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Announcements/Org
 #1 Video Recording 

 Link in TeachCenter & TUbe (lectures will be public)
 Hybrid: HSi13 / https://tugraz.webex.com/meet/m.boehm
 Apr 25: no more COVID restrictions at TU Graz

 #2 Course Evaluations and Exam
 Evaluation period: Jun 15 – Jul 31
 Oral Exams (45min each), doodle in June  exams in July

(close to submission of projects/exercises)

https://tugraz.webex.com/meet/m.boehm
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Categories of Execution Strategies
Motivation and Terminology

07 Hybrid Execution and HW Accelerators

05a Data-Parallel 
Execution

05b Task-Parallel 
Execution

06 Parameter Servers 
(data, model) 

Mini-batchBatch 
SIMD/SPMD

Batch/Mini-batch, 
Independent Tasks 

MIMD

08 Caching, Partitioning, Indexing, and Compression
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Agenda
 Data-Parallel Parameter Servers
 Model-Parallel Parameter Servers
 Distributed Reinforcement Learning
 Federated Machine Learning
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Data-Parallel Parameter Servers
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Recap: Mini-batch ML Algorithms
 Mini-batch ML Algorithms

 Iterative ML algorithms, where each iteration
only uses a batch of rows to make the 
next model update (in epochs or w/ sampling)

 For large and highly redundant training sets
 Applies to almost all iterative, model-based 

ML algorithms (LDA, reg., class., factor., DNN)
 Stochastic Gradient Descent (SGD)

 Statistical vs Hardware Efficiency (batch size)
 Statistical efficiency: # accessed data points to achieve certain accuracy
 Hardware efficiency: number of independent computations to 

achieve high hardware  utilization (parallelization at different levels)
 Beware higher variance / class skew for too small batches!

 Training Mini-batch ML algorithms sequentially is hard to scale

Data-Parallel Parameter Servers

Data

Batch 2

Batch 1

Epoch

W’
W’’
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# Initialize W1-W4, b1-b4
# Initialize SGD w/ Nesterov momentum optimizer
iters = ceil(N / batch_size)

for( e in 1:epochs ) {
for( i in 1:iters ) {

X_batch = X[((i-1) * batch_size) %% N + 1:min(N, beg + batch_size - 1),] 
y_batch = Y[((i-1) * batch_size) %% N + 1:min(N, beg + batch_size - 1),]

## layer 1: conv1 -> relu1 -> pool1
## layer 2: conv2 -> relu2 -> pool2
## layer 3: affine3 -> relu3 -> dropout
## layer 4: affine4 -> softmax
outa4 = affine::forward(outd3, W4, b4)
probs = softmax::forward(outa4)

## layer 4:  affine4 <- softmax
douta4 = softmax::backward(dprobs, outa4)
[doutd3, dW4, db4] = affine::backward(douta4, outr3, W4, b4)
## layer 3: affine3 <- relu3 <- dropout
## layer 2: conv2 <- relu2 <- pool2
## layer 1: conv1 <- relu1 <- pool1

# Optimize with SGD w/ Nesterov momentum W1-W4, b1-b4
[W4, vW4] = sgd_nesterov::update(W4, dW4, lr, mu, vW4)
[b4, vb4] = sgd_nesterov::update(b4, db4, lr, mu, vb4)

}
}

Background: Mini-batch DNN Training (LeNet)
Data-Parallel Parameter Servers

NN Forward 
Pass

NN Backward
Pass

 Gradients

Model 
Updates

[Yann LeCun, Leon Bottou, Yoshua
Bengio, and Patrick Haffner:  Gradient-

Based Learning Applied to Document 
Recognition, Proc of the IEEE 1998]

Presenter
Presentation Notes
Note: number of layers = layer ops w/ weights
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Overview Parameter Servers
 System 

Architecture
 M Parameter

Servers
 N Workers
 Optional

Coordinator

 Key Techniques
 Data partitioning D  workers Di (e.g., disjoint, reshuffling)
 Updated strategies (e.g., synchronous, asynchronous)
 Batch size strategies (small/large batches, hybrid methods)

