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Announcements/Org
 #1 Video Recording 

 Link in TeachCenter & TUbe (lectures will be public)
 Hybrid: HSi13 / https://tugraz.webex.com/meet/m.boehm
 Apr 25: no more COVID restrictions at TU Graz

 #2 Course Evaluations and Exam
 Evaluation period: Jun 15 – Jul 31
 Oral Exams (45min each), doodle in June  exams in July

(close to submission of projects/exercises)

https://tugraz.webex.com/meet/m.boehm
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Categories of Execution Strategies
Motivation and Terminology

07 Hybrid Execution and HW Accelerators

05a Data-Parallel 
Execution

05b Task-Parallel 
Execution

06 Parameter Servers 
(data, model) 

Mini-batchBatch 
SIMD/SPMD

Batch/Mini-batch, 
Independent Tasks 

MIMD

08 Caching, Partitioning, Indexing, and Compression
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Agenda
 Data-Parallel Parameter Servers
 Model-Parallel Parameter Servers
 Distributed Reinforcement Learning
 Federated Machine Learning
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Data-Parallel Parameter Servers
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Recap: Mini-batch ML Algorithms
 Mini-batch ML Algorithms

 Iterative ML algorithms, where each iteration
only uses a batch of rows to make the 
next model update (in epochs or w/ sampling)

 For large and highly redundant training sets
 Applies to almost all iterative, model-based 

ML algorithms (LDA, reg., class., factor., DNN)
 Stochastic Gradient Descent (SGD)

 Statistical vs Hardware Efficiency (batch size)
 Statistical efficiency: # accessed data points to achieve certain accuracy
 Hardware efficiency: number of independent computations to 

achieve high hardware  utilization (parallelization at different levels)
 Beware higher variance / class skew for too small batches!

 Training Mini-batch ML algorithms sequentially is hard to scale

Data-Parallel Parameter Servers

Data

Batch 2

Batch 1

Epoch

W’
W’’



7

706.550 Architecture of Machine Learning Systems – 06 Parameter Servers
Matthias Boehm, Graz University of Technology, SS 2022 

# Initialize W1-W4, b1-b4
# Initialize SGD w/ Nesterov momentum optimizer
iters = ceil(N / batch_size)

for( e in 1:epochs ) {
for( i in 1:iters ) {

X_batch = X[((i-1) * batch_size) %% N + 1:min(N, beg + batch_size - 1),] 
y_batch = Y[((i-1) * batch_size) %% N + 1:min(N, beg + batch_size - 1),]

## layer 1: conv1 -> relu1 -> pool1
## layer 2: conv2 -> relu2 -> pool2
## layer 3: affine3 -> relu3 -> dropout
## layer 4: affine4 -> softmax
outa4 = affine::forward(outd3, W4, b4)
probs = softmax::forward(outa4)

## layer 4:  affine4 <- softmax
douta4 = softmax::backward(dprobs, outa4)
[doutd3, dW4, db4] = affine::backward(douta4, outr3, W4, b4)
## layer 3: affine3 <- relu3 <- dropout
## layer 2: conv2 <- relu2 <- pool2
## layer 1: conv1 <- relu1 <- pool1

# Optimize with SGD w/ Nesterov momentum W1-W4, b1-b4
[W4, vW4] = sgd_nesterov::update(W4, dW4, lr, mu, vW4)
[b4, vb4] = sgd_nesterov::update(b4, db4, lr, mu, vb4)

}
}

Background: Mini-batch DNN Training (LeNet)
Data-Parallel Parameter Servers

NN Forward 
Pass

NN Backward
Pass

 Gradients

Model 
Updates

[Yann LeCun, Leon Bottou, Yoshua
Bengio, and Patrick Haffner:  Gradient-

Based Learning Applied to Document 
Recognition, Proc of the IEEE 1998]

Presenter
Presentation Notes
Note: number of layers = layer ops w/ weights
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Overview Parameter Servers
 System 

