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Announcements/Org
 #1 Video Recording 

 Link in TeachCenter & TUbe (lectures will be public)
 Hybrid: HSi13 / https://tugraz.webex.com/meet/m.boehm
 Apr 25: no more COVID restrictions at TU Graz

 #2 GitTables (Uni Amsterdam)
 Corpus with >1M relational tables
 Annotated syntactic and semantic types
 https://gittables.github.io/

 #3 CS Talks
 Eva Galperin (Director of Cybersecurity at EFF):

Who Deserves Cybersecurity
 Aula Alte Technik; Jun 07, 5.30pm

https://tugraz.webex.com/meet/m.boehm
https://gittables.github.io/
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Categories of Execution Strategies
Motivation and Terminology

07 Hybrid Execution and HW Accelerators

05a Data-Parallel 
Execution

05b Task-Parallel 
Execution

06 Parameter Servers 
(data, model) 

Mini-batchBatch 
SIMD/SPMD

Batch/Mini-batch, 
Independent Tasks 

MIMD

08 Caching, Partitioning, Indexing, and Compression
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Agenda
 Motivation, Background, and Overview
 Caching, Partitioning, and Indexing
 Lossy and Lossless Compression

Iterative, I/O-bound ML 
algorithms  Data access 

crucial for performance

while(!converged) {
… q = X %*% v …    

}

X

Data Weights

Presenter
Presentation Notes
Note: 
 * train -> data read-only, weights updated
 * score -> stream of new data, weights read-only 
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Motivation, Background, and 
Overview
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Motivation: Data Characteristics
 Tall and Skinny 

(#rows >> #cols)

 Non-Uniform 
Sparsity 

 Small Column 
Cardinalities

 Small Val Range

 Column 
Correlations
(on census:
12.8x  35.7x)

Motivation, Background, and Overview

Covtype Mnist8mImageNet

Higgs Census

Presenter
Presentation Notes
Note: small column cardinalities (e.g., categorical, dummy-coded)
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Recap: Matrix Formats
 Matrix Block (m x n)

 A.k.a. tiles/chunks, most operations defined here
 Local matrix: single block, different representations

 Common Block Representations
 Dense (linearized arrays)
 MCSR (modified CSR)
 CSR (compressed sparse rows), CSC
 COO (Coordinate matrix)

Motivation, Background, and Overview

.7 .1

.2 .4
.3

Example 
3x3 Matrix

.7 0 .1 .2 .4 0 0 .3 0
Dense (row-major)

.7

.1

.2

.4

.3

0
2
0
1
1

0
2
4
5

CSR

.7

.1

.2

.4

.3

0
2
0
1
1

COO

0
0
1
1
2

.7 .1
2

MCSR

0

.2 .4
10

.3
1O(mn)

O(m + nnz(X)) O(nnz(X))
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Recap: Distributed Matrix Representations
 Collection of “Matrix Blocks” (and keys)

 Bag semantics (duplicates, unordered)
 Logical (Fixed-Size) Blocking 

+ join processing / independence
- (sparsity skew)

 E.g., SystemDS on Spark:
JavaPairRDD<MatrixIndexes,MatrixBlock>

 Blocks encoded independently (dense/sparse)

 Partitioning
 Logical Partitioning 

(e.g., row-/column-wise)
 Physical Partitioning

(e.g., hash / grid)

Motivation, Background, and Overview

Logical Blocking 
3,400x2,700 Matrix 

(w/ Bc=1,000)

Physical 
Blocking and 
Partitioning 



9

706.550 Architecture of Machine Learning Systems – 08 Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022 

Overview Data Access Methods
 #1 (Distributed) Caching

 Keep read only feature matrix in (distributed) memory

 #2 Buffer Pool Management
 Graceful eviction of intermediates, out-of-core ops

 #3 Scan Sharing (and operator fusion)
 Reduce the number of scans as well as read/writes

 #4 NUMA-Aware Partitioning and Replication
 Matrix partitioning / replication  data locality

 #5 Index Structures
 Out-of-core data, I/O-aware ops, updates

 #6 Compression
 Fit larger datasets into available memory

Motivation, Background, and Overview

Node1 Node2

Socket1 Socket2
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Caching, Partitioning, and 
Indexing

