
1
SCIENCE
PASSION

TECHNOLOGY

Data Management
07 Physical Design & Tuning
Matthias Boehm

Graz University of Technology, Austria

Institute of Interactive Systems and Data Science
Computer Science and Biomedical Engineering

BMK endowed chair for Data Management

Last update: Apr 30, 2022

2

INF.01017UF Data Management / 706.010 Databases – 07 Physical Design and Tuning
Matthias Boehm, Graz University of Technology, SS 2022

Announcements/Org
 #1 Video Recording

 Link in TeachCenter & TUbe (lectures will be public)
 Hybrid: HSi13 / https://tugraz.webex.com/meet/m.boehm
 Apr 25: no more COVID restrictions at TU Graz

 #2 Course Evaluation and Exam
 Evaluation period: Jun 15 – Jul 31
 Exams: Jun 27, 4pm (i13), Jul 07, 2.30pm (i12+i13),

Jul 07, 5.30pm (i12+13), Jul 28, 5.30pm (i13)

 #3 Exercises
 Exercise 1 in progress of being graded
 Exercise 2: May 03 + 7 late days in TeachCenter

Q&A

https://tugraz.webex.com/meet/m.boehm

3

INF.01017UF Data Management / 706.010 Databases – 07 Physical Design and Tuning
Matthias Boehm, Graz University of Technology, SS 2022

Physical Design, and why should I care?
 Performance Tuning via Physical Design

 Select physical data structures for relational schema and query workload
 #1: User-level, manual physical design by DBA (database administrator)
 #2: User/system-level automatic physical design via advisor tools

 Example
Base
Tables

R SSELECT * FROM R, S, T
WHERE R.c = S.d AND S.e = T.f
AND R.b BETWEEN 12 AND 73

1000000
σ12≤R.b≤73

⋈c=d

R

S

⋈e=f

T
10

Mat
Views

Parti-
tioning

Physical
Access Paths

T

MV2MV1

B+-Tree BitMap
Compression

Hash

⋈

Presenter
Presentation Notes
Mat views and partitioning logical access pathsIndex structures and compression physical access paths

4

INF.01017UF Data Management / 706.010 Databases – 07 Physical Design and Tuning
Matthias Boehm, Graz University of Technology, SS 2022

Agenda
 Compression Techniques
 Index Structures
 Table Partitioning
 Materialized Views

More details in
706.543 ADBS

5

INF.01017UF Data Management / 706.010 Databases – 07 Physical Design and Tuning
Matthias Boehm, Graz University of Technology, SS 2022

Compression Techniques

6

INF.01017UF Data Management / 706.010 Databases – 07 Physical Design and Tuning
Matthias Boehm, Graz University of Technology, SS 2022

Background Storage System
 Segments, Pages, Blocks

 Segments: storage unit of DB objects
like relations (heap) and indexes

 Page: fixed-size memory region
 Block: smallest addressable unit

on disk (e.g., POSIX block devices)

 Buffer & Storage Management
 Buffer management at

granularity of pages
 PostgreSQL default: 8KB
 Different table/page layouts

(e.g., NSM, DSM, PAX, column)
 TID/RID Concept (pageID, slotID)
 stable ID, even if records reorganized

Compression Techniques

Segment / Tablespace

Page 1 Page 2 Page 3

Blk
1

Blk
2

Blk
3

Blk
4

Blk
5

Blk
6

115 136
81 136 Header 115 175 Header

tuple tuple

tuple offsets TID/RID Concept
(pageID, slotID)

7

INF.01017UF Data Management / 706.010 Databases – 07 Physical Design and Tuning
Matthias Boehm, Graz University of Technology, SS 2022

Background Storage System, cont.
 TID Concept (p, s)

 TID := (page number, slot index)
 Page slot directory holds tuple offsets (byte position) within page

 Example PostgreSQL
 Recap: Papers(PKey, Title, Pages, CKey, JKey)
 Hidden CTID system column (not shown on *, but usable)

