

Architecture of ML Systems 08 Data Access Methods

Matthias Boehm

Graz University of Technology, Austria Computer Science and Biomedical Engineering Institute of Interactive Systems and Data Science BMK endowed chair for Data Management

Last update: May 09, 2022

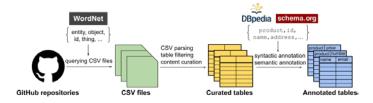
Announcements/Org

#1 Video Recording

- Link in TeachCenter & TUbe (lectures will be public)
- Hybrid: HSi13 / https://tugraz.webex.com/meet/m.boehm
- Apr 25: no more COVID restrictions at TU Graz

#2 GitTables (Uni Amsterdam)

- Corpus with >1M relational tables
- Annotated syntactic and semantic types
- https://gittables.github.io/



#3 CS Talks

- Eva Galperin (Director of Cybersecurity at EFF):
 Who Deserves Cybersecurity
- Aula Alte Technik; Jun 07, 5.30pm

Categories of Execution Strategies

Batch SIMD/SPMD

05_a Data-Parallel Execution

Batch/Mini-batch,
Independent Tasks
MIMD

05_b Task-Parallel Execution

Mini-batch

06 Parameter Servers (data, model)

07 Hybrid Execution and HW Accelerators

08 Caching, Partitioning, Indexing, and Compression

Agenda

- Motivation, Background, and Overview
- Caching, Partitioning, and Indexing
- Lossy and Lossless Compression

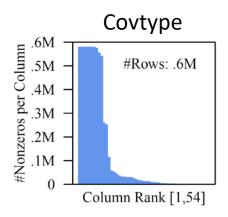
Iterative, I/O-bound ML algorithms → Data access crucial for performance

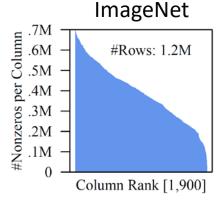
```
while(!converged) {
    ... q = X %*% v ...
}
    Data
Weights
```

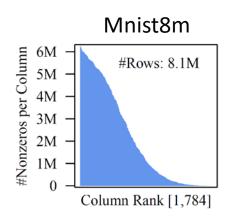

Motivation, Background, and Overview

Motivation: Data Characteristics

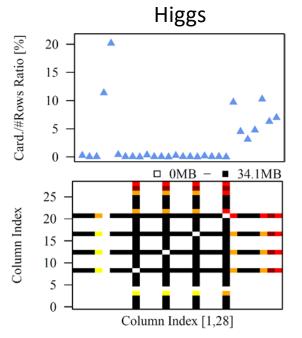
- Tall and Skinny (#rows >> #cols)
- Non-Uniform Sparsity

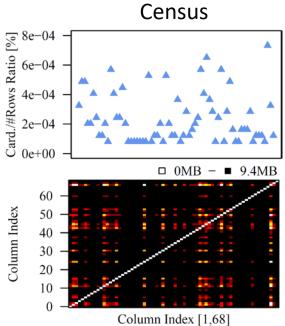






- Small Column Cardinalities
- Small Val Range
- Column Correlations (on census: 12.8x → 35.7x)





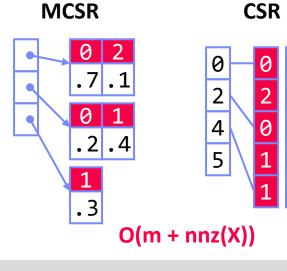
Recap: Matrix Formats

- Matrix Block (m x n)
 - A.k.a. tiles/chunks, most operations defined here
 - Local matrix: single block, different representations
- Common Block Representations
 - Dense (linearized arrays)
 - MCSR (modified CSR)
 - CSR (compressed sparse rows), CSC
 - COO (Coordinate matrix)

Dense (row-major)

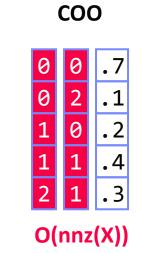
.7 0 .1 .2 .4 0 0 .3 0

O(mn)



Example 3x3 Matrix

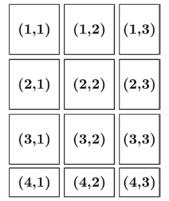




Recap: Distributed Matrix Representations

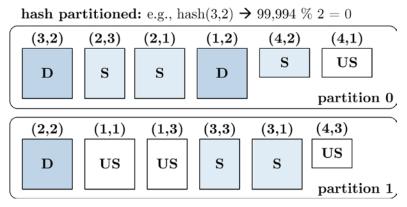
- Collection of "Matrix Blocks" (and keys)
 - Bag semantics (duplicates, unordered)
 - Logical (Fixed-Size) Blocking
 - + join processing / independence
 - (sparsity skew)
 - E.g., SystemDS on Spark: JavaPairRDD<MatrixIndexes,MatrixBlock>
 - Blocks encoded independently (dense/sparse)

