.g., SystemDS)

$$\hat{s}_c = 1 - (1 - s_A s_B)^n$$

$$\hat{s}_c = \min(1, s_A n) \cdot \min(1, s_B n)$$

#2 Naïve Bitset Estimator

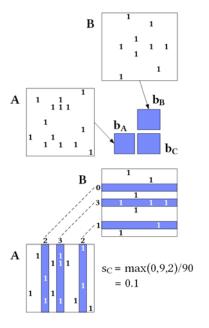
- Convert inputs to bitsets, perform Boolean mm (per row)
- Examples: SciDB [SSDBM'11], NVIDIA cuSparse, Intel MKL

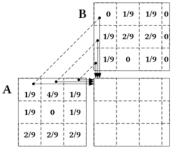
#3 Sampling

- Take a sample of aligned columns of A and rows of B
- Sparsity estimated via max of count-products
- Examples: MatFast [ICDE'17], improvements in paper

#4 Density Map

- Store sparsity per b x b block (default b = 256)
- MM-like estimator (average case estimator for *, probabilistic propagation $s_A + s_B s_A s_B$ for +)
- Example: SpMacho [EDBT'15], AT Matrix [ICDE'16]

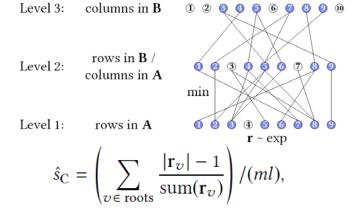


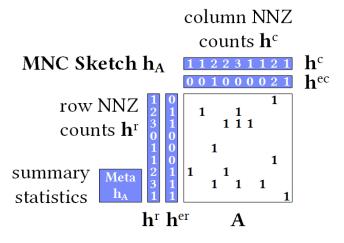


Sparsity Estimation – Estimators, cont.

- #5 Layered Graph [J.Comb.Opt.'98]
 - Nodes: rows/columns in mm chain
 - Edges: non-zeros connecting rows/columns
 - Assign r-vectors ~ exp and propagate via min
 - Estimate over roots (output columns)
- #6 MNC Sketch (Matrix Non-zero Count)
 - Create MNC sketch for inputs A and B
 - Exploitation of structural properties
 (e.g., 1 non-zero per row, row sparsity)
 - Support for matrix expressions (reorganizations, elementwise ops)
 - Sketch propagation and estimation

[Johanna Sommer, Matthias Boehm, Alexandre V. Evfimievski, Berthold Reinwald, Peter J. Haas: MNC: Structure-Exploiting Sparsity Estimation for Matrix Expressions. **SIGMOD 2019**]





$$s_C = \hat{s}_C = h_A^c h_B^r / (ml)$$

if $\max(h_A^r) \le 1 \vee \max(h_B^c) \le 1$

Memory Estimates and Costing

Memory Estimates

- Matrix memory estimate := based on the dimensions and sparsity, decide the format (sparse, dense) and estimate the size in memory
- Operation memory estimate := input, intermediates, output
- Worst-case sparsity estimates (upper bound)

#1 Costing at Logical vs Physical Level

 Costing at physical level takes physical ops and rewrites into account but is much more costly

#2 Costing Operators/Graphs vs Plans

- Costing plans requires heuristics for # iterations, branches in general
- #3 Analytical vs Trained Cost Models
 - Analytical: estimate I/O and compute workload
 - Training: build regression models for individual ops

A Personal War Story

Physical, Plans, Trained [PVLDB 2014]

Physical, Plans, Analytical [SIGMOD 2015]

Logical, Graphs, Analytical [PVDLB 2018]

Excursus: Differentiable Programming

Overview Differentiable Programming

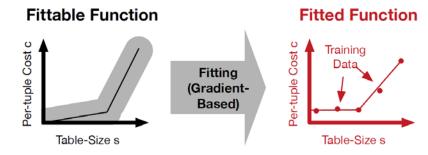
- Adoption of auto differentiation concept from ML systems to PLs
- Yann LeCun (Jan 2018)

"It's really very much like a regular prog[r]am, except it's parameterized, automatically differentiated, and trainable/optimizable."

Example DBMS Fitting

- Implement DBMS components as differentiable functions
- E.g.: cost model components
- Q: What about guarantees (memory, size)?