Data-Parallel Parameter Servers

M

N

W .. Model
ΔW .. Gradient

Presenter
Presentation Notes
Note: Nabla vs Delta operators
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History of Parameter Servers
 1st Gen: Key/Value 

 Distributed key-value store for 
parameter exchange and synchronization

 Relatively high overhead

 2nd Gen: Classic Parameter Servers
 Parameters as dense/sparse matrices
 Different update/consistency strategies
 Flexible configuration and fault tolerance

 3rd Gen: Parameter Servers w/ 
improved data communication
 Prefetching and range-based pull/push
 Lossy or lossless compression w/ compensations

 Examples 
 TensorFlow, MXNet, PyTorch, CNTK, Petuum

Data-Parallel Parameter Servers

[Alexander J. Smola, Shravan 
M. Narayanamurthy: An 

Architecture for Parallel Topic 
Models. PVLDB 2010]

[Jeffrey Dean et al.: Large Scale 
Distributed Deep Networks. 

NIPS 2012]

[Mu Li et al: Scaling Distributed 
Machine Learning with the 

Parameter Server. OSDI 2014]

[Jiawei Jiang, Bin Cui, Ce Zhang, 
Lele Yu: Heterogeneity-aware 

Distributed Parameter Servers. 
SIGMOD 2017]

[Jiawei Jiang et al: SketchML: 
Accelerating Distributed Machine 

Learning with Data Sketches. 
SIGMOD 2018]
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Basic Worker Algorithm (batch)

Data-Parallel Parameter Servers

[Jeffrey Dean et al.: Large Scale 
Distributed Deep Networks. 

NIPS 2012]

for( i in 1:epochs ) {
for( j in 1:iterations ) {

params = pullModel(); # W1-W4, b1-b4 lr, mu
batch = getNextMiniBatch(data, j);
gradient = computeGradient(batch, params);
pushGradients(gradient);

}  
}
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Extended Worker Algorithm (nfetch batches)

gradientAcc = matrix(0,...);
for( i in 1:epochs ) {

for( j in 1:iterations ) {
if( step mod nfetch = 0 )

params = pullModel();
batch = getNextMiniBatch(data, j);
gradient = computeGradient(batch, params);
gradientAcc += gradient;
params = updateModel(params, gradients);
if( step mod nfetch = 0 ) {

pushGradients(gradientAcc); step = 0; 
gradientAcc = matrix(0, ...);   

}
step++;

}  }

Data-Parallel Parameter Servers

nfetch batches require 
local gradient accrual and 

local model update

[Jeffrey Dean et al.: Large Scale 
Distributed Deep Networks. 

NIPS 2012]
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Update Strategies
 Bulk Synchronous

Parallel (BSP)
 Update model w/ 

accrued gradients
 Barrier for N workers

 Asynchronous
Parallel (ASP)
 Update model

for each gradient
 No barrier

 Synchronous w/ 
Backup Workers
 Update model w/

accrued gradients
 Barrier for N of 

N+b workers

Data-Parallel Parameter Servers

Batch 1
Batch 1

Batch 1
Batch 1

Batch 2
Batch 2

Batch 2
Batch 2

Batch 3
Batch 3

Batch 3
Batch 3

Batch 1
Batch 1

Batch 1
Batch 1

Batch 2
Batch 2

Batch 2
Batch 2

Batch 3
Batch 3

Batch 3
Batch 3 but, stale 

model 
updates

Batch 1
Batch 1

Batch 1
Batch 1

Batch 2
Batch 2

Batch 2
Batch 2

Batch 3
Batch 3

Batch 3
Batch 3

[Martín Abadi et al: TensorFlow: A System for 
Large-Scale Machine Learning. OSDI 2016]
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Update Strategies, cont.
 Stale-Synchronous Parallel (SSP)