Compression Techniques

SELECT CTID, PKey,
Title, Pages

FROM Papers

8

INF.01017UF Data Management / 706.010 Databases – 07 Physical Design and Tuning
Matthias Boehm, Graz University of Technology, SS 2022

Overview Database Compression
 Compression Overview

 Fit larger datasets in memory, less I/O, better cache utilization
 Some allow query processing directly on the compressed data
 #1 Page-level compression (general-purpose GZIP, Snappy, LZ4)
 #2 Row-level heavyweight/lightweight compression (e.g., Huffman)
 #3 Column-level lightweight compression

(NS, RLE, DICT, Delta, FOR next slide)
 #4 Specialized log and index compression

Compression Techniques

[Patrick Damme et al: Lightweight
Data Compression Algorithms: An
Experimental Survey. EDBT 2017]

Presenter
Presentation Notes
Page header: e.g., page type, log version numbers, flags, checksums

9

INF.01017UF Data Management / 706.010 Databases – 07 Physical Design and Tuning
Matthias Boehm, Graz University of Technology, SS 2022

Lightweight Database Compression Schemes
 Null Suppression

 Compress integers by omitting
leading zero bytes/bits (e.g., NS, gamma)

 Run-Length Encoding
 Compress sequences of equal values by

runs of (value, start, run length)

 Dictionary Encoding
 Compress column w/ few distinct values

as pos in dictionary (code size)

 Delta Encoding
 Compress sequence w/ small changes

by storing deltas to previous value

 Frame-of-Reference Encoding
 Compress values by storing delta to

reference value (outlier handling)

Compression Techniques

00000000 00000000 00000000 01101010

106

11 01101010

1 1 1 1 7 7 7 7 7 3 3 3 3 3 3 ...

1,1,4 7,5,5 3,10,6

1 7 7 3 1 7 1 3 3 7 1 3 3 7 3 ...

1,3,7 dictionary (code size 2 bit)
1 3 3 2 1 3 1 2 2 3 1 2 2 3 2 ...

20 21 22 20 19 18 19 20 21 20 ...
0 1 1 -2 -1 -1 1 1 1 -1...

20 21 22 20 71 70 71 69 70 21 ...

-1 0 1 -1 1 0 1 -1 0 -1 ...
21 70 22

10

INF.01017UF Data Management / 706.010 Databases – 07 Physical Design and Tuning
Matthias Boehm, Graz University of Technology, SS 2022

Index Structures

11

INF.01017UF Data Management / 706.010 Databases – 07 Physical Design and Tuning
Matthias Boehm, Graz University of Technology, SS 2022

Overview Index Structures
 Table Scan vs Index Scan

 For highly selective predicates, index scan
asymptotically much better than table scan

 Index scan higher per tuple overhead
(break even ~5% output ratio)

 Multi-column predicates: fetch/RID-list intersection

 Use Cases for Indexes

Index Structures

ix

Table Scan Index Scan

Lookups /
Range Scans

table data

ix

ix

contains
key 107?

Unique
Constraints

Index Nested
Loop Joins

ix
R

⋈

S

Aggregates
(count, min/max)

ix

size=
7100

sorted

12

INF.01017UF Data Management / 706.010 Databases – 07 Physical Design and Tuning
Matthias Boehm, Graz University of Technology, SS 2022

Additional Terminology
 Create Index

 Create a secondary (nonclustered)
index on a set of attributes

 Clustered: tuples sorted by index
 Non-clustered: sorted attribute with tuple references
 Can specify uniqueness, order, and indexing method
 PostgreSQL methods: btree, hash, gist, and gin

 Binary Search
 pos = binarySearch(data,key=23)
 Given sorted data, find key position

(insert position if non-existing)
 k-ary search for SIMD data-parallelism
 Interpolation search: probe expected pos in key range

(e.g., search([1:10000], 9700))

Index Structures

CREATE INDEX ixStudLname
ON Students USING btree
(Lname ASC NULLS FIRST);

table data

ix

10 13 14 17 18 19 23 25 27 2910 13 14 17 18 19 23 25 27 2910 13 14 17 18 19 23 25 27 29

DROP INDEX ixStudLname;

