
Architecture of ML Systems (AMLS)
12 Model Deployment and Serving

Prof. Dr. Matthias Boehm
Technische Universität Berlin
Berlin Institute for the Foundations of Learning and Data
Big Data Engineering (DAMS Lab)

Last update: Jul 08, 2023

Matthias Boehm | FG DAMS | AMLS SoSe 2023 – 12 Model Deployment and Serving 2

▪ #1 Hybrid & Video Recording
▪ Hybrid lectures (in-person, zoom) with optional attendance

https://tu-berlin.zoom.us/j/9529634787?pwd=R1ZsN1M3SC9BOU1OcFdmem9zT202UT09

▪ Zoom video recordings, links from website

https://mboehm7.github.io/teaching/ss23_amls/index.htm

▪ #2 Project/Exercise Submission
▪ Original Deadline: July 4 → 24h before individual exam slot

▪ Pull requests (SystemDS/DAPHNE), note if done; ISIS submission or email (for TU Graz students)

▪ #3 Course Feedback / Evaluation
▪ ISIS Course feedback, active July 10 – July 23, 2023

Announcements / Org

https://tu-berlin.zoom.us/j/9529634787?pwd=R1ZsN1M3SC9BOU1OcFdmem9zT202UT09
https://mboehm7.github.io/teaching/ss23_amls/index.htm

Matthias Boehm | FG DAMS | AMLS SoSe 2023 – 12 Model Deployment and Serving 3

Recap: The Data Science Lifecycle
(aka KDD Process, aka CRISP-DM)

Data/SW
Engineer

DevOps
Engineer

Data Integration
Data Cleaning

Data Preparation

Model Selection
Training

Hyper-parameters

Validate & Debug
Deployment

Scoring & Feedback

Data
Scientist

Exploratory Process
(experimentation, refinements, ML pipelines)

Data-centric View:
Application perspective
Workload perspective

System perspective

Matthias Boehm | FG DAMS | AMLS SoSe 2023 – 12 Model Deployment and Serving 4

▪ Model Exchange and Serving

▪ Model Monitoring and Updates

Agenda

Matthias Boehm | FG DAMS | AMLS SoSe 2023 – 12 Model Deployment and Serving 5

Model Exchange and Serving

Matthias Boehm | FG DAMS | AMLS SoSe 2023 – 12 Model Deployment and Serving 6

▪ Definition Deployed Model
▪ #1 Trained ML model (weight/parameter matrix)

▪ #2 Trained weights AND operator graph / entire ML pipeline

 ➔ especially for DNN (many weight/bias tensors, hyper parameters, etc)

▪ Recap: Data Exchange Formats (model + meta data)
▪ General-purpose formats: CSV, JSON, XML, Protobuf

▪ Sparse matrix formats: matrix market, libsvm

▪ Scientific formats: NetCDF, HDF5

▪ ML-system-specific binary formats (e.g., SystemDS, PyTorch serialized)

▪ Problem ML System Landscape
▪ Different languages and frameworks, including versions

▪ Lack of standardization → DSLs for ML is wild west

Model Exchange Formats

Matthias Boehm | FG DAMS | AMLS SoSe 2023 – 12 Model Deployment and Serving 7

▪ Why Open Standards?
▪ Open source allows inspection but no control

▪ Open governance necessary for open standard

▪ Cons: needs adoption, moves slowly

▪ #1 Predictive Model Markup Language (PMML)
▪ Model exchange format in XML, created by Data Mining Group 1997

▪ Package model weights, hyper parameters, and limited set of algorithms

▪ #2 Portable Format for Analytics (PFA)
▪ Attempt to fix limitations of PMML, created by Data Mining Group

▪ JSON and AVRO exchange format

▪ Minimal functional math language → arbitrary custom models

▪ Scoring in JVM, Python, R

Model Exchange Formats, cont.

