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Announcements/Org

= #1 Video Recording G TU be

= Link in TeachCenter & TUbe (lectures will be public)

st]uet],
= Hybrid: HSi13 / https://tugraz.webex.com/meet/m.boehm cisco Webex
= Apr 25: no more COVID restrictions at TU Graz

= #2 GitTables (Uni Amsterdam)
= Corpus with >1M relational tables = ey
= Annotated syntactic and semantic types O‘ﬁ? v FEE
= https://gittables.github.io/

= #3 CS Talks

= Eva Galperin (Director of Cybersecurity at EFF):
Who Deserves Cybersecurity

= Aula Alte Technik; Jun 07, 5.30pm
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Motivation and Terminology ﬁ-le-rg.

Categories of Execution Strategies

Batch/Mini-batch,
Batch Independent Tasks Mini-batch
SIMD/SPMD MIMD

05, Data-Parallel 05, Task-Parallel 06 Parameter Servers
Execution Execution (data, model)

07 Hybrid Execution and HW Accelerators

08 Caching, Partitioning, Indexing, and Compression
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Agenda

= Motivation, Background, and Overview
= Caching, Partitioning, and Indexing Iter"f't've' 1/0-bound ML
algorithms =» Data access

= Lossy and Lossless Compression crucial for performance

while(!converged) {
.q =X %*%6 v ..

Data Weights

706.550 Architecture of Machine Learning Systems — 08 Data Access Methods .ISDS
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Presentation Notes
Note: 
 * train -> data read-only, weights updated
 * score -> stream of new data, weights read-only 
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Motivation, Background, and
Overview
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Motivation, Background, and Overview

Ty

Motivation: Data Characteristics

= Tall and Skinny
(#rows >> #cols)

* Non-Uniform
Sparsity

= Small Column
Cardinalities

= Small Val Range

= Column

Correlations
(on census:
12.8x = 35.7x)
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Presenter
Presentation Notes
Note: small column cardinalities (e.g., categorical, dummy-coded)



Motivation, Background, and Overview ﬁErLa!.

Recap: Matrix Formats

= Matrix Block (m x n) Example
= Ak.a. tiles/chunks, most operations defined here 3x3 Matrix
= Local matrix: single block, different representations .7 .1
= Common Block Representations 2.4
= Dense (linearized arrays)

.3
= MCSR (modified CSR) ,/,.// \

= CSR (compressed sparse rows), CSC
= COO (Coordinate matrix)

MCSR CSR CoOo
‘\»l;-a o1 .7 .7
Dense (row-major) h G 2L Bl.1 1
.7/0.1/.2|.4l0 /0 .30 \m24 4\ YA|.2 .2
— 5\ kR .4 .4
O(mn)

N .3 .3

.3
O(m + nnz(X)) O(nnz(X))
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Motivation, Background, and Overview ﬁ!g.

Recap: Distributed Matrix Representations

Logical Blocking

= Collection of “Matrix Blocks” (and keys) 3 400x2. 700 Matrix

. (duplicates, unordered) (w/ B.=1,000)
= Logical (Fixed-Size) Blocking
(1,1) || (1,2) [[(1,3)
+ join processing / independence
- (sparsity skew) 21) || (2,2) |[(2,3)
= E.g., SystemDS on Spark:
JavaPairRDD<MatrixIndexes,MatrixBlock> (3,1) || (3,2) |[(3,3)
= Blocks encoded independently (dense/sparse) @) [ @2) |[@3)
™ Partitioning ) hash partitioned: e.g., hash(3,2) 2 99,994 % 2 = 0
. e (3,2) (23) (2,1) (1,2) (42) (41)
= Logical Partitioning _ S US
(e.g., row-/column-wise) Physical P > > P —
= Physical Partitionin Blocking and -
y oning Partitioning [ (22 () (13) (3) (1) @9
(e.g., hash / grid) Us
D us Us S S
L partition 1
706.550 Architecture of Machine Learning Systems — 08 Data Access Methods "
Matthias Boehm, Graz University of Technology, SS 2022 lSDS



Motivation, Background, and Overview ﬁ-!s-rLa!.

