

SCIENCE PASSION TECHNOLOGY

Architecture of ML Systems 05 Data- and Task-Parallel Execution

Matthias Boehm

Graz University of Technology, Austria Computer Science and Biomedical Engineering Institute of Interactive Systems and Data Science BMK endowed chair for Data Management

Announcements/Org

- #1 Video Recording
 - Link in TeachCenter & TUbe (lectures will be public)
 - Hybrid: HSi5 / <u>https://tugraz.webex.com/meet/m.boehm</u>
- #2 Programming Projects / Exercises (25/114)
 - #1 Apache SystemDS
 - #2 DAPHNE
 - #3 SIGMOD Programming Contest / custom projects
 - #4 Exercise on ML Pipelines → TeachCenter
 - Project Registration: Mar 31
 - Project/Exercise Deadline: June 17, 11.59pm

Agenda

- Motivation and Terminology
- Background MapReduce and Spark
- Data-Parallel Execution
- Task-Parallel Execution

Motivation and Terminology

706.550 Architecture of Machine Learning Systems – 05 Execution Strategies Matthias Boehm, Graz University of Technology, SS 2022

Terminology Optimization Methods

- Problem: Given a continuous, differentiable function $f(D, \theta)$, find optimal parameters $\theta^* = \operatorname{argmin} (f(D, \theta))$
- #1 Gradient Methods (1st order)
 - Pick a starting point, compute gradient, descent in opposite direction of gradient -γ∇f(D, θ)

#2 Newton's Method (2nd order)

- Pick a starting point, compute gradient, descend to where derivative = 0 (via 2nd derivate)
- Jacobian/Hessian matrices for multi-dimensional
- #3 Quasi-Newton Methods
 - Incremental approximation of Hessian
 - Algorithms: BFGS, L-BFGS, Conjugate Gradient (CG)
 - Example: L-BFGS-B, AR(2), MSE, N=100 EnBW energy-demand time series

W

Terminology Batch/Mini-batch

Batch ML Algorithms

- Iterative ML algorithms, where each iteration uses the entire dataset to compute gradients ΔW
- For (pseudo-)second-order methods, many features
- Dedicated optimizers for traditional ML algorithms

Mini-batch ML Algorithms

- Iterative ML algorithms, where each iteration only uses a batch of rows to make the next model update (in epochs or w/ sampling)
- For large and highly redundant training sets
- Applies to almost all iterative, model-based ML algorithms (LDA, reg., class., factor., DNN)
- Stochastic Gradient Descent (SGD)

Data

Recap: Central Data Abstractions

- #1 Files and Objects
 - File: Arbitrarily large sequential data in specific file format (CSV, binary, etc)
 - Object: binary large object, with certain meta data

#2 Distributed Collections

- Logical multi-set (bag) of key-value pairs (unsorted collection)
- Different physical representations
- Easy distribution of pairs via horizontal partitioning (aka shards, partitions)
- Can be created from single file, or directory of files (unsorted)

Кеу	Value	
4	Delta	
2	Bravo	
1	Alfa	
3	Charlie	
5	Echo	
6	Foxtrot	
7	Golf	
1	Alfa	

Multiple Data

SIMD

(vector)

MIMD

(multi-core)

Terminology Parallelism

- Flynn's Classification
 - SISD, SIMD
 - (MISD), MIMD

[Michael J. Flynn, Kevin W. Rudd: Parallel Architectures. ACM Comput. Surv. 28(1) 1996]

Example: SIMD Processing

- Streaming SIMD Extensions (SSE)
- Process the same operation on multiple elements at a time (packed vs scalar SSE instructions)
- Data parallelism (aka: instruction-level parallelism)
- Example: VFMADD132PD

2009 Nehalem: **128b** (2xFP64) 2012 Sandy Bridge: **256b** (4xFP64) 2017 Skylake: **512b** (8xFP64)

Single Data

SISD

(uni-core)

MISD

(pipelining)

c = _mm512_fmadd_pd(a, b);

Single

Instruction

Multiple

Instruction

Excursus: Peak Performance

Example Scale-up Node (DM cluster)

Peak := 2 Sockets * 28 Cores * 2.2 GHz

* 2 FMA units * 16 FP32 slots (AVX512) * 2 (FMA)

= 7.7 TFLOP/s (FP32) = 3.85 TFLOP/s (FP64)

