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▪ #1 Hybrid & Video Recording
▪ Hybrid lectures (in-person, zoom) with optional attendance

https://tu-berlin.zoom.us/j/9529634787?pwd=R1ZsN1M3SC9BOU1OcFdmem9zT202UT09

▪ Zoom video recordings, links from website

https://mboehm7.github.io/teaching/ss23_amls/index.htm

▪ #2 Exam Registration
▪ ISIS registration for oral exam slots, open now until July 14

▪ Exam slots July 17 – July 28 (~95 slots, 10am-9pm, 45min each)

▪ TU Graz student email to matthias.boehm@tu-berlin.de

▪ #3 Virtual Lectures June 15 / June 22
▪ Wed, June 14, 6pm-8pm due to meeting/interview conflicts for permanent positions

▪ Thu, June 22, 4pm-6pm due to SIGMOD 2023 in Seattle (7am-9am PST)

▪ Virtual lecture and video recording

Announcements / Org

~35
so far

https://tu-berlin.zoom.us/j/9529634787?pwd=R1ZsN1M3SC9BOU1OcFdmem9zT202UT09
https://mboehm7.github.io/teaching/ss23_amls/index.htm
mailto:matthias.boehm@tu-berlin.de
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Categories of Execution Strategies

07 Hybrid Execution and HW Accelerators

05a Data-Parallel 
Execution

05b Task-Parallel 
Execution

06 Parameter Servers 
(data, model) 

Mini-batchBatch 
SIMD/SPMD

Batch/Mini-batch, 
Independent Tasks 

MIMD

08 Caching, Partitioning, Indexing, and Compression
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▪ Motivation and Terminology

▪ GPUs in ML Systems

▪ FPGAs in ML Systems

▪ ASICs and other HW Accelerators

Agenda
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Motivation and Terminology
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▪ Improved Algorithms and Models
▪ Success across data and application domains

(e.g., health care, finance, transport, production) 

▪ More complex models which leverage large data

▪ Availability of Large Data Collections
▪ Increasing automation and monitoring ➔ data

(simplified by cloud computing & services, annotation services)

▪ Feedback loops, simulation/data prog./augmentation

→ Trend: self-supervised learning (*-GPT-x)

▪ HW & SW Advancements
▪ Higher performance of hardware and infrastructure (cloud)

▪ Open-source large-scale computation frameworks, 

ML systems, and vendor-provides libraries

Recap: Driving Factors for ML

Data

ModelUsage

Feedback Loop

[Credit: Andrew Ng’14]
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▪ #1 Larger Models 
and Scoring Time

▪ #2 Training Time
▪ ResNet18: 10.76% error, 2.5 days training

▪ ResNet50: 7.02% error, 5 days training

▪ ResNet101: 6.21% error, 1 week training

▪ ResNet152: 6.16% error, 1.5 weeks training

▪ #3 Energy Efficiency

DNN Challenges

[Song Han: Efficient Methods and Hardware 
for Deep Learning, Stanford cs231n, 2017]
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▪ Setup: 2x6 E5-2440 @2.4GHz–2.9GHz, DDR3 RAM @1.3GHz (ECC)
▪ Max mem bandwidth (local): 2 sock x 3 chan x 8B x 1.3G trans/s → 2 x 32GB/s

▪ Max mem bandwidth (QPI, full duplex) → 2 x 12.8GB/s

▪ Max floating point ops: 12 cores x 2*4dFP-units x 2.4GHz → 2 x 115.2GFlops/

▪ Roofline Analysis
▪ Off-chip memory traffic 

▪ Peak compute

Excursus: Roofline Analysis

SystemML
Mv

SystemML
Mt(Mv)

SystemML
MM (n=768)

36x

SystemML
BLAS

➔ IO-bound 
traditional ML

➔ compute-
bound DNN

(Experiments 
from 2017)

[S. Williams, A. Waterman, 
D. A. Patterson: Roofline: 
An Insightful Visual 
Performance Model for 
Multicore Architectures. 
Commun. ACM 2009]
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▪ #1 End of Dennard Scaling (~2005)
▪ Law: power stays proportional to the area of the transistor

