

Architecture of ML Systems 07 Hardware Accelerators

Matthias Boehm

Graz University of Technology, Austria
Computer Science and Biomedical Engineering
Institute of Interactive Systems and Data Science
BMK endowed chair for Data Management

Last update: May 04, 2022

Announcements/Org

#1 Video Recording

- Link in TeachCenter & TUbe (lectures will be public)
- Hybrid: HSi13 / https://tugraz.webex.com/meet/m.boehm
- Apr 25: no more COVID restrictions at TU Graz

#2 Course Evaluations and Exam

- Evaluation period: Jun 15 Jul 31
- Oral Exams (45min each), doodle in June → exams in July (close to submission of projects/exercises)

89

#3 Projects and Exercises

- SIGMOD programming contest, completed
- SystemDS and DAPHNE projects, ongoing
- Alternative exercises (also see SS21 slides) → Jun 17

Categories of Execution Strategies

Batch SIMD/SPMD

05_a Data-Parallel Execution

Batch/Mini-batch,
Independent Tasks
MIMD

05_b Task-Parallel Execution

Mini-batch

06 Parameter Servers (data, model)

07 Hybrid Execution and HW Accelerators

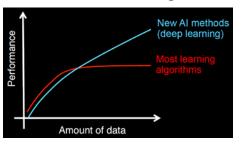
08 Caching, Partitioning, Indexing, and Compression

Agenda

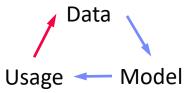
- Motivation and Terminology
- GPUs in ML Systems
- FPGAs in ML Systems
- ASICs and other HW Accelerators

Motivation and Terminology

Recap: Driving Factors for ML


Improved Algorithms and Models

- Success across data and application domains
 (e.g., health care, finance, transport, production)
- More complex models which leverage large data


Availability of Large Data Collections

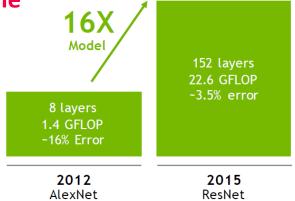
- Increasing automation and monitoring → data (simplified by cloud computing & services)
- Feedback loops, data programming/augmentation

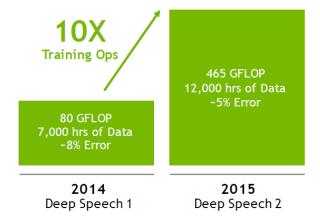
[Credit: Andrew Ng'14]

Feedback Loop

HW & SW Advancements

- Higher performance of hardware and infrastructure (cloud)
- Open-source large-scale computation frameworks,
 ML systems, and vendor-provides libraries




DNN Challenges

#1 Larger Models and Scoring Time

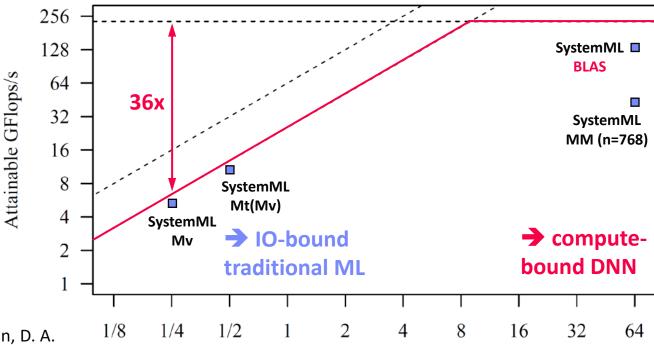
IMAGE RECOGNITION

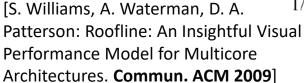
SPEECH RECOGNITION

#2 Training Time

- ResNet18: 10.76% error, 2.5 days training
- ResNet50: 7.02% error, 5 days training
- ResNet101: 6.21% error, 1 week training
- ResNet152: 6.16% error, 1.5 weeks training
- #3 Energy Efficiency

[Song Han: Efficient Methods and Hardware for Deep Learning, Stanford cs231n, 2017]




Excursus: Roofline Analysis

- Setup: 2x6 E5-2440 @2.4GHz-2.9GHz, DDR3 RAM @1.3GHz (ECC)
 - Max mem bandwidth (local): 2 sock x 3 chan x 8B x 1.3G trans/s → 2 x 32GB/s
 - Max mem bandwidth (QPI, full duplex) \rightarrow 2 x 12.8GB/s
 - Max floating point ops: 12 cores x 2*4dFP-units x $2.4GHz \rightarrow 2 \times 115.2GFlops/s$

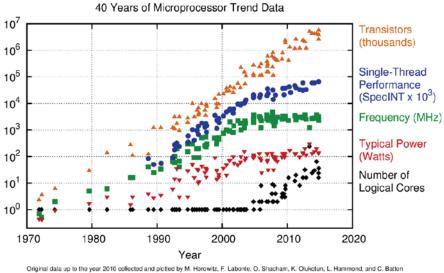
RooflineAnalysis

- Off-chip memory traffic
- Peak compute

Operational Intensity (Flops/Byte)

(Experiments from 2017)