Overview Data Access Methods

Nodel Node2

= #1 (Distributed) Caching ‘-\ ‘-\
= Keep read only feature matrix in (distributed) memory

#2 Buffer Pool Management

= Graceful eviction of intermediates, out-of-core ops

#3 Scan Sharing (and operator fusion)

= Reduce the number of scans as well as read/writes

Socket1 Socket2

#4 NUMA-Aware Partitioning and Replication
= Matrix partitioning / replication - data locality M

#5 Index Structures

= Qut-of-core data, I/O-aware ops, updates

#6 Compression

= Fit larger datasets into available memory

706.550 Architecture of Machine Learning Systems — 08 Data Access Methods .ISDS
Matthias Boehm, Graz University of Technology, SS 2022 L



Caching, Partitioning, and
Indexing

#2 Buffer Pool Management
#3 Scan Sharing (and operator fusion)
#4 NUMA-Aware Partitioning and Replication
#5 Index Structures

706.550 Architecture of Machine Learning Systems — 08 Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022
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Caching, Partitioning, and Indexing ﬁ-lt.‘:r%!-

Buffer Pool Management

= #1 Classic Buffer Management (SystemDS)

acquireRead
. . . . acquireModify
= Hybrid plans of in-memory and distributed ops

release
= Graceful eviction of intermediate variables

~

RDDObject
Spark . - BroadcastObject
Cluster parallelize/ [MatrixBlock]
- collect > - lazy I, O and GPUObjects
— transfer
‘broadcast

agg memory -

exportData

A

o
L

Buffer Pool @ -
CPU Driver | €Vict

A

B e
GPU Device

export 1

v evict

HDFS , ObjectStore Local FS

= #2 Algorithm-Specific Buffer Management

= QOperations/algorithms over out-of-core matrices and factor graphs

= Examples: RIOT [CIDR’2009] (ops), Elementary [SIGMOD’13] (factor graphs)

706.550 Architecture of Machine Learning Systems — 08 Data Access Methods .ISDS
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Caching, Partitioning, and Indexing ﬁ-le-rg.

Scan Sharing

= #1 Batching n

= One-pass evaluation of multiple configurations O(m*n)

= Use cases: EL, CV, feature selection, read
hyper parameter tuning, multi-user scoring O(m*n*k)
= E.g.: TUPAQ [SoCC’16], Columbus [SIGMOD’14] compute
m >>n >> k

= #2 Fused Operator DAGs

= Avoid unnecessary scans, (e.g., mmchain)

Multi-Aggregate
sum sum sum
= Avoid unnecessary writes / reads f f f

= Multi-aggregates, redundancy sum(X2) u(*2)  b(*)  u(”2)

ada =
" E.g.:SystemMLcodegen [PVLDB'18] | - gym(x*y) O
. . ) = YA2 X Y
= #3 Runtime Piggybacking ¢ = sum(¥Y"2)
= Merge concurrent data-parallel jobs parfor( i in 1:numModels )
= “Wait-Merge-Submit-Return”-loop while( !converged )
= E.g.: SystemML parfor [PVLDB’14] q =X %*% v;

706.550 Architecture of Machine Learning Systems — 08 Data Access Methods .ISDS
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Caching, Partitioning, and Indexing ﬁ-lt.‘:r%!-

In-Memory Partitioning (NUMA-aware)

= NUMA-Aware Model and Data Replication

[Ce Zhang, Christopher Ré: [——
= Model Replication (06 Parameter Servers) DimmWitted: A Study of |
] Main-Memory Statistical
= PerCore (BSP epoch), PerMachine Analytics. PVLDB 2014]
(Hogwild!), PerNode (hybrid)
= Data Replication Machine
= Partitioning (sharding) Node 1 Node 2

= Full replication

ﬂ

=

ﬂ
N

= AT MATRIX (Adaptive Tile Matrix) B

= Recursive NUMA-aware partitioning
into dense/sparse tiles

[David Kernert, Wolfgang Lehner,

= |nter-tile (worker teams) and intra-tile
(threads in team) parallelization

= Job scheduling framework from SAP HANA Frank Kohler: Topology-aware
(horizontal range partitioning, socket-local ~ optimization of big sparse matrices
. . and matrix multiplications on main-

gueues with task-stealing)

memory systems. ICDE 2016]

706.550 Architecture of Machine Learning Systems — 08 Data Access Methods .ISDS
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Caching, Partitioning, and Indexing ﬂl’g_

Distributed Partitioning

Spark RDD Partitioning Example Hash Partitioning:

= Implicitly on every data shuffling For all (k,v) of R:
hash(k) % numPartitions = pid

= Explicitly viaR.repartition(n)

Distributed Joins 0:8,1,6 N/ 0:1,2 % 3 —m

2:2,3,4 b 2:3,4

= R3 =R1.join(R2)

EBEl EEn

"

/\

A £

Single-Key Lookups v = C.lookup(k)
= Without partitioning: scan all keys (reads/deserializes out-of-core data)
= With partitioning: lookup partition, scan keys of partition

Multi-Key Lookups //build hashset of required partition ids

i . e HashSet<Integer> flags = new HashSet<>();
Without partitioning: for( MatrixIndexes key : filter )
scan all keys flags.add(partitioner.getPartition(key));