▪ Ignored leakage current / threshold voltage

→ increasing power density S2 (power wall, heat) → stagnating frequency

▪ #2 End of Moore’s Law (~2010-20)
▪ Law: #transistors/performance/

CPU frequency doubles every 

18/24 months 

▪ Original: # transistors per chip 

doubles every two years

at constant costs

▪ Now increasing costs (10/7/5nm)

➔ Consequences: Dark Silicon and Specialization

HW Challenges

P = α CFV2 (power density 1)
(P .. Power, C .. Capacitance, 
F .. Frequency, V .. Voltage)

[S. Markidis, E. Laure, N. Jansson, S. 
Rivas-Gomez and S. W. D. Chien: 

Moore’s Law and Dennard Scaling]
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▪ HW Specialization

▪ Additional Specialization
▪ Data Transfer & Types: e.g., low-precision, quantization

▪ Sparsity Exploitation: e.g., sparsification, exploit across ops,

defer weight decompression just before instruction execution

▪ Near-Data Processing: e.g., operations in main memory, storage class memory (SCM), 

secondary storage (e.g., SSDs), and tertiary storage (e.g., tapes)

Towards Specialized Hardware 

08 Caching, Indexing 
and Compression

HW Devices

General Purpose Specialized HW

CPU GPU FPGAs ASICs

Throughput-oriented, 
specialized instructions

programmable 
logic

fixed logicSIMD
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GPUs in ML Systems
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▪ Tesla V100 NVLink
▪ FP64: 7.8 TFLOPs, FP32: 15.7 TFLOPs

▪ DL FP16: 125 TFLOPs

▪ NVLink: 300GB/s

▪ Device HBM: 32 GB (900 GB/s)

▪ Power: 300 W

▪ Tesla V100 PCIe
▪ FP64: 7 TFLOPs, FP32: 14 TFLOPs

▪ DL FP16: 112 TFLOPs 

▪ PCIe: 32 GB/s

▪ Device HBM: 16 GB (900 GB/s)

▪ Power: 250 W

NVIDIA Volta V100 – Specifications 

[Credit: https://nvidia.com/de-de/
data-center/tesla-v100/]

https://nvidia.com/de-de/data-center/tesla-v100/
https://nvidia.com/de-de/data-center/tesla-v100/
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▪ 6 GPU Processing Clusters (GPCs)
▪ 7 Texture Processing 

Clusters (TPC)

▪ 14 Streaming 

Multiprocessors (SM)

NVIDIA Volta V100 – Architecture [NVIDIA Tesla V100 GPU 
Architecture, Whitepaper, 

Aug 2017]



Matthias Boehm | FG DAMS | AMLS SoSe 2023 – 07 Execution Strategies – Hardware Accelerators14

▪ FP64 cores: 32 / FP32 cores: 64

▪ INT32 cores: 64

▪ “Tensor cores”: 8

▪ Max warps /SM: 64

▪ Threads/warp: 32

NVIDIA Volta V100 – SM Architecture
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▪ 32 Threads grouped to warps and execute in SIMT model

▪ Pascal P100 
Execution Model
▪ Warps use a single 

program counter + active mask

▪ Volta V100 
Execution Model
▪ Independent thread scheduling

▪ Per-thread program counters

and call stacks

▪ New __syncwarp() primitive 

(if needed) + convergence optimizer

Single Instruction Multiple Threads (SIMT)

Thread Divergence
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▪ “Tensor Core”
▪ Specialized instruction for 4x4 by 4x4 fused matrix multiply

▪ Two FP16 inputs and FP32 accumulator

▪ Exposed as warp-level matrix operations w/ special load, mm, acc, and store

NVIDIA Volta V100 – Tensor Cores

[Bill Dally: Hardware 
for Deep Learning. 