[Benjamin Hilprecht et al: DBMS Fitting: Why should we learn what we already know? **CIDR 2020**]



$$c(s) = \begin{cases} a_i \text{in} \cdot s + b_i \text{in if } s < \text{cache-size} \\ a_o \text{ut} \cdot s + b_o \text{ut if } s \ge \text{cache-size} \end{cases}$$

$$c(s) = \begin{cases} 0.0 \cdot s + 0.5 & \text{if } s < 30 \text{MB} \\ 1.2 \cdot s - 35.5 & \text{if } s \ge 30 \text{MB} \end{cases}$$

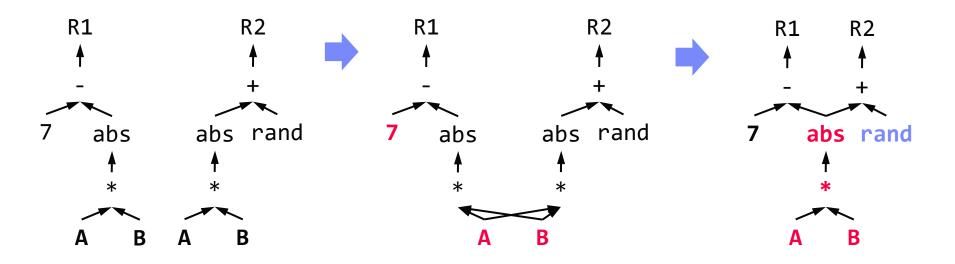
Rewrites and Operator Selection

Traditional PL Rewrites

- #1 Common Subexpression Elimination (CSE)
 - Step 1: Collect and replace leaf nodes (variable reads and literals)
 - Step 2: recursively remove CSEs bottom-up starting at the leafs by merging nodes with same inputs (beware non-determinism)
 - Example:

$$R1 = 7 - abs(A * B)$$

 $R2 = abs(A * B) + rand()$



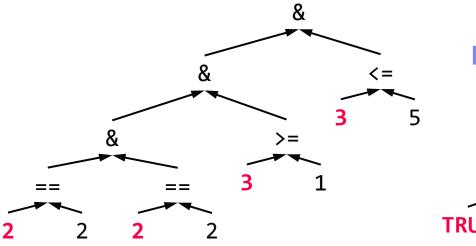
Traditional PL Rewrites, cont.

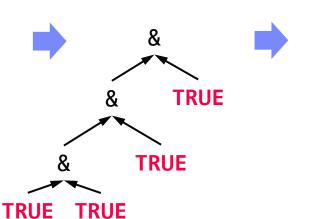
#2 Constant Folding

- After constant propagation, fold sub-DAGs over literals into a single literal
- Approach: recursively compile and execute runtime instructions with special handling of one-side constants

[A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers – Principles, Techniques, & Tools. Addison-Wesley, 2007]

Example (GLM Binomial probit):





TRUE

Traditional PL Rewrites, cont.

#3 Branch Removal

- Applied after constant propagation and constant folding
- True predicate: replace if statement block with if-body blocks
- False predicate: replace if statement block with else-body block, or remove

#4 Merge of Statement Blocks

- Merge sequences of unconditional blocks (s1,s2) into a single block
- Connect matching DAG roots of s1 with DAG inputs of s2

LinregDS (Direct Solve)

```
X = read($1);
y = read($2);
intercept = 0;
lambda = 0.001;
...     FALSE
if( intercept == 1 ) {
    ones = matrix(1, nrow(X), 1);
    X = cbind(X, ones);
}

I = matrix(1, ncol(X), 1);
A = t(X) %*% X + diag(I)*lambda;
b = t(X) %*% y;
beta = solve(A, b);
...
write(beta, $4);
```


Static/Dynamic Simplification Rewrites

Examples of Static Rewrites

- trace(X%*%Y) \rightarrow sum(X*t(Y))
- sum(X+Y) $\rightarrow sum(X)+sum(Y)$
- $(X%*%Y)[7,3] \rightarrow X[7,]%*%Y[,3]$
- sum(t(X)) $\rightarrow sum(X)$
- sum(lambda*X) → lambda * sum(X);