Architecture
 M Parameter

Servers
 N Workers
 Optional

Coordinator

 Key Techniques
 Data partitioning D  workers Di (e.g., disjoint, reshuffling)
 Updated strategies (e.g., synchronous, asynchronous)
 Batch size strategies (small/large batches, hybrid methods)

Data-Parallel Parameter Servers

M

N

W .. Model
ΔW .. Gradient

Presenter
Presentation Notes
Note: Nabla vs Delta operators
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History of Parameter Servers
 1st Gen: Key/Value 

 Distributed key-value store for 
parameter exchange and synchronization

 Relatively high overhead

 2nd Gen: Classic Parameter Servers
 Parameters as dense/sparse matrices
 Different update/consistency strategies
 Flexible configuration and fault tolerance

 3rd Gen: Parameter Servers w/ 
improved data communication
 Prefetching and range-based pull/push
 Lossy or lossless compression w/ compensations

 Examples 
 TensorFlow, MXNet, PyTorch, CNTK, Petuum

Data-Parallel Parameter Servers

[Alexander J. Smola, Shravan 
M. Narayanamurthy: An 

Architecture for Parallel Topic 
Models. PVLDB 2010]

[Jeffrey Dean et al.: Large Scale 
Distributed Deep Networks. 

NIPS 2012]

[Mu Li et al: Scaling Distributed 
Machine Learning with the 

Parameter Server. OSDI 2014]

[Jiawei Jiang, Bin Cui, Ce Zhang, 
Lele Yu: Heterogeneity-aware 

Distributed Parameter Servers. 
SIGMOD 2017]

[Jiawei Jiang et al: SketchML: 
Accelerating Distributed Machine 

Learning with Data Sketches. 
SIGMOD 2018]
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Basic Worker Algorithm (batch)

Data-Parallel Parameter Servers

[Jeffrey Dean et al.: Large Scale 
Distributed Deep Networks. 

NIPS 2012]

for( i in 1:epochs ) {
for( j in 1:iterations ) {

params = pullModel(); # W1-W4, b1-b4 lr, mu
batch = getNextMiniBatch(data, j);
gradient = computeGradient(batch, params);
pushGradients(gradient);

}  
}
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Extended Worker Algorithm (nfetch batches)

gradientAcc = matrix(0,...);
for( i in 1:epochs ) {

for( j in 1:iterations ) {
if( step mod nfetch = 0 )

params = pullModel();
batch = getNextMiniBatch(data, j);
gradient = computeGradient(batch, params);
gradientAcc += gradient;
params = updateModel(params, gradients);
if( step mod nfetch = 0 ) {

pushGradients(gradientAcc); step = 0; 
gradientAcc = matrix(0, ...);   

}
step++;

}  }

Data-Parallel Parameter Servers

nfetch batches require 
local gradient accrual and 

local model update

[Jeffrey Dean et al.: Large Scale 
Distributed Deep Networks. 

NIPS 2012]
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Update Strategies
 Bulk Synchronous

Parallel (BSP)
 Update model w/ 

accrued gradients
 Barrier for N workers

 Asynchronous
Parallel (ASP)
 Update model

for each gradient
 No barrier

 Synchronous w/ 
Backup Workers
 Update model w/

accrued gradients
 Barrier for N of 

N+b workers

Data-Parallel Parameter Servers

Batch 1
Batch 1

Batch 1
Batch 1

Batch 2
Batch 2

Batch 2
Batch 2

Batch 3
Batch 3

Batch 3
Batch 3

Batch 1
Batch 1

Batch 1
Batch 1

Batch 2
Batch 2

Batch 2
Batch 2

Batch 3
Batch 3

Batch 3
Batch 3 but, stale 

model 
updates

Batch 1
Batch 1

Batch 1
Batch 1

Batch 2
Batch 2

Batch 2
Batch 2

Batch 3
Batch 3

Batch 3
Batch 3

[Martín Abadi et al: TensorFlow: A System for 
Large-Scale Machine Learning. OSDI 2016]
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Update Strategies, cont.
 Stale-Synchronous Parallel (SSP)