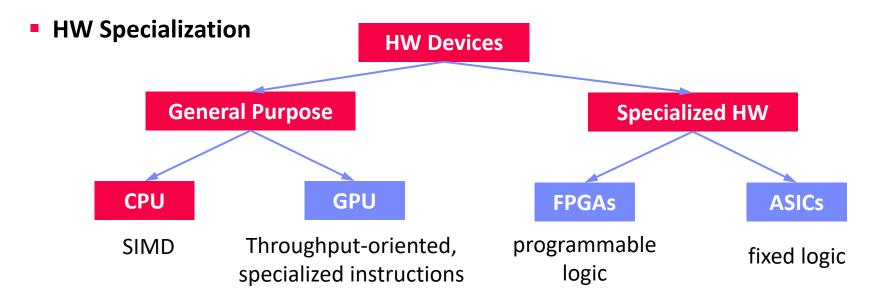
HW Challenges


- #1 End of Dennard Scaling (~2005)
 - **Law:** power stays proportional to the area of the transistor
 - Ignored leakage current / threshold voltage → increasing power density S² (power wall, heat) → stagnating frequency
- **#2 End of Moore's Law** (~2010-20)
 - **Law:** #transistors/performance/ CPU frequency doubles every 18/24 months
 - Original: # transistors per chip doubles every two years at constant costs
 - Now increasing costs (10/7/5nm)

[S. Markidis, E. Laure, N. Jansson, S. Rivas-Gomez and S. W. D. Chien: Moore's Law and Dennard Scaling

$P = \alpha CFV^2$ (power density 1)

(P... Power, C... Capacitance, F.. Frequency, V.. Voltage)



Consequences: Dark Silicon and Specialization

Towards Specialized Hardware

Additional Specialization

- Data Transfer & Types: e.g., low-precision, quantization
- Sparsity Exploitation: e.g., sparsification, exploit across ops, defer weight decompression just before instruction execution
- Near-Data Processing: e.g., operations in main memory, storage class memory (SCM), secondary storage (e.g., SSDs), and tertiary storage (e.g., tapes)

08 Caching, **Indexing and Compression**

Graphics Processing Units (GPUs) in ML Systems

NVIDIA Volta V100 – Specifications

Tesla V100 NVLink

FP64: 7.8 TFLOPs, FP32: 15.7 TFLOPs

DL FP16: 125 TFLOPs

NVLink: 300GB/s

Device HBM: 32 GB (900 GB/s)

Power: 300 W

Tesla V100 PCIe

FP64: 7 TFLOPs, FP32: 14 TFLOPs

DL FP16: 112 TFLOPs

PCIe: 32 GB/s

Device HBM: 16 GB (900 GB/s)

Power: 250 W

[Credit: https://nvidia.com/de-de/data-center/tesla-v100/]

NVIDIA Volta V100 – Architecture

- 6 GPU Processing Clusters (GPCs)
 - 7 Texture Processing Clusters (TPC)
 - 14 Streaming Multiprocessors (SM)

[NVIDIA Tesla V100 GPU Architecture, Whitepaper, Aug 2017]

NVIDIA Volta V100 – SM Architecture

FP64 cores: 32

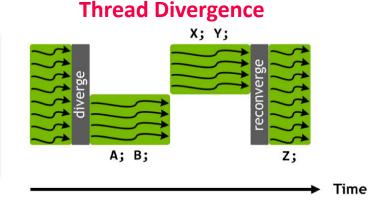
FP32 cores: 64

INT32 cores: 64

"Tensor cores": 8

Max warps /SM: 64

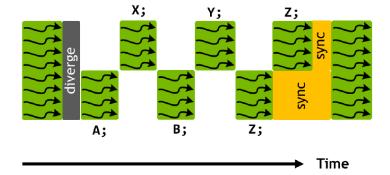
Threads/warp: 32


Single Instruction Multiple Threads (SIMT)

32 Threads grouped to warps and execute in SIMT model

Pascal P100Execution Model

 Warps use a single program counter + active mask

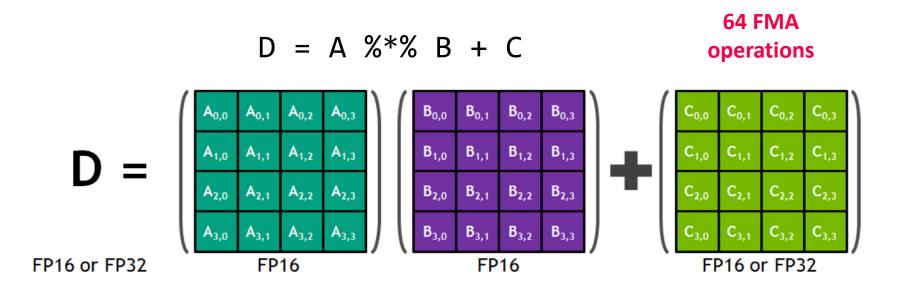

```
if (threadIdx.x < 4) {
        A;
        B;
} else {
        X;
        Y;
}</pre>
```


Volta V100Execution Model

- Independent thread scheduling
- Per-thread program counters and call stacks

```
if (threadIdx.x < 4) {
        A;
        B;
} else {
        X;
        Y;
}
Z;
__syncwarp()</pre>
```


