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▪ #1 Hybrid & Video Recording
▪ Hybrid lectures (in-person, zoom) with optional attendance

https://tu-berlin.zoom.us/j/9529634787?pwd=R1ZsN1M3SC9BOU1OcFdmem9zT202UT09 

▪ Zoom video recordings, links from website

https://mboehm7.github.io/teaching/ss23_amls/index.htm 

▪ #2 Project/Exercise Submission
▪ Original Deadline: July 4 → 24h before individual exam slot

▪ Pull requests (SystemDS/DAPHNE), note if done; ISIS submission or email (for TU Graz students) 

▪ #3 Course Feedback / Evaluation
▪ ISIS Course feedback, active July 10 – July 23, 2023

Announcements / Org

https://tu-berlin.zoom.us/j/9529634787?pwd=R1ZsN1M3SC9BOU1OcFdmem9zT202UT09
https://mboehm7.github.io/teaching/ss23_amls/index.htm
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Recap: The Data Science Lifecycle
(aka KDD Process, aka CRISP-DM)

Data/SW 
Engineer

DevOps 
Engineer

Data Integration 
Data Cleaning 

Data Preparation

Model Selection
Training 

Hyper-parameters

Validate & Debug
Deployment

Scoring & Feedback

Data 
Scientist

Exploratory Process 
(experimentation, refinements, ML pipelines)

Data-centric View:
Application perspective
Workload perspective

System perspective
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▪ Model Debugging and Explainability

▪ Model Bias & Fairness Constraints

Agenda
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Model Debugging and Explainability

Similar to Software Testing 
Focus on Benchmarks, Assessment, Monitoring, 
Model Improvements, Model Understanding
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Sanity checks on expected shape before training first model

▪ Check a feature’s min, max, and most common value
▪ Ex: Latitude values must be within the range [-90, 90] or [-π/2, π/2]

▪ The histograms of continuous or categorical values are as expected
▪ Ex: There are similar numbers of positive and negative labels

▪ Whether a feature is present in enough examples
▪ Ex: Country code must be in at least 70% of the examples

▪ Whether a feature has the right number of values (i.e., cardinality)
▪ Ex: There cannot be more than one age of a person

▪ Other

Recap: Data Validation

[Neoklis Polyzotis, et al: Data 
Management Challenges in 

Production Machine Learning. 
Tutorial, SIGMOD 2017] (Google 

Research)

(Amazon Research)

[Sebastian Schelter et al: 
Automating Large-Scale Data 

Quality Verification. PVLDB 2018]

[Mike Dreves et al: From Data to Models 
and Back DEEM@SIGMOD 2020, 

http://deem-workshop.org/videos/
2020/8_dreves.mp4]

(Google)

http://deem-workshop.org/videos/2020/8_dreves.mp4
http://deem-workshop.org/videos/2020/8_dreves.mp4
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▪ #1 Understanding via Visualization
▪ Plotting of predictions / interactions

▪ Combination with dimensionality 

reduction into 2D:

▪ Autoencoder 
▪ PCA (principal component analysis)
▪ t-SNE (T-distributed Stochastic Neighbor Embedding)

▪ Input, intermediate, and output layers of DNNs

▪ #2 Validation, Explainability, Fairness via Constraints
▪ Establish assertions and thresholds for automatic validation and alerts 

w.r.t. accuracy, bias, and other metrics  

▪ Generate succinct representations (e.g., rules) as explanation

▪ Impose constraints like monotonicity for ensuring fairness

Overview Model Debugging

[Credit: twitter.com/tim_kraska]

[Andrew Crotty et al: Vizdom: 
Interactive Analytics through 
Pen and Touch. PVLDB 2015]

[Credit: nlml.github.io/in-raw-
numpy/in-raw-numpy-t-sne/]

https://twitter.com/tim_kraska
https://nlml.github.io/in-raw-numpy/in-raw-numpy-t-sne/
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▪ Regression Statistics
▪ Average response and stddev, average residuals stddev residuals

▪ R2 (coeff of determination) with and without bias, etc

▪ Classification Statistics
▪ Classical: recall, precision, F1-score,

Area under the ROC Curve (AUC)