 Similar to backup workers, 
weak synchronization barrier

 Maximum staleness of s clocks between fastest 
and slowest worker  if violated, block fastest

 Hogwild!
 Even the model update 

completely unsynchronized
 Shown to converge for sparse model updates

 Decentralized
 #1: Exchange partial gradient updates 

with local peers
 #2: Peer-to-peer re-assignment of work
 Other Examples: Ako, FlexRR

Data-Parallel Parameter Servers

[Qirong Ho et al: More Effective 
Distributed ML via a Stale 

Synchronous Parallel Parameter 
Server. NIPS 2013]

[Benjamin Recht, Christopher Ré, Stephen J. 
Wright, Feng Niu: Hogwild: A Lock-Free 

Approach to Parallelizing Stochastic 
Gradient Descent. NIPS 2011]

[Xiangru Lian et al: Can Decentralized 
Algorithms Outperform Centralized 

Algorithms? A Case Study for 
Decentralized Parallel Stochastic 

Gradient Descent. NIPS 2017]
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Data Partitioning Schemes
 Goals Data Partitioning

 Even distribute data across workers
 Avoid skew regarding model updates  shuffling/randomization

 #1 Disjoint Contiguous
 Contiguous row partition of features/labels

 #2 Disjoint Round Robin
 Rows of features distributed round robin

 #3 Disjoint Random
 Random non-overlapping selection of rows

 #4 Overlap Reshuffle
 Each worker receives a reshuffled 

copy of the whole dataset

Data-Parallel Parameter Servers

Xp = X[id*blocksize+1:
(id+1)*blocksize,];

Xp = X[seq(1,nrow(X))%%N==id),];

P = table(seq(1,nrow(X)),
sample(nrow(X),nrow(X),FALSE));

Xp = P[id*blocksize+1: 
(id+1)*blocksize,] %*% X

Xp = Pi %*% X
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Example Distributed TensorFlow DP
# Create a cluster from the parameter server and worker hosts
cluster = tf.train.ClusterSpec({"ps": ps_hosts, "worker": worker_hosts})

# Create and start a server for the local task.
server = tf.train.Server(cluster, job_name=..., task_index=...)

# On worker: initialize loss
train_op = tf.train.AdagradOptimizer(0.01).minimize(

loss, global_step=tf.contrib.framework.get_or_create_global_step())

# Create training session and run steps asynchronously
hooks=[tf.train.StopAtStepHook(last_step=1000000)]
with tf.train.MonitoredTrainingSession(master=server.target,

is_chief=(task_index == 0), checkpoint_dir=..., hooks=hooks) as sess:
while not mon_sess.should_stop():

sess.run(train_op)

# Program needs to be started on ps and worker

Data-Parallel Parameter Servers

But new experimental 
APIs and Keras Frontend

[Inside TensorFlow: tf.distribute.Strategy, 2019, 
https://www.youtube.com/watch?v=jKV53r9-H14]

https://www.youtube.com/watch?v=jKV53r9-H14
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Example SystemDS Parameter Server
# Initialize SGD w/ Adam optimizer
[W1, mW1, vW1] = adam::init(W1); 
[b1, mb1, vb1] = adam::init(b1); ...

# Create the model object
modelList = list(W1, W2, W3, W4, b1, b2, b3, b4, vW1, vW2, vW3, vW4, 
vb1, vb2, vb3, vb4, mW1, mW2, mW3, mW4, mb1, mb2, mb3, mb4);

# Create the hyper parameter list
params = list(lr=0.001, beta1=0.9, beta2=0.999, epsilon=1e-8, t=0, 
C=C, Hin=Hin, Win=Win, Hf=Hf, Wf=Wf, stride=1, pad=2, lambda=5e-04, 
F1=F1, F2=F2, N3=N3)

# Use paramserv function
modelList2 = paramserv(model=modelList, features=X, labels=Y, 
upd=fGradients, aggregation=fUpdate, mode=REMOTE_SPARK, utype=ASP, 
freq=BATCH, epochs=200, batchsize=64, k=144, scheme=DISJOINT_RANDOM, 
hyperparams=params)