SystemDS matmult w/ BLAS (Intel MKL): 2.23 TFLOP/s (FP64)

н

🚰 mboehm@alpha: ~/mv			_		×
mboehm@alpha:~/mv\$ cpufetch	Name: Microarchitecture: Technology: Max Frequency: Sockets: Cores: Cores (Total): AVX: FMA: L1i Size: L1d Size: L2 Size: L3 Size: Peak Performance:	Intel(R) Xeon(R) Gold 6238 Cascade Lake 14nm 4.000 GHz 2 28 cores (56 threads) 56 cores (112 threads) AVX,AVX2,AVX512 FMA3 32KB (1.75MB Total) 32KB (1.75MB Total) 1MB (56MB Total) 18.5MB (77MB Total) 14.34 TFLOP/s	BR CPU @	9 2.20GH	√

706.550 Architecture of Machine Learning Systems – 05 Execution Strategies Matthias Boehm, Graz University of Technology, SS 2022

Terminology Parallelism, cont.

- Distributed, Data-Parallel
 Y = X.map(x -> foo(x))
 Computation
 - Parallel computation of function foo() → single instruction
 - Collection X of data items (key-value pairs) → multiple data
 - Data parallelism similar to SIMD but more coarse-grained notion of "instruction" and "data" → SPMD (single program, multiple data)

[Frederica Darema: The SPMD Model : Past, Present and Future. **PVM/MPI 2001**]

Additional Terminology

- BSP: Bulk Synchronous Parallel (global barriers)
- ASP: Asynchronous Parallel (no barriers, often with accuracy impact)
- SSP: Stale-synchronous parallel (staleness constraint on fastest-slowest)
- Other: Fork&Join, Hogwild!, event-based, decentralized
- Beware: data parallelism used in very different contexts (e.g., Param Server)

[Google Data Center:

Recap: Fault Tolerance & Resilience

Resilience Problem

- Increasing error rates at scale (soft/hard mem/disk/net errors)
- Robustness for preemption
- Need for cost-effective resilience
- Fault Tolerance in Large-Scale Computation
 - Block replication in distributed file systems
 - ECC; checksums for blocks, broadcast, shuffle
 - Checkpointing (all task outputs / on request)
 - Lineage-based recomputation for recovery in Spark
- ML-specific Approaches (exploit app characteristics)
 - Estimate contribution from lost partition to avoid strugglers
 - Example: user-defined "compensation" functions

Categories of Execution Strategies

07 Hybrid Execution and HW Accelerators

08 Caching, Partitioning, Indexing, and Compression

706.550 Architecture of Machine Learning Systems – 05 Execution Strategies Matthias Boehm, Graz University of Technology, SS 2022

Background MapReduce and Spark (Data-Parallel Collection Processing)

Abstractions for Fault-tolerant, Distributed Storage and Computation

Hadoop History and Architecture

- **Recap: Brief History**
 - Google's GFS [SOSP'03] + MapReduce \rightarrow Apache Hadoop (2006)

[Jeffrey Dean, Sanjay Ghemawat: MapReduce: Simplified Data Processing on Large Clusters. OSDI 2004]

Apache Hive (SQL), Pig (ETL), Mahout (ML), Giraph (Graph)

Hadoop Architecture / Eco System

- Management (Ambari)
- Coordination / workflows (Zookeeper, Oozie)
- Storage (HDFS)
- Resources (YARN) [SoCC'13]
- Processing (MapReduce)

MapReduce – Programming Model

- Overview Programming Model
 - Inspired by functional programming languages
 - Implicit parallelism (abstracts distributed storage and processing)
 - Map function: key/value pair \rightarrow set of intermediate key/value pairs
 - Reduce function: merge all intermediate values by key

Example SELECT Dep, count(*) FROM csv_files GROUP BY Dep

Name	Dep	<pre>map(Long</pre>	pos, S	String	g line) {		
Х	CS	parts • emit(pa	← line arts[1]	.sp⊥: . 1)	LT(",~)		
Y	CS	}		1	reduce(String dep.		
А	EE		CS	T	Iterator <long></long>	iter)	{
Z	CS		CS	1	total ← iter.sum()	;	
	6		EE	1	<pre>emit(dep, total)</pre>	CS	
Collecti kev/valu	on of e nairs		CS	1	}	EE	

16

MapReduce – Execution Model

Spark History and Architecture

- Summary MapReduce
 - Large-scale & fault-tolerant processing w/ UDFs and files → Flexibility