▪ Visual: confusion matrix

(correct vs predicated classes)

➔ understand performance

wrt individual classes

▪ Example Mnist

▪ Mispredictions might

also be visualized via

dimensionality reduction

Basic Model-Specific Statistics
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▪ Data and ML Pipelines
▪ ESA Sentinel-1/2 datasets → 4PB/year

▪ Training of local climate zone classifiers on 

So2Sat LCZ42 (15 experts, 400K instances,

10 labels each, 85% confidence, ~55GB H5)

▪ ML pipeline: preprocessing, ResNet18, 

climate models

▪ Label Creation/ Validation
▪ Team learning

▪ Labeling w/ checks

▪ Label validation

▪ Quantitative validation w/ 10 

expert votes on correctness

Excursus: DLR Earth Observation Use Case

[So2Sat LC42 Dataset 
https://mediatum.ub.tum.de/1454690] 

[Xiao Xiang Zhu et al: So2Sat LCZ42: A 
Benchmark Dataset for the Classification of 

Global Local Climate Zones. GRSM 2020]

https://mediatum.ub.tum.de/1454690
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▪ Generalized Confusion Matrices
▪ Hierarchical, Multi-label Data

▪ Transform multi-label data: conditioning, marginalization (aggregation), and nesting

Confusion Matrices, cont. [Jochen Görtler et al: Neo: Generalizing Confusion 
Matrix Visualization to Hierarchical and Multi-

Output Labels. CHI 2022 (1/25 best papers)]
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Excursus: dabl.plot 

# adult dataset (>50K vs <=50K income)
data = pd.read_csv("adult.csv")
plot(data, "income")

(mosaic plots)[https://amueller.github.io/dabl/dev/auto_examples/
plot/plot_adult.html]

[Andreas Mueller: dabl – Taking the edge off 
of data science with dabl, Data Umbrella 2022, 

https://www.youtube.com/watch?v=h92RMJi4mRM]

https://amueller.github.io/dabl/dev/auto_examples/plot/plot_adult.html
https://amueller.github.io/dabl/dev/auto_examples/plot/plot_adult.html
https://www.youtube.com/watch?v=h92RMJi4mRM
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▪ Overfitting / Imbalance
▪ Compare train and test performance

➔ Algorithm-specific techniques: regularization, pruning, loss, etc 

▪ Data Leakage
▪ Example: time-shifted external time series data (e.g., weather)

▪ Compare performance train/test vs production setting

▪ Covariance Shift (features)
▪ Distribution of features in training/test data different from production data

▪ Reasons: out-of-domain prediction, sample selection bias

▪ Examples: NLP, speech recognition, face/age recognition

▪ Concept Drift (features → labels)
▪ Gradual change of statistical properties / dependencies (features-labels)

▪ Requires re-training, parametric approaches for deciding when to retrain 

Understanding Other Basic Issues
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▪ Occlusion Explanations
▪ Slide gray square over inputs

▪ Measure how feature maps

and classifier output changes

▪ Incremental Computation
of Occlusion Explanations
▪ View CNN as white-box operator 

graph and operators as views

▪ Materialize intermediate tensors 

and apply incremental view maintenance

Occlusion-Based Explanations 

[Supun Nakandala, Arun Kumar, and Yannis Papakonstantinou: 
Incremental and Approximate Inference forFaster Occlusion-

based Deep CNN Explanations, SIGMOD 2019]

SIGMOD 2020 Research Highlight

[Matthew D. Zeiler, Rob Fergus: 
Visualizing and Understanding 
Convolutional Networks. ECCV 2014]
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▪ Saliency Map
▪ Given input image and specific class

▪ Compute saliency map of 

class derivatives wrt input image 

▪ Approximated w/ a linear function

(Taylor expansion)

▪ Unsupervised 
Image Segmentation

Saliency Maps [Karen Simonyan, Andrea Vedaldi, Andrew Zisserman: Deep 
Inside Convolutional Networks: Visualising Image Classification 

Models and Saliency Maps. ICLR Workshop 2014]
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▪ #1 Wolf Detection based on snow cover 

▪ #2 Horse Detection based on image watermarks
▪ Layer-wise relevance propagation