TID refs

13

INF.01017UF Data Management / 706.010 Databases – 07 Physical Design and Tuning
Matthias Boehm, Graz University of Technology, SS 2022

Classification of Index Structures
 1D Access Methods

 ND Access Methods
 Linearization of ND key space + 1D indexing (Z order, Gray code, Hilbert curve)
 Multi-dimensional trees and hashing (e.g., UB tree, k-d tree, gridfile)
 Spatial index structures (e.g., R tree)

Index Structures

1D Access Methods

Key Comparison Key Transformation

Sequential Tree-Based Sort-Based Hash-Based
Static

Dynamic
Binary Search Trees

Multiway Trees (B-Tree)
Prefix Trees (Tries)

Sequential Lists
Linked Lists

[Theo Härder, Erhard Rahm:
Datenbanksysteme: Konzepte und

Techniken der Implementierung, 2001]

14

INF.01017UF Data Management / 706.010 Databases – 07 Physical Design and Tuning
Matthias Boehm, Graz University of Technology, SS 2022

B-Tree Overview
 History B-Tree

 Bayer and McCreight 1972, Block-based, Balanced, Boeing Labs
 Multiway tree (node size = page size); designed for DBMS
 Extensions: B+-Tree/B*-Tree (data only in leafs, double-linked leaf nodes)

 Definition B-Tree (k, h)
 All paths from root to leafs have equal length h
 All nodes (except root) have [k, 2k] key entries
 All nodes (except root, leafs) have [k+1, 2k+1] successors
 Data is a record or a reference to the record (RID)

Index Structures

 1
2

1log)1(log 112 +

 +

≤≤+ ++
nhn kk

P0 Key K1 Data D1 P1 Key K2 Data D2 P2 Key K3 Data D3 P3 Key K4 Data D4 P4

Subtree w/
K2 < keys ≤ K3

Subtree w/
keys ≤ K1

k=2

All nodes adhere
to max constraints

[Rudolf Bayer, Edward M. McCreight:
Organization and Maintenance of Large

Ordered Indices. Acta Inf. (1) 1972]

15

INF.01017UF Data Management / 706.010 Databases – 07 Physical Design and Tuning
Matthias Boehm, Graz University of Technology, SS 2022

B-Tree Search
 Example B-Tree k=2

 Get 38 D38
 Get 20 D20
 Get 6 NULL

 Lookup QK within a node
 Scan / binary search keys for QK, if Ki=QK, return Di

 If node does not contain key
 If leaf node, abort search w/ NULL (not found), otherwise
 Decent into subtree Pi with Ki < QK ≤ Ki+1

 Range Scan QL<K<U

 Lookup QL and call next K while K<QU (keep current position and node stack)

Index Structures

25

10 20 30 40

2 5 7 8

13 14 15 18

22 24

41 42 45 46

32 35 38

26 27 28

16

INF.01017UF Data Management / 706.010 Databases – 07 Physical Design and Tuning
Matthias Boehm, Graz University of Technology, SS 2022

B-Tree Insert
 Basic Insertion Approach

 Always insert into leaf nodes!
 Find position similar to lookup, insert and maintain sorted order
 If node overflows (exceeds 2k entries) node splitting

 Node Splitting Approach
 Split the 2k+1 entries into two leaf nodes
 Left node: first k entries
 Right node: last k entries
 (k+1)th entry inserted into parent node
 can cause recursive splitting

 Special case: root split (h++)

 B-Tree is self-balancing

Index Structures

30 40

41 42 45 46 47
2k+1

30 40

41 42

45

46 47
first k last k

1

overflow

17

INF.01017UF Data Management / 706.010 Databases – 07 Physical Design and Tuning
Matthias Boehm, Graz University of Technology, SS 2022

B-Tree Insert, cont. (Example w/ k=1)
 Insert 1

 Insert 5

 Insert 2
(split)

 Insert 6

 Insert 7
(split)

Index Structures

 Insert 4

 Insert 8

 Insert 3
(2x split)

 Note: Exercise 03?
(B-tree insertion and deletion)

