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Announcements/Org
 #1 Video Recording 

 Link in TeachCenter & TUbe (lectures will be public)
 Hybrid: HSi13 / https://tugraz.webex.com/meet/m.boehm
 Apr 25: no more COVID restrictions at TU Graz

 #2 Course Evaluations and Exam
 Evaluation period: Jun 15 – Jul 31
 Oral Exams (45min each), doodle in June  exams in July

(close to submission of projects/exercises)

 #3 Projects and Exercises
 SIGMOD programming contest, completed
 SystemDS and DAPHNE projects, ongoing
 Alternative exercises (also see SS21 slides)  Jun 17

Q&A

https://tugraz.webex.com/meet/m.boehm
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Categories of Execution Strategies
Motivation and Terminology

07 Hybrid Execution and HW Accelerators

05a Data-Parallel 
Execution

05b Task-Parallel 
Execution

06 Parameter Servers 
(data, model) 

Mini-batchBatch 
SIMD/SPMD

Batch/Mini-batch, 
Independent Tasks 

MIMD

08 Caching, Partitioning, Indexing, and Compression
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Agenda
 Motivation and Terminology
 GPUs in ML Systems
 FPGAs in ML Systems
 ASICs and other HW Accelerators



5

706.550 Architecture of Machine Learning Systems – 07 HW Accelerators
Matthias Boehm, Graz University of Technology, SS 2022 

Motivation and Terminology
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Recap: Driving Factors for ML
 Improved Algorithms and Models

 Success across data and application domains
(e.g., health care, finance, transport, production) 

 More complex models which leverage large data

 Availability of Large Data Collections
 Increasing automation and monitoring  data

(simplified by cloud computing & services)
 Feedback loops, data programming/augmentation

 HW & SW Advancements
 Higher performance of hardware and infrastructure (cloud)
 Open-source large-scale computation frameworks, 

ML systems, and vendor-provides libraries

Data

ModelUsage

Feedback Loop

[Credit: Andrew Ng’14]

Motivation and Terminology
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DNN Challenges 
 #1 Larger Models 

and Scoring Time

 #2 Training Time
 ResNet18: 10.76% error, 2.5 days training
 ResNet50: 7.02% error, 5 days training
 ResNet101: 6.21% error, 1 week training
 ResNet152: 6.16% error, 1.5 weeks training

 #3 Energy Efficiency

Motivation and Terminology

[Song Han: Efficient Methods and Hardware 
for Deep Learning, Stanford cs231n, 2017]
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 Setup: 2x6 E5-2440 @2.4GHz–2.9GHz, DDR3 RAM @1.3GHz (ECC)
 Max mem bandwidth (local): 2 sock x 3 chan x 8B x 1.3G trans/s  2 x 32GB/s
 Max mem bandwidth (QPI, full duplex)  2 x 12.8GB/s
 Max floating point ops: 12 cores x 2*4dFP-units x 2.4GHz  2 x 115.2GFlops/s

 Roofline 
Analysis
 Off-chip 

memory 
traffic 

 Peak 
compute

SystemML
Mv

SystemML
Mt(Mv)

SystemML
MM (n=768)

36x

Excursus: Roofline Analysis
Motivation and Terminology

SystemML
BLAS

 IO-bound 
traditional ML

 compute-
bound DNN

[S. Williams, A. Waterman, D. A. 
Patterson: Roofline: An Insightful Visual 
Performance Model for Multicore
Architectures. Commun. ACM 2009]

(Experiments 
from 2017)
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HW Challenges
 #1 End of Dennard Scaling (~2005)

 Law: power stays proportional 
to the area of the transistor

 Ignored leakage current / threshold voltage
 increasing power density S2 (power wall, heat)  stagnating frequency

 #2 End of Moore’s Law (~2010-20)
 Law: #transistors/performance/

CPU frequency doubles every 
18/24 months 

 Original: # transistors per chip 
doubles every two years
at constant costs

 Now increasing costs (10/7/5nm)

 Consequences: Dark Silicon and Specialization

Motivation and Terminology

P = α CFV2 (power density 1)
(P .. Power, C .. Capacitance, 
F .. Frequency, V .. Voltage)

