
1
SCIENCE
PASSION

TECHNOLOGY

Data Management
05 Query Languages (SQL)
Matthias Boehm

Graz University of Technology, Austria

Institute of Interactive Systems and Data Science
Computer Science and Biomedical Engineering

BMK endowed chair for Data Management

Last update: Apr 03, 2022

2

INF.01017UF Data Management / 706.010 Databases – 05 Query Languages (SQL)
Matthias Boehm, Graz University of Technology, SS 2022

Announcements/Org
 #1 Video Recording

 Link in TeachCenter & TUbe (lectures will be public)
 Hybrid: HSi13 / https://tugraz.webex.com/meet/m.boehm

 #2 Exercise 1
 Deadline: Mar 29 + 7 late days in TeachCenter
 Grading starts Apr 06, drafts are fine – do not resubmit

 #3 Exercise 2
 Task description published last weekend, discussed today
 Deadline: May 03 + 7 late days in TeachCenter

 #4 (Tentative) Exams Dates
 July 07, 2.30pm-4.30pm in HS i13 + HS i12 (108 213 seats)
 July 07, 5.30pm-7.30pm in HS i13 + HS i12 (108 213 seats)
 July 28, 5.30pm-7.30pm in HS i13 (76 151 seats)

Q&A

https://tugraz.webex.com/meet/m.boehm

3

INF.01017UF Data Management / 706.010 Databases – 05 Query Languages (SQL)
Matthias Boehm, Graz University of Technology, SS 2022

Agenda
 Structured Query Language (SQL)
 Other Query Languages (XML, JSON)
 Exercise 2: Query Languages and APIs

4

INF.01017UF Data Management / 706.010 Databases – 05 Query Languages (SQL)
Matthias Boehm, Graz University of Technology, SS 2022

Structured Query Language (SQL)

5

INF.01017UF Data Management / 706.010 Databases – 05 Query Languages (SQL)
Matthias Boehm, Graz University of Technology, SS 2022

What is a(n) SQL Query?

SELECT Firstname, Lastname, Affiliation, Location
FROM Participant AS R, Locale AS S
WHERE R.LID = S.LID

AND Location LIKE '%, GER'
#1 Declarative:
what not how

#2 Flexibility:
closed composability

#3 Automatic
Optimization

#4 Physical Data
Independence

Firstname Lastname Affiliation Location

Volker Markl TU Berlin Berlin, GER

Thomas Neumann TU Munich Munich, GER

6

INF.01017UF Data Management / 706.010 Databases – 05 Query Languages (SQL)
Matthias Boehm, Graz University of Technology, SS 2022

Why should I care?
 SQL as a Standard

 Standards ensure interoperability,
avoid vendor lock-in,
and protect application investments

 Mature standard with heavy
industry support for decades

 Rich eco system (existing apps, BI tools,
services, frameworks, drivers, design tools, systems)

 SQL is here to stay
 Foundation of mobile/server application data management
 Adoption of existing standard by new systems

(e.g., SQL on Hadoop, cloud DBaaS)
 Complemented by NoSQL abstractions,

see lecture 10 NoSQL (key-value, document, graph)

[https://xkcd.com/927/]

Microsoft

https://xkcd.com/927/

7

INF.01017UF Data Management / 706.010 Databases – 05 Query Languages (SQL)
Matthias Boehm, Graz University of Technology, SS 2022

Overview SQL
 Structured Query Language (SQL)

 Current Standard: ISO/IEC 9075:2016 (SQL:2016)
 Data Definition Language (DDL)Manipulate the database schema
 Data Manipulation Language (DML) Update and query database
 Data Control Language (DCL)Modify permissions

 Dialects
 Spectrum of system-specific dialects

for non-core features
 Data types and size constraints
 Catalog, builtin functions, and tools
 Support for new/optional features
 Case-sensitive identifiers

Structured Query Language (SQL)

Name Examples

T-SQL Microsoft, Sybase

PL/SQL Oracle, (IBM)

PL/pgSQL PostgreSQL, derived

Unnamed Most systems

8

INF.01017UF Data Management / 706.010 Databases – 05 Query Languages (SQL)
Matthias Boehm, Graz University of Technology, SS 2022

The History of the SQL Standard
 SQL:1986

 Database Language SQL, ANSI X3.135-1986, ISO-9075-1987(E)
 ‘87 international edition

 SQL:1989 (120 pages)
 Database Language SQL with Integrity Enhancements,

ANSI X3.135-1989, ISO-9075-1989(E)
 SQL:1992 (580 pages)

 Database Language SQL, ANSI X3-1992, ISO/IEC-9075 1992, DIN 66315
 ‘95 SQL/CLI (part 3), ‘96 SQL/PSM (part 4)

 SQL:1999 (2000 pages)
 Information Technology – Database Language – SQL, ANSI/ISO/IEC-9075 1999
 Complete reorg, ’00 OLAP, ’01 SQL/MED, ’01 SQL/OLB, ‘02 SQL/JRT

 SQL:2003 (3764 pages)
 Information Technology – Database Language – SQL, ANSI/ISO/IEC-9075 2003

Structured Query Language (SQL)

[C. J. Date: A Critique of the
SQL Database Language.

