TU

Grazm

SCIENCE
PASSION
TECHNOLOGY

Architecture of ML Systems
08 Data Access Methods

Matthias Boehm

Graz University of Technology, Austria

Computer Science and Biomedical Engineering
Institute of Interactive Systems and Data Science
BMK endowed chair for Data Management

PUBLIC
DOMAIN

Last update: May 09, 2022 “ISDS

Ty

Announcements/Org

= #1 Video Recording G TU be

= Link in TeachCenter & TUbe (lectures will be public)

st]uet],
= Hybrid: HSi13 / https://tugraz.webex.com/meet/m.boehm cisco Webex
= Apr 25: no more COVID restrictions at TU Graz

= #2 GitTables (Uni Amsterdam)
= Corpus with >1M relational tables = ey
= Annotated syntactic and semantic types O‘ﬁ? v FEE
= https://gittables.github.io/

= #3 CS Talks

= Eva Galperin (Director of Cybersecurity at EFF):
Who Deserves Cybersecurity

= Aula Alte Technik; Jun 07, 5.30pm

706.550 Architecture of Machine Learning Systems — 08 Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

https://tugraz.webex.com/meet/m.boehm
https://gittables.github.io/

Motivation and Terminology ﬁ-le-rg.

Categories of Execution Strategies

Batch/Mini-batch,
Batch Independent Tasks Mini-batch
SIMD/SPMD MIMD

05, Data-Parallel 05, Task-Parallel 06 Parameter Servers
Execution Execution (data, model)

07 Hybrid Execution and HW Accelerators

08 Caching, Partitioning, Indexing, and Compression

706.550 Architecture of Machine Learning Systems — 08 Data Access Methods .ISDS
Matthias Boehm, Graz University of Technology, SS 2022 L -

Ty

Agenda

= Motivation, Background, and Overview
= Caching, Partitioning, and Indexing Iter"f't've' 1/0-bound ML
algorithms =» Data access

= Lossy and Lossless Compression crucial for performance

while(!converged) {
.q =X %*%6 v ..

Data Weights

706.550 Architecture of Machine Learning Systems — 08 Data Access Methods .ISDS
Matthias Boehm, Graz University of Technology, SS 2022 !

Presenter
Presentation Notes
Note:
 * train -> data read-only, weights updated
 * score -> stream of new data, weights read-only

Ty

Motivation, Background, and
Overview

706.550 Architecture of Machine Learning Systems — 08 Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

“ISDS

Motivation, Background, and Overview

Ty

Motivation: Data Characteristics

= Tall and Skinny
(#rows >> #cols)

* Non-Uniform
Sparsity

= Small Column
Cardinalities

= Small Val Range

= Column

Correlations
(on census:
12.8x = 35.7x)

706.550 Architecture of Machine Learning Systems — 08 Data Access Methods

Covtype ImageNet Mnist8m
= = £ .
= 5M - #Rows: .6M £ .6M #Rows: 1.2M 2 v - #Rows: 8.1M
= (=] =
O 4M - < M C uMm
2 v 4 5 M 5
2 2 3M 2z 3M 7
g -2M g oM g 2M -
Z%’.lM . £ .M E IM -
++ B ES = 0 -
Column Rank [1,54] Column Rank [1,900] Column Rank [1,784]
Higgs Census
c? 20 - A .9\'?86—04 — N
=) A
8 15 b= 6e—04 — A A A A
(a4 ~ A A
2 104 ° A A £ 4e=04 — s A A
=] [=] A A
o AA e A, M ALdar 4
5 4 A E 2e—04 — ATA aa .
j= A k= T vy Vv
O (IR LYY YV VVVV VYV YVYY U 0e+00
o OMB - = 34.1MB Oo0MB - m 9.4M
60 S B
s .
- 5 50
= £ 40
| =1 =
£ E 30
= =
,3 3 20

Column Index [1,28]

10
0

Matthias Boehm, Graz University of Technology, SS 2022

Column Index [1,68]

“ISDS

Presenter
Presentation Notes
Note: small column cardinalities (e.g., categorical, dummy-coded)

Motivation, Background, and Overview ﬁErLa!.

Recap: Matrix Formats

= Matrix Block (m x n) Example
= Ak.a. tiles/chunks, most operations defined here 3x3 Matrix
= Local matrix: single block, different representations .7 .1
= Common Block Representations 2.4
= Dense (linearized arrays)

.3
= MCSR (modified CSR) ,/,.// \

= CSR (compressed sparse rows), CSC
= COO (Coordinate matrix)

MCSR CSR CoOo
‘\»l;-a o1 .7 .7
Dense (row-major) h G 2L Bl.1 1
.7/0.1/.2|.4l0 /0 .30 \m24 4\ YA|.2 .2
— 5\ kR .4 .4
O(mn)

N .3 .3

.3
O(m + nnz(X)) O(nnz(X))

706.550 Architect f Machine L ing Syst — 08 Data A Method
'Miatthias Boehm, Graz University of Technology, $5 2022 "ISDS

Motivation, Background, and Overview ﬁ!g.