= With partitioning: //create partition pruning rdd

new PartitionPruningFunction(flags));



Caching, Partitioning, and Indexing ﬂl’g_

Re Ca p : B_Tree Ove rVieW [Rudolf Bayer, Edward M. McCreight:

Organization and Maintenance of Large
Ordered Indices. Acta Inf. (1) 1972]

= History B-Tree
= Bayer and McCreight 1972, Block-based, Balanced, Boeing Labs
= Multiway tree (node size = page size); designed for DBMS
= Extensions: B+-Tree/B*-Tree (data only in leafs, double-linked leaf nodes)

= Definition B-Tree (k, h) .
[log,..(n+1) [<h< {Iogm(;ﬂ +1

= All paths from root to leafs have equal length h 2
= All nodes (except root) have [k, 2k] key entries All nodes adhere
= All nodes (except root, leafs) have [k+1, 2k+1] successors to max constraints

= Datais a record or a reference to the record (RID) k=2

m Key K, 'Data D; il Key K, '‘Data D, lify Key K; '‘Data D; i Key K, [Data D,

Subtree w/ Subtree w/
keys < K; K, < keys < K;
706.550 Architecture of Machine Learning Systems — 08 Data Access Methods .ISDS
Matthias Boehm, Graz University of Technology, SS 2022 L



Caching, Partitioning, and Indexing ﬂ-lc:r%!-

Recap: B-Tree Overview, cont.

= B-Tree Search

= Scan/binary search
within nodes

= Descend along
matching
key ranges

= B-Tree Insertion

= |nsert into leaf nodes
= Split the 2k+1 entries into two leaf nodes

= B-Tree Deletion
= Lookup key and delete if existing

= Move entry from fullest successor; if underflow merge with sibling

706.550 Architecture of Machine Learning Systems — 08 Data Access Methods .ISDS
Matthias Boehm, Graz University of Technology, SS 2022



Caching, Partitioning, and Indexing ﬁ-lc:r%!-

Linearized Array B-Tree (LAB-Tree)

[Yi Zhang, Kamesh Munagala,
Jun Yang: Storing Matrices on

= B-tree over linearized array representation Disk: Theory and Practice
(e.g., row-/col-major, Z-order, UDF) Revisited. PVLDB 2011]

= Basic Ideas

= New leaf splitting strategies; dynamic leaf storage format (sparse and dense)

= Various flushing policies for update batching (all, LRU, smallest page, largest
page, largest page probabilistically, largest group)

#1 Example linearized #2 Example linearized
storage order iterator order
= [ matrix A: range query A[4:9,3:5]
p et 4 x 4 blocking with column-major
Pran row-major block order iterator order

row-major cell order I

706.550 Architecture of Machine Learning Systems — 08 Data Access Methods .ISDS
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Caching, Partitioning, and Indexing ﬁ!g.

Ada pt|ve Ti I e (AT) M atriX [David Kernert, Wolfgang Lehner, Frank

Koéhler: Topology-aware optimization of big
sparse matrices and matrix multiplications
= Basic Ideas on main-memory systems. ICDE 2016]

= Two-level blocking and NUMA-aware
range partitioning (tiles, blocks)

= Z-order linearization, and
to find var-sized tiles (tile contains N blocks)

(see sparsity est.)

: I : N @ °
0.75-+0.25 1 0.25--0.00 “&
________ // &\

0.25--1.00 ! 0.00--0.25

- - - - —_—— - - -

8

N

block tiles

N7

706.550 Architecture of Machine Learning Systems — 08 Data Access Methods .lSDS
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Caching, Partitioning, and Indexing ﬂ-le-rg.

T| I e D B Sto ra ge M an age I’ [Stavros Papadopoulos, Kushal Datta, Samuel [ ——

Madden, Timothy G. Mattson: The TileDB
Array Data Storage Manager. PVLDB 2016]

= Basic Ideas

= Storage manager for 2D arrays of
different data types (incl. vector, 3D)

https://docs.tiledb.com

= Two-level blocking (space/data tiles), update batching via fragments

space tile extents: 4x2 space lile extents: 2x2 space tile extents; 2x2 ] my 2d dense array
tile order: row-major tile order: row-major tle order: column-major
cellorder: row-major cell order:  row-major cell order:  row-major
— __array_schema.tdb
- tl tl uwuidl v
F] _tl_tl _
Spacetiles B _ fragment_metadata.tdb
B al.tdb
B a?.tdb
B a2_var.tdb
Fragment #1 Fragment #2 Fragment #3 Collective logical array view
(dense) (dense) (sparse)

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

n2 | 13
M NN

114 | 115
000 PPPP

[114] 115
000 PPPP

= W NN =

706.550 Architecture of Machine Learning Systems — 08 Data Access Methods .EISDS
Matthias Boehm, Graz University of Technology, SS 2022 i b | =l ]


Presenter
Presentation Notes
TileDB Inc startup, $20M funding: TileDB Cloud, a commercial SaaS offering for planet-scale data sharing and serverless distributed computations. 

https://docs.tiledb.com/

Caching, Partitioning, and Indexing ﬂ-le-rLa!.

