
1
SCIENCE
PASSION

TECHNOLOGY

Architecture of ML Systems
06 Parameter Servers
Matthias Boehm

Graz University of Technology, Austria

Institute of Interactive Systems and Data Science
Computer Science and Biomedical Engineering

BMK endowed chair for Data Management

Last update: Apr 27, 2022

2

706.550 Architecture of Machine Learning Systems – 06 Parameter Servers
Matthias Boehm, Graz University of Technology, SS 2022

Announcements/Org
 #1 Video Recording

 Link in TeachCenter & TUbe (lectures will be public)
 Hybrid: HSi13 / https://tugraz.webex.com/meet/m.boehm
 Apr 25: no more COVID restrictions at TU Graz

 #2 Course Evaluations and Exam
 Evaluation period: Jun 15 – Jul 31
 Oral Exams (45min each), doodle in June exams in July

(close to submission of projects/exercises)

https://tugraz.webex.com/meet/m.boehm

3

706.550 Architecture of Machine Learning Systems – 06 Parameter Servers
Matthias Boehm, Graz University of Technology, SS 2022

Categories of Execution Strategies
Motivation and Terminology

07 Hybrid Execution and HW Accelerators

05a Data-Parallel
Execution

05b Task-Parallel
Execution

06 Parameter Servers
(data, model)

Mini-batchBatch
SIMD/SPMD

Batch/Mini-batch,
Independent Tasks

MIMD

08 Caching, Partitioning, Indexing, and Compression

4

706.550 Architecture of Machine Learning Systems – 06 Parameter Servers
Matthias Boehm, Graz University of Technology, SS 2022

Agenda
 Data-Parallel Parameter Servers
 Model-Parallel Parameter Servers
 Distributed Reinforcement Learning
 Federated Machine Learning

5

706.550 Architecture of Machine Learning Systems – 06 Parameter Servers
Matthias Boehm, Graz University of Technology, SS 2022

Data-Parallel Parameter Servers

6

706.550 Architecture of Machine Learning Systems – 06 Parameter Servers
Matthias Boehm, Graz University of Technology, SS 2022

Recap: Mini-batch ML Algorithms
 Mini-batch ML Algorithms

 Iterative ML algorithms, where each iteration
only uses a batch of rows to make the
next model update (in epochs or w/ sampling)

 For large and highly redundant training sets
 Applies to almost all iterative, model-based

ML algorithms (LDA, reg., class., factor., DNN)
 Stochastic Gradient Descent (SGD)

 Statistical vs Hardware Efficiency (batch size)
 Statistical efficiency: # accessed data points to achieve certain accuracy
 Hardware efficiency: number of independent computations to

achieve high hardware utilization (parallelization at different levels)
 Beware higher variance / class skew for too small batches!

 Training Mini-batch ML algorithms sequentially is hard to scale

Data-Parallel Parameter Servers

Data

Batch 2

Batch 1

Epoch

W’
W’’

7

706.550 Architecture of Machine Learning Systems – 06 Parameter Servers
Matthias Boehm, Graz University of Technology, SS 2022

Initialize W1-W4, b1-b4
Initialize SGD w/ Nesterov momentum optimizer
iters = ceil(N / batch_size)

for(e in 1:epochs) {
for(i in 1:iters) {

X_batch = X[((i-1) * batch_size) %% N + 1:min(N, beg + batch_size - 1),]
y_batch = Y[((i-1) * batch_size) %% N + 1:min(N, beg + batch_size - 1),]

layer 1: conv1 -> relu1 -> pool1
layer 2: conv2 -> relu2 -> pool2
layer 3: affine3 -> relu3 -> dropout
layer 4: affine4 -> softmax
outa4 = affine::forward(outd3, W4, b4)
probs = softmax::forward(outa4)

layer 4: affine4 <- softmax
douta4 = softmax::backward(dprobs, outa4)
[doutd3, dW4, db4] = affine::backward(douta4, outr3, W4, b4)
layer 3: affine3 <- relu3 <- dropout
layer 2: conv2 <- relu2 <- pool2
layer 1: conv1 <- relu1 <- pool1

Optimize with SGD w/ Nesterov momentum W1-W4, b1-b4
[W4, vW4] = sgd_nesterov::update(W4, dW4, lr, mu, vW4)
[b4, vb4] = sgd_nesterov::update(b4, db4, lr, mu, vb4)

}
}

Background: Mini-batch DNN Training (LeNet)
Data-Parallel Parameter Servers

NN Forward
Pass

NN Backward
Pass

 Gradients

Model
Updates

[Yann LeCun, Leon Bottou, Yoshua
Bengio, and Patrick Haffner: Gradient-

Based Learning Applied to Document
Recognition, Proc of the IEEE 1998]