SIGMOD Record 1984]

9

INF.01017UF Data Management / 706.010 Databases – 05 Query Languages (SQL)
Matthias Boehm, Graz University of Technology, SS 2022

The History of the SQL Standard, cont.
 Overview SQL:2003

Structured Query Language (SQL)

3: CLI 4: PSM 9: MED 10: OLB 13: JRT 14: XML

1: Framework

11: Schemata

2: Foundation

Core SQL (all SQL:92 entry, some extended SQL:92/SQL:99)

(1) Enhanced
Date/Time Fac.

(2) Enhanced Integrity
Management

(8) Active
Databases

(7) Enhanced
Objects

(6) Basic
Objects (10) OLAPoptional

features

mandatory
features

x: ... a part
(x) ... a package

Call Level
Interface

Persistent
Stored Modules

Management
of External Data

Object
Language
Bindings

Java Routines
and Types

Extensible
Markup

Language

Presenter
Presentation Notes
NOTE: Part 7 SQL/Temporal SQL:2003 withdrawn, integrated in SQL:2011

10

INF.01017UF Data Management / 706.010 Databases – 05 Query Languages (SQL)
Matthias Boehm, Graz University of Technology, SS 2022

The History of the SQL Standard, cont.
Since SQL:2003 overall structure remained unchanged ...

 SQL:2008 (???? pages)
 Information Technology – Database Language – SQL, ANSI/ISO/IEC-9075 2003
 E.g., XML XQuery extensions, case/trigger extension

 SQL:2011 (4079 pages)
 Information Technology – Database Language – SQL, ANSI/ISO/IEC-9075 2011
 E.g., time periods, temporal constraints, time travel queries

 SQL:2016 (???? pages)
 Information Technology – Database Language – SQL, ANSI/ISO/IEC-9075 2016
 E.g., JSON documents and functions (optional)

 SQL:2023 (upcoming)
 E.g., SQL:PGQ (property graph definition and querying)

 Note: We only discuss common primitives

Structured Query Language (SQL)

[Working Draft SQL:2011:
https://www.wiscorp.com/

SQLStandards.html]

[https://download.oracle.com/otndocs/
products/spatial/pdf/AnD2020/AD_Dev

elop_Graph_Apps_SQL_PGQ.pdf]

Presenter
Presentation Notes
Note: current working draft 2023 includes SQL/PGQ (property graphs) and SQL/MDA (nd arrays)

https://www.wiscorp.com/SQLStandards.html
https://download.oracle.com/otndocs/products/spatial/pdf/AnD2020/AD_Develop_Graph_Apps_SQL_PGQ.pdf

11

INF.01017UF Data Management / 706.010 Databases – 05 Query Languages (SQL)
Matthias Boehm, Graz University of Technology, SS 2022

Data Types in SQL:2003
 Large Variety of Types

 With support for
multiple spellings

Structured Query Language (SQL)

SQL data types

Predefined
Data Types

User-defined
Types (UDT)

ApproximateExact

Added in SQL:1999 / SQL:2003

Deleted in SQL:2003

Interval Boolean

Bit CharacterBlob Date Time Timestamp

Fixed Varying Fixed Varying Clob

NUMERIC

DECIMAL

SMALLINT

BIGINT

INTEGER

REAL

FLOAT

DOUBLE
PRECISION

String

Composite
Data Types

Numeric Datetime

 Implicit casts among numeric types
and among character types

12

INF.01017UF Data Management / 706.010 Databases – 05 Query Languages (SQL)
Matthias Boehm, Graz University of Technology, SS 2022

Data Types in PostgreSQL
 Strings

 CHAR(n) fixed-length character sequence (padded to n)
 VARCHAR(n) variable-length character sequence (n max)
 TEXT variable-length character sequence

 Numeric
 SMALLINT 2 byte integer (signed short)
 INT/INTEGER 4 byte integer (signed int)
 SERIAL INTEGER w/ auto increment
 NUMERIC(p, s) exact real with p digits and s after decimal point

 Time
 DATE date
 TIMESTAMP/TIMESTAMPTZ date and time, timezone-aware if needed

 JSON
 JSON text JSON representation (requires reparsing)
 JSONB binary JSON representation

Structured Query Language (SQL)

Appropriate, Brief, Complete

Presenter
Presentation Notes
Note 1: common record layouts: #1 fixed-size fields, #2 offsets, #3 embedded length fields, #4 partitioned (fixed, var w/ length fields)Note 2: http://databasearchitects.blogspot.com/2015/01/fun-with-char.html

