
1
SCIENCE
PASSION

TECHNOLOGY

Architecture of ML Systems
08 Data Access Methods
Matthias Boehm

Graz University of Technology, Austria

Institute of Interactive Systems and Data Science
Computer Science and Biomedical Engineering

BMK endowed chair for Data Management

Last update: May 09, 2022

2

706.550 Architecture of Machine Learning Systems – 08 Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Announcements/Org
 #1 Video Recording

 Link in TeachCenter & TUbe (lectures will be public)
 Hybrid: HSi13 / https://tugraz.webex.com/meet/m.boehm
 Apr 25: no more COVID restrictions at TU Graz

 #2 GitTables (Uni Amsterdam)
 Corpus with >1M relational tables
 Annotated syntactic and semantic types
 https://gittables.github.io/

 #3 CS Talks
 Eva Galperin (Director of Cybersecurity at EFF):

Who Deserves Cybersecurity
 Aula Alte Technik; Jun 07, 5.30pm

https://tugraz.webex.com/meet/m.boehm
https://gittables.github.io/

3

706.550 Architecture of Machine Learning Systems – 08 Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Categories of Execution Strategies
Motivation and Terminology

07 Hybrid Execution and HW Accelerators

05a Data-Parallel
Execution

05b Task-Parallel
Execution

06 Parameter Servers
(data, model)

Mini-batchBatch
SIMD/SPMD

Batch/Mini-batch,
Independent Tasks

MIMD

08 Caching, Partitioning, Indexing, and Compression

4

706.550 Architecture of Machine Learning Systems – 08 Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Agenda
 Motivation, Background, and Overview
 Caching, Partitioning, and Indexing
 Lossy and Lossless Compression

Iterative, I/O-bound ML
algorithms  Data access

crucial for performance

while(!converged) {
… q = X %*% v …

}

X

Data Weights

Presenter
Presentation Notes
Note:
 * train -> data read-only, weights updated
 * score -> stream of new data, weights read-only

5

706.550 Architecture of Machine Learning Systems – 08 Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Motivation, Background, and
Overview

6

706.550 Architecture of Machine Learning Systems – 08 Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Motivation: Data Characteristics
 Tall and Skinny

(#rows >> #cols)

 Non-Uniform
Sparsity

 Small Column
Cardinalities

 Small Val Range

 Column
Correlations
(on census:
12.8x  35.7x)

Motivation, Background, and Overview

Covtype Mnist8mImageNet

Higgs Census

Presenter
Presentation Notes
Note: small column cardinalities (e.g., categorical, dummy-coded)

7

706.550 Architecture of Machine Learning Systems – 08 Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Recap: Matrix Formats
 Matrix Block (m x n)

 A.k.a. tiles/chunks, most operations defined here
 Local matrix: single block, different representations

 Common Block Representations
 Dense (linearized arrays)
 MCSR (modified CSR)
 CSR (compressed sparse rows), CSC
 COO (Coordinate matrix)

Motivation, Background, and Overview

.7 .1

.2 .4
.3

Example
3x3 Matrix

.7 0 .1 .2 .4 0 0 .3 0
Dense (row-major)

.7

.1

.2

.4

.3

0
2
0
1
1

0
2
4
5

CSR

.7

.1

.2

.4

.3

0
2
0
1
1

COO

0
0
1
1
2

.7 .1
2

MCSR

0

.2 .4
10

.3
1O(mn)

O(m + nnz(X)) O(nnz(X))

8

706.550 Architecture of Machine Learning Systems – 08 Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Recap: Distributed Matrix Representations
 Collection of “Matrix Blocks” (and keys)

 Bag semantics (duplicates, unordered)
 Logical (Fixed-Size) Blocking

+ join processing / independence
- (sparsity skew)

 E.g., SystemDS on Spark:
JavaPairRDD<MatrixIndexes,MatrixBlock>

 Blocks encoded independently (dense/sparse)

 Partitioning
 Logical Partitioning

(e.g., row-/column-wise)
 Physical Partitioning

(e.g., hash / grid)

Motivation, Background, and Overview

Logical Blocking
3,400x2,700 Matrix

(w/ Bc=1,000)