[S. Markidis, E. Laure, N. Jansson, S. 
Rivas-Gomez and S. W. D. Chien: 

Moore’s Law and Dennard Scaling]

Presenter
Presentation Notes
Dennard Scaling: (scaling factor S of transistors) 
 * # transistors: S^2 
 * Capacitance: 1/S
 * Frequency: S
 * Device power V: 1/(S^2) 
 * Alpha 1/2  
(but V cannot be further reduced due to leakage (noise of neighboring transistors); capacity (current) of transistor -> the smaller the transistor, the smaller the frequency)

Gordon Moore (co-founder of Intel)
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Towards Specialized Hardware 
 HW Specialization

 Additional Specialization
 Data Transfer & Types: e.g., low-precision, quantization
 Sparsity Exploitation: e.g., sparsification, exploit across ops,

defer weight decompression just before instruction execution
 Near-Data Processing: e.g., operations in main memory, storage class memory 

(SCM), secondary storage (e.g., SSDs), and tertiary storage (e.g., tapes)

Motivation and Terminology

HW Devices

General Purpose Specialized HW

CPU GPU FPGAs ASICs

Throughput-oriented, 
specialized instructions

programmable 
logic

fixed logic

08 Caching, 
Indexing and 
Compression

SIMD

Presenter
Presentation Notes
Tradeoff: reconfiguration (CPU high, ASIC impossible) vs energy efficiency (ASIC high, CPU low)
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Graphics Processing Units 
(GPUs) in ML Systems
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NVIDIA Volta V100 – Specifications 
Graphics Processing Units (GPUs) in ML Systems

 Tesla V100 NVLink
 FP64: 7.8 TFLOPs, FP32: 15.7 TFLOPs
 DL FP16: 125 TFLOPs
 NVLink: 300GB/s
 Device HBM: 32 GB (900 GB/s)
 Power: 300 W

 Tesla V100 PCIe
 FP64: 7 TFLOPs, FP32: 14 TFLOPs
 DL FP16: 112 TFLOPs 
 PCIe: 32 GB/s
 Device HBM: 16 GB (900 GB/s)
 Power: 250 W

[Credit: https://nvidia.com/de-de/
data-center/tesla-v100/]
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NVIDIA Volta V100 – Architecture 
 6 GPU Processing Clusters (GPCs)

 7 Texture Processing  Clusters (TPC)
 14 Streaming Multiprocessors (SM)

Graphics Processing Units (GPUs) in ML Systems

[NVIDIA Tesla V100 GPU 
Architecture, Whitepaper, 

Aug 2017]
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NVIDIA Volta V100 – SM Architecture
 FP64 cores: 32
 FP32 cores: 64
 INT32 cores: 64
 “Tensor cores”: 8
 Max warps /SM: 64
 Threads/warp: 32

Graphics Processing Units (GPUs) in ML Systems
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Single Instruction Multiple Threads (SIMT)
 32 Threads grouped to warps and execute in SIMT model

 Pascal P100 
Execution Model
 Warps use a 

single program 
counter + 
active mask

 Volta V100 
Execution Model
 Independent 

thread scheduling
 Per-thread 

program counters
and call stacks

 New __syncwarp() primitive (if needed) + convergence optimizer

Graphics Processing Units (GPUs) in ML Systems

Thread Divergence
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NVIDIA Volta V100 – Tensor Cores
 “Tensor Core”

 Specialized instruction for 4x4 by 4x4 fused matrix multiply
 Two FP16 inputs and FP32 accumulator
 Exposed as warp-level matrix operations w/ special load, mm, acc, and store

Graphics Processing Units (GPUs) in ML Systems

D = A %*% B + C
64 FMA 

operations

[Bill Dally: Hardware 
for Deep Learning. 