13

INF.01017UF Data Management / 706.010 Databases – 05 Query Languages (SQL)
Matthias Boehm, Graz University of Technology, SS 2022

Create, Alter, and Delete Tables
 Create Table

 Typed attributes
 Primary and foreign keys
 NOT NULL, UNIQUE constraints
 DEFAULT values
 CHECK constraints

 Alter Table
 ADD/DROP columns
 ALTER data type, defaults,

constraints, etc

 Delete Table
 Delete table
 Note: order of tables matters

due to referential integrity

Structured Query Language (SQL)

CREATE TABLE Students (
SID INTEGER PRIMARY KEY,
Fname VARCHAR(128) NOT NULL,
Lname VARCHAR(128) NOT NULL,
Mtime DATE DEFAULT CURRENT_DATE

);

ALTER TABLE Students ADD DoB DATE;

DROP TABLE Students; -- sorry

Templates in SQL
Examples in PostgreSQL

ALTER TABLE Students ADD CONSTRAINT
PKStudent PRIMARY KEY(SID);

DROP TABLE Students CASCADE;

CREATE TABLE Students AS SELECT …;

DROP TABLE IF EXISTS Countries,
Cities, Airports, Airlines,
Routes, Planes, Routes_Planes;

14

INF.01017UF Data Management / 706.010 Databases – 05 Query Languages (SQL)
Matthias Boehm, Graz University of Technology, SS 2022

Create and Delete Indexes
 Create Index

 Create a secondary (nonclustered)
index on a set of attributes

 Clustered: tuples sorted by index
 Non-clustered: sorted attribute with tuple references
 Can specify uniqueness, order, and indexing method
 PostgreSQL methods: btree, hash, gist, and gin

 see lecture 07 Physical Design and Tuning

 Delete Index
 Drop indexes by name

 Tradeoffs
 Indexes often automatically created for primary keys / unique attributes
 Lookup/scan performance vs insert performance

Structured Query Language (SQL)

CREATE INDEX ixStudLname
ON Students USING btree
(Lname ASC NULLS FIRST);

table data

ix

DROP INDEX ixStudLname;

15

INF.01017UF Data Management / 706.010 Databases – 05 Query Languages (SQL)
Matthias Boehm, Graz University of Technology, SS 2022

Database Catalog
 Catalog Overview

 Meta data of all database objects
(tables, constraints, indexes) mostly read-only

 Accessible through SQL
 Organized by schemas (CREATE SCHEMA tpch;)

 SQL Information_Schema
 Schema with tables

for all tables, views, constraints, etc
 Example: check for existence of accessible table

Structured Query Language (SQL)

pgAdmin
graphical

representation

SELECT 1 FROM information_schema.tables
WHERE table_schema = ‘tpch’

AND table_name = ‘customer’

(defined as views over PostgreSQL catalog tables)

[Meikel Poess: TPC-H. Encyclopedia
of Big Data Technologies 2019]

16

INF.01017UF Data Management / 706.010 Databases – 05 Query Languages (SQL)
Matthias Boehm, Graz University of Technology, SS 2022

Insert
 Insert Tuple

 Insert a single tuple with implicit or explicit attribute assignment

 Insert attribute key-value pairs to use auto increment, defaults, NULLs, etc

 Insert Table
 Redirect query result into

INSERT (append semantics)

Structured Query Language (SQL)

INSERT INTO Students
SELECT * FROM NewStudents;

Analogy Linux redirect (append):
cat NewStudents.txt >> Students.txt

INSERT INTO Students (SID, Lname, Fname, MTime, DoB)
VALUES (7,'Boehm','Matthias','2002-10-01','1982-06-25');

INSERT INTO Students (Lname, Fname, DoB)
VALUES ('Boehm','Matthias','1982-06-25'),

(...), (...);

SERIAL SID,
DEFAULT MTime

17

INF.01017UF Data Management / 706.010 Databases – 05 Query Languages (SQL)
Matthias Boehm, Graz University of Technology, SS 2022

Update and Delete
 Update Tuple/Table

 Set-oriented update of attributes
 Update single tuple via predicate

on primary key

 Delete Tuple/Table
 Set-oriented delete of tuples
 Delete single tuple via predicate

on primary key

 Note: Time travel and multi-version concurrency control
 Deleted tuples might be just marked as inactive
 See lecture 09 Transaction Processing and Concurrency

Structured Query Language (SQL)

UPDATE Students
SET MTime = ‘2002-10-02’
WHERE LName = ‘Boehm’;

DELETE FROM Students
WHERE extract(year

FROM mtime) < 2010;

18

INF.01017UF Data Management / 706.010 Databases – 05 Query Languages (SQL)
Matthias Boehm, Graz University of Technology, SS 2022