Physical
Blocking and
Partitioning

9

706.550 Architecture of Machine Learning Systems – 08 Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Overview Data Access Methods
 #1 (Distributed) Caching

 Keep read only feature matrix in (distributed) memory

 #2 Buffer Pool Management
 Graceful eviction of intermediates, out-of-core ops

 #3 Scan Sharing (and operator fusion)
 Reduce the number of scans as well as read/writes

 #4 NUMA-Aware Partitioning and Replication
 Matrix partitioning / replication  data locality

 #5 Index Structures
 Out-of-core data, I/O-aware ops, updates

 #6 Compression
 Fit larger datasets into available memory

Motivation, Background, and Overview

Node1 Node2

Socket1 Socket2

10

706.550 Architecture of Machine Learning Systems – 08 Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Caching, Partitioning, and
Indexing

#2 Buffer Pool Management
#3 Scan Sharing (and operator fusion)

#4 NUMA-Aware Partitioning and Replication
#5 Index Structures

11

706.550 Architecture of Machine Learning Systems – 08 Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Buffer Pool Management
 #1 Classic Buffer Management (SystemDS)

 Hybrid plans of in-memory and distributed ops
 Graceful eviction of intermediate variables

 #2 Algorithm-Specific Buffer Management
 Operations/algorithms over out-of-core matrices and factor graphs
 Examples: RIOT [CIDR’2009] (ops), Elementary [SIGMOD’13] (factor graphs)

Caching, Partitioning, and Indexing

12

706.550 Architecture of Machine Learning Systems – 08 Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Scan Sharing
 #1 Batching

 One-pass evaluation of multiple configurations
 Use cases: EL, CV, feature selection,

hyper parameter tuning, multi-user scoring
 E.g.: TUPAQ [SoCC’16], Columbus [SIGMOD’14]

 #2 Fused Operator DAGs
 Avoid unnecessary scans, (e.g., mmchain)
 Avoid unnecessary writes / reads
 Multi-aggregates, redundancy
 E.g.: SystemML codegen [PVLDB’18]

 #3 Runtime Piggybacking
 Merge concurrent data-parallel jobs
 “Wait-Merge-Submit-Return”-loop
 E.g.: SystemML parfor [PVLDB’14]

Caching, Partitioning, and Indexing

Xm

n

k

O(m*n)
read

O(m*n*k)
compute

m >> n >> k

parfor(i in 1:numModels)
while(!converged)

q = X %*% v; ...

X Y

b(*)u(^2) u(^2)

sumsum sum
Multi-Aggregate

a = sum(X^2)
b = sum(X*Y)
c = sum(Y^2)

13

706.550 Architecture of Machine Learning Systems – 08 Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

In-Memory Partitioning (NUMA-aware)
 NUMA-Aware Model and Data Replication

 Model Replication (06 Parameter Servers)
 PerCore (BSP epoch), PerMachine

(Hogwild!), PerNode (hybrid)
 Data Replication

 Partitioning (sharding)
 Full replication

 AT MATRIX (Adaptive Tile Matrix)
 Recursive NUMA-aware partitioning

into dense/sparse tiles
 Inter-tile (worker teams) and intra-tile

(threads in team) parallelization
 Job scheduling framework from SAP HANA

(horizontal range partitioning, socket-local
queues with task-stealing)

Caching, Partitioning, and Indexing

Machine
Node 1
C1 C2

RAM

Node 2
C3 C4

RAM

[Ce Zhang, Christopher Ré:
DimmWitted: A Study of
Main-Memory Statistical

Analytics. PVLDB 2014]

[David Kernert, Wolfgang Lehner,
Frank Köhler: Topology-aware

optimization of big sparse matrices
and matrix multiplications on main-

memory systems. ICDE 2016]

14

706.550 Architecture of Machine Learning Systems – 08 Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Distributed Partitioning
 Spark RDD Partitioning

 Implicitly on every data shuffling
 Explicitly via R.repartition(n)

 Distributed Joins
 R3 = R1.join(R2)

 Single-Key Lookups v = C.lookup(k)
 Without partitioning: scan all keys (reads/deserializes out-of-core data)
 With partitioning: lookup partition, scan keys of partition