 Similar to backup workers, 
weak synchronization barrier

 Maximum staleness of s clocks between fastest 
and slowest worker  if violated, block fastest

 Hogwild!
 Even the model update 

completely unsynchronized
 Shown to converge for sparse model updates

 Decentralized
 #1: Exchange partial gradient updates 

with local peers
 #2: Peer-to-peer re-assignment of work
 Other Examples: Ako, FlexRR

Data-Parallel Parameter Servers

[Qirong Ho et al: More Effective 
Distributed ML via a Stale 

Synchronous Parallel Parameter 
Server. NIPS 2013]

[Benjamin Recht, Christopher Ré, Stephen J. 
Wright, Feng Niu: Hogwild: A Lock-Free 

Approach to Parallelizing Stochastic 
Gradient Descent. NIPS 2011]

[Xiangru Lian et al: Can Decentralized 
Algorithms Outperform Centralized 

Algorithms? A Case Study for 
Decentralized Parallel Stochastic 

Gradient Descent. NIPS 2017]
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Data Partitioning Schemes
 Goals Data Partitioning

 Even distribute data across workers
 Avoid skew regarding model updates  shuffling/randomization

 #1 Disjoint Contiguous
 Contiguous row partition of features/labels

 #2 Disjoint Round Robin
 Rows of features distributed round robin

 #3 Disjoint Random
 Random non-overlapping selection of rows

 #4 Overlap Reshuffle
 Each worker receives a reshuffled 

copy of the whole dataset

Data-Parallel Parameter Servers

Xp = X[id*blocksize+1:
(id+1)*blocksize,];

Xp = X[seq(1,nrow(X))%%N==id),];

P = table(seq(1,nrow(X)),
sample(nrow(X),nrow(X),FALSE));

Xp = P[id*blocksize+1: 
(id+1)*blocksize,] %*% X

Xp = Pi %*% X
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Example Distributed TensorFlow DP
# Create a cluster from the parameter server and worker hosts
cluster = tf.train.ClusterSpec({"ps": ps_hosts, "worker": worker_hosts})

# Create and start a server for the local task.
server = tf.train.Server(cluster, job_name=..., task_index=...)

# On worker: initialize loss
train_op = tf.train.AdagradOptimizer(0.01).minimize(

loss, global_step=tf.contrib.framework.get_or_create_global_step())

# Create training session and run steps asynchronously
hooks=[tf.train.StopAtStepHook(last_step=1000000)]
with tf.train.MonitoredTrainingSession(master=server.target,

is_chief=(task_index == 0), checkpoint_dir=..., hooks=hooks) as sess:
while not mon_sess.should_stop():

sess.run(train_op)

# Program needs to be started on ps and worker

Data-Parallel Parameter Servers

But new experimental 
APIs and Keras Frontend

[Inside TensorFlow: tf.distribute.Strategy, 2019, 
https://www.youtube.com/watch?v=jKV53r9-H14]

https://www.youtube.com/watch?v=jKV53r9-H14
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Example SystemDS Parameter Server
# Initialize SGD w/ Adam optimizer
[W1, mW1, vW1] = adam::init(W1); 
[b1, mb1, vb1] = adam::init(b1); ...

# Create the model object
modelList = list(W1, W2, W3, W4, b1, b2, b3, b4, vW1, vW2, vW3, vW4, 
vb1, vb2, vb3, vb4, mW1, mW2, mW3, mW4, mb1, mb2, mb3, mb4);

# Create the hyper parameter list
params = list(lr=0.001, beta1=0.9, beta2=0.999, epsilon=1e-8, t=0, 
C=C, Hin=Hin, Win=Win, Hf=Hf, Wf=Wf, stride=1, pad=2, lambda=5e-04, 
F1=F1, F2=F2, N3=N3)