 - Criticism: #1 Performance, #2 Low-level APIs, #3 Many different systems
- Evolution to Spark (and Flink)
 - Spark [HotCloud'10] + RDDs [NSDI'12] → Apache Spark (2014)

- Design: standing executors with in-memory storage, lazy evaluation, and fault-tolerance via RDD lineage
- Performance: In-memory storage and fast job scheduling (100ms vs 10s)
- APIs: Richer functional APIs and general computation DAGs, high-level APIs (e.g., DataFrame/Dataset), unified platform

→ But many shared concepts/infrastructure

- Implicit parallelism through dist. collections (data access, fault tolerance)
- Resource negotiators (YARN, Mesos, Kubernetes)
- HDFS and object store connectors (e.g., Swift, S3)

TU Graz

Spark History and Architecture, cont.

High-Level Architecture

- Different language bindings: Scala, Java, Python, R
- Different libraries: SQL, ML, Stream, Graph
- Spark core (incl RDDs)
- Different cluster managers: Standalone, Mesos, Yarn, Kubernetes
- Different file systems/ formats, and data sources: HDFS, S3, SWIFT, DBs, NoSQL

Focus on a unified platform for data-parallel computation (Apache Flink w/ similar goals)

Spark Resilient Distributed Datasets (RDDs)

- **RDD** Abstraction
 - **Immutable**, partitioned collections of key-value pairs
 - **Coarse-grained** deterministic operations (transformations/actions)

Type

Transformation

(lazy)

Fault tolerance via lineage-based re-computation

e new RDDs	(1829)	groupByKey, cogroup, reduceByKey,			
ns: return		cross, sortByKey, mapValues			
to driver	Action	reduce, save,			
		collect, count, lookupKey			
d Caching		Node1 Node2			
action of wor	ker memory for c	aching			
n at granularity of individual partitions					

Different storage levels (e.g., mem/disk x serialization x compression)

Examples

map, hadoopFile, textFile,

flatMap, filter, sample, join,

Operations

- Transformations: define new RDDs
- Action result
- Distribute
 - Use fra
 - Evictio

19

20

Spark Resilient Distributed Datasets (RDDs), cont.

706.550 Architecture of Machine Learning Systems – 05 Execution Strategies Matthias Boehm, Graz University of Technology, SS 2022

Spark Partitions and Implicit/Explicit Partitioning

Spark Partitions

21

- Logical key-value collections are split into physical partitions
- Partitions are granularity of tasks, I/O, shuffling, evictions
- Partitioning via Partitioners
 - Implicitly on every data shuffling
 - Explicitly via R.repartition(n)
- Partitioning-Preserving
 - All operations that are guaranteed to keep keys unchanged (e.g. mapValues(), mapPartitions() w/ preservesPart flag)

706.550 Architecture of Machine Learning Systems – 05 Execution Strategies Matthias Boehm, Graz University of Technology, SS 2022 ~128MB

Example Hash Partitioning:

For all (k,v) of R: pid = hash(k) % n

ISDS

Spark Lazy Evaluation, Caching, and Lineage

[Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauly, Michael J. Franklin, Scott Shenker, Ion Stoica: Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing. **NSDI 2012**]

Data-Parallel Execution

Batch ML Algorithms

706.550 Architecture of Machine Learning Systems – 05 Execution Strategies Matthias Boehm, Graz University of Technology, SS 2022

ISDS

Background: Matrix Formats

- Matrix Block (m x n)
 - A.k.a. tiles/chunks, most operations defined here
 - Local matrix: single block, different representations

Common Block Representations

- Dense (linearized arrays)
- MCSR (modified CSR)
- CSR (compressed sparse rows), CSC
- COO (Coordinate matrix)

ISD

Distributed Matrix Representations

- Collection of "Matrix Blocks" (and keys)
 - **Bag semantics** (duplicates, unordered)
 - Logical (Fixed-Size) Blocking + join processing / independence - (sparsity skew)
 - E.g., SystemML on Spark: JavaPairRDD<MatrixIndexes,MatrixBlock>
 - Blocks encoded independently (dense/sparse)

(1,1)	(1,2)	(1,3)
(2,1)	(2,2)	(2,3)
(3,1)	(3,2)	(3,3)
(4,1)	$\fbox{(4,2)}$	(4,3)

Partitioning

- Logical Partitioning (e.g., row-/column-wise)
- Physical Partitioning (e.g., hash / grid)

Physical Blocking and Partitioning

26

Distributed Matrix Representations, cont.