#2 Buffer Pool Management
#3 Scan Sharing (and operator fusion)

#4 NUMA-Aware Partitioning and Replication
#5 Index Structures
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Buffer Pool Management
 #1 Classic Buffer Management (SystemDS)

 Hybrid plans of in-memory and distributed ops
 Graceful eviction of intermediate variables

 #2 Algorithm-Specific Buffer Management
 Operations/algorithms over out-of-core matrices and factor graphs
 Examples: RIOT [CIDR’2009] (ops), Elementary [SIGMOD’13] (factor graphs)

Caching, Partitioning, and Indexing
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Scan Sharing
 #1 Batching

 One-pass evaluation of multiple configurations
 Use cases: EL, CV, feature selection,

hyper parameter tuning, multi-user scoring
 E.g.: TUPAQ [SoCC’16], Columbus [SIGMOD’14]

 #2 Fused Operator DAGs
 Avoid unnecessary scans, (e.g., mmchain)
 Avoid unnecessary writes / reads 
 Multi-aggregates, redundancy
 E.g.: SystemML codegen [PVLDB’18]

 #3 Runtime Piggybacking
 Merge concurrent data-parallel jobs
 “Wait-Merge-Submit-Return”-loop
 E.g.: SystemML parfor [PVLDB’14] 

Caching, Partitioning, and Indexing

Xm

n

k

O(m*n) 
read

O(m*n*k) 
compute

m >> n >> k

parfor( i in 1:numModels )
while( !converged )

q = X %*% v; ...

X Y

b(*)u(^2) u(^2)

sumsum sum
Multi-Aggregate

a = sum(X^2)
b = sum(X*Y)
c = sum(Y^2)



13

706.550 Architecture of Machine Learning Systems – 08 Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022 

In-Memory Partitioning (NUMA-aware)
 NUMA-Aware Model and Data Replication

 Model Replication (06 Parameter Servers)
 PerCore (BSP epoch), PerMachine

(Hogwild!), PerNode (hybrid)
 Data Replication

 Partitioning (sharding)
 Full replication

 AT MATRIX (Adaptive Tile Matrix)
 Recursive NUMA-aware partitioning 

into dense/sparse tiles
 Inter-tile (worker teams) and intra-tile 

(threads in team) parallelization
 Job scheduling framework from SAP HANA 

(horizontal range partitioning, socket-local 
queues with task-stealing)

Caching, Partitioning, and Indexing

Machine
Node 1
C1 C2

RAM

Node 2
C3 C4

RAM

[Ce Zhang, Christopher Ré: 
DimmWitted: A Study of 
Main-Memory Statistical 

Analytics. PVLDB 2014]

[David Kernert, Wolfgang Lehner, 
Frank Köhler: Topology-aware 

optimization of big sparse matrices 
and matrix multiplications on main-

memory systems. ICDE 2016]
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Distributed Partitioning
 Spark RDD Partitioning

 Implicitly on every data shuffling
 Explicitly via R.repartition(n)

 Distributed Joins
 R3 = R1.join(R2)

 Single-Key Lookups v = C.lookup(k)
 Without partitioning: scan all keys (reads/deserializes out-of-core data)
 With partitioning: lookup partition, scan keys of partition

 Multi-Key Lookups
 Without partitioning: 

scan all keys
 With partitioning: 

lookup relevant partitions

Caching, Partitioning, and Indexing

Example Hash Partitioning:
For all (k,v) of R: 

hash(k) % numPartitions pid

0: 8, 1, 6

1: 7, 5

2: 2, 3, 4

0: 1, 2

1: 5, 6

2: 3, 4

0: 3, 6

1: 4, 7, 1

2: 2, 5, 8

0: 6, 3

1: 4, 1

2: 5, 2

//build hashset of required partition ids
HashSet<Integer> flags = new HashSet<>();
for( MatrixIndexes key : filter )

flags.add(partitioner.getPartition(key));

//create partition pruning rdd
ppRDD = PartitionPruningRDD.create(in.rdd(), 

new PartitionPruningFunction(flags));

% 3
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Recap: B-Tree Overview
 History B-Tree