 Multi-Key Lookups
 Without partitioning:

scan all keys
 With partitioning:

lookup relevant partitions

Caching, Partitioning, and Indexing

Example Hash Partitioning:
For all (k,v) of R:

hash(k) % numPartitions pid

0: 8, 1, 6

1: 7, 5

2: 2, 3, 4

0: 1, 2

1: 5, 6

2: 3, 4

0: 3, 6

1: 4, 7, 1

2: 2, 5, 8

0: 6, 3

1: 4, 1

2: 5, 2

//build hashset of required partition ids
HashSet<Integer> flags = new HashSet<>();
for(MatrixIndexes key : filter)

flags.add(partitioner.getPartition(key));

//create partition pruning rdd
ppRDD = PartitionPruningRDD.create(in.rdd(),

new PartitionPruningFunction(flags));

% 3

15

706.550 Architecture of Machine Learning Systems – 08 Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Recap: B-Tree Overview
 History B-Tree

 Bayer and McCreight 1972, Block-based, Balanced, Boeing Labs
 Multiway tree (node size = page size); designed for DBMS
 Extensions: B+-Tree/B*-Tree (data only in leafs, double-linked leaf nodes)

 Definition B-Tree (k, h)
 All paths from root to leafs have equal length h
 All nodes (except root) have [k, 2k] key entries
 All nodes (except root, leafs) have [k+1, 2k+1] successors
 Data is a record or a reference to the record (RID)

Caching, Partitioning, and Indexing

  1
2

1log)1(log 112 +













 +

≤≤+ ++
nhn kk

P0 Key K1 Data D1 P1 Key K2 Data D2 P2 Key K3 Data D3 P3 Key K4 Data D4 P4

Subtree w/
K2 < keys ≤ K3

Subtree w/
keys ≤ K1

k=2

All nodes adhere
to max constraints

[Rudolf Bayer, Edward M. McCreight:
Organization and Maintenance of Large

Ordered Indices. Acta Inf. (1) 1972]

16

706.550 Architecture of Machine Learning Systems – 08 Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Recap: B-Tree Overview, cont.
 B-Tree Search

 Scan/binary search
within nodes

 Descend along
matching
key ranges

 B-Tree Insertion
 Insert into leaf nodes
 Split the 2k+1 entries into two leaf nodes

 B-Tree Deletion
 Lookup key and delete if existing
 Move entry from fullest successor; if underflow merge with sibling

Caching, Partitioning, and Indexing

25

10 20 30 40

2 5 7 8

13 14 15 18

22 24

41 42 45 46

32 35 38

26 27 28

17

706.550 Architecture of Machine Learning Systems – 08 Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Linearized Array B-Tree (LAB-Tree)
 Basic Ideas

 B-tree over linearized array representation
(e.g., row-/col-major, Z-order, UDF)

 New leaf splitting strategies; dynamic leaf storage format (sparse and dense)
 Various flushing policies for update batching (all, LRU, smallest page, largest

page, largest page probabilistically, largest group)

Caching, Partitioning, and Indexing

#1 Example linearized
storage order

#2 Example linearized
iterator order

[Yi Zhang, Kamesh Munagala,
Jun Yang: Storing Matrices on

Disk: Theory and Practice
Revisited. PVLDB 2011]

18

706.550 Architecture of Machine Learning Systems – 08 Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Adaptive Tile (AT) Matrix
 Basic Ideas

 Two-level blocking and NUMA-aware
range partitioning (tiles, blocks)

 Z-order linearization, and recursive
quad-tree partitioning to find var-sized tiles (tile contains N blocks)

Caching, Partitioning, and Indexing

[David Kernert, Wolfgang Lehner, Frank
Köhler: Topology-aware optimization of big
sparse matrices and matrix multiplications

on main-memory systems. ICDE 2016]

Input Matrix Z-ordering

block tiles

Density Map
(see sparsity est.)