# Use paramserv function
modelList2 = paramserv(model=modelList, features=X, labels=Y, 
upd=fGradients, aggregation=fUpdate, mode=REMOTE_SPARK, utype=ASP, 
freq=BATCH, epochs=200, batchsize=64, k=144, scheme=DISJOINT_RANDOM, 
hyperparams=params)

Data-Parallel Parameter Servers
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Selected Optimizers (updateModel)

 Stochastic Gradient Descent (SGD)
 Vanilla SGD, basis for many other optimizers
 See 05 Data/Task-Parallel: −𝛾𝛾𝛻𝛻𝒇𝒇(𝑫𝑫,𝜽𝜽)

 SGD w/ Momentum
 Incorporates parameter velocity w/ momentum 

 SGD w/ Nesterov Momentum
 Incorporates parameter velocity w/ momentum,

but update from position after momentum

 AdaGrad
 Adaptive learning rate w/ regret guarantees

 RMSprop
 Adaptive learning rate, extended AdaGrad

Data-Parallel Parameter Servers

X = X – lr*dX

v = mu*v – lr*dX
X = X + v

v0 = v
v = mu*v – lr*dX

X = X – mu*v0 + (1+mu)*v

[John C. Duchi et al: Adaptive 
Subgradient Methods for 

Online Learning and Stochastic 
Optimization. JMLR 2011]

c = dr*c+(1-dr)*dX^2
X = X-(lr*dX/(sqrt(c)+eps))

Presenter
Presentation Notes
Regret: loss incurred during learning, loss difference to loss w/ optimal weights (applicability to exercise?)
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Selected Optimizers (updateModel), cont.
 Adam

 Individual adaptive learning rates for 
different parameters

 Shampoo
 Preconditioned gradient method

(Newton’s method, Quasi-Newton)
 Retains gradients tensor structure by

maintaining a preconditioner per dim
 O(m2n2)  O(m2 + n2)

Data-Parallel Parameter Servers

[Diederik P. Kingma, Jimmy Ba: 
Adam:  A Method for Stochastic 

Optimization. ICLR 2015]

t = t + 1
m = beta1*m + (1-beta1)*dX # update biased 1st moment est
v = beta2*v + (1-beta2)*dX^2 # update biased 2nd raw moment est
mhat = m / (1-beta1^t)       # bias-corrected 1st moment est
vhat = v / (1-beta2^t)       # bias-corrected 2nd raw moment est
X = X - (lr * mhat/(sqrt(vhat)+epsilon)) # param update

[Vineet Gupta, Tomer Koren, Yoram Singer: 
Shampoo: Preconditioned Stochastic 

Tensor Optimization. ICML 2018]

L = L + dX %*% t(dX)
R = R + t(dX) %*% dX
X = X – lr * pow(L,1/4) 

%*% dX %*% pow(R,1/4)) 

Presenter
Presentation Notes
Note: Newton’s method employs the local Hessian as a preconditioner
“Shampoo maintains an m×m matrix L1/4t to precondition the rows of Gt and R1/4t for its columns. The ¼ exponent arises from our analysis; intuitively, it is a sensible choice as it induces an overall step-size decay rate of O(1/√t), which is common in stochastic optimization methods.”
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Batch Size Configuration
 What is the right batch size for my data?

 Maximum useful batch size is dependent on 
data redundancy and model complexity

 Additional Heuristics/Hybrid Methods
 #1 Increase the batch size instead 

of decaying the learning rate

 #2 Combine batch and mini-batch 
algorithms (full batch + n online updates)

Data-Parallel Parameter Servers

ResNet-50 
on 

ImageNet

Simple CNN 
on 

MNIST
vs

[Christopher J. Shallue et al.: 
Measuring the Effects of Data 

Parallelism on Neural Network 
Training. CoRR 2018]

[Samuel L. Smith, Pieter-Jan 
Kindermans, Chris Ying, Quoc V. Le: 

Don't Decay the Learning Rate, 
Increase the Batch Size. ICLR 2018]

