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Announcements/Org
 #1 Video Recording 

 Link in TeachCenter & TUbe (lectures will be public)
 Hybrid: HSi5 / https://tugraz.webex.com/meet/m.boehm

 #2 Programming Projects / Exercises (25/114)
 #1 Apache SystemDS
 #2 DAPHNE
 #3 SIGMOD Programming Contest / custom projects
 #4 Exercise on ML Pipelines  TeachCenter
 Project Registration: Mar 31
 Project/Exercise Deadline: June 17, 11.59pm

Q&A

https://tugraz.webex.com/meet/m.boehm
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Agenda
 Motivation and Terminology
 Background MapReduce and Spark
 Data-Parallel Execution
 Task-Parallel Execution
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Motivation and Terminology
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Terminology Optimization Methods
 Problem: Given a continuous, differentiable function 𝒇𝒇(𝑫𝑫,𝜽𝜽), 

find optimal parameters 𝜽𝜽∗ = argmin 𝒇𝒇(𝑫𝑫,𝜽𝜽)

 #1 Gradient Methods (1st order)
 Pick a starting point, compute gradient, descent in 

opposite direction of gradient −𝛾𝛾𝛻𝛻𝒇𝒇(𝑫𝑫,𝜽𝜽)

 #2 Newton’s Method (2nd order)
 Pick a starting point, compute gradient, 

descend to where derivative = 0 (via 2nd derivate)
 Jacobian/Hessian matrices for multi-dimensional

 #3 Quasi-Newton Methods
 Incremental approximation of Hessian
 Algorithms: BFGS, L-BFGS, Conjugate Gradient (CG)
 Example: L-BFGS-B, AR(2), MSE, N=100

EnBW energy-demand time series 

Motivation and Terminology

θ2

θ1

x0x1x2 x3

θ1

Presenter
Presentation Notes
BFGS vs CG: https://pubsonline.informs.org/doi/abs/10.1287/moor.3.3.244
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Terminology Batch/Mini-batch
 Batch ML Algorithms

 Iterative ML algorithms, where each iteration
uses the entire dataset to compute gradients ΔW

 For (pseudo-)second-order methods, many features
 Dedicated optimizers for traditional ML algorithms 

 Mini-batch ML Algorithms
 Iterative ML algorithms, where each iteration

only uses a batch of rows to make the 
next model update (in epochs or w/ sampling)

 For large and highly redundant training sets
 Applies to almost all iterative, model-based 

ML algorithms (LDA, reg., class., factor., DNN)
 Stochastic Gradient Descent (SGD)

Motivation and Terminology

Data

Batch 2

Batch 1

Epoch

W’
W’’

Data
W’
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Recap: Central Data Abstractions
 #1 Files and Objects

 File: Arbitrarily large sequential data in specific file format (CSV, binary, etc)
 Object: binary large object, with certain meta data

 #2 Distributed Collections
 Logical multi-set (bag) of key-value pairs

(unsorted collection)
 Different physical representations
 Easy distribution of pairs

via horizontal partitioning
(aka shards, partitions)

 Can be created from single file,
or directory of files (unsorted)

Motivation and Terminology

Key Value
4 Delta
2 Bravo
1 Alfa
3 Charlie
5 Echo
6 Foxtrot
7 Golf
1 Alfa
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Terminology Parallelism
 Flynn’s Classification

 SISD, SIMD
 (MISD), MIMD

 Example: SIMD Processing
 Streaming SIMD Extensions (SSE)
 Process the same operation on 

multiple elements at a time
(packed vs scalar SSE instructions)

 Data parallelism 
(aka: instruction-level parallelism)

 Example: VFMADD132PD

Motivation and Terminology

SISD
(uni-core)

SIMD
(vector)

MISD
(pipelining)

MIMD
(multi-core)

Single Data Multiple Data

Single 
Instruction

Multiple 
Instruction

2009 Nehalem: 128b (2xFP64)
2012 Sandy Bridge: 256b (4xFP64)

2017 Skylake: 512b (8xFP64)

a
b
c

c = _mm512_fmadd_pd(a, b);