▪ #3 Race-biased Jail Risk 
Assessment

Example Model Anomalies “silent but severe problems”

[Sebastian Lapuschkin et al.: Analyzing 
Classifiers: Fisher Vectors and Deep 
Neural Networks, CVPR 2016]

[Julia Angwin et al: Machine Bias – There’s software used 
across the country to predict future criminals. And it’s biased 
against blacks, 2016, https://www.propublica.org/article/
machine-bias-risk-assessments-in-criminal-sentencing]

[Marco Túlio Ribeiro, Sameer Singh, and Carlos 
Guestrin: Why Should I Trust You?: Explaining the 
Predictions of Any Classifier, KDD 2016]

12/27
→ 

25/27

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
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▪ Motivation
▪ Generate succinct decision rules from data

▪ Problem: Decision tree rules 

do not overlap by def

▪ Example athlete’s exercise log:

“Goal met” → 7 vs 7

▪ Explanation Tables
▪ Find smallest explanation 

table subject to max KL divergence threshold

▪ Greedy and sampling algorithms

Explanation Tables

[Kareem El Gebaly, Parag Agrawal, Lukasz 
Golab, Flip Korn, Divesh Srivastava: 
Interpretable and Informative 
Explanations of Outcomes. PVLDB 2014]
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▪ Problem Formulation
▪ Data slice: SDG :=  D=PhD AND G=female (subsets of features)

▪ Find top-k data slices where model performs worse than average

▪ Ordering by

▪ Increasing number of literals, 
▪ Decreasing slice size, 

and decreasing effect size (difference 𝑆 vs ¬𝑆)

▪ Subject to: minimum effect size threshold 𝑇, statistical significance (Welch’s t-test), 

a dominance constraint (no coarser slice satisfies 1 and 2) via

▪ Existing Algorithms
▪ Preparation: Binning + One-Hot Encoding

▪ #1 Clustering → slices

▪ #2 Decision tree training

▪ #3 Lattice search with 

heuristic, level-wise termination

SliceFinder

“find largest error vs find large slices”

[Yeounoh Chung, Tim Kraska, Neoklis Polyzotis, Ki Hyun Tae, Steven 
Euijong Whang: Automated Data Slicing for Model Validation: A Big 

Data - AI Integration Approach. ICDE2019/TKDE2020]
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▪ Problem Formulation
▪ Intuitive slice scoring function

▪ Exact top-k slice finding

▪ 𝑆 ≥ 𝜎 ∧ 𝑠𝑐 𝑆 > 0, 𝛼 ∈ (0,1]

▪ Properties & Pruning
▪ Monotonicity of slice sizes, errors 

▪ Upper bound sizes/errors/scores 

→ pruning & termination

▪ Linear-Algebra-based Slice Finding
▪ Recoded/binned matrix X, error vector e

▪ Vectorized implementation in linear algebra (join & eval via sparse-sparse matmult)

▪ Local and distributed task/data-parallel execution

SliceLine for Model Debugging
[Credit: sliceline, 

Silicon Valley, HBO]

𝑠𝑐 = 𝛼
ҧ𝑒(𝑆)

ҧ𝑒(𝑋)
− 1 − 1 − 𝛼

𝑋

𝑆
− 1

= 𝛼
𝑋

𝑆
⋅

σ𝑖=1
|𝑆|

𝑒𝑠𝑖

σ
𝑖=1
|𝑋|

𝑒𝑖

− 1 − 1 − 𝛼
𝑋

𝑆
− 1

slice error slice size

𝑂(2𝑙 − 
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𝑚

2𝑑𝑗 +  𝑙 + 𝑚)
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SliceLine – Experiments 

Effective Pruning 
(#evaluated 

close to #valid)

Practical Performance
(39s until termination 

at level 12)

[Svetlana Sagadeeva, Matthias Boehm: SliceLine: 
Fast, Linear-Algebra-based Slice Finding for ML 

Model Debugging, SIGMOD 2021]

Salary 2x2 Adult
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▪ Motivation
▪ Root cause of unfairness: bias in training data