Recap: Distributed Matrix Representations

Logical Blocking

= Collection of “Matrix Blocks” (and keys) 3 400x2. 700 Matrix

. (duplicates, unordered) (w/ B.=1,000)
= Logical (Fixed-Size) Blocking
(1,1) || (1,2) [[(1,3)
+ join processing / independence
- (sparsity skew) 21) || (2,2) |[(2,3)
= E.g., SystemDS on Spark:
JavaPairRDD<MatrixIndexes,MatrixBlock> (3,1) || (3,2) |[(3,3)
= Blocks encoded independently (dense/sparse) @) [@2) |[@3)
™ Partitioning) hash partitioned: e.g., hash(3,2) 2 99,994 % 2 = 0
. e (3,2) (23) (2,1) (1,2) (42) (41)
= Logical Partitioning _ S US
(e.g., row-/column-wise) Physical P > > P —
= Physical Partitionin Blocking and -
y oning Partitioning [(22 () (13) (3) (1) @9
(e.g., hash / grid) Us
D us Us S S
L partition 1
706.550 Architecture of Machine Learning Systems — 08 Data Access Methods "
Matthias Boehm, Graz University of Technology, SS 2022 lSDS

Motivation, Background, and Overview ﬁ-!s-rLa!.

Overview Data Access Methods

Nodel Node2

= #1 (Distributed) Caching ‘-\ ‘-\
= Keep read only feature matrix in (distributed) memory

#2 Buffer Pool Management

= Graceful eviction of intermediates, out-of-core ops

#3 Scan Sharing (and operator fusion)

= Reduce the number of scans as well as read/writes

Socket1 Socket2

#4 NUMA-Aware Partitioning and Replication
= Matrix partitioning / replication - data locality M

#5 Index Structures

= Qut-of-core data, I/O-aware ops, updates

#6 Compression

= Fit larger datasets into available memory

706.550 Architecture of Machine Learning Systems — 08 Data Access Methods .ISDS
Matthias Boehm, Graz University of Technology, SS 2022 L

Caching, Partitioning, and
Indexing

#2 Buffer Pool Management
#3 Scan Sharing (and operator fusion)
#4 NUMA-Aware Partitioning and Replication
#5 Index Structures

706.550 Architecture of Machine Learning Systems — 08 Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

“ISDS

Caching, Partitioning, and Indexing ﬁ-lt.‘:r%!-

Buffer Pool Management

= #1 Classic Buffer Management (SystemDS)

acquireRead
. . . . acquireModify
= Hybrid plans of in-memory and distributed ops

release
= Graceful eviction of intermediate variables

~

RDDObject
Spark . - BroadcastObject
Cluster parallelize/ [MatrixBlock]
- collect > - lazy I, O and GPUObjects
— transfer
‘broadcast

agg memory -

exportData

A

o
L

Buffer Pool @ -
CPU Driver | €Vict

A

B e
GPU Device

export 1

v evict

HDFS , ObjectStore Local FS

= #2 Algorithm-Specific Buffer Management

= QOperations/algorithms over out-of-core matrices and factor graphs

= Examples: RIOT [CIDR’2009] (ops), Elementary [SIGMOD’13] (factor graphs)

706.550 Architecture of Machine Learning Systems — 08 Data Access Methods .ISDS
Matthias Boehm, Graz University of Technology, SS 2022

Caching, Partitioning, and Indexing ﬁ-le-rg.

Scan Sharing

= #1 Batching n

= One-pass evaluation of multiple configurations O(m*n)

= Use cases: EL, CV, feature selection, read
hyper parameter tuning, multi-user scoring O(m*n*k)
= E.g.: TUPAQ [SoCC’16], Columbus [SIGMOD’14] compute
m >>n >> k

= #2 Fused Operator DAGs

= Avoid unnecessary scans, (e.g., mmchain)

Multi-Aggregate
sum sum sum
= Avoid unnecessary writes / reads f f f

= Multi-aggregates, redundancy sum(X2) u(*2) b(*) u(”2)

ada =
" E.g.:SystemMLcodegen [PVLDB'18] | - gym(x*y) O
. .) = YA2 X Y
= #3 Runtime Piggybacking ¢ = sum(¥Y"2)
= Merge concurrent data-parallel jobs parfor(i in 1:numModels)
= “Wait-Merge-Submit-Return”-loop while(!converged)
= E.g.: SystemML parfor [PVLDB’14] q =X %*% v;

706.550 Architecture of Machine Learning Systems — 08 Data Access Methods .ISDS
Matthias Boehm, Graz University of Technology, SS 2022

Caching, Partitioning, and Indexing ﬁ-lt.‘:r%!-

In-Memory Partitioning (NUMA-aware)

= NUMA-Aware Model and Data Replication

[Ce Zhang, Christopher Ré: [——
= Model Replication (06 Parameter Servers) DimmWitted: A Study of |
] Main-Memory Statistical
= PerCore (BSP epoch), PerMachine Analytics. PVLDB 2014]
(Hogwild!), PerNode (hybrid)
= Data Replication Machine
= Partitioning (sharding) Node 1 Node 2

= Full replication

ﬂ

=

ﬂ
N

= AT MATRIX (Adaptive Tile Matrix) B

= Recursive NUMA-aware partitioning
into dense/sparse tiles

[David Kernert, Wolfgang Lehner,

= |nter-tile (worker teams) and intra-tile
(threads in team) parallelization

= Job scheduling framework from SAP HANA Frank Kohler: Topology-aware
(horizontal range partitioning, socket-local ~ optimization of big sparse matrices
. . and matrix multiplications on main-

gueues with task-stealing)

memory systems. ICDE 2016]