Data-Parallel Parameter Servers
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Selected Optimizers (updateModel)

 Stochastic Gradient Descent (SGD)
 Vanilla SGD, basis for many other optimizers
 See 05 Data/Task-Parallel: −𝛾𝛾𝛻𝛻𝒇𝒇(𝑫𝑫,𝜽𝜽)

 SGD w/ Momentum
 Incorporates parameter velocity w/ momentum 

 SGD w/ Nesterov Momentum
 Incorporates parameter velocity w/ momentum,

but update from position after momentum

 AdaGrad
 Adaptive learning rate w/ regret guarantees

 RMSprop
 Adaptive learning rate, extended AdaGrad

Data-Parallel Parameter Servers

X = X – lr*dX

v = mu*v – lr*dX
X = X + v

v0 = v
v = mu*v – lr*dX

X = X – mu*v0 + (1+mu)*v

[John C. Duchi et al: Adaptive 
Subgradient Methods for 

Online Learning and Stochastic 
Optimization. JMLR 2011]

c = dr*c+(1-dr)*dX^2
X = X-(lr*dX/(sqrt(c)+eps))

Presenter
Presentation Notes
Regret: loss incurred during learning, loss difference to loss w/ optimal weights (applicability to exercise?)
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Selected Optimizers (updateModel), cont.
 Adam

 Individual adaptive learning rates for 
different parameters

 Shampoo
 Preconditioned gradient method

(Newton’s method, Quasi-Newton)
 Retains gradients tensor structure by

maintaining a preconditioner per dim
 O(m2n2)  O(m2 + n2)

Data-Parallel Parameter Servers

[Diederik P. Kingma, Jimmy Ba: 
Adam:  A Method for Stochastic 

Optimization. ICLR 2015]

t = t + 1
m = beta1*m + (1-beta1)*dX # update biased 1st moment est
v = beta2*v + (1-beta2)*dX^2 # update biased 2nd raw moment est
mhat = m / (1-beta1^t)       # bias-corrected 1st moment est
vhat = v / (1-beta2^t)       # bias-corrected 2nd raw moment est
X = X - (lr * mhat/(sqrt(vhat)+epsilon)) # param update

[Vineet Gupta, Tomer Koren, Yoram Singer: 
Shampoo: Preconditioned Stochastic 

Tensor Optimization. ICML 2018]

L = L + dX %*% t(dX)
R = R + t(dX) %*% dX
X = X – lr * pow(L,1/4) 

%*% dX %*% pow(R,1/4)) 

Presenter
Presentation Notes
Note: Newton’s method employs the local Hessian as a preconditioner“Shampoo maintains an m×m matrix L1/4t to precondition the rows of Gt and R1/4t for its columns. The ¼ exponent arises from our analysis; intuitively, it is a sensible choice as it induces an overall step-size decay rate of O(1/√t), which is common in stochastic optimization methods.”
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Batch Size Configuration
 What is the right batch size for my data?

 Maximum useful batch size is dependent on 
data redundancy and model complexity

 Additional Heuristics/Hybrid Methods
 #1 Increase the batch size instead 

of decaying the learning rate

 #2 Combine batch and mini-batch 
algorithms (full batch + n online updates)

Data-Parallel Parameter Servers

ResNet-50 
on 

ImageNet

Simple CNN 
on 

MNIST
vs

[Christopher J. Shallue et al.: 
Measuring the Effects of Data 

Parallelism on Neural Network 
Training. CoRR 2018]

[Samuel L. Smith, Pieter-Jan 
Kindermans, Chris Ying, Quoc V. Le: 

Don't Decay the Learning Rate, 
Increase the Batch Size. ICLR 2018]

[Ashok Cutkosky, Róbert Busa-Fekete: 
Distributed Stochastic Optimization 

via Adaptive SGD. NeurIPS 2018]
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Reducing Communication Overhead
 Large Batch Sizes