SysML 2018]
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NVIDIA Ampere A100
 Specification 

 7nm, 8 GPC x 8 TPC * 2 SM = 128 SMs, 40GB HBM
 FP64: 9.7 TFLOPs / FP64 TensorCore: 19.5 TFLOPs
 FP32 19.5 TFLOPs, FP16: 78 TFLOPs, BF16: 39 TFLOPs
 TF32 TensorCore 156 TFLOPs / 312 TFLOPs (sparse)
 FP16 TensorCore 312 TFLOPs / 624 TFLOPs (sparse), INT8, INT4

 New Features
 New generation of “TensorCores” (FP64, new data types: TF32, BF16)
 Fine-grained sparsity exploitation
 Multi-instance GPU (MIG) virtualization: up to 7 virtual GPU instances
 Link technologies: NVLink 3 (25GB/s bidirectional) x 12 links = 600GB/s
 Submission of task graphs (launch a workflow of kernels) 

Graphics Processing Units (GPUs) in ML Systems

[NVIDIA A100 Tensor Core GPU Architecture -
UNPRECEDENTED ACCELERATION AT 

EVERY SCALE, Whitepaper, Aug 2020]
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Excursus: Amdahl’s Law
 Amdahl’s law

 Given a fixed problem size, Amdahl’s law gives the maximum speedup
 T is the execution time, s is the serial fraction, and p the number of processors

 Examples
 Serial fraction s = 0.01 max Sp = 100
 Serial fraction s = 0.05max Sp = 20
 Serial fraction s = 0.1max Sp = 10
 Serial fraction s = 0.5 max Sp = 2

Graphics Processing Units (GPUs) in ML Systems

𝑇𝑇𝑝𝑝 =
(1 − 𝑠𝑠)𝑇𝑇

𝑝𝑝
+ 𝑠𝑠𝑠𝑠

Execution 
Time 𝑆𝑆𝑝𝑝 =

𝑇𝑇
𝑇𝑇𝑝𝑝

Speedup

𝑆𝑆𝑝𝑝 = lim
𝑝𝑝→∞

𝑆𝑆𝑝𝑝 =
1
𝑠𝑠

Upper-Bound 
Speedup



19

706.550 Architecture of Machine Learning Systems – 07 HW Accelerators
Matthias Boehm, Graz University of Technology, SS 2022 

GPUs for DNN Training
 GPUs for DNN Training (2009)

 Deep belief networks
 Sparse coding

 Multi-GPU Learning (Now)
 Exploit multiple GPUs with a mix of 

data- and model-parallel parameter servers
 Dedicated ML systems for multi-GPU learning
 Dedicated HW: e.g., NVIDIA DGX-1 (8xP100), 

NVIDIA DGX-2 (16xV100, NVSwitch),
NVIDIA DGX A100 (8x A100, NVSwitch, Mellanox)

 DNN Framework support
 All specialized DNN frameworks have very good support for GPU training
 Most of them also support multi-GPU training

Graphics Processing Units (GPUs) in ML Systems

[Rajat Raina, Anand Madhavan, Andrew Y. Ng: 
Large-scale deep unsupervised learning using 

graphics processors. ICML 2009]
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Recap: DNN Benchmarks
Graphics Processing Units (GPUs) in ML Systems

[MLPerf v0.6:  https://mlperf.org/training-results-0-6/,
MLPerf v0.7: https://mlperf.org/training-results-0-7]

96 x DGX-2H = 96 * 16 = 1536 V100 GPUs
 ~ 96 * $400K = $35M – $40M

[https://www.forbes.com/sites/tiriasresearch/2019/
06/19/nvidia-offers-a-turnkey-supercomputer-the-

dgx-superpod/#693400f43ee5]

V0.6

Presenter
Presentation Notes
V07: up to 4096 (regular), 16384 (HPC)

https://mlperf.org/training-results-0-6/
https://mlperf.org/training-results-0-7
https://www.forbes.com/sites/tiriasresearch/2019/06/19/nvidia-offers-a-turnkey-supercomputer-the-dgx-superpod/#693400f43ee5
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GPU Link Technologies
 Classic PCI Express

 Peripheral Component Interconnect Express (default)
 v3 x16 lanes: 16GB/s, v4 (2017) x16 lanes: 32GB/s, v5 (2019) x16 lanes: 64GB/s