New __syncwarp() primitive (if needed) + convergence optimizer



NVIDIA Volta V100 – Tensor Cores

"Tensor Core"

[Bill Dally: Hardware for Deep Learning. SysML 2018]

- Specialized instruction for 4x4 by 4x4 fused matrix multiply
- Two FP16 inputs and FP32 accumulator
- Exposed as warp-level matrix operations w/ special load, mm, acc, and store

NVIDIA Ampere A100

[NVIDIA A100 Tensor Core GPU Architecture - UNPRECEDENTED ACCELERATION AT EVERY SCALE, Whitepaper, **Aug 2020**]

Specification

- 7nm, 8 GPC x 8 TPC * 2 SM = 128 SMs, 40GB HBM
- FP64: 9.7 TFLOPs / FP64 TensorCore: 19.5 TFLOPs
- FP32 19.5 TFLOPs, FP16: 78 TFLOPs, BF16: 39 TFLOPs
- TF32 TensorCore 156 TFLOPs / 312 TFLOPs (sparse)
- FP16 TensorCore 312 TFLOPs / 624 TFLOPs (sparse), INT8, INT4

New Features

- New generation of "TensorCores" (FP64, new data types: TF32, BF16)
- Fine-grained sparsity exploitation
- Multi-instance GPU (MIG) virtualization: up to 7 virtual GPU instances
- Link technologies: NVLink 3 (25GB/s bidirectional) x 12 links = 600GB/s
- Submission of task graphs (launch a workflow of kernels)

Excursus: Amdahl's Law

Amdahl's law

- Given a fixed problem size, Amdahl's law gives the maximum speedup
- T is the execution time, s is the serial fraction, and p the number of processors

Execution Time
$$T_p=\frac{(1-s)T}{p}+sT$$
 Speedup $S_p=\frac{T}{T_p}$ Upper-Bound $\overline{S_p}=\lim_{p\to\infty}S_p=\frac{1}{s}$

Examples

- Serial fraction $s = 0.01 \rightarrow max S_p = 100$
- Serial fraction $s = 0.05 \rightarrow max S_0 = 20$
- Serial fraction $s = 0.1 \rightarrow max S_p = 10$
- Serial fraction $s = 0.5 \rightarrow max S_p = 2$

GPUs for DNN Training

- GPUs for DNN Training (2009)
 - Deep belief networks
 - Sparse coding

[Rajat Raina, Anand Madhavan, Andrew Y. Ng: Large-scale deep unsupervised learning using graphics processors. **ICML 2009**]

- Multi-GPU Learning (Now)
 - Exploit multiple GPUs with a mix of data- and model-parallel parameter servers
 - Dedicated ML systems for multi-GPU learning
 - Dedicated HW: e.g., NVIDIA DGX-1 (8xP100),
 NVIDIA DGX-2 (16xV100, NVSwitch),
 NVIDIA DGX A100 (8x A100, NVSwitch, Mellanox)

DNN Framework support

- All specialized DNN frameworks have very good support for GPU training
- Most of them also support multi-GPU training

Recap: DNN Benchmarks

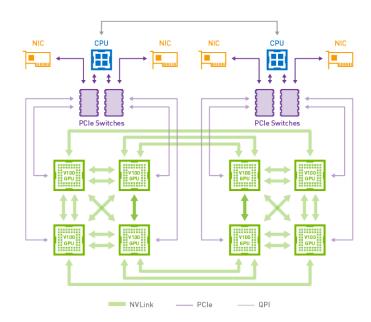
[MLPerf v0.6: https://mlperf.org/training-results-0-6/, MLPerf v0.7: https://mlperf.org/training-results-0-6/,