Basic Queries
 Basic Query Template

 Select-From-Where
 Grouping and Aggregation
 Having and ordering
 Duplicate elimination

 Example
 SELECT Fname, Affil, Location
FROM Participant AS P,

Locale AS L
WHERE P.LID = L.LID;

Structured Query Language (SQL)

Participant Location

×

σP.LID=L.LID

πFname,Affil,Location

SELECT [DISTINCT] <column_list>
FROM [<table_list> |

<table1> [RIGHT | LEFT | FULL] JOIN
<table2> ON <condition>]

[WHERE <predicate>]
[GROUP BY <column_list>]

[HAVING <grouping predicate>]
[ORDER BY <column_list> [ASC | DESC]]

19

INF.01017UF Data Management / 706.010 Databases – 05 Query Languages (SQL)
Matthias Boehm, Graz University of Technology, SS 2022

Basic Queries, cont.
 Distinct and All

 Distinct and all alternatives
 Projection w/ bag semantics by default

 Sorting
 Convert a bag into a sorted list of

tuples; order lost if used in other ops
 Single order: (Lname, Fname) DESC
 Evaluated last in a query tree

 Set Operations
 See 04 Relational Algebra and Calculus
 UNION, INTERSECT, EXCEPT

 Set operations set semantics by default
 DISTINCT (set) vs ALL (bag)

Structured Query Language (SQL)

SELECT * FROM Students
ORDER BY Lname DESC,

Fname DESC;

SELECT DISTINCT Lname, Fname
FROM Students;

(SELECT Firstname, Lastname
FROM Participant2018)
UNION DISTINCT

(SELECT Firstname, Lastname
FROM Participant2013)

20

INF.01017UF Data Management / 706.010 Databases – 05 Query Languages (SQL)
Matthias Boehm, Graz University of Technology, SS 2022

Grouping and Aggregation
 Grouping and Aggregation

 Grouping: determines the distinct groups
 Aggregation: compute aggregate f(B) per group
 Column list can only contain grouping columns, aggregates, or literals
 Having: selection predicate on groups and aggregates

 Example
 Sales (Customer, Location, Product, Quantity, Price)
 Q: Compute number of sales sumQ

and revenue per product sumQP

Structured Query Language (SQL)

SELECT Product,
sum(Quantity) AS SumQ,
sum(Quantity*Price) AS SumQP

FROM Sales
GROUP BY Product

Product Quantity Price
A 1 10
B 3 20
A 2 10
B 1 20

Product SumQ SumQP
A 3 30
B 4 80

21

INF.01017UF Data Management / 706.010 Databases – 05 Query Languages (SQL)
Matthias Boehm, Graz University of Technology, SS 2022

BREAK (and Test Yourself)
 Task: SQL queries

for the following
query trees.

Structured Query Language (SQL)

Orders
O

Products
P

⨝O.PID=P.PID

γCustomer,
sum(O.Quantity*P.Price)

Orders
O

σName∈{Y,Z}

×

σO.PID=P.PID

πCustomer,Date

Products
P

δ

Customer Date
A ‘2019-06-22’
C ‘2019-06-23’
D ‘2019-06-23’

Customer Sum
A 120
B 120
C 130
D 75

SELECT DISTINCT Customer, Date
FROM Orders O, Products P
WHERE O.PID = P.PID
AND Name IN('Y','Z')

SELECT Customer,
sum(O.Quantity * P.Price)

FROM Orders O, Products P
WHERE O.PID = P.PID
GROUP BY Customer

22

INF.01017UF Data Management / 706.010 Databases – 05 Query Languages (SQL)
Matthias Boehm, Graz University of Technology, SS 2022

Subqueries
 Subqueries in Table List

 Use a subquery result
like a base table

 Modularization with
WITH C AS (SELECT …)

 Subqueries w/ IN
 Check containment of values

in result set of sub query

 Other subqueries
 EXISTS: existential quantifier ∃x for correlated subqueries
 ALL: comparison (w/ universal quantifier ∀x)
 SOME/ANY: comparison (w/ existential quantifier ∃x)

Structured Query Language (SQL)

SELECT S.Fname, S.Lname, C.Name
FROM Students AS S,

(SELECT CID, Name FROM Country
WHERE …) AS C

WHERE S.CID=C.CID;

SELECT Product, Quantity, Price
FROM Sales
WHERE Product NOT IN(

SELECT Product FROM Sales
GROUP BY Product
HAVING sum(Quantity*Price)>1e6)

23

INF.01017UF Data Management / 706.010 Databases – 05 Query Languages (SQL)
Matthias Boehm, Graz University of Technology, SS 2022