 #1 NVLink
 Proprietary technology
 Requires NVLink-enabled CPU

(e.g., IBM Power 8/9)
 Connect GPU-GPU and GPU-CPU
 NVLink 1: 80+80 GB/s
 NVLink 2: 150+150 GB/s

 #1 NVSwitch
 Fully connected GPUs, each communicating at 300GB/s

Graphics Processing Units (GPUs) in ML Systems
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GPU Link Technologies, cont.
 Recap: Amdahl’s Law

 Experimental Setup
 SnapML, 4 IBM Power x 4 V100 GPUs, NVLink 2.0
 200 million training examples of the Criteo dataset (> GPU mem)
 Train a logistic regression model

Graphics Processing Units (GPUs) in ML Systems

PCIe v3 Interconnect NVLink Interconnect

[Celestine Dünner et al.: Snap 
ML: A Hierarchical Framework 

for Machine Learning. 
NeurIPS 2018]



23

706.550 Architecture of Machine Learning Systems – 07 HW Accelerators
Matthias Boehm, Graz University of Technology, SS 2022 

Handling Memory Constraints
 Problem: Limited Device Memory

 #1 Live Variable Analysis
 Remove intermediates ASAP
 Examples: SystemML, TensorFlow, MXNet, Superneurons, MONeT

 #2 GPU-CPU Eviction
 Evict variables from GPU to CPU memory under memory pressure
 Examples: SystemML, Superneurons, GeePS, (TensorFlow)

 #3 Recomputation
 Recompute inexpensive operations (e.g., activations of forward pass)
 Examples: MXNet, Superneurons, MONet

 #4 Reuse Allocations
 Reuse allocated matrices and tensors via free lists, but fragmentation
 Examples: SystemML, Superneurons, MONet

 #5 Physical Operator Selection
 Different tradeoffs of performance and size of intermediates (MONet)

Graphics Processing Units (GPUs) in ML Systems

[Linnan Wang et al: Superneurons: dynamic 
GPU memory management for training 

deep neural networks. PPOPP 2018]

Presenter
Presentation Notes
MONeT: Aashaka Shah, Chao-Yuan Wu, Jayashree Mohan, Vijay Chidambaram, Philipp Krähenbühl: Memory Optimization for Deep Networks. ICLR 2021
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Hybrid CPU/GPU Execution
 Manual Placement

 Most DNN frameworks allow manual placement of 
variables and operations on individual CPU/GPU devices

 Heuristics and intuition of human experts

 Automatic Placement
 Sequence-to-sequence model to predict 

which operations should run on which device
 Examples:

Graphics Processing Units (GPUs) in ML Systems

[Azalia Mirhoseini et al: Device 
Placement Optimization with 

Reinforcement Learning. 
ICML 2017]

Inception V3

Neural 
MT graph

Presenter
Presentation Notes
Note: white: CPU; colors: different GPU devices
Sequence-to-sequence model with attention (encoder-decoder  operator sequence to device sequence)





25

706.550 Architecture of Machine Learning Systems – 07 HW Accelerators
Matthias Boehm, Graz University of Technology, SS 2022 

Sparsity in DNN 
 State-of-the-art

 Very limited support of sparse tensors in TensorFlow, PyTorch, etc
 GPU operations for linear algebra (cuSparse), early support in ASICs
 Problem: Irregular structures of sparse matrices/tensors

 Common Techniques
 #1: Blocking/clustering of rows/columns by number of non-zeros
 #2: Padding rows/columns to common number of non-zeros

 Example A100 Sparsity Exploitation
 Constraint: 2 non-zeros in block of 4
 Structured valued pruning  accuracy impact
 Regular access pattern

Graphics Processing Units (GPUs) in ML Systems

[NVIDIA A100 Tensor Core 
GPU Architecture, 
Whitepaper, Aug 2020]

Presenter
Presentation Notes
Open Problem
Many sources of sparsity (inputs, transformations, selections)
Broader support for efficient sparsity exploitation required
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Field-Programmable Gate Arrays 
(FPGAs) in ML Systems
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FPGA Overview
 FPGA Definition