Presenter
Presentation Notes
Note: number of layers = layer ops w/ weights

8

706.550 Architecture of Machine Learning Systems – 06 Parameter Servers
Matthias Boehm, Graz University of Technology, SS 2022

Overview Parameter Servers
 System

Architecture
 M Parameter

Servers
 N Workers
 Optional

Coordinator

 Key Techniques
 Data partitioning D workers Di (e.g., disjoint, reshuffling)
 Updated strategies (e.g., synchronous, asynchronous)
 Batch size strategies (small/large batches, hybrid methods)

Data-Parallel Parameter Servers

M

N

W .. Model
ΔW .. Gradient

Presenter
Presentation Notes
Note: Nabla vs Delta operators

9

706.550 Architecture of Machine Learning Systems – 06 Parameter Servers
Matthias Boehm, Graz University of Technology, SS 2022

History of Parameter Servers
 1st Gen: Key/Value

 Distributed key-value store for
parameter exchange and synchronization

 Relatively high overhead

 2nd Gen: Classic Parameter Servers
 Parameters as dense/sparse matrices
 Different update/consistency strategies
 Flexible configuration and fault tolerance

 3rd Gen: Parameter Servers w/
improved data communication
 Prefetching and range-based pull/push
 Lossy or lossless compression w/ compensations

 Examples
 TensorFlow, MXNet, PyTorch, CNTK, Petuum

Data-Parallel Parameter Servers

[Alexander J. Smola, Shravan
M. Narayanamurthy: An

Architecture for Parallel Topic
Models. PVLDB 2010]

[Jeffrey Dean et al.: Large Scale
Distributed Deep Networks.

NIPS 2012]

[Mu Li et al: Scaling Distributed
Machine Learning with the

Parameter Server. OSDI 2014]

[Jiawei Jiang, Bin Cui, Ce Zhang,
Lele Yu: Heterogeneity-aware

Distributed Parameter Servers.
SIGMOD 2017]

[Jiawei Jiang et al: SketchML:
Accelerating Distributed Machine

Learning with Data Sketches.
SIGMOD 2018]

10

706.550 Architecture of Machine Learning Systems – 06 Parameter Servers
Matthias Boehm, Graz University of Technology, SS 2022

Basic Worker Algorithm (batch)

Data-Parallel Parameter Servers

[Jeffrey Dean et al.: Large Scale
Distributed Deep Networks.

NIPS 2012]

for(i in 1:epochs) {
for(j in 1:iterations) {

params = pullModel(); # W1-W4, b1-b4 lr, mu
batch = getNextMiniBatch(data, j);
gradient = computeGradient(batch, params);
pushGradients(gradient);

}
}

11

706.550 Architecture of Machine Learning Systems – 06 Parameter Servers
Matthias Boehm, Graz University of Technology, SS 2022

Extended Worker Algorithm (nfetch batches)

gradientAcc = matrix(0,...);
for(i in 1:epochs) {

for(j in 1:iterations) {
if(step mod nfetch = 0)

params = pullModel();
batch = getNextMiniBatch(data, j);
gradient = computeGradient(batch, params);
gradientAcc += gradient;
params = updateModel(params, gradients);
if(step mod nfetch = 0) {

pushGradients(gradientAcc); step = 0;
gradientAcc = matrix(0, ...);

}
step++;

} }

Data-Parallel Parameter Servers

nfetch batches require
local gradient accrual and

local model update

[Jeffrey Dean et al.: Large Scale
Distributed Deep Networks.

NIPS 2012]

12

706.550 Architecture of Machine Learning Systems – 06 Parameter Servers
Matthias Boehm, Graz University of Technology, SS 2022

Update Strategies
 Bulk Synchronous

Parallel (BSP)
 Update model w/

accrued gradients
 Barrier for N workers

 Asynchronous
Parallel (ASP)
 Update model

for each gradient
 No barrier

 Synchronous w/
Backup Workers
 Update model w/

accrued gradients
 Barrier for N of

N+b workers

Data-Parallel Parameter Servers

Batch 1
Batch 1

Batch 1
Batch 1

Batch 2
Batch 2

Batch 2
Batch 2

Batch 3
Batch 3

Batch 3
Batch 3

Batch 1
Batch 1

Batch 1
Batch 1

Batch 2
Batch 2

Batch 2
Batch 2

Batch 3
Batch 3

Batch 3
Batch 3 but, stale

model
updates

Batch 1
Batch 1

Batch 1
Batch 1

Batch 2
Batch 2

Batch 2
Batch 2

Batch 3
Batch 3

Batch 3
Batch 3

[Martín Abadi et al: TensorFlow: A System for
Large-Scale Machine Learning. OSDI 2016]

13

706.550 Architecture of Machine Learning Systems – 06 Parameter Servers
Matthias Boehm, Graz University of Technology, SS 2022

Update Strategies, cont.
 Stale-Synchronous Parallel (SSP)