[Ashok Cutkosky, Róbert Busa-Fekete: 
Distributed Stochastic Optimization 

via Adaptive SGD. NeurIPS 2018]
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Reducing Communication Overhead
 Large Batch Sizes

 Larger batch sizes reduce the 
relative communication overhead

 Overlapping Computation/Communication
 For deep NN w/ many weight/bias matrices, 

compute and comm. can be overlapped
 Collective operations: all-Reduce / ring all-reduce / hierarchical all-reduce

 Sparse and Compressed Communication 
 Mini-batches of sparse data  sparse dW
 Lossy (mantissa truncation, quantization), and 

lossless (delta, bitpacking) for W and dW
 Gradient sparsification/clipping (send gradients larger than a threshold)

 In-Network Aggregation (SwitchML)
 Aggregate worker updates in prog. switches
 32b fix-point, coordinated updates

Data-Parallel Parameter Servers

[Frank Seide et al: 1-bit 
stochastic gradient descent and 

its application to data-parallel 
distributed training of speech 

DNNs. INTERSPEECH 2014]

[Priya Goyal et al: Accurate, Large 
Minibatch SGD: Training ImageNet in 1 

Hour. CoRR 2017 (kn=8K, 256 GPUs)]

tf.distribute:
MirroredStrategy

MultiWorkerMirroredStrategy

[Amedeo Sapio et al: Scaling 
Distributed Machine Learning with 

In-Network Aggregation, NSDI 2021]

Presenter
Presentation Notes
Large-batches: synchronous SGD with k=256 workers * n=32 per-worker batch size = 8K
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Model-Parallel Parameter Servers
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Problem Setting
 Limitations Data-Parallel Parameter Servers

 Need to fit entire model and activations into each worker node/device 
(or overhead for repeated eviction & restore)

 Very deep and wide networks (e.g., ResNet-1001)

 Model-Parallel Parameter Servers
 Workers responsible for disjoint partitions of the network/model
 Exploit pipeline parallelism and independent subnetworks
 Examples: recurrent neural networks, pre-processing tasks

 Hybrid Parameter Servers
 “To be successful, however, we believe that model 

parallelism must be combined with clever distributed 
optimization techniques that leverage data parallelism.”

 “[…] it is possible to use tens of thousands of CPU cores
for training a single model”

Model-Parallel Parameter Servers

[Jeffrey Dean et al.: Large 
Scale Distributed Deep 
Networks. NIPS 2012]

[Kaiming He, Xiangyu Zhang, 
Shaoqing Ren, Jian Sun: 

Identity Mappings in Deep 
Residual Networks. ECCV 2016]
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Overview Model-Parallel Execution
 System 

Architecture
 Nodes act as 

workers and 
parameter servers

 Data Transfer for
boundary-crossing
data dependencies

 Pipeline 
Parallelism

Model-Parallel Parameter Servers

Workers w/ disjoint 
network/model partitions
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Example Distributed TensorFlow MP
# Place variables and ops on devices
with tf.device("/gpu:0"):

a = tf.Variable(tf.random.uniform(...))
a = tf.square(a)

with tf.device("/gpu:1"):
b = tf.Variable(tf.random.uniform(...))
b = tf.square(b)

with tf.device("/cpu:0"):
loss = a+b

# Declare optimizer and parameters
opt = tf.train.GradientDescentOptimizer(learning_rate=0.1)
train_op = opt.minimize(loss)

# Force distributed graph evaluation
ret = sess.run([loss, train_op])) 

Model-Parallel Parameter Servers

Explicit Placement of 
Operations 

(shown via toy example)
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Pathways: Asynchronous, Distributed Data Flow
 System Overview

 TF and JAX programs (e.g., JAX pmap())
 Virtual device requests  device islands
 MLIR dialect, lowering to physical devices 
 PLAQUE shared data-flow system w/

sharded buffer, sparse comm., gang scheduling

 Resource Management and Scheduling

Model-Parallel Parameter Servers

[Paul Barham et al: Pathways: 
Asynchronous Distributed 

Dataflow for ML, MLSys 2022]