Pipelining for Mini-batch Algorithms

= Motivation
= Qverlap data access and computation in mini-batch algorithms (e.g., DNN)
=» Simple pipelining of 1/0 and compute via queueing / prefetching

= Example TensorFlow v |

= #1 Queueing GPU/TPU
and Threading

time

dataset.batch(batch_size=32)
dataset.prefetch(buffer_size=1)

= #2 Dataset API dataset
Prefetching dataset

[https://www.tensorflow - '

.org/guide/performance/

GPU/TPU

datasets]

time i

" #3 Reuse via Upstream Upstream [https://ai.googleblog.com/

. 2020/05/speeding-up-neural-

Data Echomg |Dumm|nmmstrﬂm|nnmmn|ﬂmmham| [05/5p . g 0
- _ network-training.html]
time

706.550 Architecture of Machine Learning Systems — 08 Data Access Methods n ;
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Lossy and Lossless Compression

#6 Compression

706.550 Architecture of Machine Learning Systems — 08 Data Access Methods
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Lossy and Lossless Compression ﬁl—g_

Recap: Database Compression Schemes

= Null Suppression 106

00000000 |00V |00V 01101010

= Compress integers by

11|e1101010

bytes/bits (e.g., NS, gamma)

Run-Length Encoding 111177777333333...

= Compress sequences of equal values by

1,1,4| |7,5,5 3,10,6
of (value, start, run length) - - -
= Dictionary Encoding 177317133713373...
= Compress column w/ few distinct values [1,3,7] dictionary ( )
as (= code size) [13323133722312232 ..,

Delta Encoding

20 21 22 20 19 18 19 20 21 20 ...

= Compress sequence w/ small changes

e 1 1 -2 -1 -1 1 1 1 -1...

by storing
= Frame-of-Reference Encoding 0 21 22 20 71 70 71 69 70 21 ..
= Compress values by storing 21 70

(outlier handling) [-1 6 1 -1 1 o 1-1 0-1...




Lossy and Lossless Compression ﬂELa!.

Overview Lossless Compression Techniques

= #1 Block-Level General-Purpose Compression

= Heavyweight or lightweight compression schemes decompress
. . . & deserialize
= Decompress matrices block-wise for each operation .

|
= E.g.: Spark RDD compression (Snappy/LZ4), | Storage
SciDB SM [SSDBM'11], TileDB SM [PVLDB'16], ' Manager [ =
scientific formats NetCDF, HDF5 at chunk granularity

= #2 Block-Level Matrix Compression
= Compress matrix block with homogeneous encoding scheme

= Perform LA ops over compressed representation

= E.g.: CSR-VI (dict) [CF'08], cPLS (grammar) [KDD’16],
TOC (LZW w/ trie) [SIGMOD’19]

= #3 Column-Group-Level Matrix Compression
= Compress column groups w/ heterogeneous schemes

= Perform LA ops over compressed representation
= E.g.: SystemML CLA (RLE, OLE, DDC, UC) [PVLDB’16]

B o e mm m e e



Lossy and Lossless Compression

Ty

= Key Idea

CLA: Compressed Linear Algebra

= Use lightweight database compression techniques
= Perform LA operations on compressed matrices

= Goals of CLA

= Operations performance close to uncompressed

= Good compression ratios

1 GB/s per node

A
o Time

(operations performance)

[Ahmed Elgohary et al:
Compressed Linear Algebra
for Large-Scale Machine
Learning. PVLDB 2016]

while(!converged) {

e Space i

(compression ratio)

Co

|
|
mpressed data :
|

fits in memory

Uncompressed

Compressed

A |
|
Uncompressed |
data fits in :

memory

Execution
Time

25 GB/s

per node
[SIGMOD Record’17, ___——

VLDBJ’'18, CACM’19]

Data Size

706.550 Architecture of Machine Learning Systems — 08 Data Access Methods
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Lossy and Lossless Compression

Ty

CLA: Compressed Linear Algebra, cont. (2)

= Overview Compression Framework

= Column-wise matrix compression (values + compressed offsets / references)

= Column co-coding (column groups, encoded as single unit)

= Heterogeneous column encoding formats (w/ dedicated physical encodings)

= Column Encoding
Formats

= Offset-List (OLE)
= Run-Length (RLE)

= Dense Dictionary 7

Coding (DDC)*

= Uncompressed
Columns (UC)