19

706.550 Architecture of Machine Learning Systems – 08 Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

TileDB Storage Manager
 Basic Ideas

 Storage manager for 2D arrays of
different data types (incl. vector, 3D)

 Two-level blocking (space/data tiles), update batching via fragments

Caching, Partitioning, and Indexing

[Stavros Papadopoulos, Kushal Datta, Samuel
Madden, Timothy G. Mattson: The TileDB

Array Data Storage Manager. PVLDB 2016]

https://docs.tiledb.com

Presenter
Presentation Notes
TileDB Inc startup, $20M funding: TileDB Cloud, a commercial SaaS offering for planet-scale data sharing and serverless distributed computations.

https://docs.tiledb.com/

20

706.550 Architecture of Machine Learning Systems – 08 Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Pipelining for Mini-batch Algorithms
 Motivation

 Overlap data access and computation in mini-batch algorithms (e.g., DNN)
 Simple pipelining of I/O and compute via queueing / prefetching

 Example TensorFlow
 #1 Queueing

and Threading

 #2 Dataset API
Prefetching

 #3 Reuse via
Data Echoing

Caching, Partitioning, and Indexing

dataset = dataset.batch(batch_size=32)
dataset = dataset.prefetch(buffer_size=1)

[https://www.tensorflow
.org/guide/performance/

datasets]

[https://ai.googleblog.com/
2020/05/speeding-up-neural-

network-training.html]

https://www.tensorflow.org/guide/performance/datasets
https://ai.googleblog.com/2020/05/speeding-up-neural-network-training.html

21

706.550 Architecture of Machine Learning Systems – 08 Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Lossy and Lossless Compression
#6 Compression

22

706.550 Architecture of Machine Learning Systems – 08 Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Recap: Database Compression Schemes
 Null Suppression

 Compress integers by omitting
leading zero bytes/bits (e.g., NS, gamma)

 Run-Length Encoding
 Compress sequences of equal values by

runs of (value, start, run length)

 Dictionary Encoding
 Compress column w/ few distinct values

as pos in dictionary ( code size)

 Delta Encoding
 Compress sequence w/ small changes

by storing deltas to previous value

 Frame-of-Reference Encoding
 Compress values by storing delta to

reference value (outlier handling)

Lossy and Lossless Compression

00000000 00000000 00000000 01101010

106

11 01101010

1 1 1 1 7 7 7 7 7 3 3 3 3 3 3 ...

1,1,4 7,5,5 3,10,6

1 7 7 3 1 7 1 3 3 7 1 3 3 7 3 ...

1,3,7 dictionary (code size 2 bit)
1 3 3 2 1 3 1 2 2 3 1 2 2 3 2 ...

20 21 22 20 19 18 19 20 21 20 ...
0 1 1 -2 -1 -1 1 1 1 -1...

20 21 22 20 71 70 71 69 70 21 ...

-1 0 1 -1 1 0 1 -1 0 -1 ...
21 70 22

23

706.550 Architecture of Machine Learning Systems – 08 Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Overview Lossless Compression Techniques
 #1 Block-Level General-Purpose Compression

 Heavyweight or lightweight compression schemes
 Decompress matrices block-wise for each operation
 E.g.: Spark RDD compression (Snappy/LZ4),

SciDB SM [SSDBM’11], TileDB SM [PVLDB’16],
scientific formats NetCDF, HDF5 at chunk granularity

 #2 Block-Level Matrix Compression
 Compress matrix block with homogeneous encoding scheme
 Perform LA ops over compressed representation
 E.g.: CSR-VI (dict) [CF’08], cPLS (grammar) [KDD’16],

TOC (LZW w/ trie) [SIGMOD’19]

 #3 Column-Group-Level Matrix Compression
 Compress column groups w/ heterogeneous schemes
 Perform LA ops over compressed representation
 E.g.: SystemML CLA (RLE, OLE, DDC, UC) [PVLDB’16]

Lossy and Lossless Compression

Storage
Manager

Mdecompress
& deserialize

comp.
M

Dict.