		V0.6	Processor :			Benchmark results (minutes)									
# 5						Image classifi- cation ImageNet ResNet-50 v1.5	Object detection, light- weight COCO SSD w/ ResNet-34	Mask-	, recurrent		mendation MovieLens- 20M	Go	Details	Code	Notes
	Submitter			# Accelerator	# Software										
vailab	le in cloud														
6-1	Google	TPUv3.32		TPUv3	16 TensorFlow, TPU 1.14.1.dev	42.19	12.61	107.03	12.25	10.20	[1]		<u>details</u>	code	none
6-2	Google	TPUv3.128		TPUv3	64 TensorFlow, TPU 1.14.1.dev	11.22	3.89	57.46	4.62	3.85	[1]		<u>details</u>	code	none
6-3	Google	TPUv3.256		TPUv3	128 TensorFlow, TPU 1.14.1.dev	6.86	2.76	35.60	3.53	2.81	[1]		<u>details</u>	<u>code</u>	none
6-4	Google	TPUv3.512		TPUv3	256 TensorFlow, TPU 1.14.1.dev	3.85	1.79		2.51	1.58	[1]		details	code	none
6-5	Google	TPUv3.1024		TPUv3	512 TensorFlow, TPU 1.14.1.dev	2.27	1.34		2.11	1.05	[1]		details	code	none
6-6	Google	TPUv3.2048		TPUv3	1024 TensorFlow, TPU 1.14.1.dev	1.28	1.21			0.85	[1]		details	code	none
vailab	le on-premi	se													
6-7	Intel	32x 2S CLX 8260L	CLX 8260L	64	TensorFlow						[1]	14.43	details	code	none
6-8	NVIDIA	DGX-1		Tesla V100	8 MXNet, NGC19.05	115.22					[1]		details	code	none
6-9	NVIDIA	DGX-1		Tesla V100	8 PyTorch, NGC19.05		22.36	207.48	20.55	20.34	[1]		details	code	none
6-10	NVIDIA	DGX-1		Tesla V100	8 TensorFlow, NGC19.05						[1]	27.39	details	code	none
6-11	NVIDIA	3x DGX-1		Tesla V100	24 TensorFlow, NGC19.05						[1]	13.57	details	code	none
6-12	NVIDIA	24x DGX-1		Tesla V100	192 PyTorch, NGC19.05			22.03			[1]		details	code	none
6-13	NVIDIA	30x DGX-1		Tesla V100	240 PyTorch, NGC19.05		2.67				[1]		details	code	none
6-14	NVIDIA	48x DGX-1		Tesla V100	384 PyTorch, NGC19.05				1.99		[1]		<u>details</u>	code	none
6-15	NVIDIA	60x DGX-1		Tesla V100	480 PyTorch, NGC19.05					2.05	[1]		details	code	none
.6-16	NVIDIA	130x DGX-1		Tesla V100	1040 MXNet, NGC19.05	1.69					[1]		details	code	none
6-17	NVIDIA	DGX-2		Tesla V100	16 MXNet, NGC19.05	57.87					DC	V CLID	-DD	20	
.6-18	NVIDIA	DGX-2		Tesla V100	16 PyTorch, NGC19.05		12.21	101.00	10.94	11.04	DG	X SUPI	EKP	עע	
.6-19	NVIDIA	DGX-2H		Tesla V100	16 MXNet, NGC19.05	52.74					Auton	omous Vehicles	Speech A	I Health	care Graphics
.6-20	NVIDIA	DGX-2H		Tesla V100	16 PyTorch, NGC19.05		11.41	95.20	9.87	9.80	N.		Ilo	No.	
.6-21	NVIDIA	4x DGX-2H		Tesla V100	64 PyTorch, NGC19.05		4.78	32.72				100000			
.6-22	NVIDIA	10x DGX-2H		Tesla V100	160 PyTorch, NGC19.05					2.41	9		1		
.6-23	NVIDIA	12x DGX-2H		Tesla V100	192 PyTorch, NGC19.05			18.47							See 1
6-24	NVIDIA	15x DGX-2H		Tesla V100	240 PyTorch, NGC19.05		2.56					200			1
6-25	NVIDIA	16x DGX-2H		Tesla V100	256 PyTorch, NGC19.05				2.12			100 March 1980			
6-26	NVIDIA	24x DGX-2H		Tesla V100	384 PyTorch, NGC19.05				1.80				10	44	
6-27	NVIDIA	30x DGX-2H, 8 chips each		Tesla V100	240 PyTorch, NGC19.05		2.23				1 6			1 30	
6-28	NVIDIA	30x DGX-2H		Tesla V100	480 PyTorch, NGC19.05					1.59	1	TELL COM			
6-29	NVIDIA	32x DGX-2H		Tesla V100	512 MXNet, NGC19.05	2.59							10	96 DGX	-2H anox EDR IB per n
6-30	NVIDIA	96x DGX-2H		Tesla V100	1536 MXNet, NGC19.05	1.33								+ 1,536 V	100 Tensor Core G watt of power

96 x DGX-2H = 96 * 16 = 1536 V100 GPUs

→ ~ 96 * \$400K = **\$35M - \$40M**

[https://www.forbes.com/sites/tiriasresearch/2019/ 06/19/nvidia-offers-a-turnkey-supercomputer-thedgx-superpod/#693400f43ee5]


GPU Link Technologies

Classic PCI Express

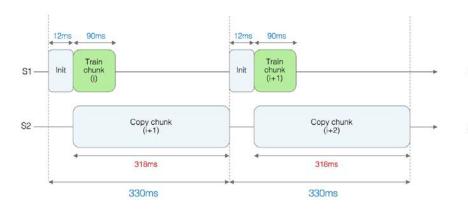
- Peripheral Component Interconnect Express (default)
- v3 x16 lanes: 16GB/s, v4 (2017) x16 lanes: 32GB/s, v5 (2019) x16 lanes: 64GB/s

#1 NVLink

- Proprietary technology
- Requires NVLink-enabled CPU (e.g., IBM Power 8/9)
- Connect GPU-GPU and GPU-CPU
- NVLink 1: 80+80 GB/s
- NVLink 2: 150+150 GB/s

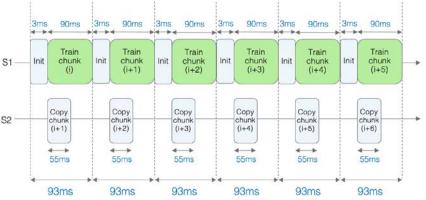
#1 NVSwitch

Fully connected GPUs, each communicating at 300GB/s



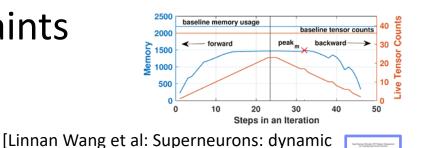
GPU Link Technologies, cont.