S

Lo =] L0 L2 D Q0 =] =] LI =]

(

e O o= = O o= U1 O = O

2.1
3
2.1
3
2.1
3
3
0
2.1
3

Uncompressed
Input Matrix

-
0.99
0.73
0.05
0.42
0.61
0.89
0.07
0.92
0.54
0.16
—

Compressed Column Groups

(RLE(2))
©) (&2

1

He=

(OLE(1,3) )
(76)(34)(75)
1

[}

3
9

[ s

—
=

(DDC () UC(5) )

(2.1)!
(3) 1

0.99
0.73
0.05
0.42
0.61
0.89
0.07
0.92
0.54

L 0.16 )

[ T B e i e e s B T e

= Automatic Compression Planning (sampling-based)

= Select column groups and formats per group (data dependent)

706.550 Architecture of Machine Learning Systems — 08 Data Access Methods
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Lossy and Lossless Compression

Ty

CLA: Compressed Linear Algebra, cont. (3)

= Matrix-Vector Multiplication
= Naive: for each tuple, pre-aggregate values, add values at offsets to g

Example: g=Xv, withv=(7,11, 1, 3, 2)
9*%11=99.2 55 25 54 6.3 9

N

AN

J

-

(OLE{4})

(UC{5})
0.99
0.73
0.05
0.42
0.61
0.89
0.07
0.92
0.54

S

162.3

134.5

160.4

162.8

32.5

155

133.1

125.8

161.4

L 0.16 )

= Cache-conscious: Horizontal,
segment-aligned scans, maintain positions

= Vector-Matrix Multiplication

= Naive: cache-unfriendly on input (v)

34.3

=» cache unfriendly
on output (q)

" value preaggE

({761{34}{75}) -

= Cache-conscious: again use horizontal, segment-aligned scans

\
1IN

v

} segment

cache
bucket
(output)




Lossy and Lossless Compression ﬂIrLa!.

CLA: Compressed Linear Algebra, cont. (4)

= Estimating Compressed Size: S¢ = min(S°t, SRLE, SPDC)
= # of distinct tuples d.: “Hybrid generalized jackknife” estimator [JASA’98]
= # of non-zero tuples z;: Scale from sample with “coverage” adjustment
" #of runs ry: maxEnt model + independent-interval approx. (~ Ising-Stevens)

RIF unseen horder interval 4 (rny=5)
H—A'_'\
(2) |9|9|9|9|o¢9|9m|999|9|3|913qu|0|
= Compression Planning offsets:1 2 3

= #1 Classify compressible columns
= Draw random sample of rows (from transposed X)
= Classify C¢ and CY¢ based on estimate compression ratio
= #2 Group compressible columns (exhaustive O(m™), greedy O(m?3))
= Bin-packing-based column partitioning
= Greedy grouping per bin w/ pruning and memoization O(m?)
= #3 Compression
= Extract uncompressed offset lists and exact compression ratio
= Graceful corrections and UC group creation



Lossy and Lossless Compression ﬁ-IG-rE!-

CLA: Compressed Linear Algebra, cont. (5)

= Experimental Setup
= LinregCG, 10 iterations (incl. compression), InfiMNIST data generator
= 1+6 node cluster (216GB aggregate memory), Spark 2.3, SystemML 1.1

Compression Ratios End-to-End Performance [sec]

Higgs 1.93 1.38 2.17 6000 ® Snappy (RDD Compression)

uCLA
Census 17.11 6.04 35.69 %

4000

Covtype 10.40 6.13 18.19 S000 9796 3148

ImageNet 5.54 3.35 7.34 000

Mnist8m  4.12 2.60 7.32 1000 831 . 1085
03 147 98

Airline78  7.07 428  7.44 0 — L = —
Mnist40m Mnist240m Mnist480m
90GB 540GB 1.1TB

= Open Challenges
= Ultra-sparse datasets, tensors, automatic operator fusion
= QOperations beyond matrix-vector/unary, applicability to deep learning?

706.550 Architecture of Machine Learning Systems — 08 Data Access Methods .ISDS
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Lossy and Lossless Compression ﬁ!g.