 Larger batch sizes reduce the 
relative communication overhead

 Overlapping Computation/Communication
 For deep NN w/ many weight/bias matrices, 

compute and comm. can be overlapped
 Collective operations: all-Reduce / ring all-reduce / hierarchical all-reduce

 Sparse and Compressed Communication 
 Mini-batches of sparse data  sparse dW
 Lossy (mantissa truncation, quantization), and 

lossless (delta, bitpacking) for W and dW
 Gradient sparsification/clipping (send gradients larger than a threshold)

 In-Network Aggregation (SwitchML)
 Aggregate worker updates in prog. switches
 32b fix-point, coordinated updates

Data-Parallel Parameter Servers

[Frank Seide et al: 1-bit 
stochastic gradient descent and 

its application to data-parallel 
distributed training of speech 

DNNs. INTERSPEECH 2014]

[Priya Goyal et al: Accurate, Large 
Minibatch SGD: Training ImageNet in 1 

Hour. CoRR 2017 (kn=8K, 256 GPUs)]

tf.distribute:
MirroredStrategy

MultiWorkerMirroredStrategy

[Amedeo Sapio et al: Scaling 
Distributed Machine Learning with 

In-Network Aggregation, NSDI 2021]

Presenter
Presentation Notes
Large-batches: synchronous SGD with k=256 workers * n=32 per-worker batch size = 8K
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Model-Parallel Parameter Servers
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Problem Setting
 Limitations Data-Parallel Parameter Servers

 Need to fit entire model and activations into each worker node/device 
(or overhead for repeated eviction & restore)

 Very deep and wide networks (e.g., ResNet-1001)

 Model-Parallel Parameter Servers
 Workers responsible for disjoint partitions of the network/model
 Exploit pipeline parallelism and independent subnetworks
 Examples: recurrent neural networks, pre-processing tasks

 Hybrid Parameter Servers
 “To be successful, however, we believe that model 

parallelism must be combined with clever distributed 
optimization techniques that leverage data parallelism.”

 “[…] it is possible to use tens of thousands of CPU cores
for training a single model”

Model-Parallel Parameter Servers

[Jeffrey Dean et al.: Large 
Scale Distributed Deep 
Networks. NIPS 2012]

[Kaiming He, Xiangyu Zhang, 
Shaoqing Ren, Jian Sun: 

Identity Mappings in Deep 
Residual Networks. ECCV 2016]
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Overview Model-Parallel Execution
 System 

Architecture
 Nodes act as 

workers and 
parameter servers

 Data Transfer for
boundary-crossing
data dependencies

 Pipeline 
Parallelism

Model-Parallel Parameter Servers

Workers w/ disjoint 
network/model partitions
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Example Distributed TensorFlow MP
# Place variables and ops on devices
with tf.device("/gpu:0"):

a = tf.Variable(tf.random.uniform(...))
a = tf.square(a)

with tf.device("/gpu:1"):
b = tf.Variable(tf.random.uniform(...))
b = tf.square(b)

with tf.device("/cpu:0"):
loss = a+b

# Declare optimizer and parameters
opt = tf.train.GradientDescentOptimizer(learning_rate=0.1)
train_op = opt.minimize(loss)

# Force distributed graph evaluation
ret = sess.run([loss, train_op])) 

Model-Parallel Parameter Servers

Explicit Placement of 
Operations 

(shown via toy example)
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Pathways: Asynchronous, Distributed Data Flow
 System Overview

 TF and JAX programs (e.g., JAX pmap())
 Virtual device requests  device islands
 MLIR dialect, lowering to physical devices 
 PLAQUE shared data-flow system w/

sharded buffer, sparse comm., gang scheduling

 Resource Management and Scheduling

Model-Parallel Parameter Servers

[Paul Barham et al: Pathways: 
Asynchronous Distributed 

Dataflow for ML, MLSys 2022]