Logical Blocking 3,400x2,700 Matrix $(w/B_c=1,000)$



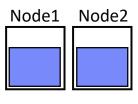
- Partitioning
 - Logical Partitioning (e.g., row-/column-wise)
 - Physical Partitioning (e.g., hash / grid)

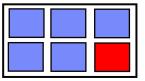
Physical Blocking and Partitioning

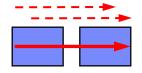


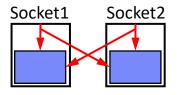
Overview Data Access Methods

- #1 (Distributed) Caching
 - Keep read only feature matrix in (distributed) memory
- #2 Buffer Pool Management
 - Graceful eviction of intermediates, out-of-core ops
- #3 Scan Sharing (and operator fusion)
 - Reduce the number of scans as well as read/writes
- #4 NUMA-Aware Partitioning and Replication
 - Matrix partitioning / replication → data locality
- #5 Index Structures
 - Out-of-core data, I/O-aware ops, updates
- #6 Compression
 - Fit larger datasets into available memory









Caching, Partitioning, and Indexing

#2 Buffer Pool Management

#3 Scan Sharing (and operator fusion)

#4 NUMA-Aware Partitioning and Replication

#5 Index Structures

RDDObject

BroadcastObject

Matrix

Object

Meta

Data

GPUObjects

[MatrixBlock]

acquireRead

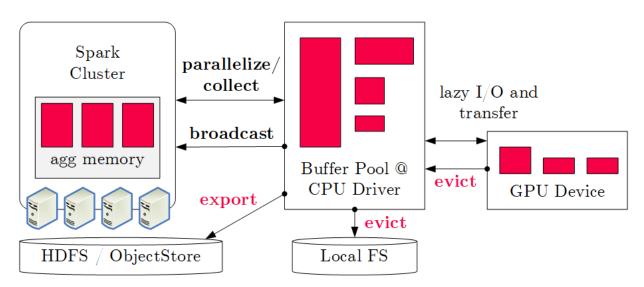
acquireModify

release

exportData

Buffer Pool Management

- #1 Classic Buffer Management (SystemDS)
 - Hybrid plans of in-memory and distributed ops
 - Graceful eviction of intermediate variables



#2 Algorithm-Specific Buffer Management

- Operations/algorithms over out-of-core matrices and factor graphs
- Examples: RIOT [CIDR'2009] (ops), Elementary [SIGMOD'13] (factor graphs)

Scan Sharing

#1 Batching

- One-pass evaluation of multiple configurations
- Use cases: EL, CV, feature selection, hyper parameter tuning, multi-user scoring
- E.g.: TUPAQ [SoCC'16], Columbus [SIGMOD'14]

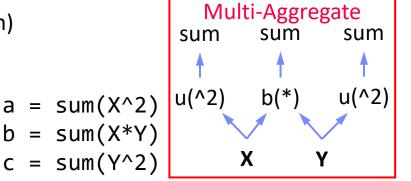
n O(m*n) read O(m*n*k) compute m >> n >> k

#2 Fused Operator DAGs

- Avoid unnecessary scans, (e.g., mmchain)
- Avoid unnecessary writes / reads
- Multi-aggregates, redundancy
- E.g.: SystemML codegen [PVLDB'18]

#3 Runtime Piggybacking

- Merge concurrent data-parallel jobs
- "Wait-Merge-Submit-Return"-loop
- E.g.: SystemML parfor [PVLDB'14]



In-Memory Partitioning (NUMA-aware)

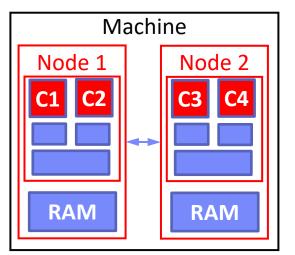
NUMA-Aware Model and Data Replication

- Model Replication (06 Parameter Servers)
 - PerCore (BSP epoch), PerMachine (Hogwild!), PerNode (hybrid)
- Data Replication
 - Partitioning (sharding)
 - Full replication

AT MATRIX (Adaptive Tile Matrix)

- Recursive NUMA-aware partitioning into dense/sparse tiles
- Inter-tile (worker teams) and intra-tile (threads in team) parallelization
- Job scheduling framework from SAP HANA (horizontal range partitioning, socket-local queues with task-stealing)

[Ce Zhang, Christopher Ré: DimmWitted: A Study of Main-Memory Statistical Analytics. **PVLDB 2014**]



[David Kernert, Wolfgang Lehner, Frank Köhler: Topology-aware optimization of big sparse matrices and matrix multiplications on mainmemory systems. **ICDE 2016**]

Distributed Partitioning

- Spark RDD Partitioning
 - Implicitly on every data shuffling
 - Explicitly via R.repartition(n)

Example Hash Partitioning:

For all (k,v) of R: hash(k) % numPartitions → pid

- Distributed Joins
 - R3 = R1.join(R2)