Compressed Linear Algebra Extended

[under submission]

= Lossless Matrix Compression
= Improved general applicability (compression time, new compression schemes,

new kernels, intermediates, workload-aware) Uncompressed Compressed Matrix M
Input Matrix N
= Sparsity 2 Redundancy exploitation SR (“’ﬂ(‘i} (OLE“}]
. 8.5} {9} || 0:10.0} {2.5} {3}
(data redundancy, structural redundancy) 3o S -
7 9 5 3 3:{7,5} 3
. 3 0 4 25 - 2
= Workload-aware Compression 10850 0=V g 0
3 85 4 3 2
= Workload summary = compression S :
. . . 3 0 4 3 (sparse) || (dense) 2 ||(sparse)
= Compression = execution planning - R %
User Script: /| if(shift) |:{> Workload Tree
// X=X - colMeans(X)
Bd = read("data/x") ;. |if(scale)
y = read("data/y") K X = X / colSds(X)
X = 1
W =

L
scale(X, TRUE,TRUE) ", if(intercept) if| |[if if wl
12svm(X,y, TRUE, (/ X = cbind(X,ones)
le-9,1e-3,100) while(conto & i<maxi) { wl

i " o\ | Xd =X %% s
write(w,"data/wXy"”) | | while(conti) {
\ out = 1-y*(Xw+sz*Xd)

\\ sz =sz - g/h; # ..

}
Built-in \\ g new = t(X) %*% (out*y) Cost Summary @
Functions: \J [ 0 [100[ 10]10]105] O |




Lossy and Lossless Compression ﬁ-IG-rE!-

Block-level Compression w/ D-VI, CSR-VI, CSX

[Kornilios Kourtis, Georgios |. Goumas, [~
| - - -
CSR-VI (CSR Value Indexed) / D-vi Nectarios Koziris: Optimizing sparse matrix-

= Create dictionary for distinct values vector multiplication using index and value

compression. CF 2008]

= Encode 8 byte values as 1, 2, or 4-byte codes - ,
[Vasileios Karakasis et al.: An

(p05|t|ons in the d'Ctlonary) Extended Compression Format for

= Extensions w/ delta coding of indexes the Optimization of Sparse Matrix-
] ] Vector Multiplication. IEEE Trans.
= Example CSR-VI matrix-vector multiply Parallel Distrib. Syst. 2013]

c=A%*%Db

for(int i=0; i<a.nrow; i++) { CSR
int pos = A.rptr[i];
int end = A.rptr[i+l];
for(int k=pos; k<end; k++)
b[i] += dict[A.val[k]] * b[A.ix[k]];

vl NS

value decoding
(MV over compressed
representation)
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Lossy and Lossless Compression

Ty

Tuple-oriented Compression (TOC)

= Motivation
= DNN and ML often trained

[Fengan Li, Lingjiao Chen, Yijing Zeng, Arun Kumar, Xi
Wu, Jeffrey F. Naughton, Jignesh M. Patel: Tuple-
oriented Compression for Large-scale Mini-batch

Stochastic Gradient Descent, SIGMOD 2019]

with mini-batch SGD
= Effective compression for small batches (#rows)

Original Table (A) PrefixTree (C) Column_index:value pairs in the
first layer of the prefix tree (I
1 2 3 a4 Y p )
R1 | 1.1 2 3 1.4 J 5[1] [2]2]3]a]2] .I:::;::;
R2 1.1 2 3 0 LT value
R3 0 11 3 1.4 '," """ rJ indexes
R4 1.1 2 0 0 |7 Step3 :Physical
I i lues
I Encodin 1123 -1.4 va
Stepl: Sparse | I 8 11]2]3]
A I
EnCOdmg \4 'I Encoded Table (D) (# of integers, # of bytes per integer)
Sparse Encoded Table (B) ]
R1L |1:11] 22 | 33 |a14| R1 | 1 2 3 4 g
I4 tree node
R2 111 22 |33 L ';; E Z _____ »2o [1 ] 3 [B 8 [B indexes
R3 | 2211 3:3 [4:1.4 Step2 Log|cal Step3 :Physical
- - R4 6 ' tuple start
R4 | 1111 22 Encoding Encoding o[+ ]6 s | indexes

706.550 Architecture of Machine Learning Systems — 08 Data Access Methods
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Lossy and Lossless Compression ﬁ-le-rLa!.

Tuple-oriented Compression (TOC), cont.

. [Fengan Li, Lingjiao Chen, Yijing Zeng, Arun Kumar, Xi
Example Wu, Jeffrey F. Naughton, Jignesh M. Patel: Tuple-
Compression Ratios oriented Compression for Large-scale Mini-batch

Stochastic Gradient Descent, SIGMOD 2019]

dense baseline?

2 Census Imagenet Mnist Kdd99

= 2001

E 20 ’/k/_k’k“ _ '/4,/4/"_"
40 1

5 15 .’-._—_.’/‘__J, : : v | 150

2 50, 101" v o 100

© 20 = = ] * * . .

a8 | . ¥ s 3| Of4—= - o — p p .| 0] :,_,,.’:— ¥ .

g 0 g g ! !—‘! 0 0 . i . r . O-JEIE!E!E!—‘ : ‘ : ‘

o 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

percent of rows percent of rows percent of rows percent of rows

wPpum CSR == CV] === DVI =ifll= Snappy == Gzip |=-#= TOC (ours) == CLA

Take-away: specialized lossless matrix compression
=» reduce memory bandwidth requirements and #FLOPs
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Lossy and Lossless Compression ﬁ!g.