Presenter
Presentation Notes
https://blog.google/technology/ai/introducing-pathways-next-generation-ai-architecture/�(model distributed across devices in sharded buffer)
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Distributed Reinforcement Learning
Hybrid Data- and Task- Parallel Execution

Data-Parallel Parameter Servers
Nested Parallelism 
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Reinforcement Learning
 RL Characteristics

 Closed-loop: goal-directed learning from interaction
 Time-delayed reward: map situations  actions, max reward
 No instructions: exploitation (known actions) vs exploration (find actions)

 RL Elements
 Policy: stimulus-response rules (perceived environment state  actions)
 Reward Signal: scalar reward at each time step (direct vs indirect)
 Value Function: long-term desirability of states (expected reward)
 Model of the environment: expected behavior of environment  planning

Distributed Reinforcement Learning

Agent Environment
(real/sim)

Action

Reward/State

[Richard S. Sutton, Andrew G. 
Barto: Reinforcement Learning: 

An Introduction, MIT Press, 2015]

Presenter
Presentation Notes
Q-Learning: off-policy TD control algorithm, w/ action-value functions (Q-functions)
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Distributed RL in RLlib
 Framework Overview

 RLlib on tasks/actors in Ray
 Interleaved policy training, simulations, etc

 Parallelization Strategies
 Hierarchical Parallel Task Model 

(locally, centralized control)
 Policy optimizer step methods

(All-reduce, local multi-GPU, 
async, parameter server)

 Policy graph (algorithm-specific) 
on multiple remote evaluator replicas

Distributed Reinforcement Learning

[Eric Liang, Richard Liaw et al: RLlib:
Abstractions for Distributed 

Reinforcement Learning. ICML 2018]

[Philipp Moritz, Robert Nishihara et al.: 
Ray: A Distributed Framework for Emerging 

AI Applications. OSDI 2018]

Example Parameter Server 
(task stream, wait for #updates)
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Podracer RL Architectures
 Use of TPU Pods via JAX/TF XLA

 #1 Anakin
 Agent-environment interaction can be compiled into a single XLA program
 Scalability: replicate basic setup to larger TPU slices 

Distributed Reinforcement Learning

[Matteo Hessel, Manuel Kroiss, et al: 
Podracer architectures for scalable 

Reinforcement Learning, CoRR 2021]

CPU
TPU Core

Presenter
Presentation Notes
Note: “One CPU host [56 cores] is connected to 8 TPU cores (grouped into 4 chips). All TPU cores are connected to each other via high speed network.”
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Podracer RL Architectures, cont.
 #2 Sebulba

 Decomposed actors and learners
 Support for arbitrary environments

Distributed Reinforcement Learning

[Matteo Hessel, Manuel Kroiss, et al: 
Podracer architectures for scalable 

Reinforcement Learning, CoRR 2021]

Presenter
Presentation Notes
Note: parameter updates at learners, action selection at actors, batch of parallel environments
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Federated Machine Learning
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Problem Setting and Overview
 Motivation Federated ML

 Learn model w/o central data consolidation
 Privacy + data/power caps vs personalization and sharing
 Applications Characteristics

 #1 On-device data more relevant than server-side data
 #2 On-device data is privacy-sensitive or large
 #3 Labels can be inferred naturally from user interaction

 Example: Language modeling for mobile keyboards and voice recognition 

 Challenges
 Massively distributed (data stored across many devices)
 Limited and unreliable communication 
 Unbalanced data (skew in data size, non-IID )
 Unreliable compute nodes / data availability

Federated Machine Learning

W ΔW

[Jakub Konečný: Federated Learning -
Privacy-Preserving Collaborative 

Machine Learning without Centralized 
Training Data, UW Seminar 2018]
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A Federated ML Training Algorithm
while( !converged ) {

1. Select random subset (e.g. 1000) 
of the (online) clients

2. In parallel, send current parameters θt
to those clients

2a. Receive parameters θt from server [pull]
2b. Run some number of minibatch SGD steps,

producing θ’
2c. Return θ’-θt (model averaging) [push]