D2D1

comp.
M

24

706.550 Architecture of Machine Learning Systems – 08 Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

CLA: Compressed Linear Algebra
 Key Idea

 Use lightweight database compression techniques
 Perform LA operations on compressed matrices

 Goals of CLA
 Operations performance close to uncompressed
 Good compression ratios

Lossy and Lossless Compression

X

while(!converged) {
… q = X %*% v …

}

[Ahmed Elgohary et al:
Compressed Linear Algebra

for Large-Scale Machine
Learning. PVLDB 2016]

[SIGMOD Record’17,
VLDBJ’18, CACM’19]

25

706.550 Architecture of Machine Learning Systems – 08 Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

CLA: Compressed Linear Algebra, cont. (2)
 Overview Compression Framework

 Column-wise matrix compression (values + compressed offsets / references)
 Column co-coding (column groups, encoded as single unit)
 Heterogeneous column encoding formats (w/ dedicated physical encodings)

 Column Encoding
Formats
 Offset-List (OLE)
 Run-Length (RLE)
 Dense Dictionary

Coding (DDC)*
 Uncompressed

Columns (UC)

 Automatic Compression Planning (sampling-based)
 Select column groups and formats per group (data dependent)

Lossy and Lossless Compression

* DDC1/2
in VLDBJ’18

26

706.550 Architecture of Machine Learning Systems – 08 Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

CLA: Compressed Linear Algebra, cont. (3)
 Matrix-Vector Multiplication

 Naïve: for each tuple, pre-aggregate values, add values at offsets to q
Example: q = X v, with

 Cache-conscious: Horizontal,
segment-aligned scans, maintain positions

 Vector-Matrix Multiplication
 Naïve: cache-unfriendly on input (v)
 Cache-conscious: again use horizontal, segment-aligned scans

Lossy and Lossless Compression

9*11=99 0
0
0
0
0
0
0
0
0
0

90.2 55 25 54 6.3 99
99
99
99
0
0

99
99
99
0

99
99
99
99
0

90.2
99
99
99
0

154
99

154
99
0

90.2
99
99

154
0

154
124
154
99
25

90.2
124
124
154
25

154
124
154
153
25

144.2
124
124
154
25

160.3
124

160.3
153
31.3

144.2
124
124

160.3
25

 cache unfriendly
on output (q)

9 160.3
133

160.3
162
31.3

153.2
133
124

160.3
34

162.3
134.5
160.4
162.8
32.5
155

133.1
125.8
161.4
34.3

162.3
134.5
160.4
162.8
32.5
155

133.1
125.8
161.4
34.3

v = (7, 11, 1, 3, 2) v = (7, 11, 1, 3, 2) v = (7, 11, 1, 3, 2) v = (7, 11, 1, 3, 2) v = (7, 11, 1, 3, 2) v = (7, 11, 1, 3, 2)

27

706.550 Architecture of Machine Learning Systems – 08 Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

CLA: Compressed Linear Algebra, cont. (4)
 Estimating Compressed Size: SC = min(SOLE, SRLE, SDDC)

 # of distinct tuples di: “Hybrid generalized jackknife” estimator [JASA’98]
 # of non-zero tuples zi: Scale from sample with “coverage” adjustment
 # of runs rij: maxEnt model + independent-interval approx. (~ Ising-Stevens)

 Compression Planning
 #1 Classify compressible columns

 Draw random sample of rows (from transposed X)
 Classify CC and CUC based on estimate compression ratio

 #2 Group compressible columns (exhaustive O(mm), greedy O(m3))
 Bin-packing-based column partitioning
 Greedy grouping per bin w/ pruning and memoization O(m2)

 #3 Compression
 Extract uncompressed offset lists and exact compression ratio
 Graceful corrections and UC group creation

Lossy and Lossless Compression

28

706.550 Architecture of Machine Learning Systems – 08 Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

CLA: Compressed Linear Algebra, cont. (5)
 Experimental Setup

 LinregCG, 10 iterations (incl. compression), InfiMNIST data generator
 1+6 node cluster (216GB aggregate memory), Spark 2.3, SystemML 1.1

 Open Challenges
 Ultra-sparse datasets, tensors, automatic operator fusion
 Operations beyond matrix-vector/unary, applicability to deep learning?