- Recap: Amdahl's Law
- Experimental Setup
 - SnapML, 4 IBM Power x 4 V100 GPUs, NVLink 2.0
 - 200 million training examples of the Criteo dataset (> GPU mem)
 - Train a logistic regression model


PCIe v3 Interconnect

[Celestine Dünner et al.: Snap ML: A Hierarchical Framework for Machine Learning.

NVLink Interconnect



Handling Memory Constraints

Problem: Limited Device Memory

GPU memory management for training deep neural networks. PPOPP 2018]

#1 Live Variable Analysis

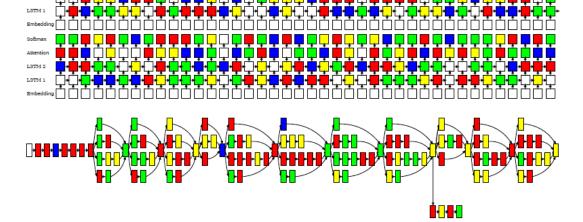
- Remove intermediates ASAP
- **Examples:** SystemML, TensorFlow, MXNet, Superneurons, MONeT
- #2 GPU-CPU Eviction
 - Evict variables from GPU to CPU memory under memory pressure
 - **Examples:** SystemML, Superneurons, GeePS, (TensorFlow)
- #3 Recomputation
 - Recompute inexpensive operations (e.g., activations of forward pass)
 - **Examples:** MXNet, Superneurons, MONet
- #4 Reuse Allocations
 - Reuse allocated matrices and tensors via free lists, but fragmentation
 - **Examples:** SystemML, Superneurons, MONet
- #5 Physical Operator Selection
 - Different tradeoffs of performance and size of intermediates (MONet)

Hybrid CPU/GPU Execution

Manual Placement

- Most DNN frameworks allow manual placement of variables and operations on individual CPU/GPU devices
- Heuristics and intuition of human experts

Automatic Placement


 Sequence-to-sequence model to predict which operations should run on which device [Azalia Mirhoseini et al: Device Placement Optimization with Reinforcement Learning. ICML 2017]

• Examples:

Neural MT graph

Inception V3

25

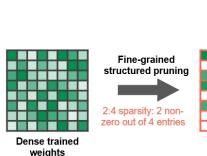
Sparsity in DNN

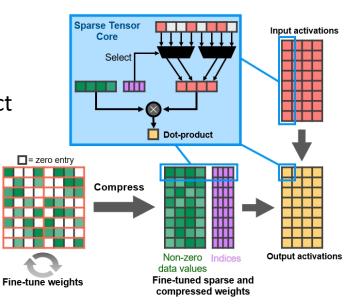
State-of-the-art

- GPU operations for linear algebra (cuSparse), early support in ASICs
- cuBLAS

Problem: Irregular structures of sparse matrices/tensors

Common Techniques

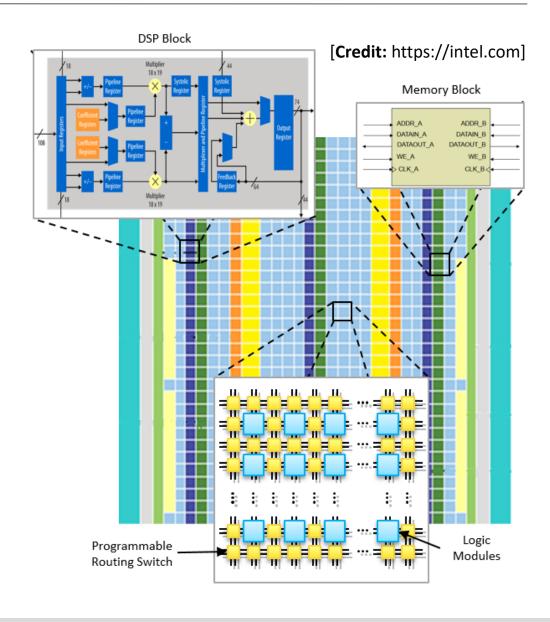

- #1: Blocking/clustering of rows/columns by number of non-zeros
- #2: Padding rows/columns to common number of non-zeros


Example A100 Sparsity Exploitation

- Constraint: 2 non-zeros in block of 4
- Structured valued pruning → accuracy impact
- Regular access pattern

[NVIDIA A100 Tensor Core GPU Architecture, Whitepaper, **Aug 2020**]

Field-Programmable Gate Arrays (FPGAs) in ML Systems


FPGA Overview

FPGA Definition

- Integrated circuit that allows configuring custom hardware designs
- Reconfiguration in <1s
- HW description language: e.g., VHDL, Verilog

FPGA Components

- #1 lookup table (LUT) as logic gates
- #2 flip-flops (registers)
- #3 interconnect network
- Additional memory and DSP blocks

28

Example FPGA Characteristics

Intel (Altera) Stratix 10 SoC FPGA

- 64bit quad-core ARM
- 10 TFLOPs FP32
- 80GFLOPs/W
- Other configurations w/ HBM2

Xilinx Virtex UltraSCALE+

DSP: 21.2 TMACs

- 64MB on-chip memory
- 8GB HBM2 w/ 460GB/s

FPGAs in Microsoft's Data Centers


Microsoft Catapult

[Adrian M. Caulfield et al.: A cloudscale acceleration architecture.