 Integrated circuit that 
allows configuring 
custom hardware designs

 Reconfiguration in <1s
 HW description language: 

e.g.., VHDL, Verilog

 FPGA Components
 #1 lookup table (LUT) 

as logic gates
 #2 flip-flops (registers)
 #3 interconnect network
 Additional memory 

and DSP blocks

Field-Programmable Gate Arrays (FPGAs) in ML Systems

[Credit: https://intel.com]

Presenter
Presentation Notes
VHDL: Very High Speed Integrated Circuit Hardware Description Language
LUTs (bit-oriented logic, 4-input, 6-input lookup tables)  24x17bits 403 LUTs multiply vs 17 LUTs add
DSP (word-oriented multiply-accumulate)
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Example FPGA Characteristics
 Intel (Altera) Stratix 10 SoC FPGA

 64bit quad-core ARM
 10 TFLOPs FP32
 80GFLOPs/W
 Other configurations w/ HBM2

 Xilinx Virtex UltraSCALE+
 DSP: 21.2 TMACs
 64MB on-chip memory
 8GB HBM2 w/ 460GB/s

Field-Programmable Gate Arrays (FPGAs) in ML Systems

Presenter
Presentation Notes
Other Intel FPGA families: Stratix (high-end), Arria (embedded), Cyclone (cost), MAX (mobile)
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FPGAs in Microsoft’s Data Centers
 Microsoft Catapult

 Dual-socket Xeon w/ PCIe-attached FPGA 
 Pre-filtering neural networks, compression, and other workloads

Field-Programmable Gate Arrays (FPGAs) in ML Systems

[Adrian M. Caulfield et al.: A cloud-
scale acceleration architecture. 

MICRO 2016]

Presenter
Presentation Notes
NIC .. network interface card
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FPGAs in Microsoft’s Data Centers, cont.
 Microsoft Brainwave

 ML serving w/ low latency (e.g., Bing)
 Intel Stratix 10 FPGA
 Distributed 

model parallelism, 
precision-adaptable

 Peak 39.5 TFLOPs

 Brainwave NPU
 Neural 

processing unit
 Dense matrix-vector

multiplication

Field-Programmable Gate Arrays (FPGAs) in ML Systems

[Eric S. Chung et al: Serving DNNs in 
Real Time at Datacenter Scale with 

Project Brainwave. IEEE Micro 2018]
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FPGAs in other ML Systems
 In-DB Acceleration of Advanced Analytics (DAnA)

 Compilation of python DSL into micro instructions 
for multi-threaded FPGA-execution engine

 Striders to directly interact with the buffer pool

 MLWeaving
 Adapted BitWeaving to numeric matrices
 Data layout basis for Any-Precision Learning
 Related FPGA implementation of SGD, 

matrix-vector multiplication for GLM
 Manual Selection + Heuristics

 Efficient FPGA implementations 
of specific operations and algorithms

 Specialized neural network topologies

Field-Programmable Gate Arrays (FPGAs) in ML Systems

[Divya Mahajan et al: In-
RDBMS Hardware 

Acceleration of Advanced 
Analytics. PVLDB 2018]

[Zeke Wang et al: Accelerating 
Generalized Linear Models with 

MLWeaving. PVLDB 2019]
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Example DM Cluster Node
2x Intel Xeon Gold 6238 (112 vcores, 7.7 TFLOP/s), 
768 GB DDR4 RAM, 12x 2TB SSDs, NVIDIA T4 GPU (8.1 TFLOP/s, 
16 GB), and Intel FPGA PAC D5005 (w/ Stratix 10SX FPGA, 32 GB)

Field-Programmable Gate Arrays (FPGAs) in ML Systems

Intel PAC D5005 
Stratix 10 FPGA

Broadcom 2x10G 
RDMA Ethernet 

2 x Intel Xeon 
Gold 6238R 

Adaptec 12G SAS

Nvidia Tesla T4

768 GB RAM
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Application-Specific Integrated Circuit
(ASICs) and other HW Accelerators
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Overview ASICs
 Motivation

 Additional improvements of performance, power/energy
 Additional specialization via custom hardware