▪ Selective Data Acquisition for model accuracy and fairness

▪ Different slices w/ different learning curves

→ Learning curve fitting

▪ Problem 
Formulation

Slice Tuner

Minimize total loss of slices Penalize underperforming slices

Budget of acquisition costs

[Ki Hyun Tae, Steven Euijong Whang: Slice Tuner: A 
Selective Data Acquisition Framework for Accurate 
and Fair Machine Learning Models, SIGMOD 2021]

Convex 
optimization 

problem
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▪ Motivation
▪ ML models might fail in complex ways that are not captured in loss function

▪ Inspired by assertions in SW dev → Model assertions via Python rules

▪ Assertion Use Cases
▪ #1 Runtime monitoring (collect statistics on incorrect behavior)

▪ #2 Corrective Action (trigger corrections at runtime) ➔ but how in retrospect?

▪ #3 Active Learning (decide which difficult data points to give to user)

▪ #4 Weak supervision (propose alternative labels and use for retraining)

Model Assertions

Example: 
Flickering of 

object detection

[Daniel Kang, Deepti Raghavan, Peter Bailis, Matei 
Zaharia: Model Assertions for Debugging Machine 

Learning, NeurIPS Workshop ML Systems, 2018]
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▪ System Architecture
ease.ml/ci

Continuous Integration
[Cedric Renggli, Bojan Karlaš, Bolin Ding, Feng Liu, Kevin 

Schawinski, Wentao Wu, Ce Zhang: Continuous Integration 
of Machine Learning Models with ease.ml/ci: Towards a 

Rigorous Yet Practical Treatment, SysML 2019]
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▪ Motivation
▪ Explain predictions via inputs for model understanding & transparency

▪ Utilize model debugging and other tools

▪ #1 Interpretable Models
▪ Linear models, tree-based models, rule-based models

▪ Weights and decision rules

▪ #2 Post-hoc Explanations
▪ Complex deep neural networks or very large models → black box models

▪ Build simple models for explaining any complex models

▪ Types of Explanations
▪ Model parameters, example predictions, summarization

▪ Most important features/data, how to flip model predictions 

Explainability 
[Hima Lakkaraju, Julius Adebayo, Sameer Singh: 

Explaining Machine Learning Predictions: State-of-the-art, 
Challenges, and Opportunities, NeurIPS 2020 Tutorial, 

https://explainml-tutorial.github.io/neurips20]

Prefer simpler models 
if accuracy sufficient!

Interpretability  ➔ Accuracy

Multi-modal 
Interpretability: 

https://captum.ai/ 

https://explainml-tutorial.github.io/neurips20
https://captum.ai/
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▪ LIME Overview
▪ Model agnostic explanations

▪ Identify important dimension and 

present their relative importance

▪ Sample perturbations of prediction input

(e.g., hide parts of image, attribute values)

▪ Locally weighted regression

▪ LIME Objective
▪ Various hyper-parameters

▪ Heuristics / 

HP optimization

LIME: Sparse, Linear Explanations [Marco Túlio Ribeiro, Sameer Singh, and Carlos 
Guestrin: Why Should I Trust You?: Explaining the 

Predictions of Any Classifier, KDD 2016]

Loss Function

Local KernelLinear Models

Regularizer
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▪ SHAP Overview
▪ Additive feature importance (local accuracy) := sum of feature contributions

▪ Unification of LIME, Shapley sampling/regression values, QII, 

DeepLIFT, layer-wise relevance propagation, tree interpreter

▪ Estimate Shapley values using linear regression 

▪ SHAP Tooling 

SHAP: Shapley Additive Explanations [Scott M. Lundberg, Su-In Lee: A 
Unified Approach to Interpreting 

Model Predictions. NeurIPS 2017]

[Scott M. Lundberg: 
Explainable AI for Science 

and Medicine,
https://www.youtube.com/

watch?v=B-c8tIgchu0]

[https://shap.readthedocs.io/en/latest/index.html]

(Avg Output)

Marginal contributions

https://www.youtube.com/watch?v=B-c8tIgchu0
https://www.youtube.com/watch?v=B-c8tIgchu0
https://shap.readthedocs.io/en/latest/index.html
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SHAP: Shapley Additive Explanations, cont. [Scott M. Lundberg, Su-In Lee: A 
Unified Approach to Interpreting 

