

SCIENCE PASSION TECHNOLOGY

Architecture of ML Systems 06 Parameter Servers

Matthias Boehm

Graz University of Technology, Austria Computer Science and Biomedical Engineering Institute of Interactive Systems and Data Science BMK endowed chair for Data Management

Last update: Apr 27, 2022

Announcements/Org

- #1 Video Recording
 - Link in TeachCenter & TUbe (lectures will be public)
 - Hybrid: HSi13 / <u>https://tugraz.webex.com/meet/m.boehm</u>
 - Apr 25: no more COVID restrictions at TU Graz

#2 Course Evaluations and Exam

- Evaluation period: Jun 15 Jul 31
- Oral Exams (45min each), doodle in June → exams in July (close to submission of projects/exercises)

TUbe

cisco Webex

111111

Categories of Execution Strategies

07 Hybrid Execution and HW Accelerators

08 Caching, Partitioning, Indexing, and Compression

Agenda

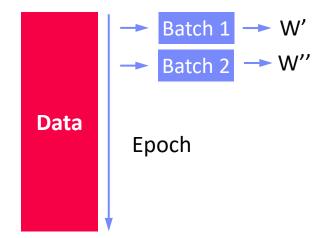
- Data-Parallel Parameter Servers
- Model-Parallel Parameter Servers
- Distributed Reinforcement Learning
- Federated Machine Learning

Data-Parallel Parameter Servers

Recap: Mini-batch ML Algorithms

Mini-batch ML Algorithms

- Iterative ML algorithms, where each iteration only uses a batch of rows to make the next model update (in epochs or w/ sampling)
- For large and highly redundant training sets
- Applies to almost all iterative, model-based ML algorithms (LDA, reg., class., factor., DNN)
- Stochastic Gradient Descent (SGD)



- Statistical vs Hardware Efficiency (batch size)
 - Statistical efficiency: # accessed data points to achieve certain accuracy
 - Hardware efficiency: number of independent computations to achieve high hardware utilization (parallelization at different levels)
 - Beware higher variance / class skew for too small batches!

Training Mini-batch ML algorithms sequentially is hard to scale

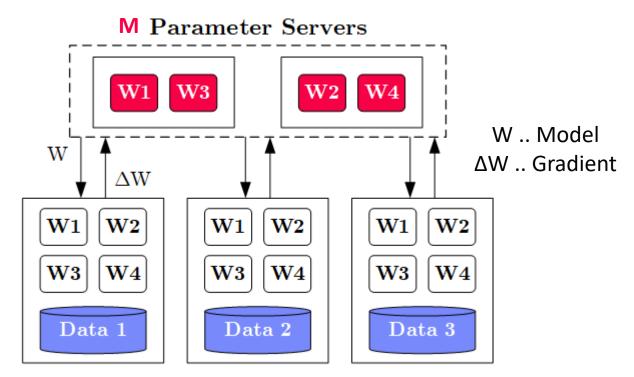
7

Background: Mini-batch DNN Training (LeNet)

```
[Yann LeCun, Leon Bottou, Yoshua
# Initialize W1-W4, b1-b4
                                                          Bengio, and Patrick Haffner: Gradient-
# Initialize SGD w/ Nesterov momentum optimizer
                                                           Based Learning Applied to Document
iters = ceil(N / batch size)
                                                             Recognition, Proc of the IEEE 1998]
for( e in 1:epochs ) {
   for( i in 1:iters ) {
      X batch = X[((i-1) * batch size) \% N + 1:min(N, beg + batch size - 1),]
      y batch = Y[((i-1) * batch size) \% N + 1:min(N, beg + batch size - 1),]
      ## layer 1: conv1 -> relu1 -> pool1
      ## layer 2: conv2 -> relu2 -> pool2
                                                                                NN Forward
      ## layer 3: affine3 -> relu3 -> dropout
      ## layer 4: affine4 -> softmax
                                                                                    Pass
      outa4 = affine::forward(outd3, W4, b4)
      probs = softmax::forward(outa4)
      ## layer 4: affine4 <- softmax</pre>
                                                                               NN Backward
      douta4 = softmax::backward(dprobs, outa4)
      [doutd3, dW4, db4] = affine::backward(douta4, outr3, W4, b4)
                                                                                    Pass
      ## layer 3: affine3 <- relu3 <- dropout</pre>
                                                                                \rightarrow Gradients
      ## layer 2: conv2 <- relu2 <- pool2</pre>
      ## layer 1: conv1 <- relu1 <- pool1</pre>
      # Optimize with SGD w/ Nesterov momentum W1-W4, b1-b4
                                                                                   Model
      [W4, vW4] = sgd nesterov::update(W4, dW4, lr, mu, vW4)
                                                                                  Updates
      [b4, vb4] = sgd nesterov::update(b4, db4, lr, mu, vb4)
   }
}
```


Overview Parameter Servers

- System Architecture
 - M Parameter Servers
 - N Workers
 - Optional Coordinator



Key Techniques

N Workers

- Data partitioning D → workers Di (e.g., disjoint, reshuffling)
- Updated strategies (e.g., synchronous, asynchronous)
- Batch size strategies (small/large batches, hybrid methods)