MICRO 2016]

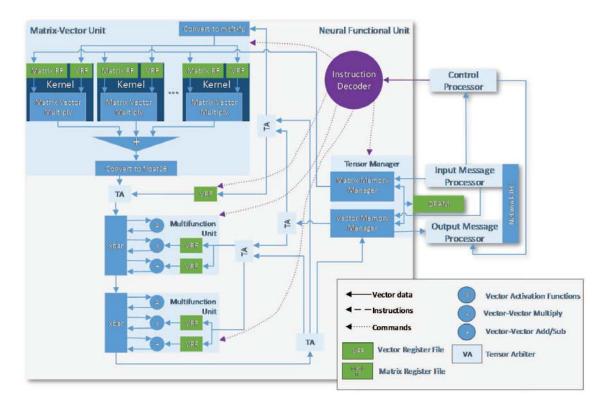
Dual-socket Xeon w/ PCIe-attached FPGA

Pre-filtering neural networks, compression, and other workloads

Traditional sw (CPU) server plane

FPGAs in Microsoft's Data Centers, cont.

Microsoft Brainwave


- ML serving w/ low latency (e.g., Bing)
- Intel Stratix 10 FPGA
- Distributed model parallelism, precision-adaptable
- Peak 39.5 TFLOPs

Brainwave NPU

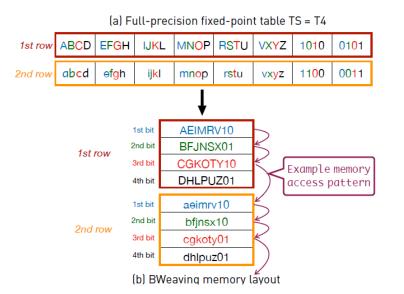
- Neural processing unit
- Dense matrix-vector multiplication

[Eric S. Chung et al: Serving DNNs in Real Time at Datacenter Scale with Project Brainwave. **IEEE Micro 2018**]

FPGAs in other ML Systems

- In-DB Acceleration of Advanced Analytics (DAnA)
 - Compilation of python DSL into micro instructions for multi-threaded FPGA-execution engine
 - Striders to directly interact with the buffer pool

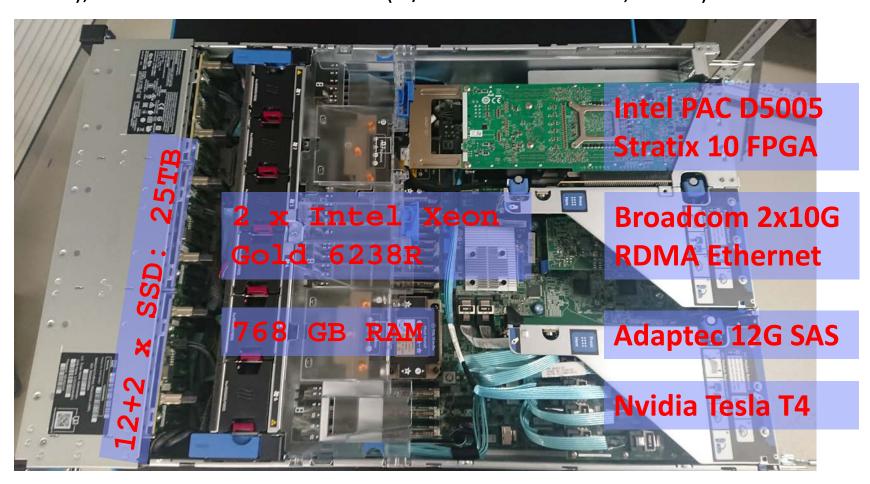
[Divya Mahajan et al: In-RDBMS Hardware Acceleration of Advanced Analytics. **PVLDB 2018**]


MLWeaving

- Adapted BitWeaving to numeric matrices
- Data layout basis for Any-Precision Learning
- Related FPGA implementation of SGD, matrix-vector multiplication for GLM
- Manual Selection + Heuristics

- Efficient FPGA implementations of specific operations and algorithms
- Specialized neural network topologies

[Zeke Wang et al: Accelerating Generalized Linear Models with MLWeaving. **PVLDB 2019**]



Example DM Cluster Node

2x Intel Xeon Gold 6238 (112 vcores, 7.7 TFLOP/s),
768 GB DDR4 RAM, 12x 2TB SSDs, NVIDIA T4 GPU (8.1 TFLOP/s,
16 GB), and Intel FPGA PAC D5005 (w/ Stratix 10SX FPGA, 32 GB)

Application-Specific Integrated Circuit (ASICs) and other HW Accelerators

Overview ASICs

Motivation

- Additional improvements of performance, power/energy
- **→** Additional specialization via custom hardware