0 : 8, 1, 6 0 : 1, 2	% 3	0: 3, 6	0: 6, 3
2: 2, 3, 4 2: 3, 4		2: 2, 5, 8	2: 5, 2
1 : 7, 5 1 : 5, 6		1: 4, 7, 1	1: 4, 1

- Single-Key Lookups v = C.lookup(k)
 - Without partitioning: scan all keys (reads/deserializes out-of-core data)
 - With partitioning: lookup partition, scan keys of partition
- Multi-Key Lookups
 - Without partitioning: scan all keys
 - With partitioning: lookup relevant partitions

```
//build hashset of required partition ids
HashSet<Integer> flags = new HashSet<>();
for( MatrixIndexes key : filter )
    flags.add(partitioner.getPartition(key));
//create partition pruning rdd
ppRDD = PartitionPruningRDD.create(in.rdd(),
    new PartitionPruningFunction(flags));
```


Recap: B-Tree Overview

[Rudolf Bayer, Edward M. McCreight: Organization and Maintenance of Large Ordered Indices. Acta Inf. (1) 1972]

History B-Tree

- Bayer and McCreight 1972, Block-based, Balanced, Boeing Labs
- Multiway tree (node size = page size); designed for DBMS
- Extensions: B+-Tree/B*-Tree (data only in leafs, double-linked leaf nodes)

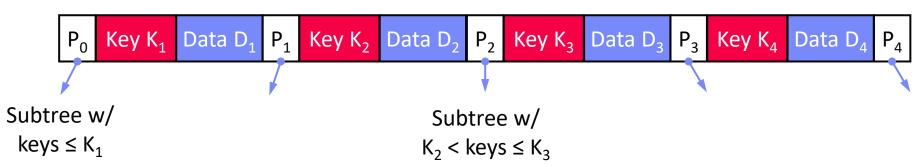
Definition B-Tree (k, h)

- All paths from root to leafs have equal length h
- $\lceil \log_{2k+1}(n+1) \rceil \le h \le \left| \log_{k+1}\left(\frac{n+1}{2}\right) \right| + 1$
- All nodes (except root) have [k, 2k] key entries
- All nodes (except root, leafs) have [k+1, 2k+1] successors

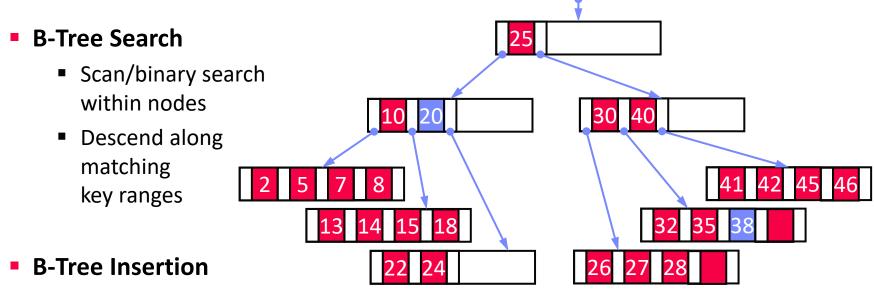
All nodes adhere to max constraints

Data is a record or a reference to the record (RID)

k=2



Recap: B-Tree Overview, cont.



- Insert into leaf nodes
- Split the 2k+1 entries into two leaf nodes

B-Tree Deletion

- Lookup key and delete if existing
- Move entry from fullest successor; if underflow merge with sibling

Linearized Array B-Tree (LAB-Tree)

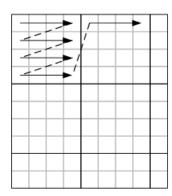
Basic Ideas

 B-tree over linearized array representation (e.g., row-/col-major, Z-order, UDF) [Yi Zhang, Kamesh Munagala, Jun Yang: Storing Matrices on Disk: Theory and Practice Revisited. **PVLDB 2011**]

- New leaf splitting strategies; dynamic leaf storage format (sparse and dense)
- Various flushing policies for update batching (all, LRU, smallest page, largest page, largest page probabilistically, largest group)

#1 Example linearized

storage order

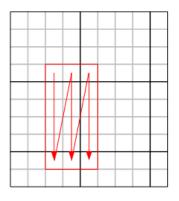


matrix A:

4 x 4 blocking row-major block order row-major cell order

#2 Example linearized

iterator order



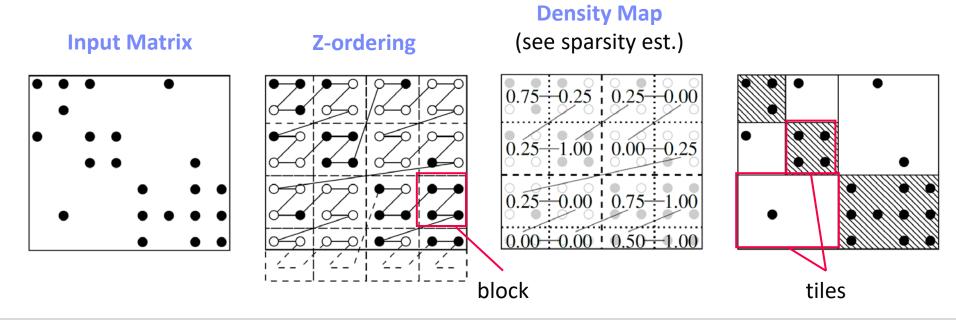
range query A[4:9,3:5] with column-major iterator order