History of Parameter Servers

- 1st Gen: Key/Value
 - Distributed key-value store for parameter exchange and synchronization
 - Relatively high overhead
- 2nd Gen: Classic Parameter Servers
 - Parameters as dense/sparse matrices
 - Different update/consistency strategies
 - Flexible configuration and fault tolerance
- 3rd Gen: Parameter Servers w/ improved data communication
 - Prefetching and range-based pull/push
 - Lossy or lossless compression w/ compensations

Examples

TensorFlow, MXNet, PyTorch, CNTK, Petuum

[Alexander J. Smola, Shravan M. Narayanamurthy: An Architecture for Parallel Topic Models. **PVLDB 2010**]

Allenation

[Jeffrey Dean et al.: Large Scale Distributed Deep Networks. NIPS 2012]

- And a second s

[Mu Li et al: Scaling Distributed Machine Learning with the Parameter Server. **OSDI 2014**]

14		2
inter a		
1 march 1		175
- 12:07.75		
30,00		Case 1
110-1		
-		147
1020		
0.522		
24233		
1022		

[Jiawei Jiang, Bin Cui, Ce Zhang, Lele Yu: Heterogeneity-aware Distributed Parameter Servers. SIGMOD 2017]

	ða)	712	-	÷
Distants				8
				1
				8
ALC: NO		-		in :

[Jiawei Jiang et al: SketchML: Accelerating Distributed Machine Learning with Data Sketches. SIGMOD 2018]

Basic Worker Algorithm (batch)

```
for( i in 1:epochs ) {
   for( j in 1:iterations ) {
     params = pullModel(); # W1-W4, b1-b4 lr, mu
     batch = getNextMiniBatch(data, j);
     gradient = computeGradient(batch, params);
     pushGradients(gradient);
   }
}
```

[Jeffrey Dean et al.: Large Scale Distributed Deep Networks. NIPS 2012]

Extended Worker Algorithm (nfetch batches)

```
gradientAcc = matrix(0,...);
                                                 nfetch batches require
                                               local gradient accrual and
for( i in 1:epochs ) {
                                                  local model update
   for( j in 1:iterations ) {
      if( step mod nfetch = 0 )
          params = pullModel();
      batch = getNextMiniBatch(data, j);
      gradient = computeGradient(batch, params);
      gradientAcc += gradient;
      params = updateModel(params, gradients);
      if( step mod nfetch = 0 ) {
          pushGradients(gradientAcc); step = 0;
          gradientAcc = matrix(0, ...);
                                               [Jeffrey Dean et al.: Large Scale
                                                 Distributed Deep Networks.
      step++;
                                                           NIPS 2012
}
   }
```


Update Strategies

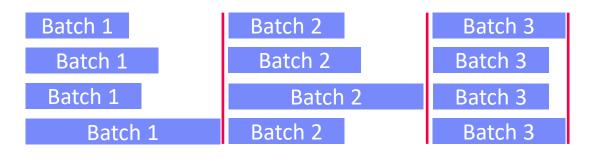
- Bulk Synchronous Parallel (BSP)
 - Update model w/ accrued gradients
 - Barrier for N workers

Asynchronous Parallel (ASP)

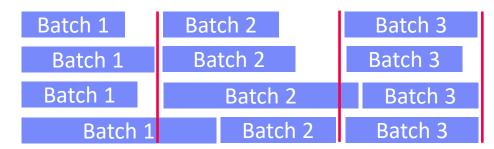
- Update model for each gradient
- No barrier

Synchronous w/ Backup Workers

- Update model w/ accrued gradients
- Barrier for N of N+b workers



Batch 1	Batch 2	Batch	3		but, stale
Batch 1	Batch	2 Ba	atch 3		model
Batch 1	Bato	ch 2	Batc	h 3	updates
Batch	1	Batch 2	Bat	ch 3	



[Martín Abadi et al: TensorFlow: A System for Large-Scale Machine Learning. **OSDI 2016**]

Update Strategies, cont.

- Stale-Synchronous Parallel (SSP)
 - Similar to backup workers, weak synchronization barrier
 - Maximum staleness of s clocks between fastest and slowest worker \rightarrow if violated, block fastest
- [Qirong Ho et al: More Effective Distributed ML via a Stale Synchronous Parallel Parameter Server. NIPS 2013]

1100	1.0	A. 4. 140	
antes 1957	-		
読	-		
關			Ē

Hogwild!

- Even the model update completely unsynchronized
- Shown to converge for sparse model updates

Decentralized

- #1: Exchange partial gradient updates with local peers
- #2: Peer-to-peer re-assignment of work
- Other Examples: Ako, FlexRR

[Xiangru Lian et al: Can Decentralized Algorithms? A Case Study for **Decentralized Parallel Stochastic** Gradient Descent. NIPS 2017]

[Benjamin Recht, Christopher Ré, Stephen J.