SysML 2018]

D = A %*% B + C
64 FMA 

operations
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▪ Specification 
▪ 7nm, 8 GPC x 8 TPC * 2 SM = 128 SMs, 40GB HBM

▪ FP64: 9.7 TFLOPs / FP64 TensorCore: 19.5 TFLOPs

▪ FP32 19.5 TFLOPs, FP16: 78 TFLOPs, BF16: 39 TFLOPs

▪ TF32 TensorCore 156 TFLOPs / 312 TFLOPs (sparse)

▪ FP16 TensorCore 312 TFLOPs / 624 TFLOPs (sparse), INT8, INT4

▪ New Features
▪ New generation of “TensorCores” (FP64, new data types: TF32, BF16)

▪ Fine-grained sparsity exploitation

▪ Multi-instance GPU (MIG) virtualization: up to 7 virtual GPU instances

▪ Link technologies: NVLink 3 (25GB/s bidirectional) x 12 links = 600GB/s

▪ Submission of task graphs (launch a workflow of kernels) 

NVIDIA Ampere A100

[NVIDIA A100 Tensor Core GPU Architecture -
UNPRECEDENTED ACCELERATION AT 

EVERY SCALE, Whitepaper, Aug 2020]
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▪ Specification SXM5 / PCIe

▪ 7nm, 7/8 GPC x 9 TPC * 2 SM = 114/144 SMs, 80GB HBM

▪ FP64: 25.6 TFLOPs / FP64 TensorCore: 66.9 TFLOPs

▪ FP32 66.9 TFLOPs, FP16: 134 TFLOPs, BF16: 134 TFLOPs

▪ TF32 TensorCore 495 TFLOPs / 989 TFLOPs (sparse)

▪ FP16 TensorCore 989 TFLOPs / 1979 TFLOPs (sparse), 

▪ FP8 TensorCore 1979 TFLOPs / 3958 TFLOPs (sparse),  INT8

▪ New Features
▪ Dedicated Transformer Engine (hybrid FP8 and FP16)

▪ HBM3 memory and 50MB L2 cache

▪ 2nd Gen Multi-instance GPU (MIG) virtualization: up to 7 virtual GPUs

▪ Confidential computing (trusted execution environments)

▪ Improved link technologies (NVLink 4, NVSwitch 3, PCIe 5)

▪ NVIDIA Grace Hopper DGX GH200
▪ 256 H100 GPUs in 16 Racks, 96L1 + 36L2 NVSwitches

NVIDIA Hopper H100

[NVIDIA H100 Tensor Core GPU Architecture
EXCEPTIONAL PERFORMANCE, SCALABILITY, 

AND SECURITY FOR THE DATA CENTER, 
Whitepaper, May 2023]

[https://www.hpcwire.com/2023/05/28/nvidia-announces-new-
1-exaflops-ai-supercomputer-grace-hopper-in-full-production/]

H100

GH200 
(GPU+

ARM CPU)

https://www.hpcwire.com/2023/05/28/nvidia-announces-new-1-exaflops-ai-supercomputer-grace-hopper-in-full-production/
https://www.hpcwire.com/2023/05/28/nvidia-announces-new-1-exaflops-ai-supercomputer-grace-hopper-in-full-production/
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▪ Amdahl’s law
▪ Given a fixed problem size, Amdahl’s law gives the maximum speedup

▪ T is the execution time, s is the serial fraction, and p the number of processors

▪ Examples
▪ Serial fraction s = 0.01 →max Sp = 100

▪ Serial fraction s = 0.05→max Sp = 20

▪ Serial fraction s = 0.1→max Sp = 10

▪ Serial fraction s = 0.5 →max Sp = 2

Excursus: Amdahl’s Law

𝑇𝑝 =
(1 − 𝑠)𝑇

𝑝
+ 𝑠𝑇

Execution 
Time

𝑆𝑝 =
𝑇

𝑇𝑝
Speedup 𝑆𝑝 = lim

𝑝→∞
𝑆𝑝 =

1

𝑠
Upper-Bound 

Speedup
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▪ GPUs for DNN Training (2009)
▪ Deep belief networks

▪ Sparse coding

▪ Multi-GPU Learning (Now)
▪ Exploit multiple GPUs with a mix of 

data- and model-parallel parameter servers

▪ Dedicated ML systems for multi-GPU learning

▪ Dedicated HW: e.g., NVIDIA DGX-1 (8xP100), 

NVIDIA DGX-2 (16xV100, NVSwitch),

NVIDIA DGX A100 (8x A100, NVSwitch, Mellanox)

NVIDIA DGX H100 (8x H100, Mellanox InfiniBand)

▪ DNN Framework support
▪ All specialized DNN frameworks have very good support for GPU training