706.550 Architecture of Machine Learning Systems — 08 Data Access Methods .ISDS
Matthias Boehm, Graz University of Technology, SS 2022

Caching, Partitioning, and Indexing ﬂl’g_

Distributed Partitioning

Spark RDD Partitioning Example Hash Partitioning:

= Implicitly on every data shuffling For all (k,v) of R:
hash(k) % numPartitions = pid

= Explicitly viaR.repartition(n)

Distributed Joins 0:8,1,6 N/ 0:1,2 % 3 —m

2:2,3,4 b 2:3,4

= R3 =R1.join(R2)

EBEl EEn

"

/\

A £

Single-Key Lookups v = C.lookup(k)
= Without partitioning: scan all keys (reads/deserializes out-of-core data)
= With partitioning: lookup partition, scan keys of partition

Multi-Key Lookups //build hashset of required partition ids

i . e HashSet<Integer> flags = new HashSet<>();
Without partitioning: for(MatrixIndexes key : filter)
scan all keys flags.add(partitioner.getPartition(key));

= With partitioning: //create partition pruning rdd

new PartitionPruningFunction(flags));

Caching, Partitioning, and Indexing ﬂl’g_

Re Ca p : B_Tree Ove rVieW [Rudolf Bayer, Edward M. McCreight:

Organization and Maintenance of Large
Ordered Indices. Acta Inf. (1) 1972]

= History B-Tree
= Bayer and McCreight 1972, Block-based, Balanced, Boeing Labs
= Multiway tree (node size = page size); designed for DBMS
= Extensions: B+-Tree/B*-Tree (data only in leafs, double-linked leaf nodes)

= Definition B-Tree (k, h) .
[log,..(n+1) [<h< {Iogm(;ﬂ +1

= All paths from root to leafs have equal length h 2
= All nodes (except root) have [k, 2k] key entries All nodes adhere
= All nodes (except root, leafs) have [k+1, 2k+1] successors to max constraints

= Datais a record or a reference to the record (RID) k=2

m Key K, 'Data D; il Key K, '‘Data D, lify Key K; '‘Data D; i Key K, [Data D,

Subtree w/ Subtree w/
keys < K; K, < keys < K;
706.550 Architecture of Machine Learning Systems — 08 Data Access Methods .ISDS
Matthias Boehm, Graz University of Technology, SS 2022 L

Caching, Partitioning, and Indexing ﬂ-lc:r%!-

Recap: B-Tree Overview, cont.

= B-Tree Search

= Scan/binary search
within nodes

= Descend along
matching
key ranges

= B-Tree Insertion

= |nsert into leaf nodes
= Split the 2k+1 entries into two leaf nodes

= B-Tree Deletion
= Lookup key and delete if existing

= Move entry from fullest successor; if underflow merge with sibling

706.550 Architecture of Machine Learning Systems — 08 Data Access Methods .ISDS
Matthias Boehm, Graz University of Technology, SS 2022

Caching, Partitioning, and Indexing ﬁ-lc:r%!-

Linearized Array B-Tree (LAB-Tree)

[Yi Zhang, Kamesh Munagala,
Jun Yang: Storing Matrices on

= B-tree over linearized array representation Disk: Theory and Practice
(e.g., row-/col-major, Z-order, UDF) Revisited. PVLDB 2011]

= Basic Ideas

= New leaf splitting strategies; dynamic leaf storage format (sparse and dense)

= Various flushing policies for update batching (all, LRU, smallest page, largest
page, largest page probabilistically, largest group)

#1 Example linearized #2 Example linearized
storage order iterator order
= [matrix A: range query A[4:9,3:5]
p et 4 x 4 blocking with column-major
Pran row-major block order iterator order

row-major cell order I

706.550 Architecture of Machine Learning Systems — 08 Data Access Methods .ISDS
Matthias Boehm, Graz University of Technology, SS 2022

Caching, Partitioning, and Indexing ﬁ!g.

Ada pt|ve Ti I e (AT) M atriX [David Kernert, Wolfgang Lehner, Frank

Koéhler: Topology-aware optimization of big
sparse matrices and matrix multiplications
= Basic Ideas on main-memory systems. ICDE 2016]

= Two-level blocking and NUMA-aware
range partitioning (tiles, blocks)

= Z-order linearization, and
to find var-sized tiles (tile contains N blocks)

(see sparsity est.)

: I : N @ °
0.75-+0.25 1 0.25--0.00 “&
________ // &\

0.25--1.00 ! 0.00--0.25

- - - - —_—— - - -

8

N

block tiles

N7

706.550 Architecture of Machine Learning Systems — 08 Data Access Methods .lSDS
Matthias Boehm, Graz University of Technology, SS 2022

()
Caching, Partitioning, and Indexing ﬂ-le-rg.