Wright, Feng Niu: Hogwild: A Lock-Free

Approach to Parallelizing Stochastic

Gradient Descent. NIPS 2011]

			-
			-
		1.00	t
	10.78		
	-		
10.5			e.
			2
100			2
\$1.10			- 16

Algorithms Outperform Centralized

	-		
1247			
	-		
542		100	

14

Data Partitioning Schemes

Goals Data Partitioning

- Even distribute data across workers
- Avoid skew regarding model updates → shuffling/randomization

#1 Disjoint Contiguous

Contiguous row partition of features/labels

#2 Disjoint Round Robin

Rows of features distributed round robin

#3 Disjoint Random

Random non-overlapping selection of rows

#4 Overlap Reshuffle

 Each worker receives a reshuffled copy of the whole dataset Xp = X[id*blocksize+1: (id+1)*blocksize,];

Xp = X[seq(1,nrow(X))%%N==id),];

```
P = table(seq(1,nrow(X)),
sample(nrow(X),nrow(X),FALSE));
Xp = P[id*blocksize+1:
(id+1)*blocksize,] %*% X
```

Xp = Pi %*% X

Example Distributed TensorFlow DP

```
# Create a cluster from the parameter server and worker hosts
cluster = tf.train.ClusterSpec({"ps": ps_hosts, "worker": worker_hosts})
```

```
# Create and start a server for the local task.
server = tf.train.Server(cluster, job_name=..., task_index=...)
```

```
# On worker: initialize loss
```

```
train_op = tf.train.AdagradOptimizer(0.01).minimize(
    loss, global step=tf.contrib.framework.get or create global step())
```

```
# Create training session and run steps asynchronously
hooks=[tf.train.StopAtStepHook(last_step=1000000)]
with tf.train.MonitoredTrainingSession(master=server.target,
    is_chief=(task_index == 0), checkpoint_dir=..., hooks=hooks) as sess:
    while not mon_sess.should_stop():
        sess.run(train_op)
```

[Inside TensorFlow: tf.distribute.Strategy, 2019,

https://www.youtube.com/watch?v=jKV53r9-H14]

```
# Program needs to be started on ps and worker
```

But new experimental APIs and Keras Frontend

Example SystemDS Parameter Server

```
# Initialize SGD w/ Adam optimizer
[W1, mW1, vW1] = adam::init(W1);
[b1, mb1, vb1] = adam::init(b1); ...
```

```
# Create the model object
modelList = list(W1, W2, W3, W4, b1, b2, b3, b4, vW1, vW2, vW3, vW4,
    vb1, vb2, vb3, vb4, mW1, mW2, mW3, mW4, mb1, mb2, mb3, mb4);
```

```
# Create the hyper parameter list
params = list(lr=0.001, beta1=0.9, beta2=0.999, epsilon=1e-8, t=0,
    C=C, Hin=Hin, Win=Win, Hf=Hf, Wf=Wf, stride=1, pad=2, lambda=5e-04,
    F1=F1, F2=F2, N3=N3)
```

Use paramserv function

modelList2 = paramserv(model=modelList, features=X, labels=Y, upd=fGradients, aggregation=fUpdate, mode=REMOTE_SPARK, utype=ASP, freq=BATCH, epochs=200, batchsize=64, k=144, scheme=DISJOINT_RANDOM, hyperparams=params)

¹⁷ Selected Optimizers (updateModel)

- Stochastic Gradient Descent (SGD)
 - Vanilla SGD, basis for many other optimizers
 - See 05 Data/Task-Parallel: $-\gamma \nabla f(D, \theta)$
- SGD w/ Momentum
 - Incorporates parameter velocity w/ momentum

SGD w/ Nesterov Momentum

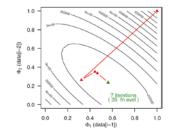
 Incorporates parameter velocity w/ momentum, but update from position after momentum

AdaGrad

Adaptive learning rate w/ regret guarantees

RMSprop

Adaptive learning rate, extended AdaGrad



 $X = X - lr^*dX$

v = mu*v - lr*dXX = X + v

v0 = v v = mu*v - lr*dXX = X - mu*v0 + (1+mu)*v

[John C. Duchi et al: Adaptive Subgradient Methods for Online Learning and Stochastic Optimization. JMLR 2011]

c = dr*c+(1-dr)*dX^2 X = X-(lr*dX/(sqrt(c)+eps))

18

Selected Optimizers (updateModel), cont.

- Adam
 - Individual adaptive learning rates for different parameters

```
[Diederik P. Kingma, Jimmy Ba:
Adam: A Method for Stochastic
Optimization. ICLR 2015]
```



```
t = t + 1
m = beta1*m + (1-beta1)*dX # update biased 1st moment est
v = beta2*v + (1-beta2)*dX^2 # update biased 2nd raw moment est
mhat = m / (1-beta1^t) # bias-corrected 1st moment est
vhat = v / (1-beta2^t) # bias-corrected 2nd raw moment est
X = X - (lr * mhat/(sqrt(vhat)+epsilon)) # param update
```

Shampoo

- Preconditioned gradient method (Newton's method, Quasi-Newton)
- Retains gradients tensor structure by maintaining a preconditioner per dim
- $O(m^2n^2) \rightarrow O(m^2 + n^2)$