 Bayer and McCreight 1972, Block-based, Balanced, Boeing Labs
 Multiway tree (node size = page size); designed for DBMS
 Extensions: B+-Tree/B*-Tree (data only in leafs, double-linked leaf nodes)

 Definition B-Tree (k, h)
 All paths from root to leafs have equal length h
 All nodes (except root) have [k, 2k] key entries
 All nodes (except root, leafs) have [k+1, 2k+1] successors
 Data is a record or a reference to the record (RID)

Caching, Partitioning, and Indexing

  1
2

1log)1(log 112 +













 +

≤≤+ ++
nhn kk

P0 Key K1 Data D1 P1 Key K2 Data D2 P2 Key K3 Data D3 P3 Key K4 Data D4 P4

Subtree w/ 
K2 < keys ≤ K3

Subtree w/ 
keys ≤ K1

k=2

All nodes adhere 
to max constraints

[Rudolf Bayer, Edward M. McCreight: 
Organization and Maintenance of Large 

Ordered Indices. Acta Inf. (1) 1972]
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Recap: B-Tree Overview, cont. 
 B-Tree Search

 Scan/binary search
within nodes

 Descend along
matching 
key ranges

 B-Tree Insertion
 Insert into leaf nodes
 Split the 2k+1 entries into two leaf nodes

 B-Tree Deletion 
 Lookup key and delete if existing
 Move entry from fullest successor; if underflow merge with sibling

Caching, Partitioning, and Indexing

25

10 20 30 40

2 5 7 8

13 14 15 18

22 24

41 42 45 46

32 35 38

26 27 28
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Linearized Array B-Tree (LAB-Tree)
 Basic Ideas

 B-tree over linearized array representation
(e.g., row-/col-major, Z-order, UDF)

 New leaf splitting strategies; dynamic leaf storage format (sparse and dense)
 Various flushing policies for update batching (all, LRU, smallest page, largest 

page, largest page probabilistically, largest group)

Caching, Partitioning, and Indexing

#1 Example linearized 
storage order

#2 Example linearized 
iterator order

[Yi Zhang, Kamesh Munagala, 
Jun Yang: Storing Matrices on 

Disk: Theory and Practice 
Revisited. PVLDB 2011]
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Adaptive Tile (AT) Matrix
 Basic Ideas

 Two-level blocking and NUMA-aware
range partitioning (tiles, blocks)

 Z-order linearization, and recursive
quad-tree partitioning to find var-sized tiles (tile contains N blocks)

Caching, Partitioning, and Indexing

[David Kernert, Wolfgang Lehner, Frank 
Köhler: Topology-aware optimization of big 
sparse matrices and matrix multiplications 

on main-memory systems. ICDE 2016]

Input Matrix Z-ordering

block tiles

Density Map 
(see sparsity est.)
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TileDB Storage Manager 
 Basic Ideas

 Storage manager for 2D arrays of
different data types (incl. vector, 3D)

 Two-level blocking (space/data tiles), update batching via fragments

Caching, Partitioning, and Indexing

[Stavros Papadopoulos, Kushal Datta, Samuel 
Madden, Timothy G. Mattson: The TileDB

Array Data Storage Manager. PVLDB 2016]

https://docs.tiledb.com

Presenter
Presentation Notes
TileDB Inc startup, $20M funding: TileDB Cloud, a commercial SaaS offering for planet-scale data sharing and serverless distributed computations. 

https://docs.tiledb.com/


20

706.550 Architecture of Machine Learning Systems – 08 Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022 

Pipelining for Mini-batch Algorithms
 Motivation

 Overlap data access and computation in mini-batch algorithms (e.g., DNN)
 Simple pipelining of I/O and compute via queueing / prefetching

 Example TensorFlow
 #1 Queueing 

and Threading

 #2 Dataset API 
Prefetching

 #3 Reuse via 
Data Echoing

Caching, Partitioning, and Indexing

dataset = dataset.batch(batch_size=32)
dataset = dataset.prefetch(buffer_size=1)

[https://www.tensorflow
.org/guide/performance/

datasets]