1 5

1

2

1 5

2

1 5 6

1

2 6

5 7

1

2 6

74 5

1

2 6

4 5 7 8

4

2 6

1 3 5 7 8

18

INF.01017UF Data Management / 706.010 Databases – 07 Physical Design and Tuning
Matthias Boehm, Graz University of Technology, SS 2022

B-Tree Delete
 Basic Deletion Approach

 Lookup deletion key, abort if non-existing
 Case inner node: move entry from fullest successor node into position
 Case leaf node: if underflows (<k entries) merge w/ sibling

 Example
 Case

inner

 Case
leaf

Index Structures

4

2 6

1 3 5 7 8

4

2 7

1 3 5 8

4

2 7

1 3 5 8
underflow

under-
flow

1 2

4

7

5 8

4 7

1 2 5 8

Presenter
Presentation Notes
Note: in case inner, direct merge of 2 and 4 not possible, as 6 separates the two leaf nodes 5 and (7,8)

19

INF.01017UF Data Management / 706.010 Databases – 07 Physical Design and Tuning
Matthias Boehm, Graz University of Technology, SS 2022

B-Tree Insert and Delete w/ k=2
 Insert/Delete Examples

 Original

 Insert 16

 Insert 26

 Delete 20

 Delete 16

Index Structures

10 20

3 5 7 4 11 18 19 25 28 30 31

10 20

3 5 7 4 11 16 18 25 28 30 31

10 20 28

3 5 7 4 11 16 18 25 26 30 31 30 31 30 31

10 18 28

3 5 7 4 11 16 18 25 26 30 31 30 31 30 31

10 28

3 5 7 4 11 18 25 26 30 31 30 31

20

INF.01017UF Data Management / 706.010 Databases – 07 Physical Design and Tuning
Matthias Boehm, Graz University of Technology, SS 2022

k = 16
k’ = 4

 Generalized Prefix Tree
 Arbitrary data types (byte sequences)
 Configurable prefix length k’
 Node size: s = 2k’ references
 Fixed maximum height h = k/k‘
 Secondary index structure

 Characteristics
 Partitioned data structure
 Order-preserving

(for range scans)
 Update-friendly

 Properties
 Deterministic paths
 Worst-case complexity O(h)

Excursus: Prefix Trees (Radix Trees, Tries)

Index Structures

• Bypass array
• Adaptive trie

expansion
• Memory
preallocation +

reduced pointers

0000 0000 0110 1011

insert (107,value4)
0000 0000 0110 1011

21

INF.01017UF Data Management / 706.010 Databases – 07 Physical Design and Tuning
Matthias Boehm, Graz University of Technology, SS 2022

Excursus: Learned Index Structures
 A Case For Learned Index Structures

 Sorted data array, predict position of key
 Hierarchy of simple models (stages models)
 Tries to approximate the CDF similar to interpolation search (uniform data)

 Follow-up Work
on SageDBMS

Index Structures

[Tim Kraska, Alex Beutel, Ed H.
Chi, Jeffrey Dean, Neoklis

Polyzotis: The Case for Learned
Index Structures. SIGMOD 2018]

[Tim Kraska, Mohammad Alizadeh, Alex Beutel, Ed H. Chi, Ani
Kristo, Guillaume Leclerc, Samuel Madden, Hongzi Mao, Vikram
Nathan: SageDB: A Learned Database System. CIDR 2019]

Systems for ML,
ML for Systems

22

INF.01017UF Data Management / 706.010 Databases – 07 Physical Design and Tuning
Matthias Boehm, Graz University of Technology, SS 2022

BREAK (and Test Yourself)
 Given B-tree below, insert key 9 and draw resulting B-tree (7/100 points)

 Given B-tree below, delete key 27, and draw resulting B-tree (8/100 points)

Index Structures

8 16 20

2 5 6 4 9 11 17 19 21 23 25

8 20

2 5 6 4 11 16 19 23 25 29 30

23

INF.01017UF Data Management / 706.010 Databases – 07 Physical Design and Tuning
Matthias Boehm, Graz University of Technology, SS 2022