[Michael J. Flynn, Kevin W. 
Rudd: Parallel Architectures. 
ACM Comput. Surv. 28(1) 1996]
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Excursus: Peak Performance
 Example Scale-up Node (DM cluster)

 Peak := 2 Sockets * 28 Cores * 2.2 GHz 
* 2 FMA units * 16 FP32 slots (AVX512) * 2 (FMA)
= 7.7 TFLOP/s (FP32)  =  3.85 TFLOP/s (FP64)

Motivation and Terminology

SystemDS matmult
w/ BLAS (Intel MKL):
2.23 TFLOP/s (FP64)
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Terminology Parallelism, cont.
 Distributed, Data-Parallel 

Computation
 Parallel computation of function foo()  single instruction
 Collection X of data items (key-value pairs) multiple data
 Data parallelism similar to SIMD but more coarse-grained notion of 

“instruction” and “data”  SPMD (single program, multiple data)

 Additional Terminology
 BSP: Bulk Synchronous Parallel (global barriers)
 ASP: Asynchronous Parallel (no barriers, often with accuracy impact)
 SSP: Stale-synchronous parallel (staleness constraint on fastest-slowest)
 Other: Fork&Join, Hogwild!, event-based, decentralized

 Beware: data parallelism used in very different contexts (e.g., Param Server)

Motivation and Terminology

Y = X.map(x -> foo(x))

[Frederica Darema: The SPMD Model : Past, 
Present and Future. PVM/MPI 2001]
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Recap: Fault Tolerance & Resilience
 Resilience Problem

 Increasing error rates at scale
(soft/hard mem/disk/net errors)

 Robustness for preemption
 Need for cost-effective resilience

 Fault Tolerance in Large-Scale Computation
 Block replication in distributed file systems
 ECC; checksums for blocks, broadcast, shuffle
 Checkpointing (all task outputs / on request)
 Lineage-based recomputation for recovery in Spark

 ML-specific Approaches (exploit app characteristics)
 Estimate contribution from lost partition to avoid strugglers
 Example: user-defined “compensation” functions

Motivation and Terminology

[Google Data Center: 
https://www.youtube.com/watch?v=XZmGGAbHqa0]

https://www.youtube.com/watch?v=XZmGGAbHqa0
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Categories of Execution Strategies
Motivation and Terminology

07 Hybrid Execution and HW Accelerators

05a Data-Parallel 
Execution
[Apr 03]

05b Task-Parallel 
Execution
[Apr 03]

06 Parameter Servers 
(data, model) 

Mini-batchBatch 
SIMD/SPMD

Batch/Mini-batch, 
Independent Tasks 

MIMD

05a Data-Parallel 
Execution

05b Task-Parallel 
Execution

08 Caching, Partitioning, Indexing, and Compression
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Background MapReduce and Spark
(Data-Parallel Collection Processing)

Abstractions for Fault-tolerant, 
Distributed Storage and Computation
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Hadoop History and Architecture
 Recap: Brief History

 Google’s GFS [SOSP’03] + MapReduce
 Apache Hadoop (2006)

 Apache Hive (SQL), Pig (ETL), Mahout (ML), Giraph (Graph)

 Hadoop Architecture / Eco System
 Management (Ambari)
 Coordination / workflows

(Zookeeper, Oozie)
 Storage (HDFS)
 Resources (YARN)

[SoCC’13]
 Processing 

(MapReduce)

Data-Parallel Collection Processing

NameNode

Head Node

Worker Node 1

Resource 
Manager Node 

Manager

MR 
AM

MR 
task

MR 
task

MR 
task

Worker Node n

Node 
Manager

MR 
task

MR 
task

MR 
task

MR 
task

MR Client DataNode
1 3 2

DataNode
3 2 9

[Jeffrey Dean, Sanjay 
Ghemawat: MapReduce: 