Lossy Compression

= Overview
= Extensively used in DNN (runtime vs accuracy) =» data format + compute
= Careful manual application regarding data and model
= Note: ML algorithms approximate by nature + noise generalization effect

= Background Floating Point Numbers (IEEE 754)
= Sign's, Mantissa m, Exponent e: value = s * m * 2¢ (simplified)

Double (FP64) 1 [bits]
Single (FP32) 1 23 8
Half (FP16) 1 10 5
Quarter (FP8) 1 3 4
Half-Quarter (FP4) 1 1 2
PO atiies oehm, Gras Unieraty of Tecmology, 55 2023, “ISDS



Ty

Lossy and Lossless Compression

Low and Ultra-low FP Precision

see 05 Execution Strategies, SIMD

= Model Training w/ low FP Precision > speedup/reduced energy

= Trend: from FP32/FP16 to FP8

= #1: Precision of intermediates (weights, act, errors, grad) = loss in accuracy
= #2: Precision of accumulation = impact on convergence (swamping s+L)

= #3: Precision of weight updates = loss in accuracy

[Naigang Wang et al.: Training Deep
Neural Networks with 8-bit Floating

= Example ResNet18 over ImageNet Point Numbers. NeurIP$ 2018]

Test Error (%)

11 11 110
1000 —Single precision baseline 10 —Sing'le pre'cision.base!ine . R 100 —Sing'le Pre'cis ion. Basevline . N
—Mult: 8 b|t, Acc: 32 bit, Update: 32 bit —Mult: 16 l:lt, Acc: 16 bit, Update. 32 bit —Mult: 32 bit, Acc: 32 bit, Update. 16 bit
9 9 VU V')
5 #1 18, #2 ] E & #3
L A
70 2 7 {1 270
w w
60 2.0% degradation | % ° 1.0% 7 00 1.7%
50 F 5 radation] ~ 5, degradation
40 4 \\\ 1 40
o (@) 3 30
0 20 60 80 20 60 80 0 20 60 80

40
Epoch
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Lossy and Lossless Compression

Ty

Low and Ultra-low FP Precision, cont.

= Numerical Stable Accumulation [Yuanyuan Tian, Shirish Tatikonda, Berthold

" #1

= }#2
w/ error independent
of number of values n

Reinwald: Scalable and Numerically Stable
Descriptive Statistics in SystemML. ICDE 2012]

sumOld = sum;
= sum + (input + corr);
= (input + corr) - (sum - sumOld);

uak+: 5.000000005E17 //sum(seq(1,1e9))

ua+: 5.0000000109721722E17
ua+: 5.0000000262154688E17 //rev

= #3 o ge:
- julia
(divide & conquer)
= #4 Chunk-based Accumulation [N. Wang et al.: Training [———
. . Deep Neural Networks with
= Divide long dot products into smaller chunks 8-bit Floating Point
= Hierarchy of partial sums = FP16 accumulators Numbers. NeurIPS 2018]
= #5 Stochastic Rounding Round() — {s -2¢. (14 [m] +¢)  with probability =17
. Y ) se2¢ - (1 + |Im ith probability 1 — 2—Lml
= Replace nearest w/ prob. rounding s (Lt [ml) - with probabilit ‘
706.550 Architecture of Machine Learning Systems — 08 Data Access Methods "
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Presenter
Presentation Notes
Note: reproducibility of example Kahan addition
n = 1e9
x1 = seq(1,n);
x2 = seq(n,1);
ones = matrix(1,n,1)
print("baseline: "+(n*(n+1)/2));
print("agg1    : "+as.scalar(t(ones)%*%x1));
print("agg2    : "+as.scalar(t(ones)%*%x2));
print("kagg1   : "+sum(x1));
print("kagg2   : "+sum(x2));



Lossy and Lossless Compression

Ty

Low and Ultra-low FP Precision — New Datatypes

= Google bfloatl6
= “Brain” Float16 w/ range of FP32

= Drop in replacement for FP32,
no need for loss scaling

= |Intel FlexPoint

= Blocks of values w/ shared exponent

(N=16bit w/ M=5bit exponent)

bfloat16: Brain Floaljng Polnt Format Bange: -1¢* 1 =3¢™ ™
Copsomnt 88> blaniee igeticand T b )
- e e e e e e e e MR
Tensor
fp32: Single-precision IEEE Floating Point Format Rangg; - 16" 10 ~ 34" b
cpmerst 1ty Martiis (Sigrificasd) b i
Bz cocococob e e M M M M MMM MMM MMM MM MMM MMM @
fp16: Half-precision IEEE Floating Point Format Range: ~5.96¢" 10 65504 F
Exporres MWar i . .
B - - - R [Brennan Saeta: Training

Performance A user’s guide to
converge faster, TF Dev Summit 2018]

[Urs Koster et al.: Flexpoint: An Adaptive
Numerical Format for Efficient Training of
Deep Neural Networks. NeurlPS 2017]

.....