[https://ai.googleblog.com/
2020/05/speeding-up-neural-

network-training.html]

https://www.tensorflow.org/guide/performance/datasets
https://ai.googleblog.com/2020/05/speeding-up-neural-network-training.html
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Lossy and Lossless Compression
#6 Compression
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Recap: Database Compression Schemes
 Null Suppression

 Compress integers by omitting 
leading zero bytes/bits (e.g., NS, gamma)

 Run-Length Encoding
 Compress sequences of equal values by

runs of (value, start, run length)

 Dictionary Encoding
 Compress column w/ few distinct values

as pos in dictionary ( code size) 

 Delta Encoding
 Compress sequence w/ small changes

by storing deltas to previous value

 Frame-of-Reference Encoding
 Compress values by storing delta to 

reference value (outlier handling)

Lossy and Lossless Compression

00000000 00000000 00000000 01101010

106

11 01101010

1 1 1 1 7 7 7 7 7 3 3 3 3 3 3 ...

1,1,4 7,5,5 3,10,6

1 7 7 3 1 7 1 3 3 7 1 3 3 7 3 ...

1,3,7 dictionary (code size 2 bit)
1 3 3 2 1 3 1 2 2 3 1 2 2 3 2 ...

20 21 22 20 19 18 19 20 21 20 ...
0  1  1 -2 -1 -1  1  1  1 -1...

20 21 22 20 71 70 71 69 70 21 ...

-1  0  1 -1  1  0  1 -1  0 -1 ...
21 70 22
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Overview Lossless Compression Techniques 
 #1 Block-Level General-Purpose Compression

 Heavyweight or lightweight compression schemes
 Decompress matrices block-wise for each operation
 E.g.: Spark RDD compression (Snappy/LZ4), 

SciDB SM [SSDBM’11], TileDB SM [PVLDB’16],
scientific formats NetCDF, HDF5 at chunk granularity

 #2 Block-Level Matrix Compression
 Compress matrix block with homogeneous encoding scheme
 Perform LA ops over compressed representation
 E.g.: CSR-VI (dict) [CF’08], cPLS (grammar) [KDD’16], 

TOC (LZW w/ trie) [SIGMOD’19] 

 #3 Column-Group-Level Matrix Compression
 Compress column groups w/ heterogeneous schemes 
 Perform LA ops over compressed representation
 E.g.: SystemML CLA (RLE, OLE, DDC, UC) [PVLDB’16]

Lossy and Lossless Compression

Storage 
Manager

Mdecompress 
& deserialize

comp. 
M

Dict.

D2D1

comp.
M
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CLA: Compressed Linear Algebra
 Key Idea

 Use lightweight database compression techniques
 Perform LA operations on compressed matrices

 Goals of CLA
 Operations performance close to uncompressed
 Good compression ratios 

Lossy and Lossless Compression

X

while(!converged) {
… q = X %*% v …    

}

[Ahmed Elgohary et al: 
Compressed Linear Algebra 

for Large-Scale Machine 
Learning. PVLDB 2016]

[SIGMOD Record’17, 
VLDBJ’18, CACM’19]
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CLA: Compressed Linear Algebra, cont. (2)
 Overview Compression Framework

 Column-wise matrix compression (values + compressed offsets / references)
 Column co-coding (column groups, encoded as single unit)
 Heterogeneous column encoding formats (w/ dedicated physical encodings) 

 Column Encoding 
Formats
 Offset-List (OLE)
 Run-Length (RLE)
 Dense Dictionary

Coding (DDC)*
 Uncompressed 

Columns (UC)

 Automatic Compression Planning (sampling-based)
 Select column groups and formats per group (data dependent)

Lossy and Lossless Compression

* DDC1/2 
in VLDBJ’18
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CLA: Compressed Linear Algebra, cont. (3)
 Matrix-Vector Multiplication

 Naïve: for each tuple, pre-aggregate values, add values at offsets to q
Example: q = X v, with

 Cache-conscious: Horizontal, 
segment-aligned scans, maintain positions

 Vector-Matrix Multiplication
 Naïve: cache-unfriendly on input (v)
 Cache-conscious: again use horizontal, segment-aligned scans