Model Predictions. NeurIPS 2017]

▪ Other Shapely-related Work:
▪ Quantitative Input Influence (QII)

[Anupam Datta, Shayak Sen, Yair Zick: Algorithmic Transparency via 
Quantitative Input Influence: Theory and Experiments with Learning 
Systems. IEEE SSP 2016, https://doi.org/10.1109/SP.2016.42]

https://doi.org/10.1109/SP.2016.42
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Model Bias & Fairness

Focus on Applications, Fairness, Ethics, Responsibility 
Fairness Metrics and Constraints
Employs Model Debugging & Explainability Techniques
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▪ Environment
▪ Selection Bias: Differences in study participation, data availability, and measurement effort

▪ Test environment, project team, cultural context → different context

▪ Data Collection
▪ Sample Bias: collected data not representative of application

▪ Observer Bias / Confirmation Bias: subjective judgment leaks 

into measurement and analysis → transparency and critical feedback

▪ Training Dataset
▪ Data Bias: e.g., not missing at random (NMAR) values

▪ Feature Selection Bias: manual or automatic during data preparation

Sources of Bias

➔ Design ML Systems & applications w/ awareness of potential bias
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Excursus: DLR Earth Observation Use Case, cont. 
[Xiao Xiang Zhu et al: So2Sat 

LCZ42: A Benchmark Dataset for 
the Classification of Global Local 

Climate Zones. GRSM 2020]

Environment / Context
→ Biased Data Collection

→ Awareness and 
Conscious Bias Mitigation
→ Remaining Bias?
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▪ Fairness
▪ Validate and ensure fairness with regard to sensitive features (unbiased)

▪ Use occlusion and saliency maps to characterize and compare groups

▪ Enforcing Fairness
▪ Use constraints to enforce certain properties (e.g., monotonicity, smoothness)

▪ Example: 

late payment → credit score

Debugging Bias and Fairness

[Maya Gupta: How 
Do We Make AI 
Fair? SysML 2019]
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▪ #1 Statistical Parity
▪ Independence of model from groups

▪ Equal probability outcome across groups 

▪ #2 False Positive Rate Parity
▪ Independence of model from groups

▪ Conditioned on true label y=0

▪ #3 False Negative Rate Parity
▪ Independence of model from groups

▪ Conditioned on true label y=1

▪ #4 False Omission Rate Parity
▪ Independence of true labels from groups

▪ Conditioned on negative prediction h=0

Group Fairness Constraints

∀𝑔𝑖 , 𝑔𝑗 ∈ 𝐺:

𝑃 ො𝑦 = 1 𝑔𝑖 ≈ 𝑃( ො𝑦 = 1|𝑔𝑗)

∀𝑔𝑖 , 𝑔𝑗 ∈ 𝐺:

𝑃 ො𝑦 = 1 𝑔𝑖 , 𝑦 = 0 ≈ 𝑃( ො𝑦 = 1|𝑔𝑗, 𝑦 = 0)

[H. Zhang et al: OmniFair: A Declarative 
System for Model-Agnostic Group Fairness 

in Machine Learning, SIGMOD 2021]

∀𝑔𝑖 , 𝑔𝑗 ∈ 𝐺:

𝑃 𝑦 = 1 𝑔𝑖 , ො𝑦 = 0 ≈ 𝑃(𝑦 = 1|𝑔𝑗, ො𝑦 = 0)

∀𝑔𝑖 , 𝑔𝑗 ∈ 𝐺:

𝑃 ො𝑦 = 0 𝑔𝑖 , 𝑦 = 1 ≈ 𝑃( ො𝑦 = 0|𝑔𝑗, 𝑦 = 1)

#2+#3 
Equalized 

Odds
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▪ #5 False Discovery Rate Parity
▪ Independence of true labels from groups

▪ Conditioned on negative prediction h=1

▪ #4+#5 Predictive Parity

▪ #6 Misclassification Rate Parity
▪ Equal misclassification rate across groups

▪ Others
▪ Individual fairness 

→ relationship to differential privacy

▪ Causal fairness

Group Fairness Constraints, cont.