 Similar to backup workers,
weak synchronization barrier

 Maximum staleness of s clocks between fastest
and slowest worker if violated, block fastest

 Hogwild!
 Even the model update

completely unsynchronized
 Shown to converge for sparse model updates

 Decentralized
 #1: Exchange partial gradient updates

with local peers
 #2: Peer-to-peer re-assignment of work
 Other Examples: Ako, FlexRR

Data-Parallel Parameter Servers

[Qirong Ho et al: More Effective
Distributed ML via a Stale

Synchronous Parallel Parameter
Server. NIPS 2013]

[Benjamin Recht, Christopher Ré, Stephen J.
Wright, Feng Niu: Hogwild: A Lock-Free

Approach to Parallelizing Stochastic
Gradient Descent. NIPS 2011]

[Xiangru Lian et al: Can Decentralized
Algorithms Outperform Centralized

Algorithms? A Case Study for
Decentralized Parallel Stochastic

Gradient Descent. NIPS 2017]

14

706.550 Architecture of Machine Learning Systems – 06 Parameter Servers
Matthias Boehm, Graz University of Technology, SS 2022

Data Partitioning Schemes
 Goals Data Partitioning

 Even distribute data across workers
 Avoid skew regarding model updates shuffling/randomization

 #1 Disjoint Contiguous
 Contiguous row partition of features/labels

 #2 Disjoint Round Robin
 Rows of features distributed round robin

 #3 Disjoint Random
 Random non-overlapping selection of rows

 #4 Overlap Reshuffle
 Each worker receives a reshuffled

copy of the whole dataset

Data-Parallel Parameter Servers

Xp = X[id*blocksize+1:
(id+1)*blocksize,];

Xp = X[seq(1,nrow(X))%%N==id),];

P = table(seq(1,nrow(X)),
sample(nrow(X),nrow(X),FALSE));

Xp = P[id*blocksize+1:
(id+1)*blocksize,] %*% X

Xp = Pi %*% X

15

706.550 Architecture of Machine Learning Systems – 06 Parameter Servers
Matthias Boehm, Graz University of Technology, SS 2022

Example Distributed TensorFlow DP
Create a cluster from the parameter server and worker hosts
cluster = tf.train.ClusterSpec({"ps": ps_hosts, "worker": worker_hosts})

Create and start a server for the local task.
server = tf.train.Server(cluster, job_name=..., task_index=...)

On worker: initialize loss
train_op = tf.train.AdagradOptimizer(0.01).minimize(

loss, global_step=tf.contrib.framework.get_or_create_global_step())

Create training session and run steps asynchronously
hooks=[tf.train.StopAtStepHook(last_step=1000000)]
with tf.train.MonitoredTrainingSession(master=server.target,

is_chief=(task_index == 0), checkpoint_dir=..., hooks=hooks) as sess:
while not mon_sess.should_stop():

sess.run(train_op)

Program needs to be started on ps and worker

Data-Parallel Parameter Servers

But new experimental
APIs and Keras Frontend

[Inside TensorFlow: tf.distribute.Strategy, 2019,
https://www.youtube.com/watch?v=jKV53r9-H14]

https://www.youtube.com/watch?v=jKV53r9-H14

16

706.550 Architecture of Machine Learning Systems – 06 Parameter Servers
Matthias Boehm, Graz University of Technology, SS 2022

Example SystemDS Parameter Server
Initialize SGD w/ Adam optimizer
[W1, mW1, vW1] = adam::init(W1);
[b1, mb1, vb1] = adam::init(b1); ...

Create the model object
modelList = list(W1, W2, W3, W4, b1, b2, b3, b4, vW1, vW2, vW3, vW4,
vb1, vb2, vb3, vb4, mW1, mW2, mW3, mW4, mb1, mb2, mb3, mb4);

Create the hyper parameter list
params = list(lr=0.001, beta1=0.9, beta2=0.999, epsilon=1e-8, t=0,
C=C, Hin=Hin, Win=Win, Hf=Hf, Wf=Wf, stride=1, pad=2, lambda=5e-04,
F1=F1, F2=F2, N3=N3)

Use paramserv function
modelList2 = paramserv(model=modelList, features=X, labels=Y,
upd=fGradients, aggregation=fUpdate, mode=REMOTE_SPARK, utype=ASP,
freq=BATCH, epochs=200, batchsize=64, k=144, scheme=DISJOINT_RANDOM,
hyperparams=params)

Data-Parallel Parameter Servers

17

706.550 Architecture of Machine Learning Systems – 06 Parameter Servers
Matthias Boehm, Graz University of Technology, SS 2022

Selected Optimizers (updateModel)

 Stochastic Gradient Descent (SGD)
 Vanilla SGD, basis for many other optimizers
 See 05 Data/Task-Parallel: −𝛾𝛾𝛻𝛻𝒇𝒇(𝑫𝑫,𝜽𝜽)