3. θt+1 = θt + data-weighted average of client updates
}

Federated Machine Learning

At each client

[Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, 
Blaise Agüera y Arcas: Communication-Efficient Learning of Deep 

Networks from Decentralized Data. AISTATS 2017]
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Algorithmic PS Extensions
 #1 Client Sampling (FedAvg w/ model averaging)

 #2 Decentralized, Fault-tolerant Aggregation  

 #3 Peer-to-peer Gradient and Model Exchange

 #4 Meta-learning for Private Models 

 #5 Handling Statistical Heterogeneity (non-IID data)
 Reducing variance
 Selecting relevant subsets of data
 Tolerating partial client work
 Partitioning clients into congruent groups
 Adaptive Optimization (FedOpt, FedAvgM)

Federated Machine Learning

[Sashank J. Reddi et al: 
Adaptive Federated 

Optimization. CoRR 2020]

[Peter Kairouz, Brendan McMahan, 
Virginia Smith: Federated Learning

Tutorial. NeurIPS 2020, 
https://slideslive.com/38935813/

federated-learningtutorial]

https://slideslive.com/38935813/federated-learningtutorial
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Federated Learning Protocol
 Recommended Reading

 [Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Ingerman, 
Vladimir Ivanov, Chloé Kiddon, Jakub Konecný, Stefano Mazzocchi, H. Brendan 
McMahan, Timon Van Overveldt, David Petrou, Daniel Ramage, Jason Roselander:  
Towards Federated Learning at Scale: System Design. MLSys 2019]

Federated Machine Learning

Android 
Phones
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Federated Learning at the Device
 Data Collection

 Maintain repository of 
locally collected data

 Apps make data available
via dedicated API

 Configuration
 Avoid negative impact on

data usage or battery life
 Training and evaluation tasks

 Multi-Tenancy
 Coordination between multiple 

learning tasks (apps and services)

Federated Machine Learning
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Federated Learning at the Server
 Actor Programming Model

 Comm. via message passing
 Actors sequentially process 

stream of events/messages
 Scaling w/ # actors

 Coordinators
 Driver of overall 

learning algorithm
 Orchestration of aggregators 

and selectors (conn handlers)

 Robustness
 Pipelined selection 

and aggregation rounds
 Fault Tolerance at aggregator/

master aggregator levels

Federated Machine Learning
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Excursus: Data Ownership
 Limited Access to Data Sources

 #1 Infeasible data consolidation (privacy, economically/technically)
 #2 Data ownership (restricted data enrichment and consolidation)

 Example Data Ownership
 Thought experiment:

B uses machine from A 
to test C’s equipment.

 Who owns the data?

 A Thought on a Spectrum of Rights and Responsibilities
 Federated ML creates new spectrum for data ownership 

that might create new markets (no reselling of data)
 #1 Data stays private with the customer
 #2 Gradients/Aggregates shared with the vendor
 #3 Data completely shared with the vendor

Federated Machine Learning

Data 
Privacy

Ability to 
train models

Machine 
Vendor A

Middle 
Person B

Customer 
C

XXXXXXXX
XXXXXXXXXXXX
XXXXXXXXXXX
XXXXXXXX
XXXXX

Presenter
Presentation Notes
Note: example data ownership  usually negotiated in bilateral contracts!
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Federated ML in SystemDS
 ExDRa Project 

 Basic approach: Federated ML + ML over raw data
 System infra, integration, data org & reuse, Exp DB, geo-dist.