Presenter
Presentation Notes
https://blog.google/technology/ai/introducing-pathways-next-generation-ai-architecture/�(model distributed across devices in sharded buffer)
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Distributed Reinforcement Learning
Hybrid Data- and Task- Parallel Execution

Data-Parallel Parameter Servers
Nested Parallelism 
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Reinforcement Learning
 RL Characteristics

 Closed-loop: goal-directed learning from interaction
 Time-delayed reward: map situations  actions, max reward
 No instructions: exploitation (known actions) vs exploration (find actions)

 RL Elements
 Policy: stimulus-response rules (perceived environment state  actions)
 Reward Signal: scalar reward at each time step (direct vs indirect)
 Value Function: long-term desirability of states (expected reward)
 Model of the environment: expected behavior of environment  planning

Distributed Reinforcement Learning

Agent Environment
(real/sim)

Action

Reward/State

[Richard S. Sutton, Andrew G. 
Barto: Reinforcement Learning: 

An Introduction, MIT Press, 2015]

Presenter
Presentation Notes
Q-Learning: off-policy TD control algorithm, w/ action-value functions (Q-functions)
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Distributed RL in RLlib
 Framework Overview

 RLlib on tasks/actors in Ray
 Interleaved policy training, simulations, etc

 Parallelization Strategies
 Hierarchical Parallel Task Model 

(locally, centralized control)
 Policy optimizer step methods

(All-reduce, local multi-GPU, 
async, parameter server)

 Policy graph (algorithm-specific) 
on multiple remote evaluator replicas

Distributed Reinforcement Learning

[Eric Liang, Richard Liaw et al: RLlib:
Abstractions for Distributed 

Reinforcement Learning. ICML 2018]

[Philipp Moritz, Robert Nishihara et al.: 
Ray: A Distributed Framework for Emerging 

AI Applications. OSDI 2018]

Example Parameter Server 
(task stream, wait for #updates)



29

706.550 Architecture of Machine Learning Systems – 06 Parameter Servers
Matthias Boehm, Graz University of Technology, SS 2022 

Podracer RL Architectures
 Use of TPU Pods via JAX/TF XLA

 #1 Anakin
 Agent-environment interaction can be compiled into a single XLA program
 Scalability: replicate basic setup to larger TPU slices 

Distributed Reinforcement Learning

[Matteo Hessel, Manuel Kroiss, et al: 
Podracer architectures for scalable 

Reinforcement Learning, CoRR 2021]

CPU
TPU Core

Presenter
Presentation Notes
Note: “One CPU host [56 cores] is connected to 8 TPU cores (grouped into 4 chips). All TPU cores are connected to each other via high speed network.”
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Podracer RL Architectures, cont.
 #2 Sebulba

 Decomposed actors and learners
 Support for arbitrary environments

Distributed Reinforcement Learning

[Matteo Hessel, Manuel Kroiss, et al: 
Podracer architectures for scalable 

Reinforcement Learning, CoRR 2021]

Presenter
Presentation Notes
Note: parameter updates at learners, action selection at actors, batch of parallel environments
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Federated Machine Learning
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Problem Setting and Overview
 Motivation Federated ML

 Learn model w/o central data consolidation
 Privacy + data/power caps vs personalization and sharing
 Applications Characteristics

 #1 On-device data more relevant than server-side data
 #2 On-device data is privacy-sensitive or large
 #3 Labels can be inferred naturally from user interaction

 Example: Language modeling for mobile keyboards and voice recognition 

 Challenges
 Massively distributed (data stored across many devices)
 Limited and unreliable communication 
 Unbalanced data (skew in data size, non-IID )
 Unreliable compute nodes / data availability

Federated Machine Learning

W ΔW

[Jakub Konečný: Federated Learning -
Privacy-Preserving Collaborative 

Machine Learning without Centralized 
Training Data, UW Seminar 2018]
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A Federated ML Training Algorithm
while( !converged ) {