> [Matthias Boehm et al: SystemML's Optimizer: Plan Generation for Large-Scale Machine Learning Programs. IEEE Data Eng. Bull 2014]

Examples of Dynamic Rewrites

- t(X) %*% y \rightarrow t(t(y) %*% X) s.t. costs
- X[a:b,c:d]=Y → X = Y iff dims(X)=dims(Y)
- (...) * X \rightarrow matrix(0, nrow(X), ncol(X)) iff nnz(X)=0
- $sum(X^2)$ $\rightarrow t(X)%*%X; rowSums(X) <math>\rightarrow X iff ncol(X)=1$
- sum(X%*%Y) → sum(t(colSums(X))*rowSums(Y)) iff ncol(X)>t

Static/Dynamic Simplification Rewrites, cont.

TF Constant Push-Down

- Add(c1,Add(x,c2)) \rightarrow Add(x,c1+c2)
- ConvND(c1*x,c2) \rightarrow ConvND(x,c1*c2)

[Rasmus Munk Larsen, Tatiana Shpeisman: TensorFlow Graph Optimizations, Guest Lecture Stanford 2019]

TF Arithmetic Simplifications

- Flattening: $a+b+c+d \rightarrow AddN(a, b, c, d)$
- Hoisting: AddN(x * a, b * x, x * c) \rightarrow x * AddN(a+b+c)
- Reduce Nodes Numeric: $x+x+x \rightarrow 3*x$
- Reduce Nodes Logicial: $!(x > y) \rightarrow x <= y$

TF Broadcast Minimization

■ $(M1+s1) + (M2+s2) \rightarrow (M1+M2) + (s1+s2)$

SystemML/SystemDS

RewriteElementwise-MultChainOptimization (orders and collapses matrix, vector, scalar op chains)

TF Better use of Intrinsics

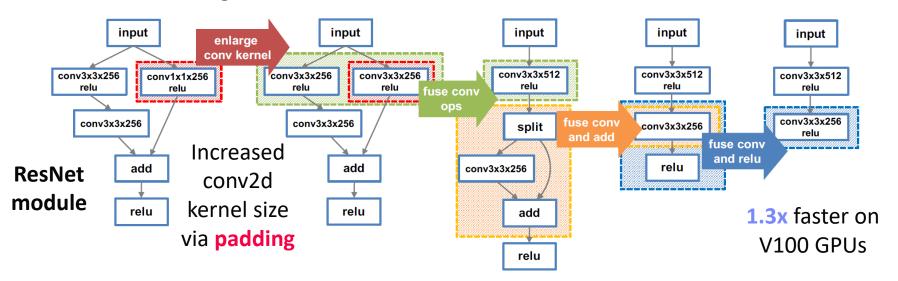
■ Matmul(Transpose(X), Y) → Matmul(X, Y, transpose_x=True)

Static/Dynamic Simplification Rewrites, cont.

Relaxed DNN Graph Substitutions

- Allow substitutions that preserve semantics, no matter if faster/slower
- Backtracking search

[Zhihao Jia, James J. Thomas, Todd Warszawski, Mingyu Gao, Matei Zaharia, Alex Aiken: Optimizing DNN Computation with Relaxed Graph Substitutions. MLSys 2019]



Additional Algorithms

- Partial order of substitutions w/ pruning
- Dynamic programming \rightarrow substitutions

[Jingzhi Fang, Yanyan Shen, Yue Wang, Lei Chen: Optimizing DNN Computation Graph using Graph Substitutions. **PVLDB 13(11) 2020**]

Static/Dynamic Simplification Rewrites, cont.