Lossy and Lossless Compression

9*11=99 0
0
0
0
0
0
0
0
0
0

90.2 55 25 54 6.3 99
99
99
99
0
0

99
99
99
0

99
99
99
99
0

90.2
99
99
99
0

154
99

154
99
0

90.2
99
99

154
0

154
124
154
99
25

90.2
124
124
154
25

154
124
154
153
25

144.2
124
124
154
25

160.3
124

160.3
153
31.3

144.2
124
124

160.3
25

 cache unfriendly 
on output  (q)

9 160.3
133

160.3
162
31.3

153.2
133
124

160.3
34

162.3
134.5
160.4
162.8
32.5
155

133.1
125.8
161.4
34.3

162.3
134.5
160.4
162.8
32.5
155

133.1
125.8
161.4
34.3

v = (7, 11, 1, 3, 2) v = (7, 11, 1, 3, 2) v = (7, 11, 1, 3, 2) v = (7, 11, 1, 3, 2) v = (7, 11, 1, 3, 2) v = (7, 11, 1, 3, 2) 
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CLA: Compressed Linear Algebra, cont. (4)
 Estimating Compressed Size: SC = min(SOLE, SRLE, SDDC)

 # of distinct tuples di: “Hybrid generalized jackknife” estimator [JASA’98] 
 # of non-zero tuples zi: Scale from sample with “coverage” adjustment
 # of runs rij: maxEnt model + independent-interval approx. (~ Ising-Stevens)

 Compression Planning
 #1 Classify compressible columns

 Draw random sample of rows (from transposed X)
 Classify CC and CUC based on estimate compression ratio

 #2 Group compressible columns (exhaustive O(mm), greedy O(m3))
 Bin-packing-based column partitioning
 Greedy grouping per bin w/ pruning and memoization O(m2)

 #3 Compression
 Extract uncompressed offset lists and exact compression ratio
 Graceful corrections and UC group creation

Lossy and Lossless Compression
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CLA: Compressed Linear Algebra, cont. (5)
 Experimental Setup

 LinregCG, 10 iterations (incl. compression), InfiMNIST data generator
 1+6 node cluster (216GB aggregate memory), Spark 2.3, SystemML 1.1

 Open Challenges
 Ultra-sparse datasets, tensors, automatic operator fusion
 Operations beyond matrix-vector/unary, applicability to deep learning?

Lossy and Lossless Compression

Dataset Gzip Snappy CLA
Higgs 1.93 1.38 2.17

Census 17.11 6.04 35.69
Covtype 10.40 6.13 18.19

ImageNet 5.54 3.35 7.34
Mnist8m 4.12 2.60 7.32
Airline78 7.07 4.28 7.44

Compression Ratios

93

2796

6312

147
831

3148

98 477
1085

0

1000

2000

3000

4000

5000

6000

7000

Mnist40m Mnist240m Mnist480m

Uncompressed
Snappy (RDD Compression)
CLA

End-to-End Performance [sec]

90GB 540GB 1.1TB
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Compressed Linear Algebra Extended
 Lossless Matrix Compression

 Improved general applicability (compression time, new compression schemes, 
new kernels, intermediates, workload-aware)

 Sparsity  Redundancy exploitation
(data redundancy, structural redundancy)

 Workload-aware Compression
 Workload summary  compression
 Compression  execution planning

Lossy and Lossless Compression

[under submission]
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Block-level Compression w/ D-VI, CSR-VI, CSX
 CSR-VI (CSR-Value Indexed) / D-VI 

 Create dictionary for distinct values
 Encode 8 byte values as 1, 2, or 4-byte codes

(positions in the dictionary)
 Extensions w/ delta coding of indexes
 Example CSR-VI matrix-vector multiply 

c = A %*% b

Lossy and Lossless Compression

for(int i=0; i<a.nrow; i++) {
int pos = A.rptr[i];
int end = A.rptr[i+1];
for(int k=pos; k<end; k++) 

b[i] += dict[A.val[k]] * b[A.ix[k]];
}

value decoding 
(MV over compressed 

representation)

.7

.1

.2

.4

.3

0
2
0
1
1

0
2
4
5

CSR

[Kornilios Kourtis, Georgios I. Goumas, 
Nectarios Koziris: Optimizing sparse matrix-
vector multiplication using index and value 

compression. CF 2008]
[Vasileios Karakasis et al.: An 

Extended Compression Format for 
the Optimization of Sparse Matrix-

Vector Multiplication. IEEE Trans. 
Parallel Distrib. Syst. 2013]
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Tuple-oriented Compression (TOC)
 Motivation