 #1 General ASIC DL Accelerators
 HW support for matrix multiply, convolution and activation functions
 Examples: Google TPU, NVIDIA DLA (in NVIDIA Xavier SoC), Intel Nervana NNP

 #2 Specialized ASIC Accelerators
 Custom instructions for specific domains such as computer vision
 Example: (Cadence) Tensilica Vision processor (image processing)

 #3 Other Accelerators/Technologies (some skepticism)
 a) Neuromorphic computing / spiking neural networks

(e.g., SyNAPSE IBM TrueNorth, HP memristor for computation storage)
 b) Analog computing (especially for ultra-low precision/quantization)

ASICs and other HW Accelerators
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Tensor Processing Unit (TPU v1)
 Motivation

 Cost-effective ML scoring (no training)
 Latency- and throughput-oriented
 Improve cost-performance over GPUs by 10x

 Architecture
 256x256 8bit 

matrix multiply unit
(systolic array 
 pipelining)

 64K MAC per cycle
(92 TOPs at 8 bit)

 50% if one input 16bit
 25% if all inputs 16 bit

ASICs and other HW Accelerators

[Norman P. Jouppi et al:
In-Datacenter Performance 

Analysis of a Tensor Processing 
Unit. ISCA 2017]
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Tensor Processing Unit (TPU v2)
 Motivation

 Cost effective ML training (not scoring)
because edge device w/ custom inference
but training in data centers

 Unveiled at Google I/O 2017
 Board w/ 4 TPU chips
 Pod w/ 64 boards

and custom 
high-speed network

 Shelf w/ 2 boards or 
1 processor

 Cloud Offering (beta)
 Min 32 cores
 Max 512 cores

ASICs and other HW Accelerators
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Tensor Processing Unit (TPU v3)
 Motivation

 Competitive cost-performance compared 
to state-of-the-art GPUs

 Unveiled at Google I/O 2018
 Added liquid cooling
 Twice as many racks per pod, twice as many TPUs per rack
 TPUv3 promoted as 8x higher performance than TPUv2

 Cloud Offering
(beta)
 Min 32 cores
 Max 2048 cores

(~100PFLOPs)

ASICs and other HW Accelerators

[TOP 500 Supercomputers:
Summit @ Oak Ridge NL (‘18):
200.7 PFLOP/s (2.4M cores)]
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Recap: Operator Fusion and Code Generation
 TVM: Code Generation for HW Accelerators

 Graph- /operator-level optimizations for 
embedded and HW accelerators

 Lack of low-level instruction set!
 Schedule Primitives

 Loop 
Transform

 Thread 
Binding

 Compute 
Locality

 Tensorization
 Latency

Hiding  

 Apache

ASICs and other HW Accelerators

[Tianqi Chen et al: TVM: 
An Automated End-to-End Optimizing 

Compiler for Deep Learning. OSDI 2018]
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SambaNova
 Overview

 Reconfigurable data flow architecture 
 Based on hierarchical parallel patterns

(map, zip, reduce, flatMap, groupBy)
 Reconfigurable Dataflow Unit (RDU), 

100s of TFLOPs, 100s MB on chip

 Mapping of Dataflow 
Computation
 DNN / ML
 Graph processing
 SQL query processing

ASICs and other HW Accelerators

[Kunle Olukotun: Let the Data Flow!, 
CIDR 2021, https://www.youtube.com/watch?v=iHhHHBuk3W4, 

SDSC 2020, https://www.youtube.com/watch?v=E7se0KEa4BY]  

reconfigure 
in ~1-10ms

Presenter
Presentation Notes
VC capital: total $1.1B funding (676M by Apr 13 2021), $5B valuation (2021)
https://www.crunchbase.com/organization/sambanova-systems 

https://www.youtube.com/watch?v=iHhHHBuk3W4
https://www.youtube.com/watch?v=E7se0KEa4BY
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Excursus: Quantum Machine Learning 
 Background (Schrödinger's cat)