T| I e D B Sto ra ge M an age I’ [Stavros Papadopoulos, Kushal Datta, Samuel [——

Madden, Timothy G. Mattson: The TileDB
Array Data Storage Manager. PVLDB 2016]

= Basic Ideas

= Storage manager for 2D arrays of
different data types (incl. vector, 3D)

https://docs.tiledb.com

= Two-level blocking (space/data tiles), update batching via fragments

space tile extents: 4x2 space lile extents: 2x2 space tile extents; 2x2] my 2d dense array
tile order: row-major tile order: row-major tle order: column-major
cellorder: row-major cell order: row-major cell order: row-major
— __array_schema.tdb
- tl tl uwuidl v
F] _tl_tl _
Spacetiles B _ fragment_metadata.tdb
B al.tdb
B a?.tdb
B a2_var.tdb
Fragment #1 Fragment #2 Fragment #3 Collective logical array view
(dense) (dense) (sparse)

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

n2 | 13
M NN

114 | 115
000 PPPP

[114] 115
000 PPPP

= W NN =

706.550 Architecture of Machine Learning Systems — 08 Data Access Methods .EISDS
Matthias Boehm, Graz University of Technology, SS 2022 i b | =l]

Presenter
Presentation Notes
TileDB Inc startup, $20M funding: TileDB Cloud, a commercial SaaS offering for planet-scale data sharing and serverless distributed computations.

https://docs.tiledb.com/

Caching, Partitioning, and Indexing ﬂ-le-rLa!.

Pipelining for Mini-batch Algorithms

= Motivation
= Qverlap data access and computation in mini-batch algorithms (e.g., DNN)
=» Simple pipelining of 1/0 and compute via queueing / prefetching

= Example TensorFlow v |

= #1 Queueing GPU/TPU
and Threading

time

dataset.batch(batch_size=32)
dataset.prefetch(buffer_size=1)

= #2 Dataset API dataset
Prefetching dataset

[https://www.tensorflow - '

.org/guide/performance/

GPU/TPU

datasets]

time i

" #3 Reuse via Upstream Upstream [https://ai.googleblog.com/

. 2020/05/speeding-up-neural-

Data Echomg |Dumm|nmmstrﬂm|nnmmn|ﬂmmham| [05/5p . g 0
- _ network-training.html]
time

706.550 Architecture of Machine Learning Systems — 08 Data Access Methods n ;

Matthias Boehm, Graz University of Technology, SS 2022

https://www.tensorflow.org/guide/performance/datasets
https://ai.googleblog.com/2020/05/speeding-up-neural-network-training.html

Lossy and Lossless Compression

#6 Compression

706.550 Architecture of Machine Learning Systems — 08 Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

“ISDS

Lossy and Lossless Compression ﬁl—g_

Recap: Database Compression Schemes

= Null Suppression 106

00000000 |00V |00V 01101010

= Compress integers by

11|e1101010

bytes/bits (e.g., NS, gamma)

Run-Length Encoding 111177777333333...

= Compress sequences of equal values by

1,1,4| |7,5,5 3,10,6
of (value, start, run length) - - -
= Dictionary Encoding 177317133713373...
= Compress column w/ few distinct values [1,3,7] dictionary ()
as (= code size) [13323133722312232 ..,

Delta Encoding

20 21 22 20 19 18 19 20 21 20 ...

= Compress sequence w/ small changes

e 1 1 -2 -1 -1 1 1 1 -1...

by storing
= Frame-of-Reference Encoding 0 21 22 20 71 70 71 69 70 21 ..
= Compress values by storing 21 70

(outlier handling) [-1 6 1 -1 1 o 1-1 0-1...

Lossy and Lossless Compression ﬂELa!.

Overview Lossless Compression Techniques

= #1 Block-Level General-Purpose Compression

= Heavyweight or lightweight compression schemes decompress
. . . & deserialize
= Decompress matrices block-wise for each operation .

|
= E.g.: Spark RDD compression (Snappy/LZ4), | Storage
SciDB SM [SSDBM'11], TileDB SM [PVLDB'16], ' Manager [=
scientific formats NetCDF, HDF5 at chunk granularity

= #2 Block-Level Matrix Compression
= Compress matrix block with homogeneous encoding scheme

= Perform LA ops over compressed representation

= E.g.: CSR-VI (dict) [CF'08], cPLS (grammar) [KDD’16],
TOC (LZW w/ trie) [SIGMOD’19]

= #3 Column-Group-Level Matrix Compression
= Compress column groups w/ heterogeneous schemes

= Perform LA ops over compressed representation
= E.g.: SystemML CLA (RLE, OLE, DDC, UC) [PVLDB’16]

B o e mm m e e

Lossy and Lossless Compression

Ty

= Key Idea

CLA: Compressed Linear Algebra

= Use lightweight database compression techniques
= Perform LA operations on compressed matrices

= Goals of CLA

= Operations performance close to uncompressed

= Good compression ratios

1 GB/s per node

A
o Time

(operations performance)

[Ahmed Elgohary et al:
Compressed Linear Algebra
for Large-Scale Machine
Learning. PVLDB 2016]

while(!converged) {

e Space i

(compression ratio)

Co

|
|
mpressed data :
|

fits in memory

Uncompressed

Compressed

A |
|
Uncompressed |
data fits in :

memory

Execution
Time

25 GB/s

per node
[SIGMOD Record’17, ___——

VLDBJ’'18, CACM’19]

Data Size

706.550 Architecture of Machine Learning Systems — 08 Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

.q =X %*%6 v ..