Correlated and Uncorrelated Subqueries
 Correlated Subquery

 Evaluated subquery for every tuple
of outer query

 Use of attribute from table bound
in outer query inside subquery

 Uncorrelated Subquery
 Evaluate subquery just once
 No attribute correlations between

subquery and outer query

 Query Unnesting (de-correlation)
 Rewrite during query compilation
 See lecture 08 Query Processing

Structured Query Language (SQL)

SELECT P.Fname, P.Lname
FROM Professors P,
WHERE NOT EXISTS(

SELECT * FROM Courses C
WHERE C.PID=P.PID);

SELECT P.Fname, P.Lname
FROM Professors P,
WHERE P.PID NOT IN(

SELECT PID FROM Courses);

[Thomas Neumann, Alfons
Kemper: Unnesting Arbitrary

Queries. BTW 2015]

24

INF.01017UF Data Management / 706.010 Databases – 05 Query Languages (SQL)
Matthias Boehm, Graz University of Technology, SS 2022

Recursive Queries
 Approach

 WITH RECURSIVE <name> (<arguments>)
 Compose recursive table from non-recursive term,

union all/distinct, and recursive term
 Terminates when recursive term yields empty result

 Example
 Courses(CID, Name),

Precond(pre REF CID, suc REF CID)
 Dependency graph (presuc)

Structured Query Language (SQL)

[https://xkcd.com/1739/]

5
4

32

1

WITH RECURSIVE rPrereq(p,s) AS(
(SELECT pre, suc

FROM Precond WHERE suc=5)
UNION DISTINCT
(SELECT B.pre, B.suc
FROM Precond B, rPrereq R
WHERE B.suc = R.p)

)
SELECT DISTINCT p FROM rPrereq

4

3

2

1

https://xkcd.com/1739/

25

INF.01017UF Data Management / 706.010 Databases – 05 Query Languages (SQL)
Matthias Boehm, Graz University of Technology, SS 2022

Procedures and Functions
 Overview Procedures and Functions

 Stored programs, written in PL/pgSQL or other languages
 Control flow (loops, branches) and SQL queries

 (Stored) Procedures
 Can be called standalone via
CALL <proc_name>(<args>);

 Procedures return no outputs

 Functions
 Can be called standalone or

inside queries
 Functions are value mappings
 Table functions can return sets

of records with multiple attributes

CREATE FUNCTION sampleProp(FLOAT)
RETURNS FLOAT
AS 'SELECT $1 * (1 - $1);'
LANGUAGE SQL;

CREATE PROCEDURE prepStud(a INT)
LANGUAGE PLPGSQL AS $$
BEGIN

DELETE FROM Students;
INSERT INTO Students

SELECT * FROM NewStudents;
END; $$;

Structured Query Language (SQL)

26

INF.01017UF Data Management / 706.010 Databases – 05 Query Languages (SQL)
Matthias Boehm, Graz University of Technology, SS 2022

Triggers
 Overview Trigger

 Similar to stored procedure but register ON INSERT, DELETE, or UPDATE
 Allows complex check constraints and active behavior such as replication,

auditing, etc (good and bad)

 Trigger
Template

Structured Query Language (SQL)

CREATE TRIGGER <triggername>
BEFORE | AFTER | INSTEAD OF
INSERT | DELETE | (UPDATE OF <column_list>)
ON <tablename>
[REFERENCING <old_new_alias_list>]
[FOR EACH {ROW | STATEMENT}]
[WHEN (<search condition>)]
<SQL procedure statement> |
BEGIN ATOMIC

{<SQL Procedure statement>;}...
END

Event

Condition

ActionNot supported in
PostgreSQL

(need single UDF)

27

INF.01017UF Data Management / 706.010 Databases – 05 Query Languages (SQL)
Matthias Boehm, Graz University of Technology, SS 2022

Views and Authorization
 Creating Views

 Create a logical table from a query
 Inserts can be propagated back to

base relations only in special cases
 Allows authorization for subset of tuples

 Access Permissions Tables/Views
 Grant query/modification rights on

database objects for specific users, roles
 Revoke access rights from users, roles

(recursively revoke permissions of
dependent views via CASCADE)

Structured Query Language (SQL)

CREATE VIEW TeamDM AS
SELECT * FROM
Employee E, Employee M

WHERE E.MgrID = M.EID
AND M.login = ‘mboehm’;

GRANT SELECT
ON TABLE TeamDM
TO mboehm;

REVOKE SELECT
ON TABLE TeamDM
FROM mboehm;

28

INF.01017UF Data Management / 706.010 Databases – 05 Query Languages (SQL)
Matthias Boehm, Graz University of Technology, SS 2022

Beware of SQL Injection
 Problematic SQL String Concatenation

INSERT INTO Students (Lname, Fname)
VALUES (‘“+ @lname +”‘,’“+ @fname +”’);”;