[Nick Pentreath: Open Standards
for Machine Learning Deployment,

bbuzz 2019]

Matthias Boehm | FG DAMS | AMLS SoSe 2023 – 12 Model Deployment and Serving 8

▪ #3 Open Neural Network Exchange (ONNX)
▪ Model exchange format (data and operator graph) via Protobuf

▪ First Facebook and Microsoft, then IBM, Amazon → PyTorch, MXNet

▪ Focused on deep learning and tensor operations

▪ ONNX-ML: support for traditional ML algorithms

▪ Scoring engine: https://github.com/Microsoft/onnxruntime

▪ Cons: low level (e.g., fused ops), DNN-centric → ONNX-ML

▪ TensorFlow Saved Models
▪ TensorFlow-specific exchange format for model and operator graph

▪ Freezes input weights and literals, for additional optimizations

(e.g., constant folding, quantization, etc)

▪ Cloud providers may not be interested in open exchange standards

Model Exchange Formats, cont.

python/systemds/
onnx_systemds

https://github.com/Microsoft/onnxruntime

Matthias Boehm | FG DAMS | AMLS SoSe 2023 – 12 Model Deployment and Serving 9

▪ #1 Embedded ML Serving
▪ TensorFlow Lite and new language bindings (small footprint,

dedicated HW acceleration, APIs, and models: MobileNet, SqueezeNet)

▪ TorchScript: Compile Python functions into ScriptModule/ScriptFunction

▪ SystemML JMLC (Java ML Connector)

▪ #2 ML Serving Services
▪ Motivation: Complex DNN models, ran on dedicated HW

▪ RPC/REST interface for applications

▪ TensorFlow Serving: configurable serving w/ batching

▪ TorchServe: Specialized model for HW, batching/parallelism

▪ Clipper: Decoupled multi-framework scoring, w/ batching and result caching

▪ Pretzel: Batching and multi-model optimizations in ML.NET

▪ Rafiki: Optimizations for accuracy s.t. latency constraints, batching, multi-model opt

ML Systems for Serving

Google Translate
140B words/day

→ 82K GPUs in 2016

[Christopher Olston et al:
TensorFlow-Serving:
Flexible, High-
Performance ML Serving.
NIPS ML Systems 2017]

[Daniel Crankshaw
et al: Clipper: A
Low-Latency Online
Prediction Serving
System. NSDI 2017]

[Yunseong Lee et al.:
PRETZEL: Opening the Black
Box of Machine Learning
Prediction Serving Systems.
OSDI 2018]

[Wei Wang et al: Rafiki:
Machine Learning as
an Analytics Service
System. PVLDB 2018]

PyTorch TorchServe Config
models={
 "resnet-152": {"1.0": {
 "minWorkers": 1,
 "maxWorkers": 1,
 "batchSize": 8,
 "maxBatchDelay": 50,
 "responseTimeout": 120
}}}

Matthias Boehm | FG DAMS | AMLS SoSe 2023 – 12 Model Deployment and Serving 10

▪ Definition Serverless
▪ FaaS: functions-as-a-service (event-driven, stateless input-output mapping)

▪ Infrastructure for deployment and auto-scaling of APIs/functions

▪ Examples: Amazon Lambda, Microsoft Azure Functions, etc

▪ Example

Serverless Computing

Event Source
(e.g., cloud

services)

Lambda Functions

Other APIs
and Services

Auto scaling
Pay-per-request

(1M x 100ms = 0.2$)

[Joseph M. Hellerstein et al: Serverless
Computing: One Step Forward, Two

Steps Back. CIDR 2019]

import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestHandler;

public class MyHandler implements RequestHandler<Tuple, MyResponse> {
 @Override
 public MyResponse handleRequest(Tuple input, Context context) {
 return expensiveModelScoring(input); // with read-only model
 }
}

Matthias Boehm | FG DAMS | AMLS SoSe 2023 – 12 Model Deployment and Serving 11

▪ Example
Scenario

▪ Challenges
▪ Scoring part of larger end-to-end pipeline

▪ External parallelization w/o materialization

▪ Simple synchronous scoring

▪ Data size (tiny ΔX, huge model M)

▪ Seamless integration & model consistency

Example SystemDS JMLC

Sentence
Classification

Sentence
Classification

Feature Extraction
(e.g., doc structure, sentences,

tokenization, n-grams)

…
(e.g., ⨝,)

ΔX

M
“Model”

Token Features

Sentences

➔ Embedded scoring

➔ Latency ⇒ Throughput

➔ Minimize overhead per ΔX

➔ Token inputs & outputs

Matthias Boehm | FG DAMS | AMLS SoSe 2023 – 12 Model Deployment and Serving 12

▪ Background: Frame
▪ Abstract data type with schema (BIN, INT64, FP64, STR)

▪ Column-wise block layout, with ragged arrays

▪ Local and distributed operations

▪ Data Preparation
via Transform

Example SystemDS JMLC, cont.