 SGD w/ Momentum
 Incorporates parameter velocity w/ momentum

 SGD w/ Nesterov Momentum
 Incorporates parameter velocity w/ momentum,

but update from position after momentum

 AdaGrad
 Adaptive learning rate w/ regret guarantees

 RMSprop
 Adaptive learning rate, extended AdaGrad

Data-Parallel Parameter Servers

X = X – lr*dX

v = mu*v – lr*dX
X = X + v

v0 = v
v = mu*v – lr*dX

X = X – mu*v0 + (1+mu)*v

[John C. Duchi et al: Adaptive
Subgradient Methods for

Online Learning and Stochastic
Optimization. JMLR 2011]

c = dr*c+(1-dr)*dX^2
X = X-(lr*dX/(sqrt(c)+eps))

Presenter
Presentation Notes
Regret: loss incurred during learning, loss difference to loss w/ optimal weights (applicability to exercise?)

18

706.550 Architecture of Machine Learning Systems – 06 Parameter Servers
Matthias Boehm, Graz University of Technology, SS 2022

Selected Optimizers (updateModel), cont.
 Adam

 Individual adaptive learning rates for
different parameters

 Shampoo
 Preconditioned gradient method

(Newton’s method, Quasi-Newton)
 Retains gradients tensor structure by

maintaining a preconditioner per dim
 O(m2n2) O(m2 + n2)

Data-Parallel Parameter Servers

[Diederik P. Kingma, Jimmy Ba:
Adam: A Method for Stochastic

Optimization. ICLR 2015]

t = t + 1
m = beta1*m + (1-beta1)*dX # update biased 1st moment est
v = beta2*v + (1-beta2)*dX^2 # update biased 2nd raw moment est
mhat = m / (1-beta1^t) # bias-corrected 1st moment est
vhat = v / (1-beta2^t) # bias-corrected 2nd raw moment est
X = X - (lr * mhat/(sqrt(vhat)+epsilon)) # param update

[Vineet Gupta, Tomer Koren, Yoram Singer:
Shampoo: Preconditioned Stochastic

Tensor Optimization. ICML 2018]

L = L + dX %*% t(dX)
R = R + t(dX) %*% dX
X = X – lr * pow(L,1/4)

%*% dX %*% pow(R,1/4))

Presenter
Presentation Notes
Note: Newton’s method employs the local Hessian as a preconditioner“Shampoo maintains an m×m matrix L1/4t to precondition the rows of Gt and R1/4t for its columns. The ¼ exponent arises from our analysis; intuitively, it is a sensible choice as it induces an overall step-size decay rate of O(1/√t), which is common in stochastic optimization methods.”

19

706.550 Architecture of Machine Learning Systems – 06 Parameter Servers
Matthias Boehm, Graz University of Technology, SS 2022

Batch Size Configuration
 What is the right batch size for my data?

 Maximum useful batch size is dependent on
data redundancy and model complexity

 Additional Heuristics/Hybrid Methods
 #1 Increase the batch size instead

of decaying the learning rate

 #2 Combine batch and mini-batch
algorithms (full batch + n online updates)

Data-Parallel Parameter Servers

ResNet-50
on

ImageNet

Simple CNN
on

MNIST
vs

[Christopher J. Shallue et al.:
Measuring the Effects of Data

Parallelism on Neural Network
Training. CoRR 2018]

[Samuel L. Smith, Pieter-Jan
Kindermans, Chris Ying, Quoc V. Le:

Don't Decay the Learning Rate,
Increase the Batch Size. ICLR 2018]

[Ashok Cutkosky, Róbert Busa-Fekete:
Distributed Stochastic Optimization

via Adaptive SGD. NeurIPS 2018]

20

706.550 Architecture of Machine Learning Systems – 06 Parameter Servers
Matthias Boehm, Graz University of Technology, SS 2022

Reducing Communication Overhead
 Large Batch Sizes

 Larger batch sizes reduce the
relative communication overhead

 Overlapping Computation/Communication
 For deep NN w/ many weight/bias matrices,

compute and comm. can be overlapped
 Collective operations: all-Reduce / ring all-reduce / hierarchical all-reduce

 Sparse and Compressed Communication
 Mini-batches of sparse data sparse dW
 Lossy (mantissa truncation, quantization), and

lossless (delta, bitpacking) for W and dW
 Gradient sparsification/clipping (send gradients larger than a threshold)

 In-Network Aggregation (SwitchML)
 Aggregate worker updates in prog. switches
 32b fix-point, coordinated updates

Data-Parallel Parameter Servers

[Frank Seide et al: 1-bit
stochastic gradient descent and

its application to data-parallel
distributed training of speech

DNNs. INTERSPEECH 2014]