▪ Most of them also support multi-GPU training

GPUs for DNN Training

[Rajat Raina, Anand Madhavan, Andrew Y. Ng: 
Large-scale deep unsupervised learning using 

graphics processors. ICML 2009]
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Recap: DNN Benchmarks

V0.6

MLPerf v0.6:  
https://mlperf.org/training-results-0-6/,
MLPerf v0.7: 
https://mlperf.org/training-results-0-7
… MLPerf v2.1 (11/2022)

96 x DGX-2H = 96 * 16 
= 1536 V100 GPUs

➔ ~ 96 * $400K = $35M – $40M

[https://www.forbes.com/sites/
tiriasresearch/2019/06/19/
nvidia-offers-a-turnkey-supercomputer-
the-dgx-superpod/#693400f43ee5]

https://mlperf.org/training-results-0-6/
https://mlperf.org/training-results-0-7
https://www.forbes.com/sites/tiriasresearch/2019/06/19/nvidia-offers-a-turnkey-supercomputer-the-dgx-superpod/#693400f43ee5
https://www.forbes.com/sites/tiriasresearch/2019/06/19/nvidia-offers-a-turnkey-supercomputer-the-dgx-superpod/#693400f43ee5
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▪ Classic PCI Express
▪ Peripheral Component Interconnect Express (default)

▪ v3 x16 lanes: 16GB/s, v4 (2017) x16 lanes: 32GB/s, v5 (2019) x16 lanes: 64GB/s

▪ #1 NVLink
▪ Proprietary technology

▪ Requires NVLink-enabled CPU (e.g., IBM Power 8/9)

▪ Connect GPU-GPU and GPU-CPU

▪ NVLink 1: 80+80 GB/s

▪ NVLink 2: 150+150 GB/s

▪ NVLink 3: 600 GB/s, NVLink 4: 900GB/s

▪ #2 NVSwitch
▪ Fully connected GPUs, each communicating at 300GB/s

▪ NVSwitch 2 and 3: from 7.2 Tbits/sec to 13.6 Tbits/sec

GPU Link Technologies
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▪ Recap: Amdahl’s Law

▪ Experimental Setup
▪ SnapML, 4 IBM Power x 4 V100 GPUs, NVLink 2.0

▪ 200 million training examples of the Criteo dataset (> GPU mem)

▪ Train a logistic regression model

GPU Link Technologies, cont.

[Celestine Dünner et al.: Snap ML: A 
Hierarchical Framework for Machine 

Learning.  NeurIPS 2018]

PCIe v3 Interconnect NVLink Interconnect
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▪ #1 Live Variable Analysis
▪ Remove intermediates ASAP

▪ Examples: SystemML, TensorFlow, MXNet, Superneurons, MONeT

▪ #2 GPU-CPU Eviction
▪ Evict variables from GPU to CPU memory under memory pressure

▪ Examples: SystemML, Superneurons, GeePS, (TensorFlow)

▪ #3 Recomputation
▪ Recompute inexpensive operations (e.g., activations of forward pass)

▪ Examples: MXNet, Superneurons, MONet

▪ #4 Reuse Allocations
▪ Reuse allocated matrices and tensors via free lists, but fragmentation

▪ Examples: SystemML, Superneurons, MONet

▪ #5 Physical Operator Selection
▪ Different tradeoffs of performance and size of intermediates (MONet)

Handling Memory Constraints

Problem:
Limited 

Device Memory

[Linnan Wang et al: Superneurons: dynamic 
GPU memory management for training 

deep neural networks. PPOPP 2018]



Matthias Boehm | FG DAMS | AMLS SoSe 2023 – 07 Execution Strategies – Hardware Accelerators25

▪ Manual Placement
▪ Most DNN frameworks allow manual placement of 

variables and operations on individual CPU/GPU devices

▪ Heuristics and intuition of human experts

▪ Automatic Placement
▪ Sequence-to-sequence model to predict which 

operations should run on which device

▪ Examples:

Hybrid CPU/GPU Execution

[Azalia Mirhoseini et al: Device Placement 
Optimization with Reinforcement 

Learning. ICML 2017]

Inception V3

Neural 
MT graph
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▪ State-of-the-art
▪ Very limited support of sparse tensors in TensorFlow, PyTorch, etc