Lossy and Lossless Compression

Dataset Gzip Snappy CLA
Higgs 1.93 1.38 2.17

Census 17.11 6.04 35.69
Covtype 10.40 6.13 18.19

ImageNet 5.54 3.35 7.34
Mnist8m 4.12 2.60 7.32
Airline78 7.07 4.28 7.44

Compression Ratios

93

2796

6312

147
831

3148

98 477
1085

0

1000

2000

3000

4000

5000

6000

7000

Mnist40m Mnist240m Mnist480m

Uncompressed
Snappy (RDD Compression)
CLA

End-to-End Performance [sec]

90GB 540GB 1.1TB

29

706.550 Architecture of Machine Learning Systems – 08 Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Compressed Linear Algebra Extended
 Lossless Matrix Compression

 Improved general applicability (compression time, new compression schemes,
new kernels, intermediates, workload-aware)

 Sparsity  Redundancy exploitation
(data redundancy, structural redundancy)

 Workload-aware Compression
 Workload summary  compression
 Compression  execution planning

Lossy and Lossless Compression

[under submission]

30

706.550 Architecture of Machine Learning Systems – 08 Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Block-level Compression w/ D-VI, CSR-VI, CSX
 CSR-VI (CSR-Value Indexed) / D-VI

 Create dictionary for distinct values
 Encode 8 byte values as 1, 2, or 4-byte codes

(positions in the dictionary)
 Extensions w/ delta coding of indexes
 Example CSR-VI matrix-vector multiply

c = A %*% b

Lossy and Lossless Compression

for(int i=0; i<a.nrow; i++) {
int pos = A.rptr[i];
int end = A.rptr[i+1];
for(int k=pos; k<end; k++)

b[i] += dict[A.val[k]] * b[A.ix[k]];
}

value decoding
(MV over compressed

representation)

.7

.1

.2

.4

.3

0
2
0
1
1

0
2
4
5

CSR

[Kornilios Kourtis, Georgios I. Goumas,
Nectarios Koziris: Optimizing sparse matrix-
vector multiplication using index and value

compression. CF 2008]
[Vasileios Karakasis et al.: An

Extended Compression Format for
the Optimization of Sparse Matrix-

Vector Multiplication. IEEE Trans.
Parallel Distrib. Syst. 2013]

31

706.550 Architecture of Machine Learning Systems – 08 Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Tuple-oriented Compression (TOC)
 Motivation

 DNN and ML often trained
with mini-batch SGD

 Effective compression for small batches (#rows)

Lossy and Lossless Compression

[Fengan Li, Lingjiao Chen, Yijing Zeng, Arun Kumar, Xi
Wu, Jeffrey F. Naughton, Jignesh M. Patel: Tuple-
oriented Compression for Large-scale Mini-batch

Stochastic Gradient Descent, SIGMOD 2019]

32

706.550 Architecture of Machine Learning Systems – 08 Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Tuple-oriented Compression (TOC), cont.
 Example

Compression Ratios

Lossy and Lossless Compression

[Fengan Li, Lingjiao Chen, Yijing Zeng, Arun Kumar, Xi
Wu, Jeffrey F. Naughton, Jignesh M. Patel: Tuple-
oriented Compression for Large-scale Mini-batch

Stochastic Gradient Descent, SIGMOD 2019]

Take-away: specialized lossless matrix compression
 reduce memory bandwidth requirements and #FLOPs

dense baseline?

33

706.550 Architecture of Machine Learning Systems – 08 Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Lossy Compression
 Overview

 Extensively used in DNN (runtime vs accuracy)  data format + compute
 Careful manual application regarding data and model
 Note: ML algorithms approximate by nature + noise generalization effect

 Background Floating Point Numbers (IEEE 754)
 Sign s, Mantissa m, Exponent e: value = s * m * 2e (simplified)

Lossy and Lossless Compression

Precision Sign Mantissa Exponent

Double (FP64) 1 52 11

Single (FP32) 1 23 8

Half (FP16) 1 10 5

Quarter (FP8) 1 3 4

Half-Quarter (FP4) 1 1 2

[bits]

34

706.550 Architecture of Machine Learning Systems – 08 Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Low and Ultra-low FP Precision
 Model Training w/ low FP Precision