BREAK (and Test Yourself), cont.
 Which of the following trees are valid – i.e., satisfy the constraints of –

B-trees with k=1? Mark each tree as valid or invalid and name the
violations (4/100 points)

Index Structures

(empty leaf node,
underflow)

(invalid #
of pointers and

subtrees)

(invalid ordering of
data items, 6>5 but

in left subtree)

24

INF.01017UF Data Management / 706.010 Databases – 07 Physical Design and Tuning
Matthias Boehm, Graz University of Technology, SS 2022

Table Partitioning

25

INF.01017UF Data Management / 706.010 Databases – 07 Physical Design and Tuning
Matthias Boehm, Graz University of Technology, SS 2022

Overview Partitioning Strategies
 Horizontal Partitioning

 Relation partitioning into disjoint subsets

 Vertical Partitioning
 Partitioning of attributes with

similar access pattern

 Hybrid Partitioning
 Combination of horizontal and vertical

fragmentation (hierarchical partitioning)

 Derived Horizontal
Partitioning

Table Partitioning

⋊

26

INF.01017UF Data Management / 706.010 Databases – 07 Physical Design and Tuning
Matthias Boehm, Graz University of Technology, SS 2022

Correctness Properties
 #1 Completeness

 R R1, R2, …, Rn (Relation R is partitioned into n fragments)
 Each item from R must be included in at least one fragment

 #2 Reconstruction
 R R1, R2, …, Rn (Relation R is partitioned into n fragments)
 Exact reconstruction of fragments must be possible

 #3 Disjointness
 R R1, R2, …, Rn (Relation R is partitioned into n fragments)
 𝑹𝑹𝒊𝒊 ∩ 𝑹𝑹𝒋𝒋 = ∅ (1 ≤ 𝑖𝑖, 𝑗𝑗 ≤ 𝑛𝑛; 𝑖𝑖 ≠ 𝑗𝑗)

Table Partitioning

27

INF.01017UF Data Management / 706.010 Databases – 07 Physical Design and Tuning
Matthias Boehm, Graz University of Technology, SS 2022

Horizontal Partitioning
 Row Partitioning into n Fragments Ri

 Complete, disjoint, reconstructable
 Schema of fragments is equivalent

to schema of base relation

 Partitioning
 Split table by n selection predicates Pi

(partitioning predicate) on attributes of R
 Beware of attribute domain and skew

 Reconstruction
 Union of all fragments
 Bag semantics, but no

duplicates across partitions

Table Partitioning

𝑹𝑹𝒊𝒊 = 𝝈𝝈𝑷𝑷𝒊𝒊 𝑹𝑹
(1 ≤ 𝑖𝑖 ≤ 𝑛𝑛)

𝑹𝑹 = �
𝟏𝟏≤𝒊𝒊≤𝒏𝒏

𝑹𝑹𝒊𝒊
∪

R1 R2

∪

R3

28

INF.01017UF Data Management / 706.010 Databases – 07 Physical Design and Tuning
Matthias Boehm, Graz University of Technology, SS 2022

Vertical Fragmentation
 Column Partitioning into n Fragments Ri

 Complete, reconstructable, but not disjoint
(primary key for reconstruction via join)

 Completeness: each attribute must
be included in at least one fragment

 Partitioning
 Partitioning via projection
 Redundancy of primary key

 Reconstruction
 Natural join over primary key

 Hybrid horizontal/vertical partitioning

Table Partitioning

PK A1 A2

𝑹𝑹𝒊𝒊 = 𝝅𝝅𝑷𝑷𝑷𝑷,𝑨𝑨𝒊𝒊 𝑹𝑹
(1 ≤ 𝑖𝑖 ≤ 𝑛𝑛)

𝑹𝑹 = 𝑹𝑹𝟏𝟏⋈𝑹𝑹𝒊𝒊⋈𝑹𝑹𝒏𝒏
(1 ≤ 𝑖𝑖 ≤ 𝑛𝑛)