Schema

…

Distributed
representation:

? x ncol(F) blocks

(shuffle-free
conversion of
csv / datasets)

Training

FY

BMY

YFX transformencode X

MX

Scoring
ΔŶ

transformapplyΔFX ΔX

transformdecodeΔFŶ

Matthias Boehm | FG DAMS | AMLS SoSe 2023 – 12 Model Deployment and Serving 13

▪ Motivation
➔ Embedded scoring

➔ Latency ⇒ Throughput

➔ Minimize overhead per ΔX

▪ Example

Example SystemML JMLC, cont.

Typical compiler/runtime overheads:
Script parsing and config: ~100ms
Validation, compile, IPA: ~10ms
HOP DAG (re-)compile: ~1ms
Instruction execute: <0.1μs

1: Connection conn = new Connection();
 2: PreparedScript pscript = conn.prepareScript(
 getScriptAsString(“glm-predict-extended.dml”),
 new String[]{“FX”,“MX”,“MY”,“B”}, new String[]{“FY”});
 3: // ... Setup constant inputs
 4: for(Document d : documents) {
 5: FrameBlock FX = ...; //Input pipeline
 6: pscript.setFrame(“FX”, FX);
 7: FrameBlock FY = pscript.executeScript().getFrame(“FY”);
 8: // ... Remaining pipeline
 9: }

// single-node, no evictions,
// no recompile, no multithread.

// execute precompiled script
// many times

Matthias Boehm | FG DAMS | AMLS SoSe 2023 – 12 Model Deployment and Serving 14

▪ Recap: Model Batching (see 08 Data Access)
▪ One-pass evaluation of multiple configurations

▪ EL, CV, feature selection, hyper parameter tuning

▪ E.g.: TUPAQ [SoCC’16], Columbus [SIGMOD’14]

▪ Data Batching
▪ Batching to utilize the HW more efficiently under SLA

▪ Use case: multiple users use the same model (wait and collect requests)

▪ Adaptive: additive increase, multiplicative decrease

Serving Optimizations – Batching

Xm

n

k

O(m*n)
read

O(m*n*k)
compute

m >> n >> k

X1

m

n

X2

X3

Benefits for
multi-class /

complex
models[Clipper @

NSDI’17]

Fewer kernel
launches,

Parallelization

Matthias Boehm | FG DAMS | AMLS SoSe 2023 – 12 Model Deployment and Serving 15

▪ Quantization
▪ Lossy compression via ultra-low precision / fixed-point

▪ Ex.: 62.7% energy spent on data movement

▪ Quantization for Model Scoring
▪ Usually much smaller data types (e.g., UINT8)

▪ Quantization of model weights, and sometimes also activations

→ reduced memory requirements and better latency / throughput (SIMD)

Serving Optimizations – Quantization
08 Data Access

Methods

[Amirali Boroumand et al.: Google
Workloads for Consumer Devices:

Mitigating Data Movement
Bottlenecks. ASPLOS 2018]

import tensorflow as tf
converter = tf.lite.TFLiteConverter.from_saved_model(saved_model_dir)
converter.optimizations = [tf.lite.Optimize.OPTIMIZE_FOR_SIZE]
tflite_quant_model = converter.convert()

[Credit: https://www.tensorflow.org/lite/performance/post_training_quantization]

https://www.tensorflow.org/lite/performance/post_training_quantization

Matthias Boehm | FG DAMS | AMLS SoSe 2023 – 12 Model Deployment and Serving 16

▪ Result Caching
▪ Establish a function cache for X → Y

(memoization of deterministic function evaluation)

▪ E.g., translation use case

▪ Multi Model Optimizations
▪ Same input fed into multiple partially redundant model evaluations

▪ Common subexpression elimination between prediction programs

▪ In PRETZEL, programs compiled into physical stages and

registered with the runtime + caching for stages

(decided based on hashing the inputs)

Serving Optimizations – MQO

[Yunseong Lee et al.: PRETZEL: Opening
the Black Box of Machine Learning
Prediction Serving Systems. OSDI 2018]

Matthias Boehm | FG DAMS | AMLS SoSe 2023 – 12 Model Deployment and Serving 17

▪ TensorFlow tf.compile
▪ Compile entire TF graph into binary function w/ low footprint

▪ Input: Graph, config (feeds+fetches w/ fixes shape sizes)

▪ Output: x86 binary and C++ header (e.g., inference)

▪ Specialization for frozen model and sizes

▪ PyTorch Compile
▪ Compile Python functions into ScriptModule/ScriptFunction

▪ Lazily collect operations, optimize, and JIT compile

▪ Explicit jit.script call or @torch.jit.script

Serving Optimizations – Compilation

[Chris Leary, Todd Wang:
XLA – TensorFlow, Compiled!,

TF Dev Summit 2017]