 DNN and ML often trained
with mini-batch SGD

 Effective compression for small batches (#rows) 

Lossy and Lossless Compression

[Fengan Li, Lingjiao Chen, Yijing Zeng, Arun Kumar, Xi 
Wu, Jeffrey F. Naughton, Jignesh M. Patel: Tuple-
oriented Compression for Large-scale Mini-batch 

Stochastic Gradient Descent, SIGMOD 2019]
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Tuple-oriented Compression (TOC), cont.
 Example 

Compression Ratios

Lossy and Lossless Compression

[Fengan Li, Lingjiao Chen, Yijing Zeng, Arun Kumar, Xi 
Wu, Jeffrey F. Naughton, Jignesh M. Patel: Tuple-
oriented Compression for Large-scale Mini-batch 

Stochastic Gradient Descent, SIGMOD 2019]

Take-away: specialized lossless matrix compression
 reduce memory bandwidth requirements and #FLOPs

dense baseline?
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Lossy Compression
 Overview

 Extensively used in DNN (runtime vs accuracy)  data format + compute
 Careful manual application regarding data and model
 Note: ML algorithms approximate by nature + noise generalization effect

 Background Floating Point Numbers (IEEE 754)
 Sign s, Mantissa m, Exponent e: value = s * m * 2e (simplified)

Lossy and Lossless Compression

Precision Sign Mantissa Exponent

Double (FP64) 1 52 11

Single (FP32) 1 23 8

Half (FP16) 1 10 5

Quarter (FP8) 1 3 4

Half-Quarter (FP4) 1 1 2

[bits]
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Low and Ultra-low FP Precision
 Model Training w/ low FP Precision

 Trend: from FP32/FP16 to FP8
 #1: Precision of intermediates (weights, act, errors, grad)  loss in accuracy 
 #2: Precision of accumulation impact on convergence (swamping s+L)
 #3: Precision of weight updates loss in accuracy

 Example ResNet18 over ImageNet

Lossy and Lossless Compression

see 05 Execution Strategies, SIMD 
 speedup/reduced energy

#1 #2 #3

[Naigang Wang et al.: Training Deep 
Neural Networks with 8-bit Floating 

Point Numbers. NeurIPS 2018]
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Low and Ultra-low FP Precision, cont.
 Numerical Stable Accumulation

 #1 Sorting ASC + Summation
 #2 Kahan Summation

w/ error independent 
of number of values n

 #3 Pairwise Summation
(divide & conquer)

 #4 Chunk-based Accumulation
 Divide long dot products into smaller chunks
 Hierarchy of partial sums  FP16 accumulators

 #5 Stochastic Rounding
 Replace nearest w/ prob. rounding

Lossy and Lossless Compression

sumOld = sum;
sum = sum + (input + corr);
corr = (input + corr) – (sum – sumOld);

[N. Wang et al.: Training 
Deep Neural Networks with 

8-bit Floating Point 
Numbers. NeurIPS 2018]

[Yuanyuan Tian, Shirish Tatikonda, Berthold 
Reinwald: Scalable and Numerically Stable 

Descriptive Statistics in SystemML. ICDE 2012]

uak+: 5.000000005E17 //sum(seq(1,1e9))
ua+:  5.0000000109721722E17
ua+:  5.0000000262154688E17 //rev

Presenter
Presentation Notes
Note: reproducibility of example Kahan addition
n = 1e9
x1 = seq(1,n);
x2 = seq(n,1);
ones = matrix(1,n,1)
print("baseline: "+(n*(n+1)/2));
print("agg1    : "+as.scalar(t(ones)%*%x1));
print("agg2    : "+as.scalar(t(ones)%*%x2));
print("kagg1   : "+sum(x1));
print("kagg2   : "+sum(x2));
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Low and Ultra-low FP Precision – New Datatypes
 Google bfloat16