▪ GPU operations for linear algebra (cuSparse), early support in ASICs

▪ Problem: Irregular structures of sparse matrices/tensors

▪ Common Techniques
▪ #1: Blocking/clustering of rows/columns by number of non-zeros

▪ #2: Padding rows/columns to common number of non-zeros

▪ Example A100 Sparsity Exploitation
▪ Constraint: 2 non-zeros in block of 4

▪ Structured valued pruning → accuracy impact

▪ Regular access pattern

Sparsity in DNN 

[NVIDIA A100 Tensor Core GPU 
Architecture, Whitepaper, Aug 2020]
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FPGAs in ML Systems
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▪ FPGA Definition
▪ Integrated circuit that allows 

configuring custom hardware designs

▪ Reconfiguration in <1s

▪ HW description language: 

e.g.., VHDL, Verilog

▪ FPGA Components
▪ #1 lookup table (LUT) as logic gates

▪ #2 flip-flops (registers)

▪ #3 interconnect network

▪ Additional memory and DSP blocks

FPGA Overview [Credit: https://intel.com]

https://intel.com/
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▪ Intel (Altera) Stratix 10 SoC FPGA
▪ 64bit quad-core ARM

▪ 10 TFLOPs FP32

▪ 80GFLOPs/W

▪ Other configurations w/ HBM2

▪ Xilinx Virtex UltraSCALE+
▪ DSP: 21.2 TMACs

▪ 64MB on-chip memory

▪ 8GB HBM2 w/ 460GB/s

Example FPGA Characteristics
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▪ Microsoft Catapult
▪ Dual-socket Xeon w/ PCIe-attached FPGA 

▪ Pre-filtering neural networks, compression, and other workloads

FPGAs in Microsoft’s Data Centers [Adrian M. Caulfield et al.: A cloud-
scale acceleration architecture. 

MICRO 2016]
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▪ Microsoft Brainwave
▪ ML serving w/ low latency (e.g., Bing)

▪ Intel Stratix 10 FPGA

▪ Distributed model parallelism, 

precision-adaptable

▪ Peak 39.5 TFLOPs

▪ Brainwave NPU
▪ Neural 

processing unit

▪ Dense matrix-vector

multiplication

FPGAs in Microsoft’s Data Centers, cont. [Eric S. Chung et al: Serving DNNs in 
Real Time at Datacenter Scale with 

Project Brainwave. IEEE Micro 2018]
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▪ In-DB Acceleration of Advanced Analytics (DAnA)
▪ Compilation of python DSL into micro instructions 

for multi-threaded FPGA-execution engine

▪ Striders to directly interact with the buffer pool

▪ MLWeaving
▪ Adapted BitWeaving to numeric matrices

▪ Data layout basis for Any-Precision Learning

▪ Related FPGA implementation of SGD, 

matrix-vector multiplication for GLM

▪ Manual Selection + Heuristics

▪ Efficient FPGA implementations 
of specific operations and algorithms

▪ Specialized neural network topologies

FPGAs in other ML Systems

[Divya Mahajan et al: In-RDBMS 
Hardware Acceleration of Advanced 

Analytics. PVLDB 2018]

[Zeke Wang et al: Accelerating Generalized 
Linear Models with MLWeaving. PVLDB 2019]
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▪ Setup: 2x Intel Xeon Gold 6238 (112 vcores, 7.7 TFLOP/s), 
768 GB DDR4 RAM, 12x 2TB SSDs, NVIDIA T4 GPU (8.1 TFLOP/s, 
16 GB), and Intel FPGA PAC D5005 (w/ Stratix 10SX FPGA, 32 GB)

Example DM Cluster Node

Intel PAC D5005 
Stratix 10 FPGA

Broadcom 2x10G 
RDMA Ethernet 

2 x Intel Xeon 

Gold 6238R 

Adaptec 12G SAS

Nvidia Tesla T4

768 GB RAM
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ASICs and other HW Accelerators
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▪ Motivation
▪ Additional improvements of performance, power/energy

➔ Additional specialization via custom hardware

▪ #1 General ASIC DL Accelerators
▪ HW support for matrix multiply, convolution and activation functions

▪ Examples: Google TPU, NVIDIA DLA (in NVIDIA Xavier SoC), Intel Nervana NNP

▪ #2 Specialized ASIC Accelerators
▪ Custom instructions for specific domains such as computer vision