- #1 Block-partitioned Matrices
 - Fixed-size, square or rectangular blocks
 - Pros: Input/output alignment, block-local transpose, amortize block overheads, bounded mem, cache-conscious
 - Cons: Converting row-wise inputs (e.g., text) requires shuffle
 - Examples: RIOT, PEGASUS, SystemML, SciDB, Cumulon, Distributed R, DMac, Spark Mllib, Gilbert, MatFast, and SimSQL
- #2 Row/Column-partitioned Matrices
 - Collection of row indexes and rows (or columns respectively)
 - Pros: Seamless data conversion and access to entire rows
 - **Cons:** Storage overhead in Java, and cache unfriendly operations
 - Examples: Spark MLlib, Mahout Samsara, Emma, SimSQL
- #3 Algorithm-specific Partitioning
 - Operation and algorithm-centric data representations
 - Examples: matrix inverse, matrix factorization

27

Distributed Matrix Operations

Note: 1:N join

Physical MM Operator Selection

- Common Selection Criteria
 - Data and cluster characteristics (e.g., data size/shape, memory, parallelism)
 - Matrix/operation properties (e.g., diagonal/symmetric, sparse-safe ops)
 - Data flow properties (e.g., co-partitioning, co-location, data locality)
- #0 Local Operators
 - SystemML mm, tsmm, mmchain; Samsara/Mllib local
- #1 Special Operators (special patterns/sparsity)
 - SystemML tsmm, mapmmchain; Samsara AtA
- #2 Broadcast-Based Operators (aka broadcast join)
 - SystemML mapmm, mapmmchain
- #3 Co-Partitioning-Based Operators (aka improved repartition join)
 - SystemML zipmm; Emma, Samsara OpAtB
- #4 Shuffle-Based Operators (aka repartition join)
 - SystemML cpmm, rmm; Samsara OpAB

Physical MM Operator Selection, cont.

Examples Distributed MM Operators

706.550 Architecture of Machine Learning Systems – 05 Execution Strategies Matthias Boehm, Graz University of Technology, SS 2022

Partitioning-Preserving Operations

- Shuffle is major bottleneck for ML on Spark
- Preserve Partitioning
 - Op is partitioning-preserving if keys unchanged (guaranteed)
 - Implicit: Use restrictive APIs (mapValues() vs mapToPair())
 - Explicit: Partition computation w/ declaration of partitioning-preserving

Exploit Partitioning

- Implicit: Operations based on join, cogroup, etc
- Explicit: Custom operators (e.g., zipmm)

```
repart, chkpt X MEM DISK
Example:
                     parfor(iter class in 1:num classes) {
                        Y local = 2 * (Y == iter class) - 1
  Multiclass SVM
                        g old = t(X) %*% Y local
    Vectors fit
                                                          chkpt y_local MEM_DISK
                        while( continue ) {
      neither into
                        — Xd = X %*% s
                                                          chkpt Xd, Xw MEM_DISK
      driver nor
                           ... inner while loop (compute step sz)
      broadcast
                           Xw = Xw + step sz * Xd;
                           out = 1 - Y local * Xw;
    • ncol(X) \leq B_c
                           out = (out > 0) * out;
                                                                     zipmm
                           g new = t(X) %*% (out * Y local) ...
```


Pandas

Pandas

Dataframe

Datafram

January, 2016

February, 2016

March, 2016

April, 2016 May, 2016

31

[Matthew Rocklin: Dask: Parallel Computation with Blocked algorithms and Task Scheduling, **Python in Science 2015**] [Dask Development Team: Dask: Library for dynamic task scheduling, 2016, <u>https://dask.org</u>]

Numpy

- Overview Dask
 - Multi-threaded and distributed operations for arrays, bags, and dataframes
 - dask.array: list of numpy n-dim arrays
 - dask.dataframe: list of pandas data frames
 - dask.bag:unordered list of tuples (second order functions)
 - Local and distributed schedulers: threads, processes, YARN, Kubernetes, containers, HPC, and cloud, GPUs

Execution

- Lazy evaluation
- Limitation: requires static size inference
- Triggered via compute()

```
import dask.array as da
```

```
x = da.random.random(
    (10000,10000), chunks=(1000,1000))
y = x + x.T
y.persist() # cache in memory
z = y[::2, 5000:].mean(axis=1) # colMeans
ret = z.compute() # returns NumPy array
```


