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Á#1 Hybrid & Video Recording
ÁHybrid lectures (in-person, zoom) with optional attendance

https://tu -berlin.zoom.us/j/9529634787?pwd=R1ZsN1M3SC9BOU1OcFdmem9zT202UT09 

ÁZoom video recordings, links from website

https://mboehm7.github.io/teaching/ss23_amls/index.htm 

Á#2 Virtual Lectures June 22
ÁThu, June 29, 6.30pm-8.30pm due to BMBF visit at BIFOLD

ÁVirtual lecture and video recording

Á#3 Project/Exercise Submission
ÁOriginal Deadline: July 4 Ą 24h before individual exam slot

ÁPull requests (SystemDS/DAPHNE); ISIS submission or email (for TU Graz students) 

ÁtƭŜŀǎŜΣ ŘŜǊŜƎƛǎǘŜǊ ȅƻǳǊ ŜȄŀƳ ǎƭƻǘ ƛŦ ȅƻǳ ŎŀƴΩǘ ƳŀƪŜ ƛǘ

Announcements / Org

https://tu-berlin.zoom.us/j/9529634787?pwd=R1ZsN1M3SC9BOU1OcFdmem9zT202UT09
https://mboehm7.github.io/teaching/ss23_amls/index.htm
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Recap: The Data Science Lifecycle
(aka KDD Process, aka CRISP-DM)

Data/SW 
Engineer

DevOps 
Engineer

Data Integration 
Data Cleaning 

Data Preparation

Model Selection
Training 

Hyper-parameters

Validate & Debug
Deployment

Scoring & Feedback

Data 
Scientist

Exploratory Process 
(experimentation, refinements, ML pipelines)
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ÁData Augmentation

ÁModel Selection Techniques

ÁModel Management & Provenance

Agenda
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Data Augmentation
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ÁMotivation Data Augmentation
ÁComplex ML models / deep NNs need lots of 

labeled data to avoid overfitting Č expensive

ÁAugment training data by synthetically generated labeled data

ÁTranslations & Reflections
ÁRandom 224x224 patches and their 

reflections (from 256x256 images

with known labels)

ÁIncreased data by 2048x

ÁTest: corner/center patches 

+ reflections Ą prediction

ÁAlternating Intensities
ÁIntuition:  object identity is invariant to illumination and color intensity

ÁPCA on dataset Ą add eigenvalues times a random variable N(0,0.1)

Motivation and Basic Data Augmentation

[Alex Krizhevsky, Ilya Sutskever, Geoffrey E. 
Hinton: ImageNet Classification with Deep 

Convolutional Neural Networks. NIPS 2012]

AlexNet (see Section 4.1)
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ÁScaling and Normalization
ÁStandardization: subtract per-channel global pixel means

ÁNormalization: normalized to range [-1,1] (see min-max)

ÁGeneral Principles
Á#1: Movement/selection (translation, rotation, reflection, cropping)

Á#2: Distortions (stretching, shearing, lens distortions, color, mixup of images)

ÁIn many different combinations Č often trial & error / domain expertise

ÁExcursus: Reducing Training Time
ÁTransfer learning: Use pre-trained model on ImageNet; 

freeze lower NN layers, fine-tune last layers w/ domain-specific data

ÁMulti -scale learning: Use cropping and scaling 

to train 256 x 256 model as starting point for a 

more compute-intensive 384x384 model

Basic Data Augmentation

[Karen Simonyan, Andrew Zisserman: Very 
Deep Convolu-tional Networks for Large-

Scale Image Recognition. ICLR 2015]
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ÁDistortions
ÁTranslations, rotations, skewing

ÁCompute for every pixel a new target 

location via rand displacement fields)

ÁCutout
ÁRandomly masking out square regions of input images

ÁSize more important than shape

Basic Data Augmentation, cont.

[Terrance Devries, Graham W. Taylor: 
Improved Regularization of Convolutional 
Neural Networks with Cutout. CoRR 2017]

[Patrice Y. Simard, David Steinkraus, John 
C. Platt: Best Practices for Convolutional 
Neural Networks Applied to Visual 
Document Analysis. ICDAR 2003]
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ÁTraining on Simulated Images
ÁRandom rendering of objects with non-realistic textures

ÁLarge variability for generalization to real world objects

ÁPre-Training on Simulated Images
ÁRandom 3D objects and flying distractors 

w/ random textures

ÁRandom lights and rendered onto 

random background

Domain Randomization

[Josh Tobin et al.: Domain randomization for 
transferring deep neural networks from 
simulation to the real world. IROS 2017]

[Jonathan Tremblay et al.: Training Deep Networks 
With Synthetic Data: Bridging the Reality Gap by 
Domain Randomization. CVPR Workshops 2018]
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ÁAutoAugment
ÁSearch space of DA policies

ÁGoal: Find best augmentation policy (e.g., via 

reinforcement learning, evolutionary algorithms)

Á#1: Image processing functions 

(translation, rotation, color normalization)

Á#2: Probabilities of applying these functions

ÁData Augmentation GAN (DAGAN)
ÁImage-conditional generative model for 

creating within-class images from inputs

ÁNo need for known invariants

Learning Data Augmentation Policies

Č New state-of-the 
art top-1 error on 

ImageNet and CIFAR10

[Ekin Dogus Cubuk, Barret Zoph, Dandelion 
Mané, Vijay Vasudevan, Quoc V. Le: 

AutoAugment: Learning Augmentation Policies 
from Data. CVPR 2019]

Real 
input 
image

[Antreas Antoniou, Amos J. Storkey, Harrison Edwards: 
Augmenting Image Classifiers Using Data Augmentation 
Generative Adversarial Networks. ICANN 2018]
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ÁHeuristically Generated Training Data
ÁHand labeling expensive and time consuming, but abundant unlabeled data

ÁChanging labeling guidelines 

Č labeling heuristics

Weak Supervision
[Alex Ratner, Paroma Varma, Braden Hancock, 

Chris Ré, and others:  Weak Supervision: A New 
Programming Paradigm for Machine Learning, 

ai.stanford.edu/blog/weak-supervision/, 2019]

basic data 
augmentation

http://ai.stanford.edu/blog/weak-supervision/
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ÁData Programming 
Overview

Weak Supervision, cont.

(coverage h i, accuracy ̡i) 

[Alexander J. Ratner, Christopher De Sa, Sen Wu, 
Daniel Selsam, Christopher Ré: Data Programming: 
Creating Large Training Sets, Quickly. NIPS 2016]

[Alexander Ratner, Stephen H. Bach, Henry R. 
Ehrenberg, Jason Alan Fries, Sen Wu, Christopher 
Ré: Snorkel: Rapid Training Data Creation with 
Weak Supervision. PVLDB 2017]

[Paroma Varma, Christopher Ré: Snuba: 
Automating Weak Supervision to Label 
Training Data. PVLDB 2018]

[Stephen H. Bach, Daniel Rodriguez, Yintao Liu, Chong Luo, Haidong Shao, 
Cassandra Xia, Souvik Sen, Alexander Ratner, Braden Hancock, Houman Alborzi, 
Rahul Kuchhal, Christopher Ré, Rob Malkin: Snorkel DryBell: A Case Study in 
Deploying Weak Supervision at Industrial Scale. SIGMOD 2019]