1. Select random subset (e.g. 1000) 
of the (online) clients

2. In parallel, send current parameters θt
to those clients

2a. Receive parameters θt from server [pull]
2b. Run some number of minibatch SGD steps,

producing θ’
2c. Return θ’-θt (model averaging) [push]

3. θt+1 = θt + data-weighted average of client updates
}

Federated Machine Learning

At each client

[Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, 
Blaise Agüera y Arcas: Communication-Efficient Learning of Deep 

Networks from Decentralized Data. AISTATS 2017]
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Algorithmic PS Extensions
 #1 Client Sampling (FedAvg w/ model averaging)

 #2 Decentralized, Fault-tolerant Aggregation  

 #3 Peer-to-peer Gradient and Model Exchange

 #4 Meta-learning for Private Models 

 #5 Handling Statistical Heterogeneity (non-IID data)
 Reducing variance
 Selecting relevant subsets of data
 Tolerating partial client work
 Partitioning clients into congruent groups
 Adaptive Optimization (FedOpt, FedAvgM)

Federated Machine Learning

[Sashank J. Reddi et al: 
Adaptive Federated 

Optimization. CoRR 2020]

[Peter Kairouz, Brendan McMahan, 
Virginia Smith: Federated Learning

Tutorial. NeurIPS 2020, 
https://slideslive.com/38935813/

federated-learningtutorial]

https://slideslive.com/38935813/federated-learningtutorial
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Federated Learning Protocol
 Recommended Reading

 [Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Ingerman, 
Vladimir Ivanov, Chloé Kiddon, Jakub Konecný, Stefano Mazzocchi, H. Brendan 
McMahan, Timon Van Overveldt, David Petrou, Daniel Ramage, Jason Roselander:  
Towards Federated Learning at Scale: System Design. MLSys 2019]

Federated Machine Learning

Android 
Phones
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Federated Learning at the Device
 Data Collection

 Maintain repository of 
locally collected data

 Apps make data available
via dedicated API

 Configuration
 Avoid negative impact on

data usage or battery life
 Training and evaluation tasks

 Multi-Tenancy
 Coordination between multiple 

learning tasks (apps and services)

Federated Machine Learning
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Federated Learning at the Server
 Actor Programming Model

 Comm. via message passing
 Actors sequentially process 

stream of events/messages
 Scaling w/ # actors

 Coordinators
 Driver of overall 

learning algorithm
 Orchestration of aggregators 

and selectors (conn handlers)

 Robustness
 Pipelined selection 

and aggregation rounds
 Fault Tolerance at aggregator/

master aggregator levels

Federated Machine Learning
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Excursus: Data Ownership
 Limited Access to Data Sources

 #1 Infeasible data consolidation (privacy, economically/technically)
 #2 Data ownership (restricted data enrichment and consolidation)

 Example Data Ownership
 Thought experiment:

B uses machine from A 
to test C’s equipment.

 Who owns the data?

 A Thought on a Spectrum of Rights and Responsibilities
 Federated ML creates new spectrum for data ownership 

that might create new markets (no reselling of data)
 #1 Data stays private with the customer
 #2 Gradients/Aggregates shared with the vendor
 #3 Data completely shared with the vendor

Federated Machine Learning

Data 
Privacy

Ability to 
train models

Machine 
Vendor A

Middle 
Person B

Customer 
C

XXXXXXXX
XXXXXXXXXXXX
XXXXXXXXXXX
XXXXXXXX
XXXXX

Presenter
Presentation Notes
Note: example data ownership  usually negotiated in bilateral contracts!
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Federated ML in SystemDS
 ExDRa Project 

 Basic approach: Federated ML + ML over raw data
 System infra, integration, data org & reuse, Exp DB, geo-dist.