Rewrites in PyTorch (Torch Script JIT)

PYTORCH

- Misc: Canonicalization, erase number types and no-ops
- Fuse linear, fuse relu, fuse graph pipeline
- Peephole simplifications (e.g., for dtype management)
- Inlining and loop unrolling
- Concatenation and fusion rewrites:

[https://github.com/pytorch/pytorch/blob/master
 /torch/csrc/jit/passes/subgraph rewrite.cpp]

```
void SubgraphRewriter::RegisterDefaultPatterns() {
36
      // TODO: Add actual patterns (like Conv-Relu).
37
      RegisterRewritePattern(
38
          R"IR(
39
    graph(%x, %w, %b):
40
      %c = aten::conv(%x, %w, %b)
41
      %r = aten::relu(%c)
42
      return (%r))IR",
43
          R"IR(
44
    graph(%x, %w, %b):
45
      %r = aten::convrelu(%x, %w, %b)
46
      return (%r))IR",
                            subgraph rewrite.cpp
          {{"r", "c"}});
48
                             (extracted Mar 17, 2022)
49
```


Vectorization and Incremental Computation

Loop Transformations

- Loop vectorization
- Loop hoisting

$$X[a:b,1] = Y[a:b,2] + Z[a:b,1]$$

Incremental Computations

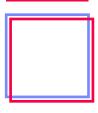
- Delta update rules (e.g., LINVIEW, factorized)
- Incremental iterations (e.g., Flink)

$$A = t(X) \%*\% X + t(\Delta X) \%*\% \Delta X$$

 $b = t(X) \%*\% y + t(\Delta X) \%*\% \Delta y$

"Decremental"/Unlearning (GDPR)

t(X)



X

[Sebastian Schelter: "Amnesia" -Machine Learning Models That Can Forget User Data Very Fast. CIDR 2020]

[Sebastian Schelter, Stefan Grafberger, Ted Dunning: HedgeCut: Maintaining Randomised Trees for Low-Latency Machine Unlearning. SIGMOD 2021]

Update-in-place

- Example: Cumulative Aggregate via Strawman Scripts
 - But: R, Julia, Matlab, SystemDS, NumPy all provide cumsum(X), etc

```
cumsumN2 = function(Matrix[Double] A)
                                               1: cumsumNlogN = function(Matrix[Double] A)
     return(Matrix[Double] B)
                                                    return(Matrix[Double] B)
2:
                                               2:
3: {
                                               3: {
     B = A; csums = matrix(0,1,ncol(A));
                                                    B = A; m = nrow(A); k = 1;
4:
                                               4:
     for( i in 1:nrow(A) ) {
                                                    while( k < m ) {</pre>
5:
                                               5:
       csums = csums + A[i,];
                                                       B[(k+1):m,] = B[(k+1):m,] + B[1:(m-k),];
6:
                                                      k = 2 * k;
7:
       B[i,] = csums;
                                               7:
8:
                                               8:
        copy-on-write \rightarrow O(n^2)
                                                                                   \rightarrow O(n log n)
9:
                                               9: }
```

- Update in place (w/ O(n))
 - SystemDS: via rewrites (why do the above scripts apply?)
 - R: via reference counting
 - Julia: by default, otherwise explicit B = copy(A) necessary

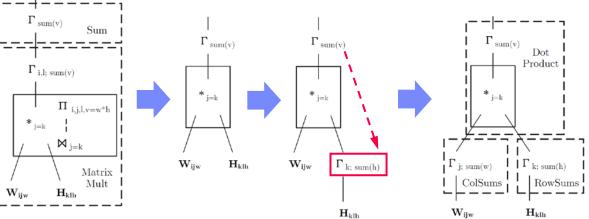
Excursus: Automatic Rewrite Generation

- **SPOOF/SPORES (Sum-Product Optim.)**
 - Break up LA ops into basic ops (RA)
 - **Elementary sum-product/RA rewrites**
 - **Example: sum**(W%*%H)

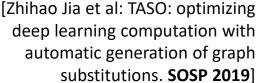
Optimization and Operator Fusion for Large-Scale Machine Learning. CIDR 2017

[Tarek Elgamal et al: SPOOF: Sum-Product

[Yisu Remy Wang et al: SPORES: Sum-Product Optimization via Relational Equality Saturation for Large Scale Linear Algebra. PVLDB 13(11) 2020]



- **TASO (Super Optimization)**
 - List of operator specifications and properties
 - Automatic generation/verification of graph substitutions and data layouts via cost-based backtracking search



Matrix Multiplication Chain Optimization

Optimization Problem

- Matrix multiplication chain of n matrices M₁, M₂, ...M_n (associative)
- Optimal parenthesization of the product M₁M₂ ... M_n