[Vineet Gupta, Tomer Koren, Yoram Singer: Shampoo: Preconditioned Stochastic Tensor Optimization. **ICML 2018**]

$$L = L + dX \% *\% t(dX)$$

$$R = R + t(dX) \% *\% dX$$

$$X = X - lr * pow(L, 1/4)$$

$$\% *\% dX \% *\% pow(R, 1/4))$$

Batch Size Configuration

2²¹

2²⁰

2¹⁹

2¹⁸

2¹⁷

2¹⁶

2¹⁵

 2^{14}

2¹³

2¹²

211 2¹⁰

 2^{6} 27 2⁸

Steps

ResNet-50

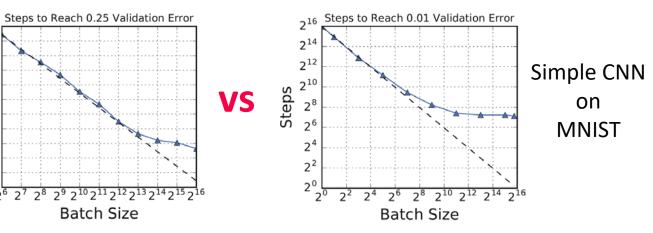
on

ImageNet

What is the right batch size for my data?

Maximum useful batch size is dependent on data redundancy and model complexity

[Christopher J. Shallue et al.: Measuring the Effects of Data Parallelism on Neural Network Training. CoRR 2018]



Additional Heuristics/Hybrid Methods

- #1 Increase the batch size instead of decaying the learning rate
- #2 Combine batch and mini-batch algorithms (full batch + n online updates)

[Samuel L. Smith, Pieter-Jan Kindermans, Chris Ying, Quoc V. Le: Don't Decay the Learning Rate, Increase the Batch Size. ICLR 2018]

[Ashok Cutkosky, Róbert Busa-Fekete: Distributed Stochastic Optimization via Adaptive SGD. NeurIPS 2018]

20

Reducing Communication Overhead

- Large Batch Sizes
 - Larger batch sizes reduce the relative communication overhead

[Priya Goyal et al: Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour. **CoRR 2017** (kn=8K, 256 GPUs)]

Overlapping Computation/Communication

 For deep NN w/ many weight/bias matrices, compute and comm. can be overlapped

tf.distribute:

MirroredStrategy MultiWorkerMirroredStrategy

[Frank Seide et al: 1-bit

stochastic gradient descent and

its application to data-parallel

distributed training of speech

DNNs. INTERSPEECH 2014]

Collective operations: all-Reduce / ring all-reduce / hierarchical all-reduce

Sparse and Compressed Communication

- Mini-batches of sparse data → sparse dW
- Lossy (mantissa truncation, quantization), and lossless (delta, bitpacking) for W and dW
- Gradient sparsification/clipping (send gradients larger than a threshold)
- In-Network Aggregation (SwitchML)
 - Aggregate worker updates in prog. switches
 - 32b fix-point, coordinated updates

[Amedeo Sapio et al: Scaling Distributed Machine Learning with In-Network Aggregation, **NSDI 2021**]

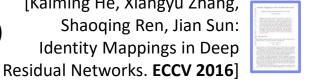
Model-Parallel Parameter Servers

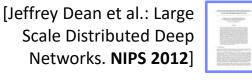
Problem Setting

22

Limitations Data-Parallel Parameter Servers

- Need to fit entire model and activations into each worker node/device (or overhead for repeated eviction & restore)
 [Kaiming He, Xiangyu Zhang,
- Very deep and wide networks (e.g., ResNet-1001)
- Model-Parallel Parameter Servers
 - Workers responsible for disjoint partitions of the network/model
 - Exploit pipeline parallelism and independent subnetworks
 - Examples: recurrent neural networks, pre-processing tasks
- Hybrid Parameter Servers
 - "To be successful, however, we believe that model parallelism must be combined with clever distributed optimization techniques that leverage data parallelism."
 - "[...] it is possible to use tens of thousands of CPU cores for training a single model"



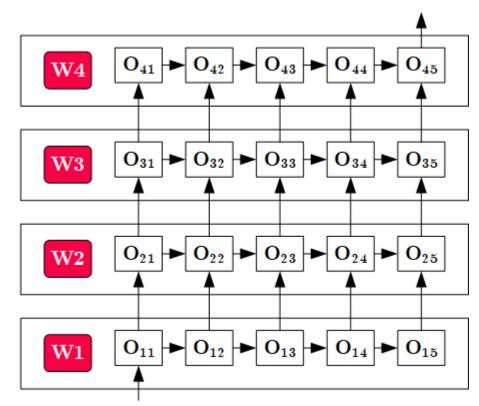


Overview Model-Parallel Execution

System Architecture

- Nodes act as workers and parameter servers
- Data Transfer for boundary-crossing data dependencies

Pipeline
 Parallelism



Workers w/ disjoint network/model partitions

Example Distributed TensorFlow MP

```
# Place variables and ops on devices
with tf.device("/gpu:0"):
    a = tf.Variable(tf.random.uniform(...))
    a = tf.square(a)
with tf.device("/gpu:1"):
    b = tf.Variable(tf.random.uniform(...))
    b = tf.square(b)
with tf.device("/cpu:0"):
    loss = a+b
```

Explicit Placement of Operations (shown via toy example)