#1 General ASIC DL Accelerators

- HW support for matrix multiply, convolution and activation functions
- Examples: Google TPU, NVIDIA DLA (in NVIDIA Xavier SoC), Intel Nervana NNP

#2 Specialized ASIC Accelerators

- Custom instructions for specific domains such as computer vision
- Example: (Cadence) Tensilica Vision processor (image processing)

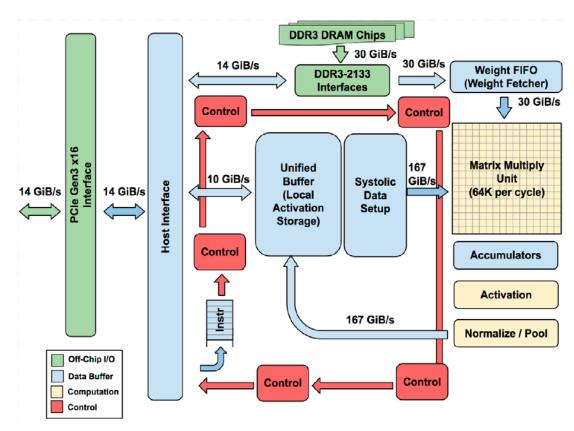
#3 Other Accelerators/Technologies (some skepticism)

- a) Neuromorphic computing / spiking neural networks
 (e.g., SyNAPSE → IBM TrueNorth, HP memristor for computation storage)
- b) Analog computing (especially for ultra-low precision/quantization)

Tensor Processing Unit (TPU v1)

Motivation

- Cost-effective ML scoring (no training)
- Latency- and throughput-oriented
- Improve cost-performance over GPUs by 10x

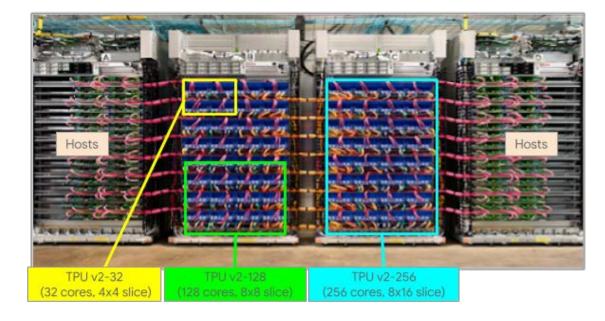

[Norman P. Jouppi et al: In-Datacenter Performance Analysis of a Tensor Processing Unit. ISCA 2017]

Architecture

- 256x256 8bit
 matrix multiply unit
 (systolic array

 → pipelining)
- 64K MAC per cycle (92 TOPs at 8 bit)
- 50% if one input 16bit
- 25% if all inputs 16 bit

Tensor Processing Unit (TPU v2)


Motivation

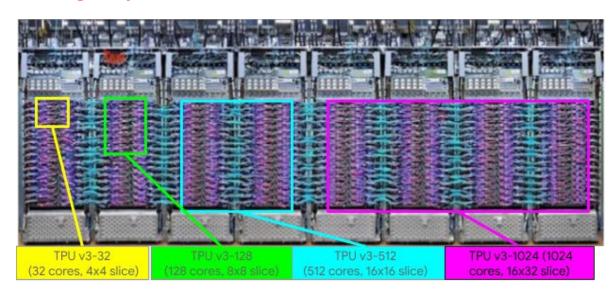
- Cost effective ML training (not scoring)
 because edge device w/ custom inference
 but training in data centers
- Unveiled at Google I/O 2017
- Board w/ 4 TPU chips
- Pod w/ 64 boards and custom high-speed network
- Shelf w/ 2 boards or 1 processor

Cloud Offering (beta)

- Min 32 cores
- Max 512 cores

Tensor Processing Unit (TPU v3)

Motivation


- Competitive cost-performance compared to state-of-the-art GPUs
- Unveiled at Google I/O 2018
- Added liquid cooling
- Twice as many racks per pod, twice as many TPUs per rack
- → TPUv3 promoted as 8x higher performance than TPUv2

Cloud Offering (beta)

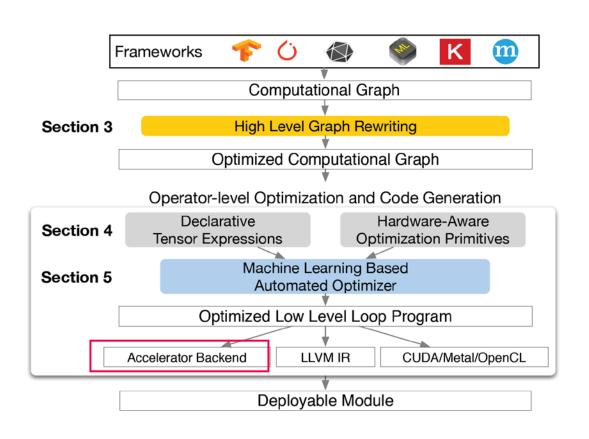
- Min 32 cores
- Max 2048 cores (~100PFLOPs)

[TOP 500 Supercomputers:

Summit @ Oak Ridge NL ('18): 200.7 PFLOP/s (2.4M cores)]