Simplified Data Processing on 
Large Clusters. OSDI 2004]
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MapReduce – Programming Model
 Overview Programming Model

 Inspired by functional programming languages
 Implicit parallelism (abstracts distributed storage and processing)
 Map function: key/value pair  set of intermediate key/value pairs
 Reduce function: merge all intermediate values by key 

 Example

Data-Parallel Collection Processing

map(Long pos, String line) {
parts ß line.split(“,”)
emit(parts[1], 1)

}

Name Dep

X CS

Y CS

A EE

Z CS

CS 1

CS 1

EE 1

CS 1

SELECT Dep, count(*) FROM csv_files GROUP BY Dep

reduce(String dep, 
Iterator<Long> iter) {

total ß iter.sum();
emit(dep, total)

} CS 3

EE 1
Collection of 

key/value pairs
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MapReduce – Execution Model
Data-Parallel Collection Processing

CSV 
File 1

Input CSV files 
(stored in HDFS)

CSV 
File 2

CSV 
File 3

Output Files 
(HDFS)

Out 1

Out 2

Out 3

Split 11

Split 12

Split 21

Split 22

Split 31

Split 32

map 
task

map 
task
map 
task

map 
task

map 
task
map 
task
Sort, [Combine], [Compress]

Map-Phase

[Reduce-Phase]

reduce 
task

reduce 
task

reduce 
task

Shuffle, Merge, 
[Combine]

#1 Data Locality (delay sched., write affinity)
#2 Reduced shuffle (combine)
#3 Fault tolerance (replication, attempts)

w/ #reducers = 3
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Spark History and Architecture 
 Summary MapReduce

 Large-scale & fault-tolerant processing w/ UDFs and files  Flexibility
 Restricted functional APIs  Implicit parallelism and fault tolerance
 Criticism: #1 Performance, #2 Low-level APIs, #3 Many different systems

 Evolution to Spark (and Flink)
 Spark [HotCloud’10] + RDDs [NSDI’12]  Apache Spark (2014)
 Design: standing executors with in-memory storage, 

lazy evaluation, and fault-tolerance via RDD lineage
 Performance: In-memory storage and fast job scheduling (100ms vs 10s)
 APIs: Richer functional APIs and general computation DAGs, 

high-level APIs (e.g., DataFrame/Dataset), unified platform  

 But many shared concepts/infrastructure
 Implicit parallelism through dist. collections (data access, fault tolerance) 
 Resource negotiators (YARN, Mesos, Kubernetes)
 HDFS and object store connectors (e.g., Swift, S3)

Data-Parallel Collection Processing
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Spark History and Architecture, cont.
 High-Level Architecture

 Different language bindings:
Scala, Java, Python, R

 Different libraries:
SQL, ML, Stream, Graph

 Spark core (incl RDDs)
 Different cluster managers:

Standalone, Mesos, 
Yarn, Kubernetes

 Different file systems/
formats, and data sources:
HDFS, S3, SWIFT, DBs, NoSQL

 Focus on a unified platform 
for data-parallel computation (Apache Flink w/ similar goals)

Data-Parallel Collection Processing

[https://spark.apache.org/]

Standalone MESOS YARN Kubernetes

https://spark.apache.org/
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Spark Resilient Distributed Datasets (RDDs)
 RDD Abstraction

 Immutable, partitioned 
collections of key-value pairs

 Coarse-grained deterministic operations (transformations/actions) 
 Fault tolerance via lineage-based re-computation 

 Operations
 Transformations: 

define new RDDs
 Actions: return 

result to driver

 Distributed Caching
 Use fraction of worker memory for caching
 Eviction at granularity of individual partitions
 Different storage levels (e.g., mem/disk x serialization x compression)