Declare optimizer and parameters

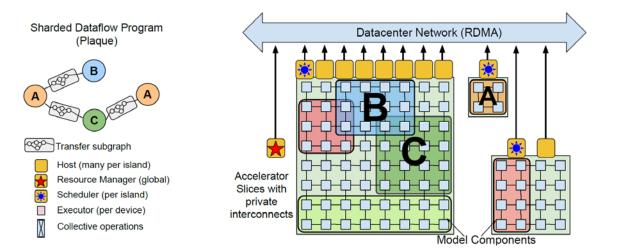
```
opt = tf.train.GradientDescentOptimizer(learning_rate=0.1)
train_op = opt.minimize(loss)
```

```
# Force distributed graph evaluation
ret = sess.run([loss, train_op]))
```


Pathways: Asynchronous, Distributed Data Flow

- System Overview
 - TF and JAX programs (e.g., JAX pmap())
 - Virtual device requests → device islands
 - MLIR dialect, lowering to physical devices
 - PLAQUE shared data-flow system w/ sharded buffer, sparse comm., gang scheduling

Resource Management and Scheduling

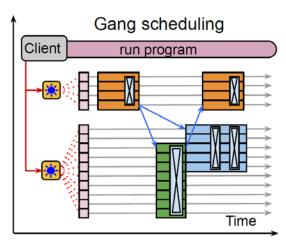


[Paul Barham et al: Pathways: Asynchronous Distributed Dataflow for ML, **MLSys 2022**]

def get_devices(n):
 """Allocates `n` virtual TPU devices on an island."""
 device_set = pw.make_virtual_device_set()
 return device_set.add_slice(tpu_devices=n).tpus
a = jax.pmap(lambda x: x * 2., devices=get_devices(2))
b = jax.pmap(lambda x: x + 1., devices=get_devices(2))
c = jax.pmap(lambda x: x / 2., devices=get_devices(2))
@pw.program # Program tracing (optional)
def f(v):
 x = a(v)

x = a(v) y = b(x) z = a(c(x))return (y, z)

print(f(numpy.array([1., 2.])))
output: (array([3., 5.]), array([2., 4.]))



706.550 Architecture of Machine Learning Systems – 06 Parameter Servers Matthias Boehm, Graz University of Technology, SS 2022

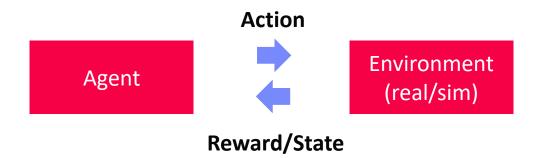
Distributed Reinforcement Learning

Hybrid Data- and Task- Parallel Execution Data-Parallel Parameter Servers Nested Parallelism

Reinforcement Learning

[Richard S. Sutton, Andrew G. Barto: Reinforcement Learning: An Introduction, MIT Press, 2015]

- RL Characteristics
 - Closed-loop: goal-directed learning from interaction
 - Time-delayed reward: map situations → actions, max reward
 - No instructions: exploitation (known actions) vs exploration (find actions)



RL Elements

- Policy: stimulus-response rules (perceived environment state → actions)
- Reward Signal: scalar reward at each time step (direct vs indirect)
- Value Function: long-term desirability of states (expected reward)
- Model of the environment: expected behavior of environment \rightarrow planning

Distributed RL in RLlib

- Framework Overview
 - RLlib on tasks/actors in Ray
 - Interleaved policy training, simulations, etc

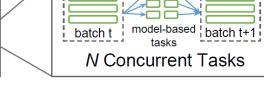
SGD batch t model-based | batch t+ K Model Variations **M** Parallel Rollouts N Concurrent Tasks

Parallelization Strategies

- Hierarchical Parallel Task Model (locally, centralized control)
- Policy optimizer step methods (All-reduce, local multi-GPU, async, parameter server)
- Policy graph (algorithm-specific) on multiple remote evaluator replicas

[Eric Liang, Richard Liaw et al: RLlib: Abstractions for Distributed Reinforcement Learning. ICML 2018]

[Philipp Moritz, Robert Nishihara et al.: **Ray:** A Distributed Framework for Emerging AI Applications. OSDI 2018]



Example Parameter Server

(task stream, wait for #updates)

```
grads = [ev.grad(ev.sample())
   for ev in evaluators]
for in range(NUM ASYNC GRADS):
    grad, ev, grads = wait(grads)
   for ps, g in split(grad, ps shards):
       ps.push(g)
    ev.set weights(concat(
       [ps.pull() for ps in ps_shards])
    grads.append(ev.grad(ev.sample()))
```


Distributed Reinforcement Learning

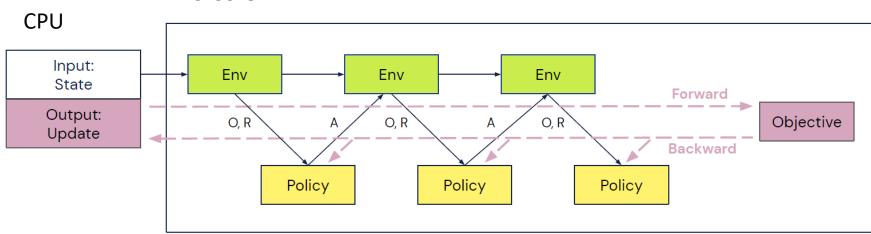
Podracer RL Architectures

Use of TPU Pods via JAX/TF XLA

[Matteo Hessel, Manuel Kroiss, et al: Podracer architectures for scalable Reinforcement Learning, **CoRR 2021**]