Adaptive Tile (AT) Matrix

[David Kernert, Wolfgang Lehner, Frank Köhler: Topology-aware optimization of big sparse matrices and matrix multiplications on main-memory systems. **ICDE 2016**]

Basic Ideas

- Two-level blocking and NUMA-aware range partitioning (tiles, blocks)
- Z-order linearization, and recursive
 quad-tree partitioning to find var-sized tiles (tile contains N blocks)

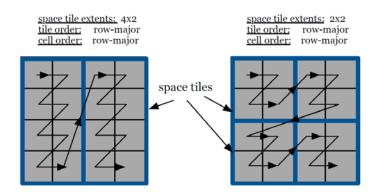


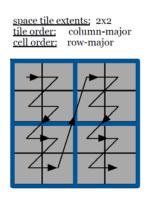
TileDB Storage Manager

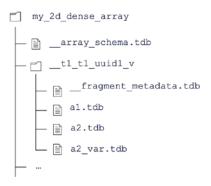
[Stavros Papadopoulos, Kushal Datta, Samuel Madden, Timothy G. Mattson: The TileDB Array Data Storage Manager. **PVLDB 2016**]

Basic Ideas https://docs.tiledb.com

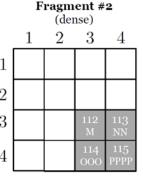
- Storage manager for 2D arrays of different data types (incl. vector, 3D)
- Two-level blocking (space/data tiles), update batching via fragments

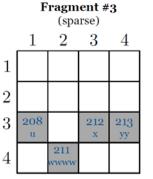


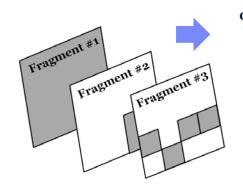




Fragment #1 (dense)					
	1	2	3	4	
1	O a	1 bb	4 e	5 ff	1
2	2 ccc	3 dddd	6 ggg	7 hhhh	2
3	8 i	9 jj	12 m	13 nn	3
4	10 kkk	11 	14 000	15 pppp	4
_	KKK	1111	000	ЬЬЬЬ	







Collective logical array view

	1	2	3	4
1	O	1	4	5
	a	bb	e	ff
2	2	3	6	7
	ccc	dddd	ggg	hhhh
3	208	9	212	213
	u	jj	x	yy
4	10	211	114	115
	kkk	wwww	000	PPPP

Pipelining for Mini-batch Algorithms

- Motivation
 - Overlap data access and computation in mini-batch algorithms (e.g., DNN)
 - → Simple pipelining of I/O and compute via queueing / prefetching
- Example TensorFlow
 - #1 Queueing and Threading

CPU	Prepare 1	idle	Prepare 2	idle	Prepare 3	idle
GPU/TPU	idle	Train 1	idle	Train 2	idle	Train 3

time

#2 Dataset API Prefetching

dataset = dataset.batch(batch_size=32)
dataset = dataset.prefetch(buffer_size=1)

CPU	Prepare 1	Prepare 2	Prepare 3	Prepare 4
GPU/TPU	idle	Train 1	Train 2	Train 3

#3 Reuse viaData Echoing

[https://ai.googleblog.com/ 2020/05/speeding-up-neuralnetwork-training.html]

Lossy and Lossless Compression

#6 Compression

Recap: Database Compression Schemes

Null Suppression

 Compress integers by omitting leading zero bytes/bits (e.g., NS, gamma) 106 00000000 00000000 00000000 **01101010** 11 **01101010**

Run-Length Encoding

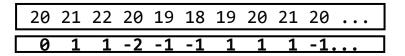
 Compress sequences of equal values by runs of (value, start, run length)

Dictionary Encoding

 Compress column w/ few distinct values as pos in dictionary (→ code size)

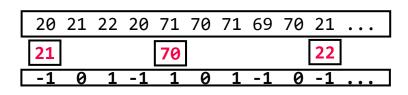
Delta Encoding

 Compress sequence w/ small changes by storing deltas to previous value



Frame-of-Reference Encoding

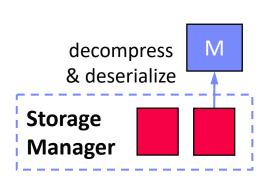
 Compress values by storing delta to reference value (outlier handling)



Overview Lossless Compression Techniques

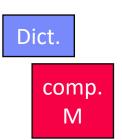
#1 Block-Level General-Purpose Compression

- Heavyweight or lightweight compression schemes
- Decompress matrices block-wise for each operation
- E.g.: Spark RDD compression (Snappy/LZ4),
 SciDB SM [SSDBM'11], TileDB SM [PVLDB'16],
 scientific formats NetCDF, HDF5 at chunk granularity