[Priya Goyal et al: Accurate, Large
Minibatch SGD: Training ImageNet in 1

Hour. CoRR 2017 (kn=8K, 256 GPUs)]

tf.distribute:
MirroredStrategy

MultiWorkerMirroredStrategy

[Amedeo Sapio et al: Scaling
Distributed Machine Learning with

In-Network Aggregation, NSDI 2021]

Presenter
Presentation Notes
Large-batches: synchronous SGD with k=256 workers * n=32 per-worker batch size = 8K

21

706.550 Architecture of Machine Learning Systems – 06 Parameter Servers
Matthias Boehm, Graz University of Technology, SS 2022

Model-Parallel Parameter Servers

22

706.550 Architecture of Machine Learning Systems – 06 Parameter Servers
Matthias Boehm, Graz University of Technology, SS 2022

Problem Setting
 Limitations Data-Parallel Parameter Servers

 Need to fit entire model and activations into each worker node/device
(or overhead for repeated eviction & restore)

 Very deep and wide networks (e.g., ResNet-1001)

 Model-Parallel Parameter Servers
 Workers responsible for disjoint partitions of the network/model
 Exploit pipeline parallelism and independent subnetworks
 Examples: recurrent neural networks, pre-processing tasks

 Hybrid Parameter Servers
 “To be successful, however, we believe that model

parallelism must be combined with clever distributed
optimization techniques that leverage data parallelism.”

 “[…] it is possible to use tens of thousands of CPU cores
for training a single model”

Model-Parallel Parameter Servers

[Jeffrey Dean et al.: Large
Scale Distributed Deep
Networks. NIPS 2012]

[Kaiming He, Xiangyu Zhang,
Shaoqing Ren, Jian Sun:

Identity Mappings in Deep
Residual Networks. ECCV 2016]

23

706.550 Architecture of Machine Learning Systems – 06 Parameter Servers
Matthias Boehm, Graz University of Technology, SS 2022

Overview Model-Parallel Execution
 System

Architecture
 Nodes act as

workers and
parameter servers

 Data Transfer for
boundary-crossing
data dependencies

 Pipeline
Parallelism

Model-Parallel Parameter Servers

Workers w/ disjoint
network/model partitions

24

706.550 Architecture of Machine Learning Systems – 06 Parameter Servers
Matthias Boehm, Graz University of Technology, SS 2022

Example Distributed TensorFlow MP
Place variables and ops on devices
with tf.device("/gpu:0"):

a = tf.Variable(tf.random.uniform(...))
a = tf.square(a)

with tf.device("/gpu:1"):
b = tf.Variable(tf.random.uniform(...))
b = tf.square(b)

with tf.device("/cpu:0"):
loss = a+b

Declare optimizer and parameters
opt = tf.train.GradientDescentOptimizer(learning_rate=0.1)
train_op = opt.minimize(loss)

Force distributed graph evaluation
ret = sess.run([loss, train_op]))

Model-Parallel Parameter Servers

Explicit Placement of
Operations

(shown via toy example)

25

706.550 Architecture of Machine Learning Systems – 06 Parameter Servers
Matthias Boehm, Graz University of Technology, SS 2022

Pathways: Asynchronous, Distributed Data Flow
 System Overview

 TF and JAX programs (e.g., JAX pmap())
 Virtual device requests device islands
 MLIR dialect, lowering to physical devices
 PLAQUE shared data-flow system w/

sharded buffer, sparse comm., gang scheduling

 Resource Management and Scheduling

Model-Parallel Parameter Servers

[Paul Barham et al: Pathways:
Asynchronous Distributed

Dataflow for ML, MLSys 2022]

Presenter
Presentation Notes
https://blog.google/technology/ai/introducing-pathways-next-generation-ai-architecture/�(model distributed across devices in sharded buffer)

26

706.550 Architecture of Machine Learning Systems – 06 Parameter Servers
Matthias Boehm, Graz University of Technology, SS 2022

Distributed Reinforcement Learning
Hybrid Data- and Task- Parallel Execution

Data-Parallel Parameter Servers
Nested Parallelism

27

706.550 Architecture of Machine Learning Systems – 06 Parameter Servers
Matthias Boehm, Graz University of Technology, SS 2022

Reinforcement Learning
 RL Characteristics

 Closed-loop: goal-directed learning from interaction
 Time-delayed reward: map situations actions, max reward
 No instructions: exploitation (known actions) vs exploration (find actions)

 RL Elements
 Policy: stimulus-response rules (perceived environment state actions)
 Reward Signal: scalar reward at each time step (direct vs indirect)
 Value Function: long-term desirability of states (expected reward)
 Model of the environment: expected behavior of environment planning

Distributed Reinforcement Learning

Agent Environment
(real/sim)

Action

Reward/State

[Richard S. Sutton, Andrew G.
Barto: Reinforcement Learning:

An Introduction, MIT Press, 2015]