04 Adaptation,
Fusion, and JIT

a = torch.rand(5)
def func(x):
 for i in range(10):
 x = x * x # unrolled into graph
 return x

jitfunc = torch.jit.script(func) # JIT
jitfunc.save("func.pt")

[Vincent Quenneville-Bélair: How PyTorch
Optimizes Deep Learning Computations,
Guest Lecture Stanford 2020]

Matthias Boehm | FG DAMS | AMLS SoSe 2023 – 12 Model Deployment and Serving 18

▪ Compile ML scoring pipelines into tensor ops (3 strategies w/ different redundancy)

▪ #1 Matmult (GEMM)

Serving Optimizations – Model Vectorization

input [n x m]

predicate map
[m x #inodes]

predicate values
[1 x #inodes]

predicate compare
[1 x #inodes]

bucket paths [#inodes x #paths]
1 (lhs) / 0 / -1 (rhs)

paths ∑
[1 x #paths]

selected path
class map

[#paths x #classes]

[Supun Nakandala et al: A Tensor
Compiler for Unified Machine Learning

Prediction Serving. OSDI 2020,
https://github.com/microsoft/hummingbird]

https://github.com/microsoft/hummingbird

Matthias Boehm | FG DAMS | AMLS SoSe 2023 – 12 Model Deployment and Serving 19

▪ #2 Tree Traversal (TT)
▪ Traversal for batch of records via value indexing / table()

and ifelse(Tv<Tt, Tl, Tr)

Serving Optimizations – Model Vectorization, cont.

3 2 5 3 1 1 1 1 1

0.5 2.0 5.5 2.4 0 0 0 0 0

2 5 4 7 5 6 7 8 9

1

2 3

45 6

7 8

9

3 6 9 8 5 6 7 8 9

TF

F1 F2 F3 F4 F5

F1 F2 F3 F4 F5

F1 F2 F3 F4 F5

Input data

1

1

1

0 0 0 0 1 0 0 1 1

0 0 0 0 0 1 1 0 0

Tl

NL

NR

NF

NT

t(NC)

Matthias Boehm | FG DAMS | AMLS SoSe 2023 – 12 Model Deployment and Serving 20

Serving Optimizations – Model Vectorization, cont.
Batch Scoring Experiments

Azure NC6 v2
(6 vcores, 112GB, P1 GPU)

Batch of 10K records
[seconds]

Forest Inference
Library (FIL)

Lowest Cost
w/ K80

Matthias Boehm | FG DAMS | AMLS SoSe 2023 – 12 Model Deployment and Serving 21

▪ Model Distillation
▪ Ensembles of models → single NN model

▪ Specialized models for different classes

(found via differences to generalist model)

▪ Trained on soft targets (softmax w/ temperature T)

▪ Example Experiments
▪ Automatic Speech Recognition

▪ Frame classification accuracy,

and word error rate

Serving Optimizations – Model Distillation

[Geoffrey E. Hinton, Oriol Vinyals, Jeffrey
Dean: Distilling the Knowledge in a

Neural Network. CoRR 2015]

System Test Frame Accuracy Word Error Rate

Baseline 58.9% 10.9%

10x Ensemble 61.1% 10.7%

Distilled 1x Model 60.8% 10.7%

Matthias Boehm | FG DAMS | AMLS SoSe 2023 – 12 Model Deployment and Serving 22

▪ NoScope Architecture
▪ Baseline: YOLOv2 on 1 GPU

per video camera @30fps

▪ Optimizer to find filters

▪ #1 Model Specialization
▪ Given query and baseline model

▪ Trained shallow NN (based on AlexNet) on output of baseline model

▪ Short-circuit if prediction with high confidence

▪ #2 Difference Detection
▪ Compute difference to ref-image/earlier-frame

▪ Short-circuit w/ ref label if no significant difference

Serving Optimizations – Specialization

[Daniel Kang et al: NoScope: Optimizing
Deep CNN-Based Queries over Video
Streams at Scale. PVLDB 2017]

Matthias Boehm | FG DAMS | AMLS SoSe 2023 – 12 Model Deployment and Serving 23

Model Monitoring and Updates

Part of Model Management and MLOps
(see 10 Model Selection & Management)