Size propagation and sparsity estimation

Search Space Characteristics

- Naïve exhaustive: Catalan numbers $\rightarrow \Omega(4^n / n^{3/2})$
- DP applies: (1) optimal substructure,(2) overlapping subproblems
- Textbook DP algorithm: $\Theta(n^3)$ time, $\Theta(n^2)$ space
 - Examples: SystemML '14,RIOT ('09 I/O costs), SpMachO ('15 sparsity)

	Best	known:	0	(n	log n)
--	------	--------	---	----	-------	---

 n
 C_{n-1}

 5
 14

 10
 4,862

 15
 2,674,440

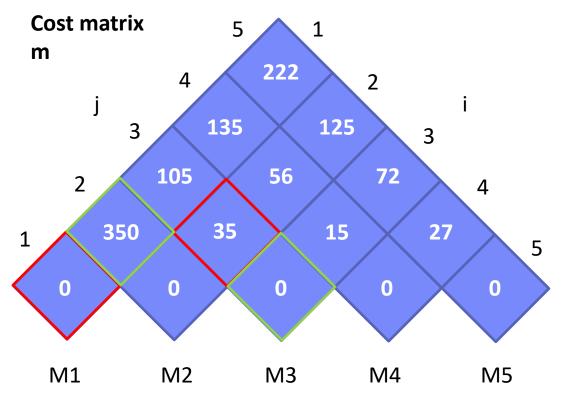
 20
 1,767,263,190

 25
 1,289,904,147,324

[T. C. Hu, M. T. Shing: Computation of Matrix Chain Products. Part II. **SIAM J. Comput.** 13(2): 228-251, 1984]

Matrix Multiplication Chain Optimization, cont.

M1	M2	М3	M4	M5
10x7	7x5	5x1	1x3	3x9

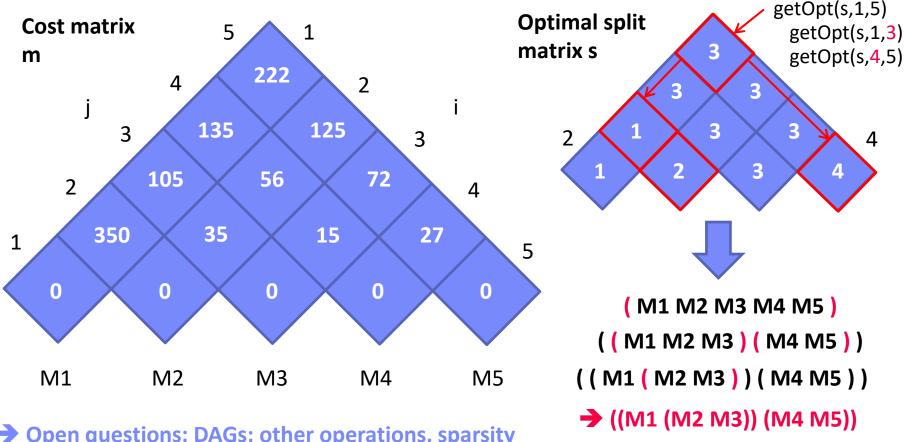


$$m[1,3] = min($$
 $m[1,1] + m[2,3] + p1p2p4,$
 $m[1,2] + m[3,3] + p1p3p4)$
 $= min($
 $0 + 35 + 10*7*1,$
 $350 + 0 + 10*5*1)$
 $= min($

[T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein: Introduction to Algorithms, Third Edition, **The MIT Press**, pages 370-377, 2009]

Matrix Multiplication Chain Optimization, cont.

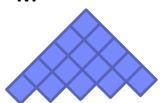
M1	M2	М3	M4	M5
10x7	7x5	5x1	1x3	3x9



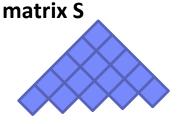
→ Open questions: DAGs; other operations, sparsity joint opt w/ rewrites, CSE, fusion, and physical operators

Matrix Multiplication Chain Optimization, cont.