 “Brain” Float16 w/ range of FP32
 Drop in replacement for FP32, 

no need for loss scaling 

 Intel FlexPoint
 Blocks of values w/ shared exponent 

(N=16bit w/ M=5bit exponent)
 Example: flex16+5

 NVIDIA TF32
 Range of FP32 

w/ precision of FP16

Lossy and Lossless Compression

[Brennan Saeta: Training
Performance A user’s guide to 

converge faster, TF Dev Summit 2018]

[Urs Köster et al.: Flexpoint: An Adaptive 
Numerical Format for Efficient Training of 

Deep Neural Networks. NeurIPS 2017]

[NVIDIA A100 Tensor Core GPU 
Architecture - UNPRECEDENTED 
ACCELERATION AT EVERY SCALE, 

Whitepaper, Aug 2020]
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Fixed-Point Arithmetic
 Motivation

 Forward-pass for model scoring (inference) can be done in UINT8 and below
 Static, dynamic, and learned quantization schemes (weights and inputs)

 Quantization (reduce value domain)
 Split value domain into N buckets 

such that k = log2 N can encode the data
 a) Static Quantization (e.g., min/max) 

per tensor or per tensor channel

 b) Learned Quantization Schemes 
 Dynamic programming
 Various heuristics
 Example systems: 

ZipML, SketchML

Lossy and Lossless Compression

[Hantian Zhang, Jerry Li, Kaan Kara, Dan Alistarh, Ji Liu, Ce 
Zhang: ZipML: Training Linear Models with End-to-End Low 

Precision, and a Little Bit of Deep Learning. ICML 2017]

[https://blog.tensorflow.org/2020/04/
quantization-aware-training-with-tensorflow-

model-optimization-toolkit.html]

Recommended “Reading”
[Inside TensorFlow: Model Optimization Toolkit 

(Quantization and Pruning), YouTube, 2020]

https://blog.tensorflow.org/2020/04/quantization-aware-training-with-tensorflow-model-optimization-toolkit.html
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Other Lossy Techniques
 #1 Sparsification/Pruning (reduce #non-zeros)

 Value clipping: zero-out very small values 
below a threshold to reduce size of weights

 Training w/ target sparsity: remove connections

 #2 Mantissa Truncation
 Truncate m of FP32 from 23bit to 16bit
 E.g., TensorFlow (transfers), PStore

 #3 Aggregated Data Representations
 a) Dim reduction (e.g., auto encoders)
 b) No FK-PK joins in Factorized Learning

(foreign key as lossy compressed rep)

 #4 Sampling
 User specifies approximation contract for 

error (regression/classification) and scale
 Min sample size for max likelihood estimators

Lossy and Lossless Compression

[Yongjoo Park et al: BlinkML: 
Efficient Maximum Likelihood 
Estimation with Probabilistic 
Guarantees. SIGMOD 2019]

Sparse Accuracy NNZ
78.1% @ sp=1.0 27.1M
78.0% @ sp=0.5 13.6M

76.1% @ sp=0.25 6.8M
74.6% @ sp=0.125 3.3M

[Amir Ilkhechi et al: DeepSqueeze: 
Deep Semantic Compression for 

Tabular Data, SIGMOD 2020]

[Arun Kumar et al: To Join or Not to 
Join?: Thinking Twice about Joins before 

Feature Selection. SIGMOD 2016]

[Souvik Bhattacherjee et al: PStore: an 
efficient storage framework for 

managing scientific data. SSDBM 2014]

[https://blog.tensorflow.org/2019/05/tf-
model-optimization-toolkit-pruning-API.html]

https://blog.tensorflow.org/2019/05/tf-model-optimization-toolkit-pruning-API.html
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Summary and Conclusions
 Motivation, Background, and Overview
 Caching, Partitioning, and Indexing
 Lossy and Lossless Compression

 Next Lectures
 09 Data Acquisition, Cleaning, and Preparation [May 20]
 May 26/27: Ascension Day (Christi Himmelfahrt) + “Rektorstag”
 10 Model Selection and Management [Jun 03]
 11 Model Debugging, Fairness, Explainability [Jun 10]
 12 Model Serving Systems and Techniques [Jun 17, Arnab]

(Part B: 
ML Lifecycle 

Systems)

High Impact on 
Performance/Energy
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