Task-Parallel Execution

Parallel Computation of Independent Tasks, Emulation of Data-Parallel Operations/Programs

706.550 Architecture of Machine Learning Systems – 05 Execution Strategies Matthias Boehm, Graz University of Technology, SS 2022

Overview Task-Parallelism

Historic Perspective

- Since 1980s: various parallel Fortran extensions, especially in HPC
- DOALL parallel loops (independent iterations)
- OpenMP (since 1997, Open Multi-Processing)

Open**MP**

```
#pragma omp parallel for reduction(+: nnz)
for (int i = 0; i < N; i++) {
    int threadID = omp_get_thread_num();
    R[i] = foo(A[i]);
    nnz += (R[i]!=0) ? 1 : 0;
}</pre>
```

Motivation: Independent Tasks in ML Workloads

- Use cases: Ensemble learning, cross validation, hyper-parameter tuning, complex models with disjoint/overlapping/all data per task
- Challenge #1: Adaptation to data and cluster characteristics
- Challenge #2: Combination with data-parallelism

Apache

SystemML

Parallel For Loops (ParFor)

- Hybrid Parallelization Strategies
 - Combination of data- and task-parallel ops
 - Combination of local and distributed computation

Key Aspects

- Dependency Analysis
- Task partitioning
- Data partitioning, scan sharing, various rewrites
- Execution strategies
- Result agg strategies
- ParFor optimizer

```
reg = 10^(seq(-1,-10))
B_all = matrix(0, nrow(reg), n)
```

[M. Boehm et al.: Hybrid Parallelization

in SystemML. PVLDB 2014]

Strategies for Large-Scale Machine Learning

```
parfor( i in 1:nrow(reg) ) {
    B = lm(X, y, reg[i,1]);
    B_all[i,] = t(B);
}
```

Local ParFor (multi-threaded), w/ local ops

Remote ParFor (distributed Spark job) Local ParFor, w/ concurrent distributed ops

Additional ParFor Examples

Pairwise Pearson Correlation

- In practice: uni/bivariate stats
- Pearson's R, Anova F, Chi-squared, Degree of freedom, P-value, Cramers V, Spearman, etc)

Batch-wise CNN Scoring

 Emulate data-parallelism for complex functions

```
D = read("./input/D");
R = matrix(0, ncol(D), ncol(D));
parfor(i in 1:(ncol(D)-1)) {
   X = D[,i];
   sX = sd(X);
   parfor(j in (i+1):ncol(D)) {
      Y = D[,j];
      sY = sd(Y);
      R[i,j] = cov(X,Y)/(sX*sY);
write(R, "./output/R");
prob = matrix(0, Ni, Nc)
parfor( i in 1:ceil(Ni/B) ) {
  Xb = X[((i-1)*B+1):min(i*B,Ni),];
  prob[((i-1)*B+1):min(i*B,Ni),] =
      ... # CNN scoring
}
```

Conceptual Design:

Coordinator/worker (task: group of parfor iterations)

ParFor Execution Strategies

#1 Task Partitioning

- Fixed-size schemes: naive (1) , static (n/k), fixed (m)
- Self-scheduling: e.g., guided self scheduling, factoring

#2 Data Partitioning

- Local or remote row/column partitioning (incl locality)
- #3 Task Execution
 - Local (multi-core) execution
 - Remote (MR/Spark) execution
- #4 Result Aggregation
 - With and without compare (non-empty output variable)
 - Local in-memory / remote MR/Spark result aggregation

Factoring (n=101, k=4)

$$R_{0} = N,$$

$$R_{i+1} = R_{i} - k \cdot l_{i}, \quad l_{i} = \left\lceil \frac{R_{i}}{x_{i} \cdot k} \right\rceil = \left\lceil \left(\frac{1}{x_{i}}\right)^{i+1} \frac{N}{k} \right\rceil$$

(13,13,13,13, 7,7,7,7, 3,3,3,3, 2,2,2,2, 1)

ISDS

ParFor Optimizer Framework

- Design: Runtime optimization for each top-level parfor
- Plan Tree P
 - Nodes N_P
 - Exec type et
 - Parallelism k
 - Attributes A
 - Height h
 - Exec contexts EC_P
- Plan Tree
 Optimization
 Objective