“ISDS

Lossy and Lossless Compression

Ty

CLA: Compressed Linear Algebra, cont. (2)

= Overview Compression Framework

= Column-wise matrix compression (values + compressed offsets / references)

= Column co-coding (column groups, encoded as single unit)

= Heterogeneous column encoding formats (w/ dedicated physical encodings)

= Column Encoding
Formats

= Offset-List (OLE)
= Run-Length (RLE)

= Dense Dictionary 7

Coding (DDC)*

= Uncompressed
Columns (UC)

S

Lo =] L0 L2 D Q0 =] =] LI =]

(

e O o= = O o= U1 O = O

2.1
3
2.1
3
2.1
3
3
0
2.1
3

Uncompressed
Input Matrix

-
0.99
0.73
0.05
0.42
0.61
0.89
0.07
0.92
0.54
0.16
—

Compressed Column Groups

(RLE(2))
©) (&2

1

He=

(OLE(1,3))
(76)(34)(75)
1

[}

3
9

[s

—
=

(DDC () UC(5))

(2.1)!
(3) 1

0.99
0.73
0.05
0.42
0.61
0.89
0.07
0.92
0.54

L 0.16)

[T B e i e e s B T e

= Automatic Compression Planning (sampling-based)

= Select column groups and formats per group (data dependent)

706.550 Architecture of Machine Learning Systems — 08 Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

* DDC1/2

in VLDBJ'18

“ISDS

Lossy and Lossless Compression

Ty

CLA: Compressed Linear Algebra, cont. (3)

= Matrix-Vector Multiplication
= Naive: for each tuple, pre-aggregate values, add values at offsets to g

Example: g=Xv, withv=(7,11, 1, 3, 2)
9*%11=99.2 55 25 54 6.3 9

N

AN

J

-

(OLE{4})

(UC{5})
0.99
0.73
0.05
0.42
0.61
0.89
0.07
0.92
0.54

S

162.3

134.5

160.4

162.8

32.5

155

133.1

125.8

161.4

L 0.16)

= Cache-conscious: Horizontal,
segment-aligned scans, maintain positions

= Vector-Matrix Multiplication

= Naive: cache-unfriendly on input (v)

34.3

=» cache unfriendly
on output (q)

" value preaggE

({761{34}{75}) -

= Cache-conscious: again use horizontal, segment-aligned scans

\
1IN

v

} segment

cache
bucket
(output)

Lossy and Lossless Compression ﬂIrLa!.

CLA: Compressed Linear Algebra, cont. (4)

= Estimating Compressed Size: S¢ = min(S°t, SRLE, SPDC)
= # of distinct tuples d.: “Hybrid generalized jackknife” estimator [JASA’98]
= # of non-zero tuples z;: Scale from sample with “coverage” adjustment
" #of runs ry: maxEnt model + independent-interval approx. (~ Ising-Stevens)

RIF unseen horder interval 4 (rny=5)
H—A'_'\
(2) |9|9|9|9|o¢9|9m|999|9|3|913qu|0|
= Compression Planning offsets:1 2 3

= #1 Classify compressible columns
= Draw random sample of rows (from transposed X)
= Classify C¢ and CY¢ based on estimate compression ratio
= #2 Group compressible columns (exhaustive O(m™), greedy O(m?3))
= Bin-packing-based column partitioning
= Greedy grouping per bin w/ pruning and memoization O(m?)
= #3 Compression
= Extract uncompressed offset lists and exact compression ratio
= Graceful corrections and UC group creation

Lossy and Lossless Compression ﬁ-IG-rE!-

CLA: Compressed Linear Algebra, cont. (5)

= Experimental Setup
= LinregCG, 10 iterations (incl. compression), InfiMNIST data generator
= 1+6 node cluster (216GB aggregate memory), Spark 2.3, SystemML 1.1

Compression Ratios End-to-End Performance [sec]

Higgs 1.93 1.38 2.17 6000 ® Snappy (RDD Compression)

uCLA
Census 17.11 6.04 35.69 %

4000

Covtype 10.40 6.13 18.19 S000 9796 3148

ImageNet 5.54 3.35 7.34 000

Mnist8m 4.12 2.60 7.32 1000 831 . 1085
03 147 98

Airline78 7.07 428 7.44 0 — L = —
Mnist40m Mnist240m Mnist480m
90GB 540GB 1.1TB

= Open Challenges
= Ultra-sparse datasets, tensors, automatic operator fusion
= QOperations beyond matrix-vector/unary, applicability to deep learning?

706.550 Architecture of Machine Learning Systems — 08 Data Access Methods .ISDS
Matthias Boehm, Graz University of Technology, SS 2022

Lossy and Lossless Compression ﬁ!g.

Compressed Linear Algebra Extended

[under submission]

= Lossless Matrix Compression
= Improved general applicability (compression time, new compression schemes,

new kernels, intermediates, workload-aware) Uncompressed Compressed Matrix M
Input Matrix N
= Sparsity 2 Redundancy exploitation SR (“’ﬂ(‘i} (OLE“}]
. 8.5} {9} || 0:10.0} {2.5} {3}
(data redundancy, structural redundancy) 3o S -
7 9 5 3 3:{7,5} 3
. 3 0 4 25 - 2
= Workload-aware Compression 10850 0=V g 0
3 85 4 3 2
= Workload summary = compression S :
. . . 3 0 4 3 (sparse) || (dense) 2 ||(sparse)
= Compression = execution planning - R %
User Script: /| if(shift) |:{> Workload Tree
// X=X - colMeans(X)
Bd = read("data/x") ;. |if(scale)
y = read("data/y") K X = X / colSds(X)
X = 1
W =

L
scale(X, TRUE,TRUE) ", if(intercept) if| |[if if wl
12svm(X,y, TRUE, (/ X = cbind(X,ones)
le-9,1e-3,100) while(conto & i<maxi) { wl

i " o\ | Xd =X %% s
write(w,"data/wXy"”) | | while(conti) {
\ out = 1-y*(Xw+sz*Xd)

\\ sz =sz - g/h; # ..