 Trend: from FP32/FP16 to FP8
 #1: Precision of intermediates (weights, act, errors, grad)  loss in accuracy
 #2: Precision of accumulation impact on convergence (swamping s+L)
 #3: Precision of weight updates loss in accuracy

 Example ResNet18 over ImageNet

Lossy and Lossless Compression

see 05 Execution Strategies, SIMD
 speedup/reduced energy

#1 #2 #3

[Naigang Wang et al.: Training Deep
Neural Networks with 8-bit Floating

Point Numbers. NeurIPS 2018]

35

706.550 Architecture of Machine Learning Systems – 08 Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Low and Ultra-low FP Precision, cont.
 Numerical Stable Accumulation

 #1 Sorting ASC + Summation
 #2 Kahan Summation

w/ error independent
of number of values n

 #3 Pairwise Summation
(divide & conquer)

 #4 Chunk-based Accumulation
 Divide long dot products into smaller chunks
 Hierarchy of partial sums  FP16 accumulators

 #5 Stochastic Rounding
 Replace nearest w/ prob. rounding

Lossy and Lossless Compression

sumOld = sum;
sum = sum + (input + corr);
corr = (input + corr) – (sum – sumOld);

[N. Wang et al.: Training
Deep Neural Networks with

8-bit Floating Point
Numbers. NeurIPS 2018]

[Yuanyuan Tian, Shirish Tatikonda, Berthold
Reinwald: Scalable and Numerically Stable

Descriptive Statistics in SystemML. ICDE 2012]

uak+: 5.000000005E17 //sum(seq(1,1e9))
ua+: 5.0000000109721722E17
ua+: 5.0000000262154688E17 //rev

Presenter
Presentation Notes
Note: reproducibility of example Kahan addition
n = 1e9
x1 = seq(1,n);
x2 = seq(n,1);
ones = matrix(1,n,1)
print("baseline: "+(n*(n+1)/2));
print("agg1 : "+as.scalar(t(ones)%*%x1));
print("agg2 : "+as.scalar(t(ones)%*%x2));
print("kagg1 : "+sum(x1));
print("kagg2 : "+sum(x2));

36

706.550 Architecture of Machine Learning Systems – 08 Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Low and Ultra-low FP Precision – New Datatypes
 Google bfloat16

 “Brain” Float16 w/ range of FP32
 Drop in replacement for FP32,

no need for loss scaling

 Intel FlexPoint
 Blocks of values w/ shared exponent

(N=16bit w/ M=5bit exponent)
 Example: flex16+5

 NVIDIA TF32
 Range of FP32

w/ precision of FP16

Lossy and Lossless Compression

[Brennan Saeta: Training
Performance A user’s guide to

converge faster, TF Dev Summit 2018]

[Urs Köster et al.: Flexpoint: An Adaptive
Numerical Format for Efficient Training of

Deep Neural Networks. NeurIPS 2017]

[NVIDIA A100 Tensor Core GPU
Architecture - UNPRECEDENTED
ACCELERATION AT EVERY SCALE,

Whitepaper, Aug 2020]

37

706.550 Architecture of Machine Learning Systems – 08 Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Fixed-Point Arithmetic
 Motivation

 Forward-pass for model scoring (inference) can be done in UINT8 and below
 Static, dynamic, and learned quantization schemes (weights and inputs)

 Quantization (reduce value domain)
 Split value domain into N buckets

such that k = log2 N can encode the data
 a) Static Quantization (e.g., min/max)

per tensor or per tensor channel

 b) Learned Quantization Schemes
 Dynamic programming
 Various heuristics
 Example systems:

ZipML, SketchML

Lossy and Lossless Compression

[Hantian Zhang, Jerry Li, Kaan Kara, Dan Alistarh, Ji Liu, Ce
Zhang: ZipML: Training Linear Models with End-to-End Low

Precision, and a Little Bit of Deep Learning. ICML 2017]

[https://blog.tensorflow.org/2020/04/
quantization-aware-training-with-tensorflow-

model-optimization-toolkit.html]

Recommended “Reading”
[Inside TensorFlow: Model Optimization Toolkit

(Quantization and Pruning), YouTube, 2020]

https://blog.tensorflow.org/2020/04/quantization-aware-training-with-tensorflow-model-optimization-toolkit.html