Recap: Operator Fusion and Code Generation

TVM: Code Generation for HW Accelerators


[Tianqi Chen et al: TVM:

 Graph- /operator-level optimizations for embedded and HW accelerators An Automated End-to-End Optimizing Compiler for Deep Learning. **OSDI 2018**]

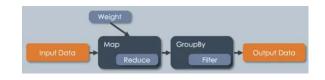
- Lack of low-level instruction set!
- Schedule Primitives
 - LoopTransform
 - ThreadBinding
 - Compute Locality
 - Tensorization
 - Latency Hiding

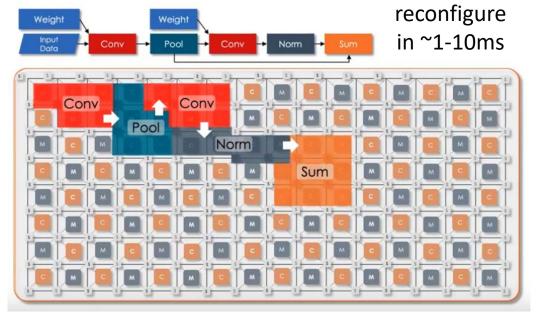
SambaNova

[Kunle Olukotun: Let the Data Flow!,

CIDR 2021, https://www.youtube.com/watch?v=iHhHHBuk3W4, SDSC 2020, https://www.youtube.com/watch?v=E7se0KEa4BY]

Overview


- Reconfigurable data flow architecture
- Based on hierarchical parallel patterns (map, zip, reduce, flatMap, groupBy)
- Reconfigurable Dataflow Unit (RDU),
 100s of TFLOPs, 100s MB on chip



Mapping of Dataflow Computation

- DNN / ML
- Graph processing
- SQL query processing

Excursus: Quantum Machine Learning

- **Background** (Schrödinger's cat)
 - Concepts: superposition, entanglement, de-coherence / uncertainty

IBM Q

- Hardware and software stack for quantum computing
- Qiskit: OSS Python framework [https://qiskit.org/]
- Experiment w/ quantum computers up to 20 qubit
- Gates: Hadamard, NOT, Phases, Pauli, barriers transposed conjugate, if, measurement

Early ML (Systems) Work

- **Training quantum neural networks** (relied on quantum search in $O(\sqrt{N})$
- SVM classification w/ large feature space
- TensorFlow Quantum (TFQ), on OSS Cirq for hybrid models [https://www.tensorflow.org/quantum]

[Bob Ricks, Dan Ventura: Training a Quantum Neural Network. NIPS 2003]

[Vojtěch Havlíček et al: Supervised learning with quantum-enhanced feature spaces. Nature 2019]

ML Hardware Fallacies and Pitfalls

Recommended Reading

 [Jeff Dean, David A. Patterson, Cliff Young: A New Golden Age in Computer Architecture: Empowering the Machine-Learning Revolution. IEEE Micro 2018]

- #1 Fallacy: Throughput over Latency
 - Given the large size of the ML problems, the HW focus should be op/s (throughput) rather than time to solution (latency)
- #2 Fallacy: Runtime over Accuracy
 - Given large speedup, ML researchers would be willing to sacrifice accuracy
- #3 Pitfall: Designing HW using last year's models
 - MNIST, CIFAR-10 datasets too easy, AlexNet no longer representative
 - See 02 System Architecture & Landscape ML System Benchmarks
- #4 Pitfall: Designing ML HW assuming ML system is untouchable
 - Towards hardware-software co-design (algorithm, system internals)

Trend: ML-based Chip Placement

Motivation

- **ASICs:** custom chips for ML
- ML for improved chip placement (part of chip design process

[Azalia Mirhoseini, Anna Goldie, et al: Chip Placement with Deep Reinforcement Learning. CoRR 2020]

[Azalia Mirhoseini, Anna Goldie, et al: A Graph Placement Methodology for Fast Chip Design. Nature 2021

Deep RL for Chip Design

https://www.youtube.com/watch?v=gSBYf25bWyo

- Goal: optimize power, performance, and area s.t. constraints on routing congestion and density
- Approximate reward functions for effective evaluation ~100K (wire length, grid rows/columns, macro order, cell placement, routing congestion)

$$R_{p,g} = - \text{Wirelength}(p,g) - \lambda \text{Congestion}(p,g) - \gamma \text{Density}(p,g).$$

Example TPUv4 Block

- White macros (e.g., mem)
- Green standard cells

Summary and Conclusions

- Different Levels of Hardware Specialization
 - General-purpose CPUs and GPUs
 - FPGAs, DNN ASICs, and other technologies

Increasing importance of specialization:
End of Moore's Law
End of Dennard Scaling

Next Lectures

08 Caching, Partitioning, Indexing and Compression [May 13]

09 Data Acquisition, Cleaning, and Preparation [May 20]

May 26/27: Ascension Day (Christi Himmelfahrt) + "Rektorstag"

10 Model Selection and Management [Jun 03]

11 Model Debugging, Fairness, Explainability [Jun 10]

■ 12 Model Serving Systems and Techniques [Jun 17]

(Part A:

Overview and ML System Internals)

(Part B:

ML Lifecycle Systems)