$\phi_2: \min \quad \hat{T}(r(P))$ s.t. $\forall ec \in \mathcal{EC}_P: \hat{M}(r(ec)) \leq cm_{ec} \land K(r(ec)) \leq ck_{ec}.$

- Heuristic optimizer w/ transformation-based search strategy
 - Cost and memory estimates w/ plan tree aggregate statistics

38

Task-Parallelism in R

- Multi-Threading
 - doMC as multi-threaded foreach backend
 - Foreach w/ parallel (%dopar%) or sequential (%do%) execution

[https://cran.r-project.org/web/packages/ doMC/vignettes/gettingstartedMC.pdf]

Distribution

- doSNOW as distributed foreach backend
- MPI/SOCK as comm methods

```
[https://cran.r-project.org/web/packages/
doSNOW/doSNOW.pdf]
```

```
library(doMC)
registerDoMC(32)
R <- foreach(i=1:(ncol(D)-1),</pre>
              .combine=rbind) %dopar% {
   X = D[,i]; sX = sd(X);
   Ri = matrix(0, 1, ncol(D))
   for(j in (i+1):ncol(D)) {
      Y = D[,j]; sY = sd(Y)
      Ri[1,j] = cov(X,Y)/(sX*sY);
   }
   return(Ri);
}
library(doSNOW)
clust = makeCluster(
   c("192.168.0.1", "192.168.0.2",
   "192.168.0.3"), type="SOCK");
registerDoSNOW(clust);
... %dopar% ...
stopCluster(clust);
```


MATLAB

Task-Parallelism in Other Systems

end

matlabpool 32

c = pi; z = 0;

r = rand(1, 10)

parfor i = 1 : 10

z = z+1; # reduction

b(i) = r(i); # sliced

MATLAB

- Parfor loops for multi-process & distributed loops
- Use-defined par

Julia

 Dedicated macros: @threads
 @distributed

```
a = zeros(1000)
@threads for i in 1:1000
    a[i] = rand(r[threadid()])
end
```



```
[https://docs.julialang.
org/en/v1/manual/
parallel-computing/]
```

TensorFlow

 User-defined parallel iterations, responsible for correct results or acceptable approximate results

```
TensorFlow
```

[https://www.tensorflow.org/ api_docs/python/tf/while_loop]

[Gaurav Sharma, Jos Martin:

Parallel Computing. Int. Journal

MATLAB[®]: A Language for

on Parallel Prog. 2009]

```
tf.while_loop(cond, body, loop_vars, parallel_iterations=10,
    swap_memory=False, maximum_iterations=None, ...)
```


40

Task-Parallelism in Other Systems, cont.

- sk-dist [<u>https://pypi.org/project/sk-dist/</u>]
 - Distributed training of local scikit-learn models (via PySpark)
 - Grid Search / Cross Validation (hyper-parameter optimization)
 - Multi-class Training (one-against the rest)
 - Tree Ensembles (many decision trees)
- Model Hopper Parallelism (MOP)
 - Given a dataset D, p workers, and several NN configurations S
 - Partition D into worker-local partitions D_p
 - Schedule tasks for sub-epochs of S' ⊆ S on p without moving the partitioned data
 - Checkpointing of models between tasks
- Reinforcement Learning Frameworks
- Future-based Task Graphs (Ray, Pathways, UPLIFT)

[Supun Nakandala, Yuhao Zhang, Arun Kumar: Cerebro: Efficient and Reproducible Model Selection on Deep Learning Systems. DEEM@SIGMOD 2019]

> [Supun Nakandala, Yuhao Zhang, Arun Kumar: Cerebro: A Data System for Optimized Deep Learning Model Selection. **PVLDB 2020**]

Summary and Q&A

- Categories of Execution Strategies
 - Data-parallel execution for batch ML algorithms
 - Task-parallel execution for custom parallelization of independent tasks
 - Parameter servers (data-parallel vs model-parallel) for mini-batch ML algorithms
- #1 Different strategies (and systems) for different ML workloads
 > Specialization and abstraction
- #2 Awareness of underlying execution frameworks
- #3 Awareness of effective compilation and runtime techniques
- Next Lectures (after Easter Break)
 - 06 Parameter Servers [Apr 29]
 - 07 Hybrid Execution and HW Accelerators [May 06]
 - 08 Caching, Partitioning, Indexing and Compression [May 13]