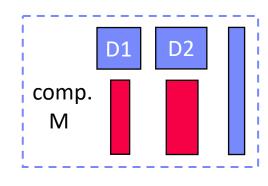
#2 Block-Level Matrix Compression

- Compress matrix block with homogeneous encoding scheme
- Perform LA ops over compressed representation
- E.g.: CSR-VI (dict) [CF'08], cPLS (grammar) [KDD'16],
 TOC (LZW w/ trie) [SIGMOD'19]



#3 Column-Group-Level Matrix Compression

- Compress column groups w/ heterogeneous schemes
- Perform LA ops over compressed representation
- E.g.: SystemML CLA (RLE, OLE, DDC, UC) [PVLDB'16]



CLA: Compressed Linear Algebra

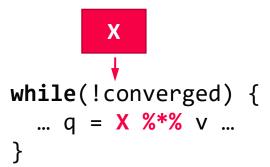
Key Idea

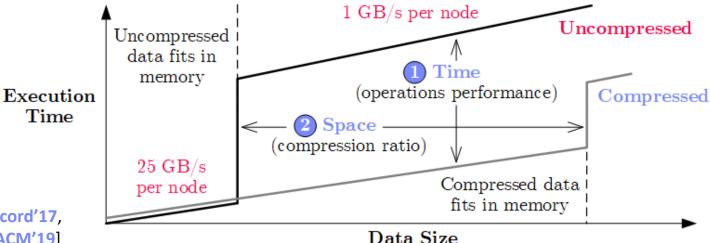
- Use lightweight database compression techniques
- Perform LA operations on compressed matrices

Goals of CLA

- Operations performance close to uncompressed
- Good compression ratios

[Ahmed Elgohary et al: Compressed Linear Algebra for Large-Scale Machine Learning. **PVLDB 2016**]





[SIGMOD Record'17, VLDBJ'18, CACM'19]

UC(5)

0.99

0.73

0.05

0.42

0.61

0.89

0.07

0.92

0.54

0.16

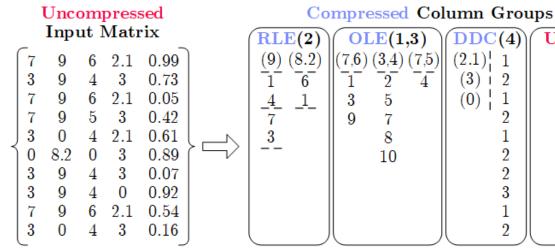
(0)

CLA: Compressed Linear Algebra, cont. (2)

- **Overview Compression Framework**
 - Column-wise matrix compression (values + compressed offsets / references)
 - Column co-coding (column groups, encoded as single unit)
 - Heterogeneous column encoding formats (w/ dedicated physical encodings)

Column Encoding **Formats**

- Offset-List (OLE)
- Run-Length (RLE)
- Dense Dictionary Coding (DDC)*
- Uncompressed Columns (UC)



* DDC1/2 in VLDBJ'18

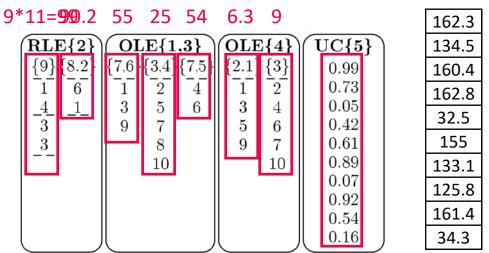
- **Automatic Compression Planning (sampling-based)**
 - Select column groups and formats per group (data dependent)

CLA: Compressed Linear Algebra, cont. (3)

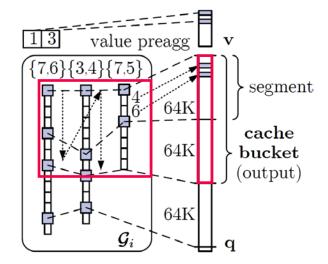
Matrix-Vector Multiplication

Naïve: for each tuple, pre-aggregate values, add values at offsets to q

Example: q = X v, with v = (7, 11, 1, 3, 2)



 Cache-conscious: Horizontal, segment-aligned scans, maintain positions cache unfriendly on output (q)

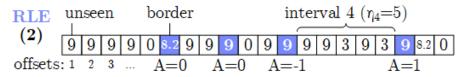


Vector-Matrix Multiplication

- Naïve: cache-unfriendly on input (v)
- Cache-conscious: again use horizontal, segment-aligned scans

CLA: Compressed Linear Algebra, cont. (4)

- Estimating Compressed Size: S^C = min(S^{OLE}, S^{RLE}, S^{DDC})
 - # of distinct tuples d_i: "Hybrid generalized jackknife" estimator [JASA'98]
 - # of non-zero tuples z_i: Scale from sample with "coverage" adjustment
 - # of runs r_{ii}: maxEnt model + independent-interval approx. (~ Ising-Stevens)