}
Built-in \\ g new = t(X) %*% (out*y) Cost Summary @
Functions: \J [0 [100[10]10]105] O |

Lossy and Lossless Compression ﬁ-IG-rE!-

Block-level Compression w/ D-VI, CSR-VI, CSX

[Kornilios Kourtis, Georgios |. Goumas, [~
| - - -
CSR-VI (CSR Value Indexed) / D-vi Nectarios Koziris: Optimizing sparse matrix-

= Create dictionary for distinct values vector multiplication using index and value

compression. CF 2008]

= Encode 8 byte values as 1, 2, or 4-byte codes - ,
[Vasileios Karakasis et al.: An

(p05|t|ons in the d'Ctlonary) Extended Compression Format for

= Extensions w/ delta coding of indexes the Optimization of Sparse Matrix-
]] Vector Multiplication. IEEE Trans.
= Example CSR-VI matrix-vector multiply Parallel Distrib. Syst. 2013]

c=A%*%Db

for(int i=0; i<a.nrow; i++) { CSR
int pos = A.rptr[i];
int end = A.rptr[i+l];
for(int k=pos; k<end; k++)
b[i] += dict[A.val[k]] * b[A.ix[k]];

vl NS

value decoding
(MV over compressed
representation)

706.550 Architecture of Machine Learning Systems — 08 Data Access Methods .ISDS
Matthias Boehm, Graz University of Technology, SS 2022

Lossy and Lossless Compression

Ty

Tuple-oriented Compression (TOC)

= Motivation
= DNN and ML often trained

[Fengan Li, Lingjiao Chen, Yijing Zeng, Arun Kumar, Xi
Wu, Jeffrey F. Naughton, Jignesh M. Patel: Tuple-
oriented Compression for Large-scale Mini-batch

Stochastic Gradient Descent, SIGMOD 2019]

with mini-batch SGD
= Effective compression for small batches (#rows)

Original Table (A) PrefixTree (C) Column_index:value pairs in the
first layer of the prefix tree (I
1 2 3 a4 Y p)
R1 | 1.1 2 3 1.4 J 5[1] [2]2]3]a]2] .I:::;::;
R2 1.1 2 3 0 LT value
R3 0 11 3 1.4 '," """ rJ indexes
R4 1.1 2 0 0 |7 Step3 :Physical
I i lues
I Encodin 1123 -1.4 va
Stepl: Sparse | I 8 11]2]3]
A I
EnCOdmg \4 'I Encoded Table (D) (# of integers, # of bytes per integer)
Sparse Encoded Table (B)]
R1L |1:11] 22 | 33 |a14| R1 | 1 2 3 4 g
I4 tree node
R2 111 22 |33 L ';; E Z _____ »2o [1] 3 [B 8 [B indexes
R3 | 2211 3:3 [4:1.4 Step2 Log|cal Step3 :Physical
- - R4 6 ' tuple start
R4 | 1111 22 Encoding Encoding o[+]6 s | indexes

706.550 Architecture of Machine Learning Systems — 08 Data Access Methods

Matthias Boehm, Graz University of Technology, SS 2022

“ISDS

Lossy and Lossless Compression ﬁ-le-rLa!.

Tuple-oriented Compression (TOC), cont.

. [Fengan Li, Lingjiao Chen, Yijing Zeng, Arun Kumar, Xi
Example Wu, Jeffrey F. Naughton, Jignesh M. Patel: Tuple-
Compression Ratios oriented Compression for Large-scale Mini-batch

Stochastic Gradient Descent, SIGMOD 2019]

dense baseline?

2 Census Imagenet Mnist Kdd99

= 2001

E 20 ’/k/_k’k“ _ '/4,/4/"_"
40 1

5 15 .’-._—_.’/‘__J, : : v | 150

2 50, 101" v o 100

© 20 = =] * * . .

a8 | . ¥ s 3| Of4—= - o — p p .| 0] :,_,,.’:— ¥ .

g 0 g g ! !—‘! 0 0 . i . r . O-JEIE!E!E!—‘ : ‘ : ‘

o 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

percent of rows percent of rows percent of rows percent of rows

wPpum CSR == CV] === DVI =ifll= Snappy == Gzip |=-#= TOC (ours) == CLA

Take-away: specialized lossless matrix compression
=» reduce memory bandwidth requirements and #FLOPs

706.550 Architecture of Machine Learning Systems — 08 Data Access Methods .ISDS
Matthias Boehm, Graz University of Technology, SS 2022

Lossy and Lossless Compression ﬁ!g.