= Example: flex16+5 D]]]] 5
""""""""" |.|II||||||II|H||||H\
- g Range Precision
NVIDIA TF32 Bomonms i [NVIDIA A100 Tensor Core GPU [
= Range of FP32 FP3z SN Architecture - UNPRECEDENTED | ™
o 7737 BT ACCELERATION AT EVERY SCALE,
w/ precision of FP16 .. E_.mm i

Whitepaper, Aug 2020]

BF16 EIIIIIIIII] [TTIT}+—
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Lossy and Lossless Compression ﬁ-le-rLa!.

Fixed-Point Arithmetic Recommended “Reading”

[Inside TensorFlow: Model Optimization Toolkit '|_:'
(Quantization and Pruning), YouTube, 2020] Tensorfiow
= Motivation

= Forward-pass for model scoring (inference) can be done in UINT8 and below
= Static, dynamic, and learned quantization schemes (weights and inputs)

= Quantization (reduce value domain) [https://blog.tensorflow.org/2020/04/
. Lo guantization-aware-training-with-tensorflow-
" Split value domain into N buckets model-optimization-toolkit.html]
such that k = log, N can encode the data
gZ pa— | —]—‘ \7 o, int8
= 3) Static Quantization (e.g., min/max) el "

-3e38 min g max 3e38 float32

per tensor or per tensor channel

Optimal Quantization Points
= b) Learned Quantization Schemes

= Dynamic programming
= Various heuristics

u Example systems: [Hantian Zhang, Jerry Li, Kaan Kara, Dan Alistarh, Ji Liu, Ce _
ZipML, SketchML Zhang: ZipML: Training Linear Models with End-to-End Low L]
Precision, and a Little Bit of Deep Learning. ICML 2017]

706.550 Architecture of Machine Learning Systems — 08 Data Access Methods .ISDS
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https://blog.tensorflow.org/2020/04/quantization-aware-training-with-tensorflow-model-optimization-toolkit.html

Lossy and Lossless Compression ﬁ!g.

Other Lossy Techniques httoss//blog.tensorflouorg/201/05/tF.

model-optimization-toolkit-pruning-APIl.html]

= #1 Sparsification/Pruning (reduce #non-zeros) [ L2

= Value clipping: zero-out very small values 78.1% @ sp=1.0  27.1M

below a threshold to reduce size of weights 78.0% @ sp=0.5  13.6M
76.1% @ sp=0.25 6.8M

74.6% @ sp=0.125 3.3M

= Training w/ target sparsity: remove connections

= #2 Mantissa Truncation
= Truncate m of FP32 from 23bit to 16bit

[Souvik Bhattacherjee et al: PStore: an | ==
efficient storage framework for

= E.g., TensorFlow (transfers), PStore managing scientific data. SSDBM 2014]
= #3 Aggregated Data Representations [Amir llkhechi et al: DeepSqueeze:
. . Deep Semantic Compression for
= a) Dim reduction (e.g., auto encoders) Tabular Data, SIGMOD 2020]
= b) No FK-PK joins in Factorized Learning

] [Arun Kumar et al: To Join or Not to
(forelgn key as IOSSV CompreSSEd rep) Join?: Thinking Twice about Joins before

Feature Selection. SIGMOD 2016]

= #4 Sampling
[Yongjoo Park et al: BlinkML:

error (regression/classification) and scale Estimation with Probabilistic

. . T . Guarantees. SIGMOD 2019]
= Min sample size for max likelihood estimators


https://blog.tensorflow.org/2019/05/tf-model-optimization-toolkit-pruning-API.html

Ty

Summary and Conclusions

Motivation, Background, and Overview
High Impact on
Performance/Energy

Caching, Partitioning, and Indexing

Lossy and Lossless Compression

Next Lectures
= 09 Data Acquisition, Cleaning, and Preparation [May 20] 7

= May 26/27: Ascension Day (Christi Himmelfahrt) + “Rektorstag” (Part B:
= 10 Model Selection and Management [Jun 03] ~ ML Lifecycle
= 11 Model Debugging, Fairness, Explainability [Jun 10] Systems)

12 Model Serving Systems and Techniques [Jun 17, Arnab]
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