PK A1

PK A2

𝑹𝑹 = 𝑹𝑹𝟏𝟏⋈𝑹𝑹𝒊𝒊⋈𝑹𝑹𝒏𝒏 w/ 𝑹𝑹𝒊𝒊 =∪ 𝑹𝑹𝒊𝒊𝒋𝒋
 𝑹𝑹 =∪ 𝑹𝑹𝒋𝒋 w/ 𝑹𝑹𝒋𝒋 = 𝑹𝑹𝟏𝟏𝒋𝒋⋈𝑹𝑹𝒊𝒊𝒋𝒋⋈𝑹𝑹𝒏𝒏𝒋𝒋

29

INF.01017UF Data Management / 706.010 Databases – 07 Physical Design and Tuning
Matthias Boehm, Graz University of Technology, SS 2022

Derived Horizontal Fragmentation
 Row Partitioning R into n fragements

Ri, with partitioning predicate on S
 Potentially complete (not guaranteed),

restructable, disjoint
 Foreign key / primary key relationship determines correctness

 Partitioning
 Selection on independent relation S
 Semi-join with dependent relation R

to select partition Ri

 Reconstruction
 Equivalent to horizontal partitioning
 Union of all fragments

Table Partitioning

⋊
Austria

𝑹𝑹 = �
𝟏𝟏≤𝒊𝒊≤𝒏𝒏

𝑹𝑹𝒊𝒊

𝑹𝑹𝒊𝒊 = 𝑹𝑹⋉ 𝑺𝑺𝒊𝒊 = 𝑹𝑹⋉ 𝝈𝝈𝑷𝑷𝒊𝒊 𝑺𝑺
= 𝝅𝝅𝑹𝑹.∗ 𝑹𝑹⋈𝝈𝝈𝑷𝑷𝒊𝒊 𝑺𝑺

30

INF.01017UF Data Management / 706.010 Databases – 07 Physical Design and Tuning
Matthias Boehm, Graz University of Technology, SS 2022

Exploiting Table Partitioning
 Partitioning and query rewriting

 #1 Manual partitioning and rewriting
 #2 Automatic rewriting (spec. partitioning)
 #3 Automatic partitioning and rewriting

 Example PostgreSQL (#2)

Table Partitioning

J# Pos Name
1 GK Manuel Neuer

12 GK Ron-Robert Zieler
22 GK Roman Weidenfeller
2 DF Kevin Großkreutz
4 DF Benedikt Höwedes
5 DF Mats Hummels

15 DF Erik Durm
16 DF Philipp Lahm
17 DF Per Mertesacker
20 DF Jérôme Boateng
3 MF Matthias Ginter
6 MF Sami Khedira
7 MF Bastian Schweinsteiger
8 MF Mesut Özil
9 MF André Schürrle

13 MF Thomas Müller
14 MF Julian Draxler
18 MF Toni Kroos
19 MF Mario Götze
21 MF Marco Reus
23 MF Christoph Kramer
10 FW Lukas Podolski
11 FW Miroslav Klose

CREATE TABLE Squad(
JNum INT PRIMARY KEY,
Pos CHAR(2) NOT NULL,
Name VARCHAR(256)

) PARTITION BY RANGE(JNum);

CREATE TABLE Squad10 PARTITION OF Squad
FOR VALUES FROM (1) TO (10);

CREATE TABLE Squad20 PARTITION OF Squad
FOR VALUES FROM (10) TO (20);

CREATE TABLE Squad24 PARTITION OF Squad
FOR VALUES FROM (20) TO (24);

Presenter
Presentation Notes
Note: error on non-existing partition range, default partition possible.

31

INF.01017UF Data Management / 706.010 Databases – 07 Physical Design and Tuning
Matthias Boehm, Graz University of Technology, SS 2022

Exploiting Table Partitioning, cont.
 Example, cont.