#1 Anakin

- Agent-environment interaction can be compiled into a single XLA program
- Scalability: replicate basic setup to larger TPU slices

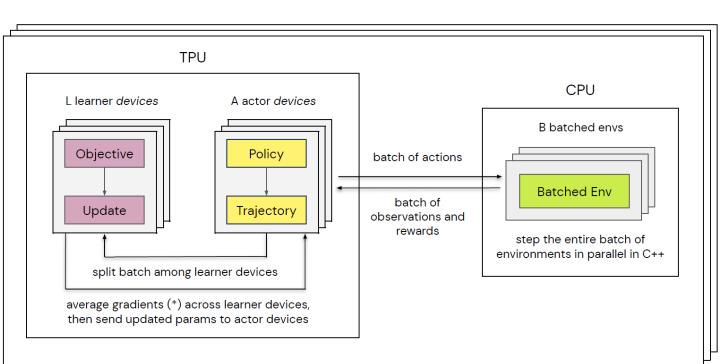


TPU Core

Podracer RL Architectures, cont.

- #2 Sebulba
 - Decomposed actors and learners
 - Support for arbitrary environments

[Matteo Hessel, Manuel Kroiss, et al: Podracer architectures for scalable Reinforcement Learning, **CoRR 2021**]



This entire computation is replicated across S slices of a TPU Pod, in which case gradients in (*) are averaged across all learner devices of all slices

706.550 Architecture of Machine Learning Systems – 06 Parameter Servers Matthias Boehm, Graz University of Technology, SS 2022

Federated Machine Learning

32

Problem Setting and Overview

- Motivation Federated ML
 - Learn model w/o central data consolidation
 - Privacy + data/power caps vs personalization and sharing
 - Applications Characteristics
 - #1 On-device data more relevant than server-side data
 - #2 On-device data is privacy-sensitive or large
 - #3 Labels can be inferred naturally from user interaction
 - Example: Language modeling for mobile keyboards and voice recognition

Challenges

- Massively distributed (data stored across many devices)
- Limited and unreliable communication
- Unbalanced data (skew in data size, non-IID)
- Unreliable compute nodes / data availability

[Jakub Konečný: Federated Learning -Privacy-Preserving Collaborative Machine Learning without Centralized Training Data, **UW Seminar 2018**]

ISDS

A Federated ML Training Algorithm

- while(!converged) {
 - 1. Select random subset (e.g. 1000)
 of the (online) clients
 - 2. In parallel, send current parameters θ_t to those clients
 At each client
 - **2a.** Receive parameters θ_t from server [pull]
 - 2b. Run some number of minibatch SGD steps, producing ⊖'
 - **2c. Return** $\theta^{*}-\theta_{t}$ (model averaging) [push]

3. $\theta_{t+1} = \theta_t + data$ -weighted average of client updates

[Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, Blaise Agüera y Arcas: Communication-Efficient Learning of Deep Networks from Decentralized Data. **AISTATS 2017**]

}

- #1 Client Sampling (FedAvg w/ model averaging)
- #2 Decentralized, Fault-tolerant Aggregation
- #3 Peer-to-peer Gradient and Model Exchange
- #4 Meta-learning for Private Models
- #5 Handling Statistical Heterogeneity (non-IID data)
 - Reducing variance
 - Selecting relevant subsets of data
 - Tolerating partial client work
 - Partitioning clients into congruent groups
 - Adaptive Optimization (FedOpt, FedAvgM)

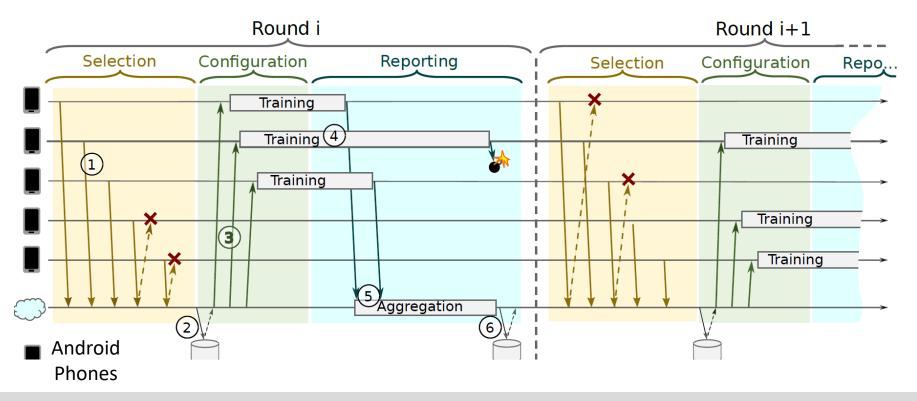
[Peter Kairouz, Brendan McMahan, Virginia Smith: Federated Learning Tutorial. **NeurIPS 2020**, <u>https://slideslive.com/38935813/</u> <u>federated-learningtutorial]</u>