Data-Parallel Collection Processing

JavaPairRDD<MatrixIndexes,MatrixBlock>

Type Examples

Transformation
(lazy)

map, hadoopFile, textFile, 
flatMap, filter, sample, join, 

groupByKey, cogroup, reduceByKey, 
cross, sortByKey, mapValues

Action reduce, save,
collect, count, lookupKey

Node1 Node2
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Spark Resilient Distributed Datasets (RDDs), cont.
 Lifecycle of an RDD

 Note: can’t broadcast 
an RDD directly

Data-Parallel Collection Processing

File on DFS

Distributed 
Collection

Local Data
(value, collection)

sc.parallelize(lst)

lst = X.collect()
v = X.reduce(foo())

X.filter(foo())
X.mapValues(foo())
X.reduceByKey(foo())
X.cache()/X.persist(…)

X.saveAsObjectFile(f)
X.saveAsTextFile(f)

sc.hadoopFile(f)
sc.textFile(f)
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Spark Partitions and Implicit/Explicit Partitioning
 Spark Partitions

 Logical key-value collections are split into physical partitions
 Partitions are granularity of tasks, I/O, shuffling, evictions

 Partitioning via Partitioners
 Implicitly on every data shuffling
 Explicitly via R.repartition(n)

 Partitioning-Preserving
 All operations that are guaranteed to keep keys unchanged 

(e.g. mapValues(), mapPartitions() w/ preservesPart flag)

 Partitioning-Exploiting
 Join: R3 = R1.join(R2)
 Lookups: 
v = C.lookup(k)

Data-Parallel Collection Processing

Example Hash Partitioning:
For all (k,v) of R: 
pid = hash(k) % n 

0: 8, 1, 6

1: 7, 5

2: 2, 3, 4

0: 1, 2

1: 5, 6

2: 3, 4

0: 3, 6

1: 4, 7, 1

2: 2, 5, 8

0: 6, 3

1: 4, 1

2: 5, 2

% 3
⋈ ⋈

Hash partitioned

~128MB
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Spark Lazy Evaluation, Caching, and Lineage
Data-Parallel Collection Processing

join
union

groupBy

Stage 3

Stage 1

Stage 2

A B

C D F

G

map

partitioning-
aware

E

[Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy 
McCauly, Michael J. Franklin, Scott Shenker, Ion Stoica: Resilient Distributed Datasets: A 

Fault-Tolerant Abstraction for In-Memory Cluster Computing. NSDI 2012]

reduce

cached

Presenter
Presentation Notes
Notes:Dryad-‐like DAGs Pipelines functions within a stage Locality & data reuse aware Partitioning-‐aware to avoid shuffles 
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Data-Parallel Execution
Batch ML Algorithms
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Background: Matrix Formats
 Matrix Block (m x n)

 A.k.a. tiles/chunks, most operations defined here
 Local matrix: single block, different representations

 Common Block Representations
 Dense (linearized arrays)
 MCSR (modified CSR)
 CSR (compressed sparse rows), CSC
 COO (Coordinate matrix)

Data-Parallel Execution

.7 .1

.2 .4
.3

Example 
3x3 Matrix

.7 0 .1 .2 .4 0 0 .3 0
Dense (row-major)

.7

.1

.2

.4

.3

0
2
0
1
1

0
2
4
5

CSR

.7

.1

.2

.4

.3

0
2
0
1
1

COO

0
0
1
1
2

.7 .1
2

MCSR

0

.2 .4
10

.3
1O(mn)

O(m + nnz(X)) O(nnz(X))
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Distributed Matrix Representations
 Collection of “Matrix Blocks” (and keys)

 Bag semantics (duplicates, unordered)
 Logical (Fixed-Size) Blocking 

+ join processing / independence
- (sparsity skew)

 E.g., SystemML on Spark:
JavaPairRDD<MatrixIndexes,MatrixBlock>

 Blocks encoded independently (dense/sparse)

 Partitioning
 Logical Partitioning 

(e.g., row-/column-wise)
 Physical Partitioning

(e.g., hash / grid)

Data-Parallel Execution

Logical Blocking 
3,400x2,700 Matrix 

(w/ Bc=1,000)