38

706.550 Architecture of Machine Learning Systems – 08 Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Other Lossy Techniques
 #1 Sparsification/Pruning (reduce #non-zeros)

 Value clipping: zero-out very small values
below a threshold to reduce size of weights

 Training w/ target sparsity: remove connections

 #2 Mantissa Truncation
 Truncate m of FP32 from 23bit to 16bit
 E.g., TensorFlow (transfers), PStore

 #3 Aggregated Data Representations
 a) Dim reduction (e.g., auto encoders)
 b) No FK-PK joins in Factorized Learning

(foreign key as lossy compressed rep)

 #4 Sampling
 User specifies approximation contract for

error (regression/classification) and scale
 Min sample size for max likelihood estimators

Lossy and Lossless Compression

[Yongjoo Park et al: BlinkML:
Efficient Maximum Likelihood
Estimation with Probabilistic
Guarantees. SIGMOD 2019]

Sparse Accuracy NNZ
78.1% @ sp=1.0 27.1M
78.0% @ sp=0.5 13.6M

76.1% @ sp=0.25 6.8M
74.6% @ sp=0.125 3.3M

[Amir Ilkhechi et al: DeepSqueeze:
Deep Semantic Compression for

Tabular Data, SIGMOD 2020]

[Arun Kumar et al: To Join or Not to
Join?: Thinking Twice about Joins before

Feature Selection. SIGMOD 2016]

[Souvik Bhattacherjee et al: PStore: an
efficient storage framework for

managing scientific data. SSDBM 2014]

[https://blog.tensorflow.org/2019/05/tf-
model-optimization-toolkit-pruning-API.html]

https://blog.tensorflow.org/2019/05/tf-model-optimization-toolkit-pruning-API.html

39

706.550 Architecture of Machine Learning Systems – 08 Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

Summary and Conclusions
 Motivation, Background, and Overview
 Caching, Partitioning, and Indexing
 Lossy and Lossless Compression

 Next Lectures
 09 Data Acquisition, Cleaning, and Preparation [May 20]
 May 26/27: Ascension Day (Christi Himmelfahrt) + “Rektorstag”
 10 Model Selection and Management [Jun 03]
 11 Model Debugging, Fairness, Explainability [Jun 10]
 12 Model Serving Systems and Techniques [Jun 17, Arnab]

(Part B:
ML Lifecycle

Systems)

High Impact on
Performance/Energy

	Architecture of ML Systems�08 Data Access Methods
	Announcements/Org
	Categories of Execution Strategies
	Agenda
	Motivation, Background, and �Overview
	Motivation: Data Characteristics
	Recap: Matrix Formats
	Recap: Distributed Matrix Representations
	Overview Data Access Methods
	Caching, Partitioning, and �Indexing
	Buffer Pool Management
	Scan Sharing
	In-Memory Partitioning (NUMA-aware)
	Distributed Partitioning
	Recap: B-Tree Overview
	Recap: B-Tree Overview, cont.
	Linearized Array B-Tree (LAB-Tree)
	Adaptive Tile (AT) Matrix
	TileDB Storage Manager
	Pipelining for Mini-batch Algorithms
	Lossy and Lossless Compression
	Recap: Database Compression Schemes
	Overview Lossless Compression Techniques
	CLA: Compressed Linear Algebra
	CLA: Compressed Linear Algebra, cont. (2)
	CLA: Compressed Linear Algebra, cont. (3)
	CLA: Compressed Linear Algebra, cont. (4)
	CLA: Compressed Linear Algebra, cont. (5)
	Compressed Linear Algebra Extended
	Block-level Compression w/ D-VI, CSR-VI, CSX
	Tuple-oriented Compression (TOC)
	Tuple-oriented Compression (TOC), cont.
	Lossy Compression
	Low and Ultra-low FP Precision
	Low and Ultra-low FP Precision, cont.
	Low and Ultra-low FP Precision – New Datatypes
	Fixed-Point Arithmetic
	Other Lossy Techniques
	Summary and Conclusions