[Sashank J. Reddi et al: Adaptive Federated Optimization. **CoRR 2020**]

Federated Learning Protocol

Recommended Reading

 [Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Ingerman, Vladimir Ivanov, Chloé Kiddon, Jakub Konecný, Stefano Mazzocchi, H. Brendan McMahan, Timon Van Overveldt, David Petrou, Daniel Ramage, Jason Roselander: Towards Federated Learning at Scale: System Design. MLSys 2019]

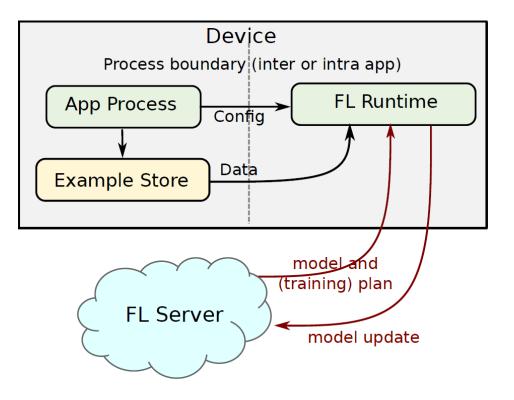


706.550 Architecture of Machine Learning Systems – 06 Parameter Servers Matthias Boehm, Graz University of Technology, SS 2022

Federated Learning at the Device

Data Collection

- Maintain repository of locally collected data
- Apps make data available via dedicated API



Configuration

- Avoid negative impact on data usage or battery life
- Training and evaluation tasks

Multi-Tenancy

 Coordination between multiple learning tasks (apps and services)

Federated Learning at the Server

Actor Programming Model

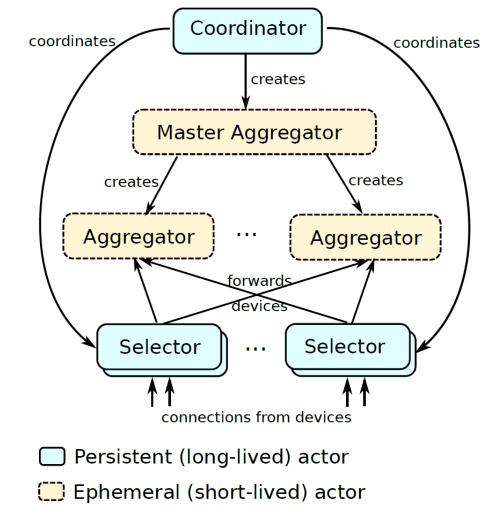
- Comm. via message passing
- Actors sequentially process stream of events/messages
- Scaling w/ # actors

Coordinators

- Driver of overall learning algorithm
- Orchestration of aggregators and selectors (conn handlers)

Robustness

- Pipelined selection and aggregation rounds
- Fault Tolerance at aggregator/ master aggregator levels



Excursus: Data Ownership

Limited Access to Data Sources

- #1 Infeasible data consolidation (privacy, economically/technically)
- #2 Data ownership (restricted data enrichment and consolidation)

ExDRa Project

- **Basic approach:** Federated ML + ML over raw data
- System infra, integration, data org & reuse, Exp DB, geo-dist.

Federated ML Architecture

SIEMENS

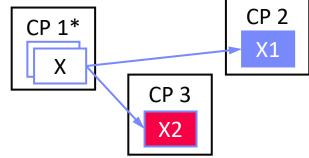
Multiple control programs w/ single master

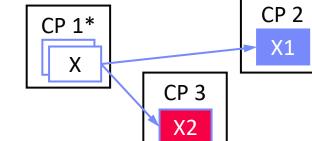
Federated ML in SystemDS

- Federated tensors (metadata handles)
- Federated linear algebra and federated parameter server
- Privacy Enhancing Technologies (PET)
 - Federated ML w/ data exchange constraints
 - PET (homomorphic encryption, multi-party computation, differential privacy)

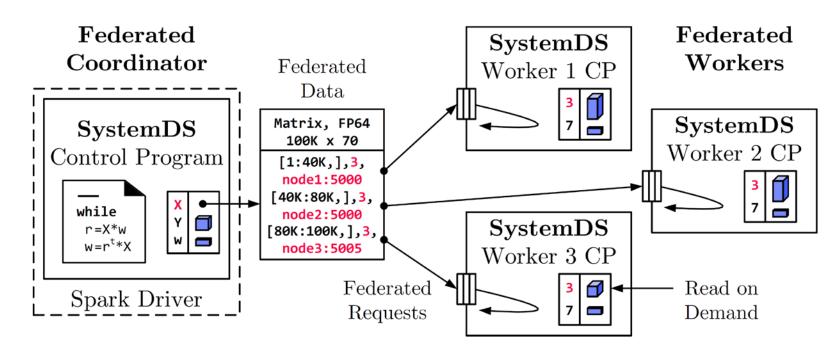
Gefördert im Programm "IKT der Zukunft"

ISDS





- Federated Runtime Backend
 - Federated data (matrices/frames) as meta data objects
 - Federated linear algebra, (and federated parameter server)
 - X = federated(addresses=list(node1, node2, node3), ranges=list(list(0,0),list(40K,70), ..., list(80K,0),list(100K,70)));