Table Partitioning

SELECT * FROM Squad
WHERE JNum > 11 AND JNum < 20

σJNum>11 ∧ JNum<20

∪

S10 S20

∪

S24

S20

σJNum>11
∪

∪

S10 S20

S24
σJNum>11
∧ JNum<20

σJNum>11
∧ JNum<20

σJNum>11
∧ JNum<20

JNum in
[1,10)

JNum in
[20,24)

JNum in
[10,20)

32

INF.01017UF Data Management / 706.010 Databases – 07 Physical Design and Tuning
Matthias Boehm, Graz University of Technology, SS 2022

Excursus: Database Cracking
 Core Idea: Queries trigger physical

reorganization (partitioning and indexing)

Table Partitioning

[Stratos Idreos, Martin L.
Kersten, Stefan Manegold:

Database Cracking. CIDR 2007]

A

17

3

8

6

2

12

13

4

15

ACRK

3

4

2

12

15

17

13

8

6

1051 : <∧> AAQ σ 1522 : <∧> AAQ σ
5≤

5>

10≥

ACRK

2

4

3

8

6

17

15

5>

15≥

2>

2≤

10≥
12

13

copy in-place

the more we crack,
the more we learn

#1 Automatic
Partitioning

#2 AVL/B-tree
over Partitions

[Pedro Holanda et al: Progressive
Indexes: Indexing for Interactive

Data Analysis. PVLDB 2019]

33

INF.01017UF Data Management / 706.010 Databases – 07 Physical Design and Tuning
Matthias Boehm, Graz University of Technology, SS 2022

Materialized Views

34

INF.01017UF Data Management / 706.010 Databases – 07 Physical Design and Tuning
Matthias Boehm, Graz University of Technology, SS 2022

Overview Materialized Views
 Core Idea of Materialized Views

 Identification of frequently re-occuring queries (views)
 Precompute subquery results once, store and reuse many times

 The MatView
Lifecycle

Materialized Views

Materialized
Views

#1 View Selection
(automatic selection via advisor tools,

approximate algorithms)

#3 View Maintenance
(maintenance time and strategy,

when and how)

#2 View Usage
(transparent query rewrite for

full/partial matches)

35

INF.01017UF Data Management / 706.010 Databases – 07 Physical Design and Tuning
Matthias Boehm, Graz University of Technology, SS 2022

View Selection and Usage
 Motivation

 Shared subexpressions very common in
analytical workloads

 Ex. Microsoft’s Analytics Clusters
(typical daily use -> 40% CSE saving)

 #1 View Selection
 Exact view selection (query

containment) is NP-hard
 Heuristics, greedy and

approximate algorithms

 #2 View Usage
 Given query and set of materialized view, decide which views to use and

rewrite the query for produce correct results
 Generation of compensation plans

Materialized Views

[Alekh Jindal, Konstantinos Karanasos, Sriram
Rao, Hiren Patel: Selecting Subexpressions to
Materialize at Datacenter Scale. PVLDB 2018]

[Leonardo Weiss Ferreira Chaves, Erik
Buchmann, Fabian Hueske, Klemens Boehm:
Towards materialized view selection for
distributed databases. EDBT 2009]

36

INF.01017UF Data Management / 706.010 Databases – 07 Physical Design and Tuning
Matthias Boehm, Graz University of Technology, SS 2022

View Maintenance – When?
 Materialized view creates redundancy Need for #3 View Maintenance

 Eager Maintenance (writer pays)
 Immediate refresh: updates are directly handled (consistent view)
 On Commit refresh: updates are forwarded at end of successful TXs

 Deferred Maintenance (reader pays)
 Maintenance on explicit user request
 Potentially inconsistent base tables and views

 Lazy Maintenance (async/reader pays)
 Same guarantees as eager maintenance
 Defer maintenance until free cycles or view

required (invisible for updates and queries)

Materialized Views

[Jingren Zhou, Per-Åke Larson, Hicham
G. Elmongui: Lazy Maintenance of
Materialized Views. VLDB 2007]

37

INF.01017UF Data Management / 706.010 Databases – 07 Physical Design and Tuning
Matthias Boehm, Graz University of Technology, SS 2022

View Maintenance – How?
 Incremental Maintenance

 Propagate: Compute required updates
 Apply: apply collected updates to the view

Materialized Views

Example View:
SELECT A, SUM(B)
FROM Sales
GROUP BY CUBE(A)