 Federated ML Architecture
 Multiple control programs w/ single master
 Federated tensors (metadata handles)
 Federated linear algebra and 

federated parameter server

 Privacy Enhancing Technologies (PET)
 Federated ML w/ data exchange constraints
 PET (homomorphic encryption, multi-party computation, differential privacy)

Federated Machine Learning

FT
CP 1*

X

CP 2
X1

CP 3
X2

Gefördert im Programm 
"IKT der Zukunft"

[Sebastian Baunsgaard et al.: 
ExDRa: Exploratory Data Science on 

Federated Raw Data, SIGMOD 2021]
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Federated Data
 Federated Runtime Backend

 Federated data (matrices/frames) as meta data objects
 Federated linear algebra, (and federated parameter server)

Federated ML in SystemDS – Federated Runtime

X = federated(addresses=list(node1, node2, node3),
ranges=list(list(0,0),list(40K,70), ..., list(80K,0),list(100K,70)));
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Federated Requests
 Federation Protocol

 Batch federated requests
 Single federated response

 Federated Request Types
 READ(ID,fname): read data object from file, and put it in symbol table

 PUT(ID,data): receives transferred data object, and put it in symbol table

 GET(ID): return a data object from the federated site to coordinator

 EXEC_INST(inst): execute an instruction (inputs/outputs by ID)

 EXEC_UDF(udf): execute a user-defined function w/ access to symbol table

 CLEAR: clean up execution contexts and variables

 Design Simplicity: (1) reuse instructions, (2) federation hierarchies

Federated ML in SystemDS – Federated Runtime
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Example Federated Operations
 Matrix-Vector Multiplication

 o = X %*% v, local v
 Row-partitioned, federated X
 Row-partitioned, federated o

 Vector-Matrix Multiplication
 o = v %*% X, local v
 Row-partitioned, 

federated X, local o

 Data Preparation
 [X,M] = transformencode(F,spec)
 Recoding, feature hashing, binning,

one-hot encoding

Federated ML in SystemDS – Federated Runtime

X1

X2

a) broadcast v
(PUT(v, 2))

b) Local MV (EXEC_INST, 3)

X1

X2

a) broadcast sliced v
(PUT(v, 4))

b) Local MV
(EXEC_INST, 5)

c) Aggregate 
(GET, 5) +

d) Clean 4,5 (EXEC_INST)

X1: D B C D C 

X2: A B B C C

1) Compute local 
record maps
(EXEC_UDF)

2) Aggregate, 
broadcast, recode

c) Clean 2 
(EXEC_INST)
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Federated Data Preparation,
Learning, and Debugging

 Federated Feature Transformations
 Federated Linear-algebra-based Data Cleaning,

Data Preparation, and Model Debugging (e.g., federated quantiles)

 Multi-tenant 
Federated Learning
 Tenant Isolation

Federated ML in SystemDS – Federated Runtime

Lineage-based 
Reuse

Asynchronous 
Compression
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TensorFlow Federated
 Overview TFF

 Federated PS algorithms and federated second order functions
 Primarily for simulating federated training, no OSS federated runtime

 #1 Federated PS

 #2 Federated Analytics
 r = t(y) %*% X 
 User-level composition

of federated algorithms
 PET primitives

Federated Machine Learning

[https://www.tensorflow.org/federated/]

iterative_process = tff.learning.build_federated_averaging_process(
model_fn, # function for created federated models
client_optimizer_fn=lambda: tf.keras.optimizers.SGD(learning_rate=0.02),
server_optimizer_fn=lambda: tf.keras.optimizers.SGD(learning_rate=1.0))

X = ... # tff.type_at_clients(tf.float32)
by = tff.federated_broadcast(y)
R  = tff.federated_sum(

tff.federated_map(X, by, foo_mm), foo_s)
# note: tff.federated_secure_sum

https://www.tensorflow.org/federated/
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Summary and Q&A
 Data-Parallel Parameter Servers
 Model-Parallel Parameter Servers
 Distributed Reinforcement Learning
 Federated Machine Learning

 Next Lectures (Part A)
 07 Hybrid Execution and HW Accelerators [May 06]
 08 Caching, Partitioning, Indexing and Compression [May 13]
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