▪ Example: (Cadence) Tensilica Vision processor (image processing)

▪ #3 Other Accelerators/Technologies (some skepticism)
▪ a) Neuromorphic computing / spiking neural networks

(e.g., SyNAPSE→ IBM TrueNorth, HP memristor for computation storage)

▪ b) Analog computing (especially for ultra-low precision/quantization)

Overview ASICs
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▪ Motivation
▪ Cost-effective ML scoring (no training)

▪ Latency- and throughput-oriented

▪ Improve cost-performance over GPUs by 10x

▪ Architecture
▪ 256x256 8bit matrix multiply unit

(systolic array → pipelining)

▪ 64K MAC per cycle 

(92 TOPs at 8 bit)

▪ 50% if one input 16bit

▪ 25% if all inputs 16 bit

Tensor Processing Unit (TPU v1) [Norman P. Jouppi et al: In-Datacenter 
Performance Analysis of a Tensor 

Processing Unit. ISCA 2017]
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▪ Motivation
▪ Cost effective ML training (not scoring) because 

edge device w/ custom inference but training in data centers

▪ Unveiled at Google I/O 2017

▪ Board w/ 4 TPU chips

▪ Pod w/ 64 boards

and custom high-speed network

▪ Shelf w/ 2 boards or 1 processor

▪ Cloud Offering (beta)
▪ Min 32 cores

▪ Max 512 cores

Tensor Processing Unit (TPU v2)
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▪ Motivation
▪ Competitive cost-performance compared to state-of-the-art GPUs

▪ Unveiled at Google I/O 2018

▪ Added liquid cooling

▪ Twice as many racks per pod, twice as many TPUs per rack

➔ TPUv3 promoted as 

8x higher performance than TPUv2

▪ Cloud Offering (beta)
▪ Min 32 cores

▪ Max 2048 cores (~100PFLOPs)

Tensor Processing Unit (TPU v3)

[TOP 500 Supercomputers:
Summit @ Oak Ridge NL (‘18):
200.7 PFLOP/s (2.4M cores)]
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▪ Motivation
▪ More chips → twisted 3D torus topology 

(reconfigurable optical interconnect, for fault tolerance)

▪ Operational since 2020, unveiled at Google I/O 2021,  

paper 2023

▪ SparseCore (e.g., for sparse gather/scatter)

▪ 275 TFLOPs BF16 or INT8

▪ Cloud Offering
▪ 4096 chips in 64 racks

▪ 1.1 EFLOPs BF16 or INT8

▪ Min 64 chips, max 4096

Tensor Processing Unit (TPU v4) [Norman P. Jouppi et al: TPU v4: An Optically 
Reconfigurable Supercomputer for Machine Learning 

with Hardware Support for Embeddings. ISCA 2023]

(8 of 64 racks of a TPUv4 pod)

[https://cloud.google.com/blog/products/compute/
google-unveils-worlds-largest-publicly-available-ml-cluster]

https://cloud.google.com/blog/products/compute/google-unveils-worlds-largest-publicly-available-ml-cluster
https://cloud.google.com/blog/products/compute/google-unveils-worlds-largest-publicly-available-ml-cluster
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▪ TVM: Code Generation for HW Accelerators
▪ Graph- /operator-level optimizations for 

embedded and HW accelerators

▪ Lack of low-level instruction set!

▪ Schedule Primitives

▪ Loop Transform
▪ Thread Binding
▪ Compute Locality
▪ Tensorization
▪ Latency Hiding  

➔ Apache

Recap: Operator Fusion and Code Generation [Tianqi Chen et al: TVM: 
An Automated End-to-End Optimizing 

Compiler for Deep Learning. OSDI 2018]
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▪ Overview
▪ Reconfigurable data flow architecture 

▪ Based on hierarchical parallel patterns (map, zip, reduce, flatMap, groupBy)

▪ Reconfigurable Dataflow Unit (RDU), but more coarse-grained than FPGAs

▪ 100s of TFLOPs, 100s MB on chip

▪ Mapping of Dataflow Computation
▪ DNN / ML

▪ Graph processing

▪ SQL query processing

SambaNova [Kunle Olukotun: Let the Data Flow!, 
CIDR 2021, https://www.youtube.com/watch?v=iHhHHBuk3W4, 