Physical 
Blocking and 
Partitioning 
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Distributed Matrix Representations, cont.
 #1 Block-partitioned Matrices

 Fixed-size, square or rectangular blocks
 Pros: Input/output alignment, block-local transpose, 

amortize block overheads, bounded mem, cache-conscious
 Cons: Converting row-wise inputs (e.g., text) requires shuffle
 Examples: RIOT, PEGASUS, SystemML, SciDB, Cumulon, 

Distributed R, DMac, Spark Mllib, Gilbert, MatFast, and SimSQL
 #2 Row/Column-partitioned Matrices

 Collection of row indexes and rows (or columns respectively)
 Pros: Seamless data conversion and access to entire rows
 Cons: Storage overhead in Java, and cache unfriendly operations
 Examples: Spark MLlib, Mahout Samsara, Emma, SimSQL

 #3 Algorithm-specific Partitioning
 Operation and algorithm-centric data representations
 Examples: matrix inverse, matrix factorization

Data-Parallel Execution
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Distributed Matrix Operations
Data-Parallel Execution

Elementwise Multiplication
(Hadamard Product) Transposition

Matrix
Multiplication

Note: also with 
row/column vector rhs

Note: 1:N join



28

706.550 Architecture of Machine Learning Systems – 05 Execution Strategies
Matthias Boehm, Graz University of Technology, SS 2022 

Physical MM Operator Selection
 Common Selection Criteria

 Data and cluster characteristics (e.g., data size/shape, memory, parallelism)
 Matrix/operation properties (e.g., diagonal/symmetric, sparse-safe ops)
 Data flow properties (e.g., co-partitioning, co-location, data locality)

 #0 Local Operators
 SystemML mm, tsmm, mmchain; Samsara/Mllib local

 #1 Special Operators (special patterns/sparsity)
 SystemML tsmm, mapmmchain; Samsara AtA

 #2 Broadcast-Based Operators (aka broadcast join)
 SystemML mapmm, mapmmchain

 #3 Co-Partitioning-Based Operators (aka improved repartition join)
 SystemML zipmm; Emma, Samsara OpAtB

 #4 Shuffle-Based Operators (aka repartition join)
 SystemML cpmm, rmm; Samsara OpAB

Data-Parallel Execution

X

v

X

1st

pass 2nd

pass

q┬

t(X) %*% (X%*%v)
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 Examples  Distributed MM Operators

Physical MM Operator Selection, cont.
Data-Parallel Execution

X1,1

X2,1

X3,1

X1,2

X2,2

X3,2

X4,1 X4,2

Y
1,1

Y
2,1

Y1,1

Y2,1

Y3,1

Y1,2

Y2,2

Y3,2

Y4,1 Y4,2

X1,1

X2,1

X1,3X1,2

X2,2

X1,4

X2,3 X2,4

Broadcast-based
MM (mapmm)

Shuffle-based
MM (cpmm)
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Partitioning-Preserving Operations
 Shuffle is major bottleneck for ML on Spark
 Preserve Partitioning 

 Op is partitioning-preserving if keys unchanged (guaranteed)
 Implicit: Use restrictive APIs (mapValues() vs mapToPair())
 Explicit: Partition computation w/ declaration of partitioning-preserving

 Exploit Partitioning
 Implicit: Operations based on join, cogroup, etc
 Explicit: Custom operators (e.g., zipmm)

 Example: 
Multiclass SVM
 Vectors fit 

neither into 
driver nor 
broadcast

 ncol(X) ≤ Bc

Data-Parallel Execution

parfor(iter_class in 1:num_classes) {
Y_local = 2 * (Y == iter_class) - 1
g_old = t(X) %*% Y_local
...
while( continue ) {

Xd = X %*% s
... inner while loop (compute step_sz)
Xw = Xw + step_sz * Xd;
out = 1 - Y_local * Xw;
out = (out > 0) * out;
g_new = t(X) %*% (out * Y_local) ...