Presenter
Presentation Notes
Q-Learning: off-policy TD control algorithm, w/ action-value functions (Q-functions)

28

706.550 Architecture of Machine Learning Systems – 06 Parameter Servers
Matthias Boehm, Graz University of Technology, SS 2022

Distributed RL in RLlib
 Framework Overview

 RLlib on tasks/actors in Ray
 Interleaved policy training, simulations, etc

 Parallelization Strategies
 Hierarchical Parallel Task Model

(locally, centralized control)
 Policy optimizer step methods

(All-reduce, local multi-GPU,
async, parameter server)

 Policy graph (algorithm-specific)
on multiple remote evaluator replicas

Distributed Reinforcement Learning

[Eric Liang, Richard Liaw et al: RLlib:
Abstractions for Distributed

Reinforcement Learning. ICML 2018]

[Philipp Moritz, Robert Nishihara et al.:
Ray: A Distributed Framework for Emerging

AI Applications. OSDI 2018]

Example Parameter Server
(task stream, wait for #updates)

29

706.550 Architecture of Machine Learning Systems – 06 Parameter Servers
Matthias Boehm, Graz University of Technology, SS 2022

Podracer RL Architectures
 Use of TPU Pods via JAX/TF XLA

 #1 Anakin
 Agent-environment interaction can be compiled into a single XLA program
 Scalability: replicate basic setup to larger TPU slices

Distributed Reinforcement Learning

[Matteo Hessel, Manuel Kroiss, et al:
Podracer architectures for scalable

Reinforcement Learning, CoRR 2021]

CPU
TPU Core

Presenter
Presentation Notes
Note: “One CPU host [56 cores] is connected to 8 TPU cores (grouped into 4 chips). All TPU cores are connected to each other via high speed network.”

30

706.550 Architecture of Machine Learning Systems – 06 Parameter Servers
Matthias Boehm, Graz University of Technology, SS 2022

Podracer RL Architectures, cont.
 #2 Sebulba

 Decomposed actors and learners
 Support for arbitrary environments

Distributed Reinforcement Learning

[Matteo Hessel, Manuel Kroiss, et al:
Podracer architectures for scalable

Reinforcement Learning, CoRR 2021]

Presenter
Presentation Notes
Note: parameter updates at learners, action selection at actors, batch of parallel environments

31

706.550 Architecture of Machine Learning Systems – 06 Parameter Servers
Matthias Boehm, Graz University of Technology, SS 2022

Federated Machine Learning

32

706.550 Architecture of Machine Learning Systems – 06 Parameter Servers
Matthias Boehm, Graz University of Technology, SS 2022

Problem Setting and Overview
 Motivation Federated ML

 Learn model w/o central data consolidation
 Privacy + data/power caps vs personalization and sharing
 Applications Characteristics

 #1 On-device data more relevant than server-side data
 #2 On-device data is privacy-sensitive or large
 #3 Labels can be inferred naturally from user interaction

 Example: Language modeling for mobile keyboards and voice recognition

 Challenges
 Massively distributed (data stored across many devices)
 Limited and unreliable communication
 Unbalanced data (skew in data size, non-IID)
 Unreliable compute nodes / data availability

Federated Machine Learning

W ΔW

[Jakub Konečný: Federated Learning -
Privacy-Preserving Collaborative

Machine Learning without Centralized
Training Data, UW Seminar 2018]

33

706.550 Architecture of Machine Learning Systems – 06 Parameter Servers
Matthias Boehm, Graz University of Technology, SS 2022

A Federated ML Training Algorithm
while(!converged) {

1. Select random subset (e.g. 1000)
of the (online) clients

2. In parallel, send current parameters θt
to those clients

2a. Receive parameters θt from server [pull]
2b. Run some number of minibatch SGD steps,

producing θ’
2c. Return θ’-θt (model averaging) [push]

3. θt+1 = θt + data-weighted average of client updates
}

Federated Machine Learning

At each client

[Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson,
Blaise Agüera y Arcas: Communication-Efficient Learning of Deep

Networks from Decentralized Data. AISTATS 2017]

34

706.550 Architecture of Machine Learning Systems – 06 Parameter Servers
Matthias Boehm, Graz University of Technology, SS 2022

Algorithmic PS Extensions
 #1 Client Sampling (FedAvg w/ model averaging)

 #2 Decentralized, Fault-tolerant Aggregation

 #3 Peer-to-peer Gradient and Model Exchange

 #4 Meta-learning for Private Models

 #5 Handling Statistical Heterogeneity (non-IID data)
 Reducing variance
 Selecting relevant subsets of data
 Tolerating partial client work
 Partitioning clients into congruent groups
 Adaptive Optimization (FedOpt, FedAvgM)

Federated Machine Learning

[Sashank J. Reddi et al:
Adaptive Federated

Optimization. CoRR 2020]