∀𝑔𝑖 , 𝑔𝑗 ∈ 𝐺:

𝑃 𝑦 = 1 𝑔𝑖 , ො𝑦 = 1 ≈ 𝑃(𝑦 = 1|𝑔𝑗, ො𝑦 = 1)

∀𝑔𝑖 , 𝑔𝑗 ∈ 𝐺:

𝑃 ො𝑦 = 𝑦 𝑔𝑖 ≈ 𝑃( ො𝑦 = 𝑦|𝑔𝑗)

[Cynthia Dwork, Moritz Hardt, Toniann 
Pitassi, Omer Reingold, Richard S. Zemel: 

Fairness through awareness. ITCS 2012]
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▪ Problem Formulation
▪ A fairness specification is given by a triplet (g, f, 𝜀) and induces 

(|g(D)|choose 2) fairness constraints on pairs of groups

▪ A fairness spec is satisfied by a classifier ℎ on 𝐷 iff all induced 

fairness constraints are satisfied, i.e., ∀gi,gj ∈ g(D), |f(h,gi)−f(h,gj)| ≤ 𝜀

▪ Unconstrained optimization problem

▪ Results 
▪ Adult dataset

▪ Model-agnostic

▪ Similar 

Accuracy

Ensuring Fairness [H. Zhang et al: OmniFair: A Declarative 
System for Model-Agnostic Group Fairness 

in Machine Learning, SIGMOD 2021]

max accuracy 
s.t. fairness

max accuracy 
+ fairness
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▪ Excursus: Diversity Strategy TU Berlin
▪ “diversity at TU Berlin is understood in terms of commitment, 

opportunity and potential […]; attributions which are often associated 

with discrimination such as age, disability and chronic illness, ethnic origin, 

gender, social background, sexual orientation as well as religion and political or other opinion.”

▪ Such features should not be used for hiring decisions, but needed for group fairness

▪ FairExp (FAIRness EXPlorer)
▪ Problem: Sensitive features and 

features correlated to them

▪ Dropping features or introducing 

new tuples loses too much accuracy

▪ Feature Construction: 

+, *, 1/, −1*, log, one-hot

▪ Feature Set Exploration/Selection

Fairness-aware Feature Engineering

[https://www.static.tu.berlin/fileadmin/www/
10000000/Arbeiten/Wichtige_Dokumente/

Diversity_Strategy_TU_Berlin.pdf]

[Ricardo Salazar, Felix 
Neutatz, Ziawasch Abedjan: 

Automated Feature 
Engineering for Algorithmic 

Fairness. PVLDB 2021]

https://www.static.tu.berlin/fileadmin/www/10000000/Arbeiten/Wichtige_Dokumente/Diversity_Strategy_TU_Berlin.pdf
https://www.static.tu.berlin/fileadmin/www/10000000/Arbeiten/Wichtige_Dokumente/Diversity_Strategy_TU_Berlin.pdf
https://www.static.tu.berlin/fileadmin/www/10000000/Arbeiten/Wichtige_Dokumente/Diversity_Strategy_TU_Berlin.pdf
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Excursus: EU Policy

➔ “The preferred option is 
option 3+, a regulatory 

framework for high-risk AI 
systems only, with the possibility 
for […] non-high-risk AI systems 

to follow a code of conduct.” 

[European Commission: LAYING DOWN 
HARMONISED RULES ON ARTIFICIAL INTELLIGENCE

(ARTIFICIAL INTELLIGENCE ACT) AND AMENDING 
CERTAIN UNION LEGISLATIVE ACTS, 04/2021]
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▪ Model Debugging and Explainability

▪ Model Bias & Fairness Constraints

▪ Next Lectures (Part B)
▪ 12 Model Serving Systems and Techniques [Jul 13]

▪ Exams [Jul 14 - 28]

Summary & QA

“Bottom line: we will learn that many 
of the problems are socio-technical,

and so cannot be “solved” 
with technology alone.”

[Julia Stoyanovich: Responsible Data 
Science, https://dataresponsibly.

github.io/courses/spring20/]

https://dataresponsibly.github.io/courses/spring20/
https://dataresponsibly.github.io/courses/spring20/
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