SDSC 2020, https://www.youtube.com/watch?v=E7se0KEa4BY]  

reconfigure 
in ~1-10ms

https://www.youtube.com/watch?v=iHhHHBuk3W4
https://www.youtube.com/watch?v=E7se0KEa4BY


Matthias Boehm | FG DAMS | AMLS SoSe 2023 – 07 Execution Strategies – Hardware Accelerators42

▪ Background (Schrödinger's cat)
▪ Concepts: superposition, entanglement, de-coherence / uncertainty

▪ IBM Q
▪ Hardware and software stack for quantum computing

▪ Qiskit: OSS Python framework [https://qiskit.org/]

▪ Experiment w/ quantum computers up to 20 qubit

▪ Gates: Hadamard, NOT, Phases, Pauli, barriers transposed conjugate, if, measurement

▪ Early ML (Systems) Work
▪ Training quantum neural networks

(relied on quantum search in O(√N)

▪ SVM classification w/ large feature space

▪ TensorFlow Quantum (TFQ), on OSS Cirq

for hybrid models [https://www.tensorflow.org/quantum]

Excursus: Quantum Machine Learning 

[Bob Ricks, Dan Ventura: Training a 
Quantum Neural Network. NeurIPS 2003]

[Vojtěch Havlíček et al: Supervised 
learning with quantum-enhanced 

feature spaces. Nature 2019]

https://qiskit.org/
https://www.tensorflow.org/quantum
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▪ Recommended Reading
▪ [Jeff Dean, David A. Patterson, Cliff Young:  A New Golden Age in Computer 

Architecture: Empowering the Machine-Learning Revolution. IEEE Micro 2018]

▪ #1 Fallacy: Throughput over Latency
▪ Given the large size of the ML problems, the HW focus should be 

op/s (throughput) rather than time to solution (latency)

▪ #2 Fallacy: Runtime over Accuracy
▪ Given large speedup, ML researchers would be willing to sacrifice accuracy

▪ #3 Pitfall: Designing HW using last year’s models
▪ MNIST, CIFAR-10 datasets too easy, AlexNet no longer representative

▪ See 02 System Architecture & Landscape – ML System Benchmarks

▪ #4 Pitfall: Designing ML HW assuming ML system is untouchable
▪ Towards hardware-software co-design (algorithm, system internals)

ML Hardware Fallacies and Pitfalls



Matthias Boehm | FG DAMS | AMLS SoSe 2023 – 07 Execution Strategies – Hardware Accelerators44

▪ Motivation 
▪ ASICs: custom chips for ML

▪ ML for improved chip placement (part of chip design process 

▪ Deep RL for Chip Design
▪ Goal: optimize power, performance, and area s.t.

constraints on routing congestion and density

▪ Approximate reward functions 

for effective evaluation ~100K 

(wire length, grid rows/columns, 

macro order, cell placement, routing congestion)

▪ Example TPUv4 Block
▪ White macros (e.g., mem)

▪ Green standard cells

Trend: ML-based Chip Placement

[Azalia Mirhoseini, Anna Goldie, et al: 
Chip Placement with Deep 

Reinforcement Learning. CoRR 2020]

[Azalia Mirhoseini, Anna Goldie, et al: 
A Graph Placement Methodology for 

Fast Chip Design. Nature 2021]

https://www.youtube.com/watch?v=gSBYf25bWyo

https://www.youtube.com/watch?v=gSBYf25bWyo
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▪ Different Levels of Hardware Specialization
▪ General-purpose CPUs and GPUs

▪ FPGAs, DNN ASICs, and other technologies

▪ Next Lectures (Part A)
▪ 08 Caching, Partitioning, Indexing and Compression [Jun 14, virtual only]

▪ 09 Data Acquisition, Cleaning, and Preparation [Jun 22, virtual only]

▪ 10 Model Selection and Management [Jun 29]

▪ 11 Model Debugging, Fairness, Explainability [Jul 06]

▪ 12 Model Serving Systems and Techniques [Jul 13]

Summary & QA

Increasing importance 
of specialization:

End of Moore’s Law
End of Dennard Scaling

(Part B:
ML Lifecycle 

Systems)

(Part A:
Overview and ML 
System Internals)
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