[Peter Kairouz, Brendan McMahan,
Virginia Smith: Federated Learning

Tutorial. NeurIPS 2020,
https://slideslive.com/38935813/

federated-learningtutorial]

https://slideslive.com/38935813/federated-learningtutorial

35

706.550 Architecture of Machine Learning Systems – 06 Parameter Servers
Matthias Boehm, Graz University of Technology, SS 2022

Federated Learning Protocol
 Recommended Reading

 [Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Ingerman,
Vladimir Ivanov, Chloé Kiddon, Jakub Konecný, Stefano Mazzocchi, H. Brendan
McMahan, Timon Van Overveldt, David Petrou, Daniel Ramage, Jason Roselander:
Towards Federated Learning at Scale: System Design. MLSys 2019]

Federated Machine Learning

Android
Phones

36

706.550 Architecture of Machine Learning Systems – 06 Parameter Servers
Matthias Boehm, Graz University of Technology, SS 2022

Federated Learning at the Device
 Data Collection

 Maintain repository of
locally collected data

 Apps make data available
via dedicated API

 Configuration
 Avoid negative impact on

data usage or battery life
 Training and evaluation tasks

 Multi-Tenancy
 Coordination between multiple

learning tasks (apps and services)

Federated Machine Learning

37

706.550 Architecture of Machine Learning Systems – 06 Parameter Servers
Matthias Boehm, Graz University of Technology, SS 2022

Federated Learning at the Server
 Actor Programming Model

 Comm. via message passing
 Actors sequentially process

stream of events/messages
 Scaling w/ # actors

 Coordinators
 Driver of overall

learning algorithm
 Orchestration of aggregators

and selectors (conn handlers)

 Robustness
 Pipelined selection

and aggregation rounds
 Fault Tolerance at aggregator/

master aggregator levels

Federated Machine Learning

38

706.550 Architecture of Machine Learning Systems – 06 Parameter Servers
Matthias Boehm, Graz University of Technology, SS 2022

Excursus: Data Ownership
 Limited Access to Data Sources

 #1 Infeasible data consolidation (privacy, economically/technically)
 #2 Data ownership (restricted data enrichment and consolidation)

 Example Data Ownership
 Thought experiment:

B uses machine from A
to test C’s equipment.

 Who owns the data?

 A Thought on a Spectrum of Rights and Responsibilities
 Federated ML creates new spectrum for data ownership

that might create new markets (no reselling of data)
 #1 Data stays private with the customer
 #2 Gradients/Aggregates shared with the vendor
 #3 Data completely shared with the vendor

Federated Machine Learning

Data
Privacy

Ability to
train models

Machine
Vendor A

Middle
Person B

Customer
C

XXXXXXXX
XXXXXXXXXXXX
XXXXXXXXXXX
XXXXXXXX
XXXXX

Presenter
Presentation Notes
Note: example data ownership usually negotiated in bilateral contracts!

39

706.550 Architecture of Machine Learning Systems – 06 Parameter Servers
Matthias Boehm, Graz University of Technology, SS 2022

Federated ML in SystemDS
 ExDRa Project

 Basic approach: Federated ML + ML over raw data
 System infra, integration, data org & reuse, Exp DB, geo-dist.

 Federated ML Architecture
 Multiple control programs w/ single master
 Federated tensors (metadata handles)
 Federated linear algebra and

federated parameter server

 Privacy Enhancing Technologies (PET)
 Federated ML w/ data exchange constraints
 PET (homomorphic encryption, multi-party computation, differential privacy)

Federated Machine Learning

FT
CP 1*

X

CP 2
X1

CP 3
X2

Gefördert im Programm
"IKT der Zukunft"

[Sebastian Baunsgaard et al.:
ExDRa: Exploratory Data Science on

Federated Raw Data, SIGMOD 2021]

40

706.550 Architecture of Machine Learning Systems – 06 Parameter Servers
Matthias Boehm, Graz University of Technology, SS 2022

Federated Data
 Federated Runtime Backend

 Federated data (matrices/frames) as meta data objects
 Federated linear algebra, (and federated parameter server)

Federated ML in SystemDS – Federated Runtime

X = federated(addresses=list(node1, node2, node3),
ranges=list(list(0,0),list(40K,70), ..., list(80K,0),list(100K,70)));

41

706.550 Architecture of Machine Learning Systems – 06 Parameter Servers
Matthias Boehm, Graz University of Technology, SS 2022

Federated Requests
 Federation Protocol

 Batch federated requests
 Single federated response

 Federated Request Types
 READ(ID,fname): read data object from file, and put it in symbol table

 PUT(ID,data): receives transferred data object, and put it in symbol table

 GET(ID): return a data object from the federated site to coordinator

 EXEC_INST(inst): execute an instruction (inputs/outputs by ID)