repart, chkpt X MEM_DISK

chkpt y_local MEM_DISK

zipmm

chkpt Xd, Xw MEM_DISK
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Dask
 Overview Dask

 Multi-threaded and distributed operations for arrays, bags, and dataframes
 dask.array:

list of numpy n-dim arrays
 dask.dataframe:

list of pandas data frames
 dask.bag:unordered list of tuples (second order functions)
 Local and distributed schedulers:

threads, processes, YARN, Kubernetes, containers, HPC, and cloud, GPUs

 Execution
 Lazy evaluation
 Limitation: requires 

static size inference
 Triggered via
compute()

Data-Parallel Execution

[Matthew Rocklin: Dask: Parallel Computation with Blocked 
algorithms and Task Scheduling, Python in Science 2015]
[Dask Development Team: Dask: Library for dynamic task 

scheduling, 2016, https://dask.org]

import dask.array as da

x = da.random.random(
(10000,10000), chunks=(1000,1000))

y = x + x.T
y.persist() # cache in memory
z = y[::2, 5000:].mean(axis=1) # colMeans
ret = z.compute() # returns NumPy array

Presenter
Presentation Notes
Note: somewhat in competition w/ PySpark (but not out-of-core), scalable ML algorithms via https://ml.dask.org/ (partnering with scikit-learn, XGBoost)

https://dask.org/
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Task-Parallel Execution
Parallel Computation of Independent Tasks,

Emulation of Data-Parallel Operations/Programs
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Overview Task-Parallelism 
 Historic Perspective 

 Since 1980s: various parallel Fortran extensions, especially in HPC
 DOALL parallel loops (independent iterations)
 OpenMP (since 1997,

Open Multi-Processing)

 Motivation: Independent Tasks in ML Workloads
 Use cases: Ensemble learning, cross validation, hyper-parameter tuning, 

complex models with disjoint/overlapping/all data per task
 Challenge #1: Adaptation to data and cluster characteristics
 Challenge #2: Combination with data-parallelism

Task-Parallel Execution

#pragma omp parallel for reduction(+: nnz)
for (int i = 0; i < N; i++) {
int threadID = omp_get_thread_num();
R[i] = foo(A[i]);
nnz += (R[i]!=0) ? 1 : 0;    

}
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Parallel For Loops (ParFor) 
 Hybrid Parallelization Strategies

 Combination of data- and task-parallel ops
 Combination of local and distributed computation

 Key Aspects
 Dependency Analysis
 Task partitioning
 Data partitioning, scan

sharing, various rewrites
 Execution strategies
 Result agg strategies
 ParFor optimizer 

Task-Parallel Execution

reg = 10^(seq(-1,-10))
B_all = matrix(0, nrow(reg), n)

parfor( i in 1:nrow(reg) ) {
B = lm(X, y, reg[i,1]);
B_all[i,] = t(B);

}

Local ParFor
(multi-threaded),

w/ local ops

Remote ParFor
(distributed 
Spark job)

Local ParFor,
w/ concurrent 
distributed ops

[M. Boehm et al.: Hybrid Parallelization 
Strategies for Large-Scale Machine Learning 

in SystemML. PVLDB 2014]

Presenter
Presentation Notes
NOTE: dependency analysis (constant, greatest common denominator if dependency possible, Banerjee if dependencies in loop bounds)
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Additional ParFor Examples
 Pairwise Pearson Correlation 

 In practice: uni/bivariate stats
 Pearson‘s R, Anova F, Chi-squared, 

Degree of freedom, P-value, 
Cramers V, Spearman, etc)

 Batch-wise CNN Scoring 
 Emulate data-parallelism

for complex functions

 Conceptual Design: 
Coordinator/worker (task: group of parfor iterations)

Task-Parallel Execution

D = read("./input/D");
R = matrix(0, ncol(D), ncol(D));
parfor(i in 1:(ncol(D)-1)) {