Compression Planning

- #1 Classify compressible columns
 - Draw random sample of rows (from transposed X)
 - Classify C^C and C^{UC} based on estimate compression ratio
- #2 Group compressible columns (exhaustive O(m^m), greedy O(m³))
 - Bin-packing-based column partitioning
 - Greedy grouping per bin w/ pruning and memoization O(m²)
- #3 Compression
 - Extract uncompressed offset lists and exact compression ratio
 - Graceful corrections and UC group creation

CLA: Compressed Linear Algebra, cont. (5)

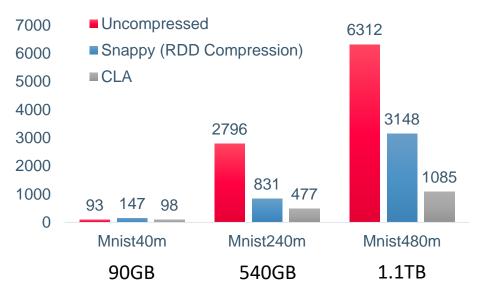
Experimental Setup

- LinregCG, 10 iterations (incl. compression), InfiMNIST data generator
- 1+6 node cluster (216GB aggregate memory), Spark 2.3, SystemML 1.1

Compression Ratios

Dataset	Gzip	Snappy	CLA
Higgs	1.93	1.38	2.17
Census	17.11	6.04	35.69
Covtype	10.40	6.13	18.19
ImageNet	5.54	3.35	7.34
Mnist8m	4.12	2.60	7.32
Airline78	7.07	4.28	7.44

End-to-End Performance [sec]



Open Challenges

- Ultra-sparse datasets, tensors, automatic operator fusion
- Operations beyond matrix-vector/unary, applicability to deep learning?

Compressed Linear Algebra Extended

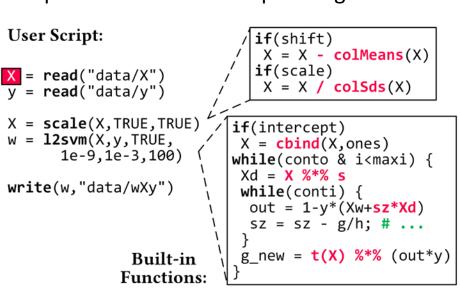
[under submission]

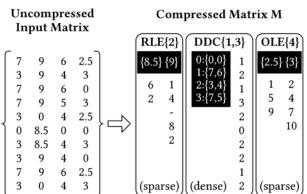
Lossless Matrix Compression

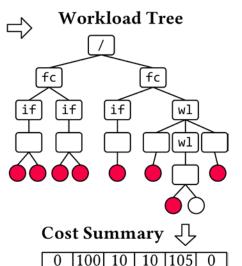
- Improved general applicability (compression time, new compression schemes, new kernels, intermediates, workload-aware)
 Uncompressed Compressed Matrix M
- Sparsity → Redundancy exploitation (data redundancy, structural redundancy)

Workload-aware Compression

- Workload summary → compression
- Compression → execution planning







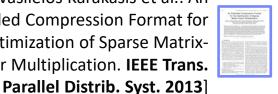
Block-level Compression w/ D-VI, CSR-VI, CSX

- CSR-VI (CSR-Value Indexed) / D-VI
 - Create dictionary for distinct values
 - Encode 8 byte values as 1, 2, or 4-byte codes (positions in the dictionary)
 - Extensions w/ delta coding of indexes
 - Example CSR-VI matrix-vector multiply c = A % * % b

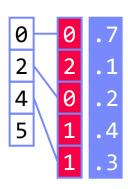
```
for(int i=0; i<a.nrow; i++) {</pre>
   int pos = A.rptr[i];
   int end = A.rptr[i+1];
   for(int k=pos; k<end; k++)</pre>
      b[i] += dict[A.val[k]] * b[A.ix[k]];
                 value decoding
```

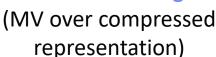
[Kornilios Kourtis, Georgios I. Goumas, Nectarios Koziris: Optimizing sparse matrixvector multiplication using index and value compression. CF 2008]

[Vasileios Karakasis et al.: An **Extended Compression Format for** the Optimization of Sparse Matrix-Vector Multiplication. IEEE Trans.



CSR





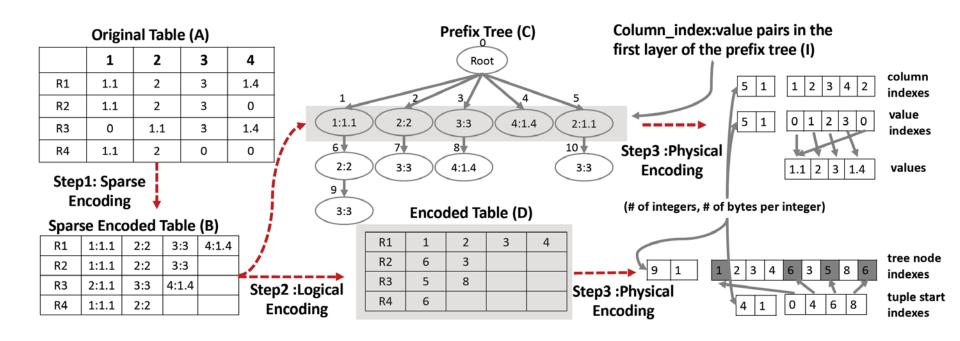
Tuple-oriented Compression (TOC)