Federated

Workers

SystemDS

Worker 2 CP

Read on

Demand

3 7

SystemDS

Worker 1 CP

SystemDS

Worker 3 CP

3 7

7

Federated Requests

Federation Protocol

- Batch federated requests
- Single federated response
- Federated Request Types
 - **READ**(ID, fname): read data object from file, and put it in symbol table

Federated

Coordinator

SystemDS

Control Program

Spark Driver

Y 🗖

w 🗖

while

r=X*w

w=r^t*X

Federated

Data

Matrix, FP64

100K x 70

[1:40K,],3,

node1:5000
[40K:80K,],3

node2:5000

[80K:100K,],3

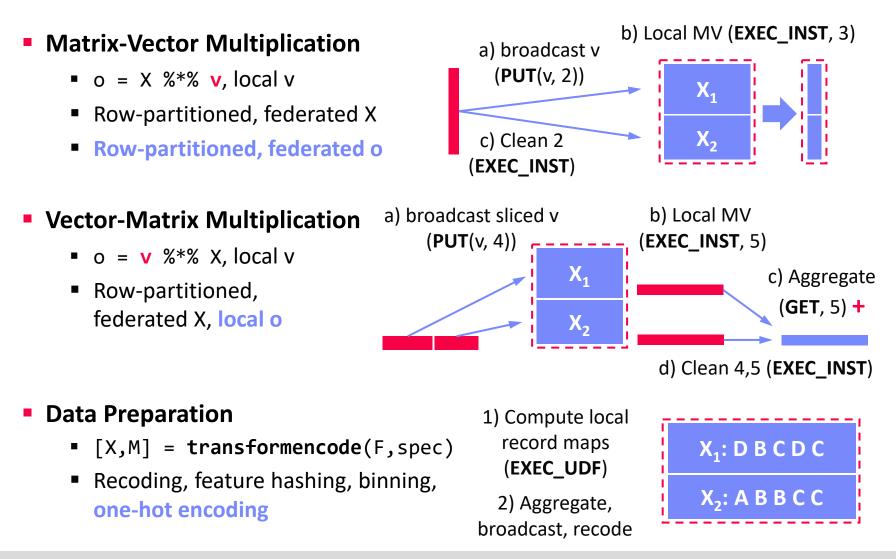
node3:5005

Federated

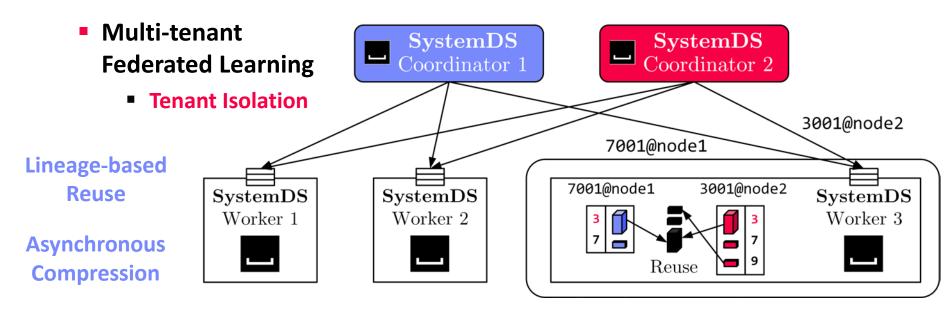
Requests

- **PUT(ID, data)**: receives transferred data object, and put it in symbol table
- GET(ID): return a data object from the federated site to coordinator
- EXEC_INST(inst): execute an instruction (inputs/outputs by ID)
- EXEC_UDF(udf): execute a user-defined function w/ access to symbol table
- CLEAR: clean up execution contexts and variables
- **Design Simplicity:** (1) reuse instructions, (2) federation hierarchies

Example Federated Operations



- Federated Data Preparation, Learning, and Debugging
 - Federated Feature Transformations
 - Federated Linear-algebra-based Data Cleaning,
 Data Preparation, and Model Debugging (e.g., federated quantiles)



TensorFlow Federated

- Overview TFF
 - Federated PS algorithms and federated second order functions
 - Primarily for simulating federated training, no OSS federated runtime

#1 Federated PS

iterative_process = tff.learning.build_federated_averaging_process(
 model_fn, # function for created federated models
 client_optimizer_fn=lambda: tf.keras.optimizers.SGD(learning_rate=0.02),
 server_optimizer_fn=lambda: tf.keras.optimizers.SGD(learning_rate=1.0))

#2 Federated Analytics

- r = t(y) %*% X
- User-level composition of federated algorithms
- PET primitives

```
X = ... # tff.type_at_clients(tf.float32)
by = tff.federated_broadcast(y)
R = tff.federated_sum(
        tff.federated_map(X, by, foo_mm), foo_s)
        # note: tff.federated_secure_sum
```


[https://www.tensorflow.org/federated/]

Summary and Q&A

- Data-Parallel Parameter Servers
- Model-Parallel Parameter Servers
- Distributed Reinforcement Learning
- Federated Machine Learning
- Next Lectures (Part A)
 - 07 Hybrid Execution and HW Accelerators [May 06]
 - 08 Caching, Partitioning, Indexing and Compression [May 13]