Lossy Compression

= Overview
= Extensively used in DNN (runtime vs accuracy) =» data format + compute
= Careful manual application regarding data and model
= Note: ML algorithms approximate by nature + noise generalization effect

= Background Floating Point Numbers (IEEE 754)
= Sign's, Mantissa m, Exponent e: value = s * m * 2¢ (simplified)

Double (FP64) 1 [bits]
Single (FP32) 1 23 8
Half (FP16) 1 10 5
Quarter (FP8) 1 3 4
Half-Quarter (FP4) 1 1 2
PO atiies oehm, Gras Unieraty of Tecmology, 55 2023, “ISDS

Ty

Lossy and Lossless Compression

Low and Ultra-low FP Precision

see 05 Execution Strategies, SIMD

= Model Training w/ low FP Precision > speedup/reduced energy

= Trend: from FP32/FP16 to FP8

= #1: Precision of intermediates (weights, act, errors, grad) = loss in accuracy
= #2: Precision of accumulation = impact on convergence (swamping s+L)

= #3: Precision of weight updates = loss in accuracy

[Naigang Wang et al.: Training Deep
Neural Networks with 8-bit Floating

= Example ResNet18 over ImageNet Point Numbers. NeurIP$ 2018]

Test Error (%)

11 11 110
1000 —Single precision baseline 10 —Sing'le pre'cision.base!ine . R 100 —Sing'le Pre'cis ion. Basevline . N
—Mult: 8 b|t, Acc: 32 bit, Update: 32 bit —Mult: 16 l:lt, Acc: 16 bit, Update. 32 bit —Mult: 32 bit, Acc: 32 bit, Update. 16 bit
9 9 VU V')
5 #1 18, #2] E & #3
L A
70 2 7 {1 270
w w
60 2.0% degradation | % ° 1.0% 7 00 1.7%
50 F 5 radation] ~ 5, degradation
40 4 \\\ 1 40
o (@) 3 30
0 20 60 80 20 60 80 0 20 60 80

40
Epoch

706.550 Architecture of Machine Learning Systems — 08 Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

40
Epoch

40
Epoch

“ISDS

Lossy and Lossless Compression

Ty

Low and Ultra-low FP Precision, cont.

= Numerical Stable Accumulation [Yuanyuan Tian, Shirish Tatikonda, Berthold

" #1

= }#2
w/ error independent
of number of values n

Reinwald: Scalable and Numerically Stable
Descriptive Statistics in SystemML. ICDE 2012]

sumOld = sum;
= sum + (input + corr);
= (input + corr) - (sum - sumOld);

uak+: 5.000000005E17 //sum(seq(1,1e9))

ua+: 5.0000000109721722E17
ua+: 5.0000000262154688E17 //rev

= #3 o ge:
- julia
(divide & conquer)
= #4 Chunk-based Accumulation [N. Wang et al.: Training [———
. . Deep Neural Networks with
= Divide long dot products into smaller chunks 8-bit Floating Point
= Hierarchy of partial sums = FP16 accumulators Numbers. NeurIPS 2018]
= #5 Stochastic Rounding Round() — {s -2¢. (14 [m] +¢) with probability =17
. Y) se2¢ - (1 + |Im ith probability 1 — 2—Lml
= Replace nearest w/ prob. rounding s (Lt [ml) - with probabilit ‘
706.550 Architecture of Machine Learning Systems — 08 Data Access Methods "
Matthias Boehm, Graz University of Technology, SS 2022 ISDS

Presenter
Presentation Notes
Note: reproducibility of example Kahan addition
n = 1e9
x1 = seq(1,n);
x2 = seq(n,1);
ones = matrix(1,n,1)
print("baseline: "+(n*(n+1)/2));
print("agg1 : "+as.scalar(t(ones)%*%x1));
print("agg2 : "+as.scalar(t(ones)%*%x2));
print("kagg1 : "+sum(x1));
print("kagg2 : "+sum(x2));

Lossy and Lossless Compression

Ty

Low and Ultra-low FP Precision — New Datatypes

= Google bfloatl6
= “Brain” Float16 w/ range of FP32

= Drop in replacement for FP32,
no need for loss scaling

= |Intel FlexPoint

= Blocks of values w/ shared exponent

(N=16bit w/ M=5bit exponent)

bfloat16: Brain Floaljng Polnt Format Bange: -1¢* 1 =3¢™ ™
Copsomnt 88> blaniee igeticand T b)
- e e e e e e e e MR
Tensor
fp32: Single-precision IEEE Floating Point Format Rangg; - 16" 10 ~ 34" b
cpmerst 1ty Martiis (Sigrificasd) b i
Bz cocococob e e M M M M MMM MMM MMM MM MMM MMM @
fp16: Half-precision IEEE Floating Point Format Range: ~5.96¢" 10 65504 F
Exporres MWar i . .
B - - - R [Brennan Saeta: Training

Performance A user’s guide to
converge faster, TF Dev Summit 2018]

[Urs Koster et al.: Flexpoint: An Adaptive
Numerical Format for Efficient Training of
Deep Neural Networks. NeurlPS 2017]

.....

= Example: flex16+5 D]]]] 5
""""""""" |.|II||||||II|H||||H\
- g Range Precision
NVIDIA TF32 Bomonms i [NVIDIA A100 Tensor Core GPU [
= Range of FP32 FP3z SN Architecture - UNPRECEDENTED | ™
o 7737 BT ACCELERATION AT EVERY SCALE,
w/ precision of FP16 .. E_.mm i

Whitepaper, Aug 2020]

BF16 EIIIIIIIII] [TTIT}+—

706.550 Architecture of Machine Learning Systems — 08 Data Access Methods
Matthias Boehm, Graz University of Technology, SS 2022

“ISDS

Lossy and Lossless Compression ﬁ-le-rLa!.