 EXEC_UDF(udf): execute a user-defined function w/ access to symbol table

 CLEAR: clean up execution contexts and variables

 Design Simplicity: (1) reuse instructions, (2) federation hierarchies

Federated ML in SystemDS – Federated Runtime

42

706.550 Architecture of Machine Learning Systems – 06 Parameter Servers
Matthias Boehm, Graz University of Technology, SS 2022

Example Federated Operations
 Matrix-Vector Multiplication

 o = X %*% v, local v
 Row-partitioned, federated X
 Row-partitioned, federated o

 Vector-Matrix Multiplication
 o = v %*% X, local v
 Row-partitioned,

federated X, local o

 Data Preparation
 [X,M] = transformencode(F,spec)
 Recoding, feature hashing, binning,

one-hot encoding

Federated ML in SystemDS – Federated Runtime

X1

X2

a) broadcast v
(PUT(v, 2))

b) Local MV (EXEC_INST, 3)

X1

X2

a) broadcast sliced v
(PUT(v, 4))

b) Local MV
(EXEC_INST, 5)

c) Aggregate
(GET, 5) +

d) Clean 4,5 (EXEC_INST)

X1: D B C D C

X2: A B B C C

1) Compute local
record maps
(EXEC_UDF)

2) Aggregate,
broadcast, recode

c) Clean 2
(EXEC_INST)

43

706.550 Architecture of Machine Learning Systems – 06 Parameter Servers
Matthias Boehm, Graz University of Technology, SS 2022

Federated Data Preparation,
Learning, and Debugging

 Federated Feature Transformations
 Federated Linear-algebra-based Data Cleaning,

Data Preparation, and Model Debugging (e.g., federated quantiles)

 Multi-tenant
Federated Learning
 Tenant Isolation

Federated ML in SystemDS – Federated Runtime

Lineage-based
Reuse

Asynchronous
Compression

44

706.550 Architecture of Machine Learning Systems – 06 Parameter Servers
Matthias Boehm, Graz University of Technology, SS 2022

TensorFlow Federated
 Overview TFF

 Federated PS algorithms and federated second order functions
 Primarily for simulating federated training, no OSS federated runtime

 #1 Federated PS

 #2 Federated Analytics
 r = t(y) %*% X
 User-level composition

of federated algorithms
 PET primitives

Federated Machine Learning

[https://www.tensorflow.org/federated/]

iterative_process = tff.learning.build_federated_averaging_process(
model_fn, # function for created federated models
client_optimizer_fn=lambda: tf.keras.optimizers.SGD(learning_rate=0.02),
server_optimizer_fn=lambda: tf.keras.optimizers.SGD(learning_rate=1.0))

X = ... # tff.type_at_clients(tf.float32)
by = tff.federated_broadcast(y)
R = tff.federated_sum(

tff.federated_map(X, by, foo_mm), foo_s)
note: tff.federated_secure_sum

https://www.tensorflow.org/federated/

45

706.550 Architecture of Machine Learning Systems – 06 Parameter Servers
Matthias Boehm, Graz University of Technology, SS 2022

Summary and Q&A
 Data-Parallel Parameter Servers
 Model-Parallel Parameter Servers
 Distributed Reinforcement Learning
 Federated Machine Learning

 Next Lectures (Part A)
 07 Hybrid Execution and HW Accelerators [May 06]
 08 Caching, Partitioning, Indexing and Compression [May 13]

	Architecture of ML Systems�06 Parameter Servers
	Announcements/Org
	Categories of Execution Strategies
	Agenda
	Data-Parallel Parameter Servers
	Recap: Mini-batch ML Algorithms
	Background: Mini-batch DNN Training (LeNet)
	Overview Parameter Servers
	History of Parameter Servers
	Basic Worker Algorithm (batch)
	Extended Worker Algorithm (nfetch batches)
	Update Strategies
	Update Strategies, cont.
	Data Partitioning Schemes
	Example Distributed TensorFlow DP
	Example SystemDS Parameter Server
	Selected Optimizers (updateModel)
	Selected Optimizers (updateModel), cont.
	Batch Size Configuration
	Reducing Communication Overhead
	Model-Parallel Parameter Servers
	Problem Setting
	Overview Model-Parallel Execution
	Example Distributed TensorFlow MP
	Pathways: Asynchronous, Distributed Data Flow
	Distributed Reinforcement Learning
	Reinforcement Learning
	Distributed RL in RLlib
	Podracer RL Architectures
	Podracer RL Architectures, cont.
	Federated Machine Learning
	Problem Setting and Overview
	A Federated ML Training Algorithm
	Algorithmic PS Extensions
	Federated Learning Protocol
	Federated Learning at the Device
	Federated Learning at the Server
	Excursus: Data Ownership
	Federated ML in SystemDS
	Federated Data
	Federated Requests
	Example Federated Operations
	Federated Data Preparation,�Learning, and Debugging
	TensorFlow Federated
	Summary and Q&A