- Sparsity-aware mmchain Opt
 - Additional n x n sketch matrix e



Optimal split

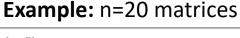


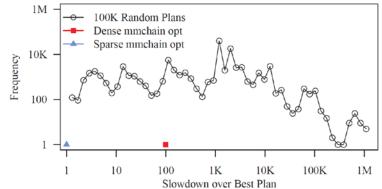
Sketch matrix E

- Sketch propagation for optimal subchains (currently for all chains)
- Modified cost computation via MNC sketches (number FLOPs for sparse instead of dense mm)

$$C_{i,j} = \min_{k \in [i,j-1]} \frac{(C_{i,k} + C_{k+1,j})}{(C_{i,k} + C_{k+1,j})} + \frac{(C_{i,k} + C_{k+$$

[Johanna Sommer, Matthias Boehm, Alexandre V. Evfimievski, Berthold Reinwald, Peter J. Haas: MNC: Structure-Exploiting Sparsity Estimation for Matrix Expressions. **SIGMOD 2019**]





Physical Rewrites and Optimizations

Distributed Caching

- Redundant compute vs. memory consumption and I/O
- #1 Cache intermediates w/ multiple refs (Emma)
- #2 Cache initial read and read-only loop vars (SystemML)

Partitioning

- Many frameworks exploit co-partitioning for efficient joins
- #1 Partitioning-exploiting operators (SystemML, Emma, Samsara)
- #2 Inject partitioning to avoid shuffle per iteration (SystemML)
- #3 Plan-specific data partitioning (SystemML, Dmac, Kasen)

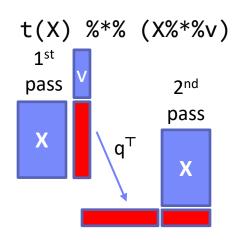
Other Data Flow Optimizations (Emma)

- #1 Exists unnesting (e.g., filter w/ broadcast → join)
- #2 Fold-group fusion (e.g., groupByKey → reduceByKey)

Physical Operator Selection

Physical Operator Selection

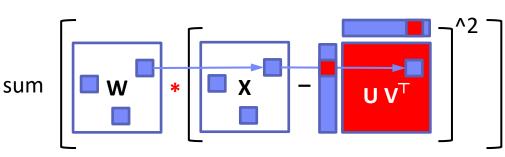
- Common Selection Criteria
 - Data and cluster characteristics (e.g., data size/shape, memory, parallelism)
 - Matrix/operation properties (e.g., diagonal/symmetric, sparse-safe ops)
 - Data flow properties (e.g., co-partitioning, co-location, data locality)
- #0 Local Operators
 - SystemML mm, tsmm, mmchain; Samsara/Mllib local
- #1 Special Operators (special patterns/sparsity)
 - SystemML tsmm, mapmmchain; Samsara AtA
- #2 Broadcast-Based Operators (aka broadcast join)
 - SystemML mapmm, mapmmchain
- #3 Co-Partitioning-Based Operators (aka improved repartition join)
 - SystemML zipmm; Emma, Samsara OpAtB
- #4 Shuffle-Based Operators (aka repartition join)
 - SystemML cpmm, rmm; Samsara OpAB



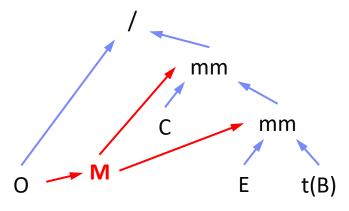
Sparsity-Exploiting Operators

- Goal: Avoid dense intermediates and unnecessary computation
- #1 Fused Physical Operators
 - E.g., SystemML [PVLDB'16] wsloss, wcemm, wdivmm
 - Selective computation over non-zeros of "sparse driver"

sum(W * (X - U %*% t(V))^2)



- #2 Masked Physical Operators
 - E.g., Cumulon MaskMult [SIGMOD'13]
 - Create mask of "sparse driver"
 - Pass mask to single masked matrix multiply operator



Conclusions

Summary

- Basic compilation overview
- Size inference and cost estimation
- Rewrites and operator selection

Impact of Size Inference and Costs

 Advanced optimization of LA programs requires size inference for cost estimation and validity constraints

Ubiquitous Rewrite Opportunities

- Linear algebra programs have plenty of room for optimization
- Potential for changed asymptotic behavior

Next Lectures (next week: bye)

O4 Operator Fusion and Runtime Adaptation [Apr 01]
 (advanced compilation, operator scheduling, JIT compilation, operator fusion / codegen, MLIR)