X = D[ ,i];
sX = sd(X);
parfor(j in (i+1):ncol(D)) {

Y = D[ ,j];
sY = sd(Y);
R[i,j] = cov(X,Y)/(sX*sY);

} }
write(R, "./output/R");

prob = matrix(0, Ni, Nc)
parfor( i in 1:ceil(Ni/B) ) {

Xb = X[((i-1)*B+1):min(i*B,Ni),];
prob[((i-1)*B+1):min(i*B,Ni),] =

... # CNN scoring
}
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parfor(i in 1:(ncol(D)-1)) {
X = D[ ,i];
sX = sd(X);
parfor(j in (i+1):ncol(D)) {

Y = D[ ,j];

ParFor Execution Strategies
 #1 Task Partitioning

 Fixed-size schemes: 
naive (1) , static (n/k), fixed (m)

 Self-scheduling: e.g.,  
guided self scheduling, factoring

 #2 Data Partitioning
 Local or remote row/column 

partitioning (incl locality)

 #3 Task Execution
 Local (multi-core) execution
 Remote (MR/Spark) execution 

 #4 Result Aggregation
 With and without compare (non-empty output variable)
 Local in-memory / remote MR/Spark result aggregation

Task-Parallel Execution

Local 
ParWorker k

ParFOR (local)

Local 
ParWorker 1

 while(wßdeq())
  foreach pi ∈ w
   execute(prog(pi))

Task Partitioning

Parallel Result Aggregation

Task Queue

...

w5: i, {11}
w4: i, {9,10}
w3: i, {7, 8 }
w2: i, {4,5,6}
w1: i, {1,2,3}

Hadoop
ParWorker 
Mapper k

ParFOR (remote)

 ParWorker 
Mapper 1

 map(key,value)
  wßparse(value)
  foreach pi ∈ w
   execute(prog(pi))

Task Partitioning

Parallel Result Aggregation

...

…
A|MATRIX|./out/A7tmp

w5: i, {11}
w4: i, {9,10}
w3: i, {7, 8 }
w2: i, {4,5,6}
w1: i, {1,2,3}

Factoring (n=101, k=4)

(13,13,13,13, 7,7,7,7, 3,3,3,3, 2,2,2,2, 1)
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ParFor Optimizer Framework 
 Design: Runtime optimization for each top-level parfor

 Plan Tree P
 Nodes NP

 Exec type et
 Parallelism k
 Attributes A

 Height h
 Exec contexts ECP

 Plan Tree 
Optimization 
Objective

 Heuristic optimizer w/ transformation-based search strategy
 Cost and memory estimates w/ plan tree aggregate statistics

Task-Parallel Execution

ParFOR

b(cm)

Generic ParFOR

Generic

RIX LIX b(cov)...

RIX b(cm)...

ec0 ParFOR

b(cm)

Generic ParFOR

ec1 Generic

RIX LIX b(cov)...

RIX b(cm)... cmec = 600 MB
ckec   = 1

cmec = 1024 MB
ckec   = 16

MR

ec  … execution context
cm … memory constraint
ck  … parallelism constraint 
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Task-Parallelism in R
 Multi-Threading

 doMC as multi-threaded
foreach backend

 Foreach w/ parallel (%dopar%) 
or sequential (%do%) execution

 Distribution
 doSNOW as distributed 

foreach backend
 MPI/SOCK as comm methods

Task-Parallel Execution

library(doMC)
registerDoMC(32)
R <- foreach(i=1:(ncol(D)-1), 

.combine=rbind) %dopar% {
X = D[,i]; sX = sd(X);
Ri = matrix(0, 1, ncol(D))
for(j in (i+1):ncol(D)) {

Y = D[,j]; sY = sd(Y)
Ri[1,j] = cov(X,Y)/(sX*sY);

}  
return(Ri);

}

[https://cran.r-project.org/web/packages/
doMC/vignettes/gettingstartedMC.pdf]