 Possible SQL-Injection Attack

INSERT INTO Students (Lname, Fname) VALUES (‘Smith‘,’Robert’);
DROP TABLE Students; --’);

Structured Query Language (SQL)

[https://xkcd.com/327/]

https://xkcd.com/327/

29

INF.01017UF Data Management / 706.010 Databases – 05 Query Languages (SQL)
Matthias Boehm, Graz University of Technology, SS 2022

Other Query Languages
(XML, JSON)

30

INF.01017UF Data Management / 706.010 Databases – 05 Query Languages (SQL)
Matthias Boehm, Graz University of Technology, SS 2022

No really, why should I care?
 Semi-structured XML and JSON

 Self-contained documents for representing nested data
 Common data exchange formats without redundancy of flat files
 Human-readable formats often used for SW configuration

 Goals
 Awareness of XML and JSON as data models
 Query languages and embedded querying in SQL

Other Query Languages (XML, JSON)

31

INF.01017UF Data Management / 706.010 Databases – 05 Query Languages (SQL)
Matthias Boehm, Graz University of Technology, SS 2022

XML (Extensible Markup Language)
 XML Data Model

 Meta language to define
specific exchange formats

 Document format for
semi-structured data

 Well formedness
 XML schema / DTD

 XPath (XML Path Language)
 Query language for

accessing collections of nodes of an XML document
 Axis specifies for ancestors, descendants, siblings, etc

 XSLT (XML Stylesheet Language Transformations)
 Schema mapping (transformation) language for XML documents

 XQuery
 Query language to extract, transform, and analyze XML documents

Other Query Languages (XML, JSON)

<?xml version=“1.0“ encoding=“UTF-8“?>
<data>

<student id=“1”>
<course id=“INF.01017UF” name=“DM”/>
<course id=“706.550” name=“AMLS”/>

</student>
<student id=“5”>

<course id=“706.520” name=“DIA”/>
</student>

</data>

/data/student[@id=‘1’]/course/@name

“DM”
“AMLS”

32

INF.01017UF Data Management / 706.010 Databases – 05 Query Languages (SQL)
Matthias Boehm, Graz University of Technology, SS 2022

XML in PostgreSQL, cont.
 Overview XML in PostgreSQL

 Data types TEXT or XML (well-formed, type-safe operations)
 ISO/IEC 9075-14 XML-related specifications (SQL/XML)

 Creating XML
 Various built-in functions to parse

documents, and create elements/attributes
 XMLPARSE(<xml_document>) XML type
 XMLELEMENT / XMLATTRIBUTES

 Processing XML
 Execute XPath expressions on XML types
 XMLEXIST with XPath instead of XQuery
 XPATH with optional namespace handling

Other Query Languages (XML, JSON)

INSERT INTO Students
(Fname,Lname,Doc)
VALUES(‘John’,’Smith’,
xmlparse(<source_doc>));

SELECT Fname, Lname,
xpath(‘/student/@id’,Doc)
FROM Students

33

INF.01017UF Data Management / 706.010 Databases – 05 Query Languages (SQL)
Matthias Boehm, Graz University of Technology, SS 2022

JSON (JavaScript Object Notation)
 JSON Data Model

 Data exchange format for
semi-structured data

 Not as verbose as XML
(especially for arrays)

 Popular format (e.g., Twitter)

 Query Languages
 Most common: libraries for

tree traversal and data extraction
 JSONiq: XQuery-like query language
 JSONPath: XPath-like query language

Other Query Languages (XML, JSON)

{“students:”[
{“id”: 1, “courses”:[

{“id“:“INF.01017UF”, “name“:“DM”},
{“id“:“706.550”, “name“:“AMLS”}]},

{“id”: 5, “courses”:[
{“id“:“706.520”, “name“:“DIA”}]},

]}

JSONiq Example:
declare option jsoniq-version “…”;
for $x in collection(“students”)
where $x.id lt 10
let $c := count($x.courses)
return {“sid”:$x.id, “count”:$c}

[http://www.jsoniq.org/docs/JSONiq/html-single/index.html]

[Ingo Müller, Ghislain Fourny, Stefan Irimescu, Can Berker Cikis,
Gustavo Alonso: Rumble: Data Independence for Large Messy

Data Sets. PVLDB 2020, https://github.com/RumbleDB/rumble]

http://www.jsoniq.org/docs/JSONiq/html-single/index.html
https://github.com/RumbleDB/rumble

34

INF.01017UF Data Management / 706.010 Databases – 05 Query Languages (SQL)
Matthias Boehm, Graz University of Technology, SS 2022

JSON in PostgreSQL, cont.
 Overview JSON in PostgreSQL

 Alternative data types: JSON (text), JSONB (binary, with restrictions)
 Implements RFC 7159, built-ins for conversion and access