 Federated ML Architecture
 Multiple control programs w/ single master
 Federated tensors (metadata handles)
 Federated linear algebra and 

federated parameter server

 Privacy Enhancing Technologies (PET)
 Federated ML w/ data exchange constraints
 PET (homomorphic encryption, multi-party computation, differential privacy)

Federated Machine Learning

FT
CP 1*

X

CP 2
X1

CP 3
X2

Gefördert im Programm 
"IKT der Zukunft"

[Sebastian Baunsgaard et al.: 
ExDRa: Exploratory Data Science on 

Federated Raw Data, SIGMOD 2021]



40

706.550 Architecture of Machine Learning Systems – 06 Parameter Servers
Matthias Boehm, Graz University of Technology, SS 2022 

Federated Data
 Federated Runtime Backend

 Federated data (matrices/frames) as meta data objects
 Federated linear algebra, (and federated parameter server)

Federated ML in SystemDS – Federated Runtime

X = federated(addresses=list(node1, node2, node3),
ranges=list(list(0,0),list(40K,70), ..., list(80K,0),list(100K,70)));
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Federated Requests
 Federation Protocol

 Batch federated requests
 Single federated response

 Federated Request Types
 READ(ID,fname): read data object from file, and put it in symbol table

 PUT(ID,data): receives transferred data object, and put it in symbol table

 GET(ID): return a data object from the federated site to coordinator

 EXEC_INST(inst): execute an instruction (inputs/outputs by ID)

 EXEC_UDF(udf): execute a user-defined function w/ access to symbol table

 CLEAR: clean up execution contexts and variables

 Design Simplicity: (1) reuse instructions, (2) federation hierarchies

Federated ML in SystemDS – Federated Runtime
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Example Federated Operations
 Matrix-Vector Multiplication

 o = X %*% v, local v
 Row-partitioned, federated X
 Row-partitioned, federated o

 Vector-Matrix Multiplication
 o = v %*% X, local v
 Row-partitioned, 

federated X, local o

 Data Preparation
 [X,M] = transformencode(F,spec)
 Recoding, feature hashing, binning,

one-hot encoding

Federated ML in SystemDS – Federated Runtime

X1

X2

a) broadcast v
(PUT(v, 2))

b) Local MV (EXEC_INST, 3)

X1

X2

a) broadcast sliced v
(PUT(v, 4))

b) Local MV
(EXEC_INST, 5)

c) Aggregate 
(GET, 5) +

d) Clean 4,5 (EXEC_INST)

X1: D B C D C 

X2: A B B C C

1) Compute local 
record maps
(EXEC_UDF)

2) Aggregate, 
broadcast, recode

c) Clean 2 
(EXEC_INST)
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Federated Data Preparation,
Learning, and Debugging

 Federated Feature Transformations
 Federated Linear-algebra-based Data Cleaning,

Data Preparation, and Model Debugging (e.g., federated quantiles)

 Multi-tenant 
Federated Learning
 Tenant Isolation

Federated ML in SystemDS – Federated Runtime

Lineage-based 
Reuse

Asynchronous 
Compression
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TensorFlow Federated
 Overview TFF

 Federated PS algorithms and federated second order functions
 Primarily for simulating federated training, no OSS federated runtime

 #1 Federated PS

 #2 Federated Analytics
 r = t(y) %*% X 
 User-level composition

of federated algorithms
 PET primitives

Federated Machine Learning

[https://www.tensorflow.org/federated/]

iterative_process = tff.learning.build_federated_averaging_process(
model_fn, # function for created federated models
client_optimizer_fn=lambda: tf.keras.optimizers.SGD(learning_rate=0.02),
server_optimizer_fn=lambda: tf.keras.optimizers.SGD(learning_rate=1.0))

X = ... # tff.type_at_clients(tf.float32)
by = tff.federated_broadcast(y)
R  = tff.federated_sum(

tff.federated_map(X, by, foo_mm), foo_s)
# note: tff.federated_secure_sum

https://www.tensorflow.org/federated/


45

706.550 Architecture of Machine Learning Systems – 06 Parameter Servers
Matthias Boehm, Graz University of Technology, SS 2022 

Summary and Q&A
 Data-Parallel Parameter Servers
 Model-Parallel Parameter Servers
 Distributed Reinforcement Learning
 Federated Machine Learning

 Next Lectures (Part A)
 07 Hybrid Execution and HW Accelerators [May 06]
 08 Caching, Partitioning, Indexing and Compression [May 13]
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