 Concepts: superposition, entanglement, de-coherence / uncertainty

 IBM Q
 Hardware and software stack for quantum computing
 Qiskit: OSS Python framework [https://qiskit.org/]
 Experiment w/ quantum computers up to 20 qubit
 Gates: Hadamard, NOT, Phases, Pauli, barriers

transposed conjugate, if, measurement

 Early ML (Systems) Work
 Training quantum neural networks

(relied on quantum search in O(√N)
 SVM classification w/ large feature space
 TensorFlow Quantum (TFQ), on OSS Cirq

for hybrid models [https://www.tensorflow.org/quantum]

ASICs and other HW Accelerators

[Bob Ricks, Dan Ventura: Training a 
Quantum Neural Network. NIPS 2003]

[Vojtěch Havlíček et al: Supervised 
learning with quantum-enhanced 

feature spaces. Nature 2019]

Presenter
Presentation Notes
* Note on contradiction in Schrödinger's cat thought experiment (missing entanglement): https://arxiv.org/pdf/1603.07986.pdf
* Grover quantum search  polynomial speedup to exponential problem  randomized search
* SVM: quantum variational classifier + quantum kernel estimator
* TFQ for hybrid DNN models and circuits

https://qiskit.org/
https://www.tensorflow.org/quantum
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ML Hardware Fallacies and Pitfalls
 Recommended Reading

 [Jeff Dean, David A. Patterson, Cliff Young:  A New Golden Age in Computer 
Architecture: Empowering the Machine-Learning Revolution. IEEE Micro 2018]

 #1 Fallacy: Throughput over Latency
 Given the large size of the ML problems, the HW focus should be op/s 

(throughput) rather than time to solution (latency)

 #2 Fallacy: Runtime over Accuracy
 Given large speedup, ML researchers would be willing to sacrifice accuracy

 #3 Pitfall: Designing HW using last year’s models
 MNIST, CIFAR-10 datasets too easy, AlexNet no longer representative
 See 02 System Architecture & Landscape – ML System Benchmarks

 #4 Pitfall: Designing ML HW assuming ML system is untouchable
 Towards hardware-software co-design (algorithm, system internals)

ASICs and other HW Accelerators



42

706.550 Architecture of Machine Learning Systems – 07 HW Accelerators
Matthias Boehm, Graz University of Technology, SS 2022 

Trend: ML-based Chip Placement
 Motivation 

 ASICs: custom chips for ML
 ML for improved chip placement 

(part of chip design process 

 Deep RL for Chip Design
 Goal: optimize power, performance, and area s.t.

constraints on routing congestion and density
 Approximate reward functions for effective evaluation ~100K (wire length, 

grid rows/columns, macro order, cell placement, routing congestion)

 Example TPUv4 Block
 White macros (e.g., mem)
 Green standard cells

ASICs and other HW Accelerators

[Azalia Mirhoseini, Anna Goldie, et al: 
Chip Placement with Deep 

Reinforcement Learning. CoRR 2020]

[Azalia Mirhoseini, Anna Goldie, et al: 
A Graph Placement Methodology for 

Fast Chip Design. Nature 2021]

https://www.youtube.com/watch?v=gSBYf25bWyo

Presenter
Presentation Notes
Note: NYT story on Satrajit Chatterjee – May 2, 2022; anonymous paper (Mar 2022) “Stronger Baselines for Evaluating Deep Reinforcement Learning in Chip Placement”

https://www.youtube.com/watch?v=gSBYf25bWyo
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Summary and Conclusions
 Different Levels of Hardware Specialization

 General-purpose CPUs and GPUs
 FPGAs, DNN ASICs, and other technologies

 Next Lectures
 08 Caching, Partitioning, Indexing and Compression [May 13]

 09 Data Acquisition, Cleaning, and Preparation [May 20]
 May 26/27: Ascension Day (Christi Himmelfahrt) + “Rektorstag”
 10 Model Selection and Management [Jun 03]
 11 Model Debugging, Fairness, Explainability [Jun 10]
 12 Model Serving Systems and Techniques [Jun 17]

Increasing importance 
of specialization:

End of Moore’s Law
End of Dennard Scaling

(Part B:
ML Lifecycle 

Systems)

(Part A:
Overview and 

ML System 
Internals)
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