 Creating JSON
 Built-in functions for creating

JSON from tables and tables
from JSON input

 Processing JSON
 Specialized operators for

tree traversal and data extraction
 -> operator: get JSON array element/object
 ->> operator: get JSON array element/object as text
 Built-in functions for extracting json (e.g., json_each)

Other Query Languages (XML, JSON)

SELECT row_to_json(t) FROM
(SELECT Fname, Lname
FROM Students) t

SELECT Fname, Lname,
Doc->students->>id
FROM Students

35

INF.01017UF Data Management / 706.010 Databases – 05 Query Languages (SQL)
Matthias Boehm, Graz University of Technology, SS 2022

Exercise 2:
Query Languages and APIs

https://mboehm7.github.io/teaching/ss22_dbs/
02_ExerciseQueriesAPIs.pdf

Published: Apr 03, 2022
(data cleaning / ref solutions already completed)

Deadline: May 03, 2022

https://mboehm7.github.io/teaching/ss22_dbs/02_ExerciseQueriesAPIs.pdf

36

INF.01017UF Data Management / 706.010 Databases – 05 Query Languages (SQL)
Matthias Boehm, Graz University of Technology, SS 2022

Exercises: Graz Districts
 Dataset

 Graz districts, streets, schools, universities,
population counts by age and country
(to be cleaned and prepared Ex 02)

 Clone or download your copy from
https://github.com/tugraz-isds/datasets.git

 Find CSV files in <datasets>/districts_graz

 Exercises
 01 Data modeling (relational schema)
 02 Data ingestion and SQL query processing
 03 Physical design tuning, query processing,

and transaction processing
 04 Large-scale data analysis (distributed

query processing and ML model training – anomalies?)

Course Organization

www.data.gv.at

https://github.com/tugraz-isds/datasets.git
https://www.data.gv.at/

37

INF.01017UF Data Management / 706.010 Databases – 05 Query Languages (SQL)
Matthias Boehm, Graz University of Technology, SS 2022

Task 2.1: Schema Creation via SQL (3/25 points)
 Schema creation via SQL

 Relies on lectures 04 Relational Algebra and 05 Query Languages (SQL)
 Setup DBMS PostgreSQL, and start pgAdmin (UI), or psql (terminal)
 Docker container w/ basic setup in next days
 Create database db<studentID> and setup relational schema,

including primary keys, foreign keys, NOT NULL, UNIQUE

 Recommended Schema
 Feel free to use and submit the provided schema
 https://mboehm7.github.io/teaching/ss22_dbs/CreateSchema.sql

 Partial Results
 CreateSchema.sql

Exercise 2: Query Languages and APIs

CREATE TABLE PopByCitizenship(
DKey INT REFERENCES Districts,
CKey INT REFERENCES Countries,
PopDate DATE,
PopCount INT NOT NULL,
PRIMARY KEY(DKey, CKey, PopDate)

)

https://mboehm7.github.io/teaching/ss22_dbs/CreateSchema.sql

38

INF.01017UF Data Management / 706.010 Databases – 05 Query Languages (SQL)
Matthias Boehm, Graz University of Technology, SS 2022

Task 2.2 Data Ingestion via CLI (10/25 points)
 Data Ingestion Program via ODBC/JDBC

 Relies on lectures 05 Query Languages (SQL) and 06 APIs (ODBC, JDBC)
 Write a program that performs deduplication and data ingestion
 Programming language of your choosing (Python, Java, C#, C++ recommended)

 Data Ingestion Process
 Data: https://github.com/tugraz-isds/datasets/tree/master/districts_graz
 Invoke your ingestion program as follows script to compile and run

 Partial Results
 Source code IngestData.*, and
 Script runIngestData.sh

Exercise 2: Query Languages and APIs

./runIngestData.sh ./Districts.csv ./Institutions.csv ./Streets.csv \
./PopulationByCitizenship.csv ./PopulationByGender.csv \
<host> <port> <database> <user> <password>
(e.g., localhost 5432 db1234567 postgres postgres)

https://github.com/tugraz-isds/datasets/tree/master/districts_graz

39

INF.01017UF Data Management / 706.010 Databases – 05 Query Languages (SQL)
Matthias Boehm, Graz University of Technology, SS 2022

Task 2.3: SQL Query Processing (10/25 points)
 SQL Query Processing

 Relies on lecture 05 Query Languages (SQL)
 Expected results: https://mboehm7.github.io/teaching/ss22_dbs/Results.zip

 List of Queries
 Q01: Which districts have the postal code 8051? (return Districts.Name)
 Q02: Which institutions have an address on Leonhardstrasse? (return

Institutions.Name, Addresses.PostalCode, Addresses.StNumber)
 Q03: Compute, for each district, its relative area (in percent) of the total Graz

area (sum of district areas). (return Districts.Name, relative area)
 Q04: Count, for each district, the number of streets that belong entirely to this

district(filter out streets that belong to more than one district). (return
Districts.Name, Districts.Area, street count; sorted descending by street count)

 Q05: How many distinct countries were represented (by people's citizenships)
between 2010-01-01 and 2014-12-31 in each district? (return Districts.Name,
country count; sorted descending by country count)

Exercise 2: Query Languages and APIs

TODO: this week

https://mboehm7.github.io/teaching/ss22_dbs/Results.zip

40

INF.01017UF Data Management / 706.010 Databases – 05 Query Languages (SQL)
Matthias Boehm, Graz University of Technology, SS 2022

Task 2.3: SQL Query Processing (10/25 points)
 List of Queries, cont.