[https://cran.r-project.org/web/packages/
doSNOW/doSNOW.pdf]

library(doSNOW)
clust = makeCluster(

c(“192.168.0.1”, “192.168.0.2”,
“192.168.0.3”), type=“SOCK”);

registerDoSNOW(clust);
... %dopar% ...
stopCluster(clust);

https://cran.r-project.org/web/packages/doMC/vignettes/gettingstartedMC.pdf
https://cran.r-project.org/web/packages/doSNOW/doSNOW.pdf


39

706.550 Architecture of Machine Learning Systems – 05 Execution Strategies
Matthias Boehm, Graz University of Technology, SS 2022 

Task-Parallelism in Other Systems
 MATLAB

 Parfor loops for 
multi-process &
distributed loops

 Use-defined par

 Julia
 Dedicated macros:
@threads
@distributed

 TensorFlow
 User-defined parallel iterations, responsible for 

correct results or acceptable approximate results

Task-Parallel Execution

tf.while_loop(cond, body, loop_vars, parallel_iterations=10,
swap_memory=False, maximum_iterations=None, ...)

[Gaurav Sharma, Jos Martin: 
MATLAB®: A Language for 

Parallel Computing. Int. Journal 
on Parallel Prog. 2009]

matlabpool 32
c = pi; z = 0;
r = rand(1,10)
parfor i = 1 : 10
z = z+1;  # reduction
b(i) = r(i); # sliced

end

a = zeros(1000)
@threads for i in 1:1000
a[i] = rand(r[threadid()])

end

[https://docs.julialang.
org/en/v1/manual/

parallel-computing/]

[https://www.tensorflow.org/
api_docs/python/tf/while_loop]

https://docs.julialang.org/en/v1/manual/parallel-computing/
https://www.tensorflow.org/api_docs/python/tf/while_loop
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Task-Parallelism in Other Systems, cont.
 sk-dist [https://pypi.org/project/sk-dist/]

 Distributed training of local scikit-learn models (via PySpark)
 Grid Search / Cross Validation (hyper-parameter optimization)
 Multi-class Training (one-against the rest)
 Tree Ensembles (many decision trees)

 Model Hopper Parallelism (MOP)
 Given a dataset D, p workers, and 

several NN configurations S 
 Partition D into worker-local partitions Dp

 Schedule tasks for sub-epochs of 𝑆𝑆′ ⊆ 𝑆𝑆 on p
without moving the partitioned data

 Checkpointing of models between tasks

 Reinforcement Learning Frameworks
 Future-based Task Graphs (Ray, Pathways, UPLIFT) 

Task-Parallel Execution

[Supun Nakandala, Yuhao Zhang, Arun
Kumar: Cerebro: Efficient and Reproducible 
Model Selection on Deep Learning Systems. 

DEEM@SIGMOD 2019]

[Supun Nakandala, Yuhao
Zhang, Arun Kumar: Cerebro: 
A Data System for Optimized 

Deep Learning Model 
Selection. PVLDB 2020]

Part of 
Next Lecture

Presenter
Presentation Notes
Pathways paper: https://arxiv.org/pdf/2203.12533.pdf

https://pypi.org/project/sk-dist/


41

706.550 Architecture of Machine Learning Systems – 05 Execution Strategies
Matthias Boehm, Graz University of Technology, SS 2022 

Summary and Q&A
 Categories of Execution Strategies

 Data-parallel execution for batch ML algorithms
 Task-parallel execution for custom parallelization of independent tasks
 Parameter servers (data-parallel vs model-parallel) 

for mini-batch ML algorithms

 #1 Different strategies (and systems) for different ML workloads
 Specialization and abstraction

 #2 Awareness of underlying execution frameworks
 #3 Awareness of effective compilation and runtime techniques

 Next Lectures (after Easter Break)
 06 Parameter Servers [Apr 29]
 07 Hybrid Execution and HW Accelerators [May 06]
 08 Caching, Partitioning, Indexing and Compression [May 13]
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