Motivation

DNN and ML often trained with mini-batch SGD

[Fengan Li, Lingjiao Chen, Yijing Zeng, Arun Kumar, Xi Wu, Jeffrey F. Naughton, Jignesh M. Patel: Tupleoriented Compression for Large-scale Mini-batch Stochastic Gradient Descent, **SIGMOD 2019**]

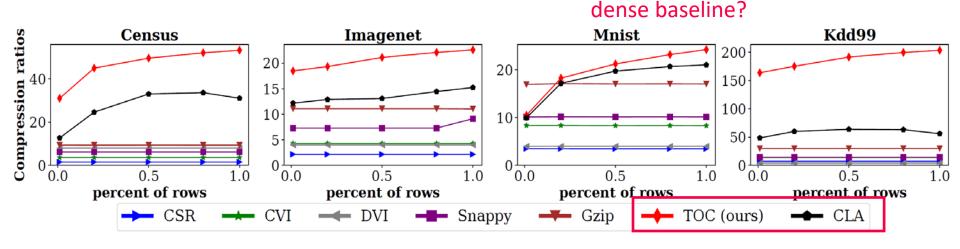
Effective compression for small batches (#rows)



Tuple-oriented Compression (TOC), cont.

ExampleCompression Ratios

[Fengan Li, Lingjiao Chen, Yijing Zeng, Arun Kumar, Xi Wu, Jeffrey F. Naughton, Jignesh M. Patel: Tuple-oriented Compression for Large-scale Mini-batch Stochastic Gradient Descent, **SIGMOD 2019**]



Take-away: specialized lossless matrix compression

→ reduce memory bandwidth requirements and #FLOPs

Lossy Compression

Overview

- Extensively used in DNN (runtime vs accuracy) → data format + compute
- Careful manual application regarding data and model
- Note: ML algorithms approximate by nature + noise generalization effect

Background Floating Point Numbers (IEEE 754)

Sign s, Mantissa m, Exponent e: value = s * m * 2e (simplified)

Precision	Sign	Mantissa	Exponent	
Double (FP64)	1	52	11	[bits]
Single (FP32)	1	23	8	
Half (FP16)	1	10	5	
Quarter (FP8)	1	3	4	
Half-Quarter (FP4)	1	1	2	

Low and Ultra-low FP Precision

Model Training w/ low FP Precision

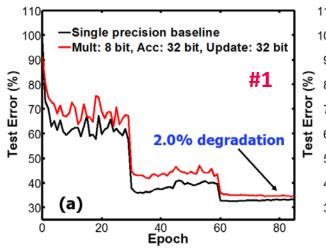
see 05 Execution Strategies, SIMD

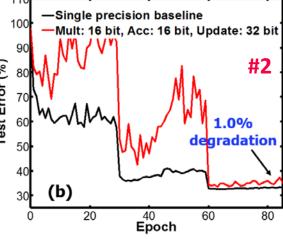
→ speedup/reduced energy

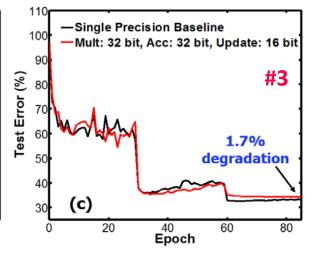
- Trend: from FP32/FP16 to FP8
- #1: Precision of intermediates (weights, act, errors, grad) → loss in accuracy
- #2: Precision of accumulation → impact on convergence (swamping s+L)
- #3: Precision of weight updates → loss in accuracy

Example ResNet18 over ImageNet

[Naigang Wang et al.: Training Deep Neural Networks with **8-bit** Floating Point Numbers. **NeurIPS 2018**]







Low and Ultra-low FP Precision, cont.

Numerical Stable Accumulation

#1 Sorting ASC + Summation

[Yuanyuan Tian, Shirish Tatikonda, Berthold Reinwald: Scalable and Numerically Stable Descriptive Statistics in SystemML. ICDE 2012]

#2 Kahan Summation w/ error independent of number of values n

```
sumOld = sum;
sum = sum + (input + corr);
corr = (input + corr) - (sum - sumOld);
```


uak+: 5.000000005E17 //sum(seq(1,1e9)) 5.000000109721722E17 ua+:

5.0000000262154688E17 //rev ua+:

#3 Pairwise Summation (divide & conquer)

#4 Chunk-based Accumulation

- Divide long dot products into smaller chunks
- Hierarchy of partial sums → FP16 accumulators

[N. Wang et al.: Training Deep Neural Networks with **8-bit** Floating Point Numbers. NeurIPS 2018]