 Q06: Obtain the population count for all N-EU countries represented in
Jakomini as of 2022-01-01? (return Countries.Name,
PopByCitizenship.PopCount; sorted descending by PopCount)

 Q07: Compute the top-10 countries (by people's citizenship) with the largest
absolute change in total population count over time. (return Countries.Name,
date maximum, maximum, date minimum, minimum, difference max-min;
sorted descending by difference)

 Q08: Find all pairs of distinct districts that had at the same date, the same
population count of the same gender (e.g. Wetzelsdorf and Strassgang both
having 6970 males as of 2008-04-01). (return PByG.Date,
Districts.Name 1, Districts.Name 2, PByG.Gender, PByG.PopCount)

 Partial Results
 SQL Script for each query: Q01.sql, Q02.sql, …, Q08.sql

Exercise 2: Query Languages and APIs

41

INF.01017UF Data Management / 706.010 Databases – 05 Query Languages (SQL)
Matthias Boehm, Graz University of Technology, SS 2022

Task 2.4: Query Plans (2/25 points)
 Explain Query Plans

 Relies on lecture 04 Relational Algebra and 05 Query Languages (SQL)
 Obtain and analyze execution plans of Q06

 Example

 Partial Results
 ExplainQ06.sql

Exercise 2: Query Languages and APIs

EXPLAIN VERBOSE
SELECT L.location, count(*)
FROM Participant P,

Locale L
WHERE P.lid = L.lid
GROUP BY L.location
HAVING count(*)>1

"HashAggregate (...)" // grouping
" Output: l.location, count(*)"
" Group Key: l.location"
" Filter: (count(*) > 1)" // selection
" -> Hash Join (...)" // join
" Output: l.location" // projection
" Hash Cond: (l.lid = p.lid)"
" -> Seq Scan on Locale l (...)"
" Output: l.lid, l.location"
" -> Hash (...)"
" Output: p.lid" // projection
" -> Seq Scan on Participant p (...)"
" Output: p.lid"

42

INF.01017UF Data Management / 706.010 Databases – 05 Query Languages (SQL)
Matthias Boehm, Graz University of Technology, SS 2022

Conclusions and Q&A
 Summary

 History and fundamentals of the Structured Query Language (SQL)
 Awareness of XML and JSON (data model and querying)

 Exercise Submissions
 Exercise 1: Mar 29 + 7 late days, grading starts soon
 Exercise 2: May 03, published Apr 03

 Next Lectures (Part A)
 06 APIs (ODBC, JDBC, OR frameworks) [Apr 25]
 07 Physical Design and Tuning [May 02]
 08 Query Processing [May 09]
 09 Transaction Processing and Concurrency [May 16]

	Data Management�05 Query Languages (SQL)
	Announcements/Org
	Agenda
	Structured Query Language (SQL)
	What is a(n) SQL Query?
	Why should I care?
	Overview SQL
	The History of the SQL Standard
	The History of the SQL Standard, cont.
	The History of the SQL Standard, cont.
	Data Types in SQL:2003
	Data Types in PostgreSQL
	Create, Alter, and Delete Tables
	Create and Delete Indexes
	Database Catalog
	Insert
	Update and Delete
	Basic Queries
	Basic Queries, cont.
	Grouping and Aggregation
	BREAK (and Test Yourself)
	Subqueries
	Correlated and Uncorrelated Subqueries
	Recursive Queries
	Procedures and Functions
	Triggers
	Views and Authorization
	Beware of SQL Injection
	Other Query Languages �(XML, JSON)
	No really, why should I care?
	XML (Extensible Markup Language)
	XML in PostgreSQL, cont.
	JSON (JavaScript Object Notation)
	JSON in PostgreSQL, cont.
	Exercise 2: �Query Languages and APIs
	Exercises: Graz Districts
	Task 2.1: Schema Creation via SQL (3/25 points)�
	Task 2.2 Data Ingestion via CLI (10/25 points)
	Task 2.3: SQL Query Processing (10/25 points)
	Task 2.3: SQL Query Processing (10/25 points)
	Task 2.4: Query Plans (2/25 points)
	Conclusions and Q&A