Fixed-Point Arithmetic Recommended “Reading”

[Inside TensorFlow: Model Optimization Toolkit '|_:'
(Quantization and Pruning), YouTube, 2020] Tensorfiow
= Motivation

= Forward-pass for model scoring (inference) can be done in UINT8 and below
= Static, dynamic, and learned quantization schemes (weights and inputs)

= Quantization (reduce value domain) [https://blog.tensorflow.org/2020/04/
. Lo guantization-aware-training-with-tensorflow-
" Split value domain into N buckets model-optimization-toolkit.html]
such that k = log, N can encode the data
gZ pa— | —]—‘ \7 o, int8
= 3) Static Quantization (e.g., min/max) el "

-3e38 min g max 3e38 float32

per tensor or per tensor channel

Optimal Quantization Points
= b) Learned Quantization Schemes

= Dynamic programming
= Various heuristics

u Example systems: [Hantian Zhang, Jerry Li, Kaan Kara, Dan Alistarh, Ji Liu, Ce _
ZipML, SketchML Zhang: ZipML: Training Linear Models with End-to-End Low L]
Precision, and a Little Bit of Deep Learning. ICML 2017]

706.550 Architecture of Machine Learning Systems — 08 Data Access Methods .ISDS
Matthias Boehm, Graz University of Technology, SS 2022

https://blog.tensorflow.org/2020/04/quantization-aware-training-with-tensorflow-model-optimization-toolkit.html

Lossy and Lossless Compression ﬁ!g.

Other Lossy Techniques httoss//blog.tensorflouorg/201/05/tF.

model-optimization-toolkit-pruning-APIl.html]

= #1 Sparsification/Pruning (reduce #non-zeros) [L2

= Value clipping: zero-out very small values 78.1% @ sp=1.0 27.1M

below a threshold to reduce size of weights 78.0% @ sp=0.5 13.6M
76.1% @ sp=0.25 6.8M

74.6% @ sp=0.125 3.3M

= Training w/ target sparsity: remove connections

= #2 Mantissa Truncation
= Truncate m of FP32 from 23bit to 16bit

[Souvik Bhattacherjee et al: PStore: an | ==
efficient storage framework for

= E.g., TensorFlow (transfers), PStore managing scientific data. SSDBM 2014]
= #3 Aggregated Data Representations [Amir llkhechi et al: DeepSqueeze:
. . Deep Semantic Compression for
= a) Dim reduction (e.g., auto encoders) Tabular Data, SIGMOD 2020]
= b) No FK-PK joins in Factorized Learning

] [Arun Kumar et al: To Join or Not to
(forelgn key as IOSSV CompreSSEd rep) Join?: Thinking Twice about Joins before

Feature Selection. SIGMOD 2016]

= #4 Sampling
[Yongjoo Park et al: BlinkML:

error (regression/classification) and scale Estimation with Probabilistic

. . T . Guarantees. SIGMOD 2019]
= Min sample size for max likelihood estimators

https://blog.tensorflow.org/2019/05/tf-model-optimization-toolkit-pruning-API.html

Ty

Summary and Conclusions

Motivation, Background, and Overview
High Impact on
Performance/Energy

Caching, Partitioning, and Indexing

Lossy and Lossless Compression

Next Lectures
= 09 Data Acquisition, Cleaning, and Preparation [May 20] 7

= May 26/27: Ascension Day (Christi Himmelfahrt) + “Rektorstag” (Part B:
= 10 Model Selection and Management [Jun 03] ~ ML Lifecycle
= 11 Model Debugging, Fairness, Explainability [Jun 10] Systems)

12 Model Serving Systems and Techniques [Jun 17, Arnab]

706.550 Architecture of Machine Learning Systems — 08 Data Access Methods .ISDS
Matthias Boehm, Graz University of Technology, SS 2022 !

	Architecture of ML Systems�08 Data Access Methods
	Announcements/Org
	Categories of Execution Strategies
	Agenda
	Motivation, Background, and �Overview
	Motivation: Data Characteristics
	Recap: Matrix Formats
	Recap: Distributed Matrix Representations
	Overview Data Access Methods
	Caching, Partitioning, and �Indexing
	Buffer Pool Management
	Scan Sharing
	In-Memory Partitioning (NUMA-aware)
	Distributed Partitioning
	Recap: B-Tree Overview
	Recap: B-Tree Overview, cont.
	Linearized Array B-Tree (LAB-Tree)
	Adaptive Tile (AT) Matrix
	TileDB Storage Manager
	Pipelining for Mini-batch Algorithms
	Lossy and Lossless Compression
	Recap: Database Compression Schemes
	Overview Lossless Compression Techniques
	CLA: Compressed Linear Algebra
	CLA: Compressed Linear Algebra, cont. (2)
	CLA: Compressed Linear Algebra, cont. (3)
	CLA: Compressed Linear Algebra, cont. (4)
	CLA: Compressed Linear Algebra, cont. (5)
	Compressed Linear Algebra Extended
	Block-level Compression w/ D-VI, CSR-VI, CSX
	Tuple-oriented Compression (TOC)
	Tuple-oriented Compression (TOC), cont.
	Lossy Compression
	Low and Ultra-low FP Precision
	Low and Ultra-low FP Precision, cont.
	Low and Ultra-low FP Precision – New Datatypes
	Fixed-Point Arithmetic
	Other Lossy Techniques
	Summary and Conclusions