A SUM

NULL 107

X 30

Y 77

Global Net Delta
∆R

Local View Delta
∆VL

[Global View Delta]
∆VG

Super Delta
∆VS

Apply Delta
∆VA

A B

+ X 3

+ Z 9

A SUM

+ NULL 3

+ X 3

+ NULL 9

+ Z 9

A SUM

+ NULL 12

+ X 3

+ Z 9

A SUM SUM2

NULL 12 107

X 3 30

Z 9 NULL

A SUM
Update
NULL

119

Update
X

33

Insert
Z

9

Incremental ApplyIncremental Propagate

38

INF.01017UF Data Management / 706.010 Databases – 07 Physical Design and Tuning
Matthias Boehm, Graz University of Technology, SS 2022

Materialized Views in PostgreSQL
 View Selection

 Manual definition of
materialized view only

 With or without data

 View Usage
 Manual use of view
 No automatic query rewriting

 View Maintenance
 Manual (deferred) refresh
 Complete, no incremental maintenance
 Note: Community work on IVM

Materialized Views

CREATE MATERIALIZED VIEW TopScorer AS
SELECT P.Name, Count(*)
FROM Players P, Goals G
WHERE P.Pid=G.Pid AND G.GOwn=FALSE
GROUP BY P.Name
ORDER BY Count(*) DESC

WITH DATA;

REFRESH MATERIALIZED VIEW TopScorer;

Name Count
James Rodríguez 6
Thomas Müller 5

Robin van Persie 4
Neymar 4

Lionel Messi 4
Arjen Robben 3

[Yugo Nagata: Implementing Incremental View
Maintenance on PostgreSQL, PGConf 2018], patch in 2019

[Yugo Nagata: The Way for Updating Materialized Views
Rapidly, PGConf 2020, https://www.pgcon.org/events/pgcon_2020/sessions/session/56/
slides/47/pgcon2020_nagata_the_way_to_update_materialized_views_rapidly.pdf]

https://www.pgcon.org/events/pgcon_2020/sessions/session/56/slides/47/pgcon2020_nagata_the_way_to_update_materialized_views_rapidly.pdf

39

INF.01017UF Data Management / 706.010 Databases – 07 Physical Design and Tuning
Matthias Boehm, Graz University of Technology, SS 2022

Conclusions and Q&A
 Compression Techniques
 Index Structures
 Table Partitioning
 Materialized Views

 Next Lectures (Part A)
 08 Query Processing [May 09]
 09 Transaction Processing and Concurrency [May 16]

 Next Lectures (Part B)
 10 NoSQL (key-value, document, graph) [May 23]
 11 Distributed Storage and Data Analysis [May 30]
 12 Data Stream Processing Systems [Jun 13, Patrick]

	Data Management�07 Physical Design & Tuning
	Announcements/Org
	Physical Design, and why should I care?
	Agenda
	Compression Techniques
	Background Storage System
	Background Storage System, cont.
	Overview Database Compression
	Lightweight Database Compression Schemes
	Index Structures
	Overview Index Structures
	Additional Terminology
	Classification of Index Structures
	B-Tree Overview
	B-Tree Search
	B-Tree Insert
	B-Tree Insert, cont. (Example w/ k=1)
	B-Tree Delete
	B-Tree Insert and Delete w/ k=2
	Excursus: Prefix Trees (Radix Trees, Tries)
	Excursus: Learned Index Structures
	BREAK (and Test Yourself)
	BREAK (and Test Yourself), cont.
	Table Partitioning
	Overview Partitioning Strategies
	Correctness Properties
	Horizontal Partitioning
	Vertical Fragmentation
	Derived Horizontal Fragmentation
	Exploiting Table Partitioning
	Exploiting Table Partitioning, cont.
	Excursus: Database Cracking
	Materialized Views
	Overview Materialized Views
	View Selection and Usage
	View Maintenance – When?
	View Maintenance – How?
	Materialized Views in PostgreSQL
	Conclusions and Q&A