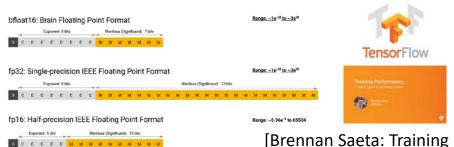
#5 Stochastic Rounding

Replace nearest w/ prob. rounding

$$Round(x) = \begin{cases} s \cdot 2^e \cdot (1 + \lfloor m \rfloor + \epsilon) & \text{with probability } \frac{m - \lfloor m \rfloor}{\epsilon}, \\ s \cdot 2^e \cdot (1 + \lfloor m \rfloor) & \text{with probability } 1 - \frac{m - \lfloor m \rfloor}{\epsilon}, \end{cases}$$

Low and Ultra-low FP Precision – New Datatypes

- Google bfloat16
 - "Brain" Float16 w/ range of FP32
 - Drop in replacement for FP32, no need for loss scaling



Performance A user's guide to

converge faster, **TF Dev Summit 2018**]

- Intel FlexPoint
 - Blocks of values w/ shared exponent (N=16bit w/ M=5bit exponent)
 - Example: flex16+5

[Urs Köster et al.: Flexpoint: An Adaptive Numerical Format for Efficient Training of Deep Neural Networks. NeurIPS 2017]



- **NVIDIA** TF32
 - Range of FP32 w/ precision of FP16

[NVIDIA A100 Tensor Core GPU Architecture - UNPRECEDENTED ACCELERATION AT EVERY SCALE, Whitepaper, Aug 2020

Fixed-Point Arithmetic

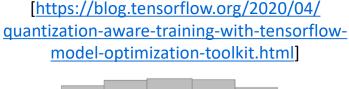
Recommended "Reading"

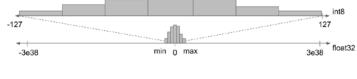
[Inside TensorFlow: Model Optimization Toolkit (Quantization and Pruning), YouTube, 2020]

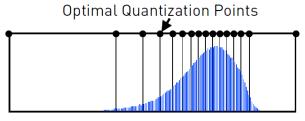
Motivation

- Forward-pass for model scoring (inference) can be done in UINT8 and below
- Static, dynamic, and learned quantization schemes (weights and inputs)
- Quantization (reduce value domain)
 - Split value domain into N buckets such that k = log₂ N can encode the data
 - a) Static Quantization (e.g., min/max)
 per tensor or per tensor channel
 - b) Learned Quantization Schemes
 - Dynamic programming
 - Various heuristics
 - Example systems: ZipML, SketchML

[Hantian Zhang, Jerry Li, Kaan Kara, Dan Alistarh, Ji Liu, Ce Zhang: ZipML: Training Linear Models with End-to-End Low Precision, and a Little Bit of Deep Learning. ICML 2017]







Other Lossy Techniques

[https://blog.tensorflow.org/2019/05/tf-model-optimization-toolkit-pruning-API.html]

- #1 Sparsification/Pruning (reduce #non-zeros)
 - Value clipping: zero-out very small values below a threshold to reduce size of weights
 - Training w/ target sparsity: remove connections

Sparse Accuracy	NNZ
78.1% @ sp=1.0	27.1M
78.0% @ sp=0.5	13.6M
76.1% @ sp=0.25	6.8M
74.6% @ sp=0.125	3.3M

#2 Mantissa Truncation

- Truncate m of FP32 from 23bit to 16bit
- E.g., TensorFlow (transfers), PStore

#3 Aggregated Data Representations

- a) Dim reduction (e.g., auto encoders)
- b) No FK-PK joins in Factorized Learning (foreign key as lossy compressed rep)

#4 Sampling

- User specifies approximation contract for error (regression/classification) and scale
- Min sample size for max likelihood estimators

[Souvik Bhattacherjee et al: PStore: an efficient storage framework for managing scientific data. **SSDBM 2014**]

[Amir Ilkhechi et al: DeepSqueeze: Deep Semantic Compression for Tabular Data, **SIGMOD 2020**]

[Arun Kumar et al: To Join or Not to Join?: Thinking Twice about Joins before Feature Selection. **SIGMOD 2016**]

[Yongjoo Park et al: BlinkML: Efficient Maximum Likelihood Estimation with Probabilistic Guarantees. **SIGMOD 2019**]

Summary and Conclusions

- Motivation, Background, and Overview
- Caching, Partitioning, and Indexing
- Lossy and Lossless Compression

High Impact on Performance/Energy

Next Lectures

- 09 Data Acquisition, Cleaning, and Preparation [May 20]
- May 26/27: Ascension Day (Christi Himmelfahrt) + "Rektorstag"
- 10 Model Selection and Management [Jun 03]
- 11 Model Debugging, Fairness, Explainability [Jun 10]
- 12 Model Serving Systems and Techniques [Jun 17, Arnab]

(**Part B:**ML Lifecycle
Systems)