Matthias Boehm | FG DAMS | AMLS SoSe 2023 – 12 Model Deployment and Serving 24

Model Deployment Workflow

Data Integration
Data Cleaning

Data Preparation

Model Selection
Training

Hyper-parameters

Model Serving

BMYMX

#1 Model
Deployment

DevOps
Engineer

#2 Continuous Data Validation /
Concept Drift Detection

#3 Model
Monitoring#4 Periodic / Event-based

Re-Training & Updates
(automatic / semi-manual)

Prediction
Requests

Matthias Boehm | FG DAMS | AMLS SoSe 2023 – 12 Model Deployment and Serving 25

▪ Goals:

▪ #1 Check Deviations Training/Serving Data
▪ Different data distributions, distinct items → impact on model accuracy?

→ See 09 Data Acquisition and Preparation (Data Validation)

▪ #2 Definition of Alerts
▪ Understandable and actionable

▪ Sensitivity for alerts (ignored if too frequent)

▪ #3 Data Fixes
▪ Identify problematic parts

▪ Impact of fix on accuracy

▪ How to backfill into training data

Monitoring Deployed Models

Robustness (e.g., data, latency)
and model accuracy

[Neoklis Polyzotis, Sudip Roy, Steven Whang,
Martin Zinkevich: Data Management Challenges
in Production Machine Learning, SIGMOD 2017]

During serving:
0.11?

“The question is not whether something is ‘wrong’.
The question is whether it gets fixed”

Matthias Boehm | FG DAMS | AMLS SoSe 2023 – 12 Model Deployment and Serving 26

▪ Alert Guidelines
▪ Make them actionable

missing field,

field has new values,

distribution changes

▪ Question data AND constraints

▪ Combining repairs:

principle of minimality

▪ Complex Data Lifecycle
▪ Adding new features to production ML pipelines is a complex process

▪ Data does not live in a DBMS; data often resides in multiple storage systems

that have different characteristics

▪ Collecting data for training can be hard and expensive

Monitoring Deployed Models, cont.

[Neoklis Polyzotis, Sudip Roy, Steven Whang,
Martin Zinkevich: Data Management Challenges
in Production Machine Learning, SIGMOD 2017]

[Xu Chu, Ihab F. Ilyas: Qualitative Data
Cleaning. Tutorial, PVLDB 2016]

less
actionable

[George Beskales et al: On the relative
trust between inconsistent data and

inaccurate constraints. ICDE 2013]

Matthias Boehm | FG DAMS | AMLS SoSe 2023 – 12 Model Deployment and Serving 27

▪ Recap Concept Drift (features → labels)
▪ Change of statistical properties / dependencies (features-labels)

▪ Requires re-training, parametric approaches for deciding when to retrain

▪ #1 Input Data Changes
▪ Population change (gradual/sudden), but also new categories, data errors

▪ Covariance shift p(x) with constant p(y|x)

▪ #2 Output Data Changes
▪ Label shift p(y)

▪ Constant conditional feature distributed p(x|y)

▪ Goals: Fast adaptation; noise vs change, recurring contexts, small overhead

Concept Drift
[A. Bifet, J. Gama, M. Pechenizkiy, I. Žliobaitė:

Handling Concept Drift: Importance,
Challenges & Solutions, PAKDD 2011]

Matthias Boehm | FG DAMS | AMLS SoSe 2023 – 12 Model Deployment and Serving 28

▪ Approach 1: Periodic Re-Training
▪ Training: window of latest data + data selection/weighting

▪ Alternatives: incremental maintenance, warm starting, online learning

▪ Approach 2: Event-based Re-Training
▪ Change detection (supervised, unsupervised)

▪ Often model-dependent, specific techniques for time series

▪ Drift Detection Method: binomial distribution, if error outside scaled

standard-deviation → raise warnings and alters

▪ Adaptive Windowing (ADWIN):

window W, append data to W, drop

old values until avg windows W=W1-W2

similar (below epsillon), raise alerts

▪ Kolmogorov-Smirnov distance / Chi-Squared:

univariate statistical tests training/serving

Concept Drift, cont.
[A. Bifet, J. Gama, M. Pechenizkiy, I. Žliobaitė:

Handling Concept Drift: Importance,
Challenges & Solutions, PAKDD 2011]

[https://scikitmultiflow.readthedocs.io/
en/stable/api/generated/

skmultiflow.drift_detection.ADWIN.html]

[Albert Bifet, Ricard Gavaldà:
Learning from Time-Changing Data

with Adaptive Windowing. SDM 2007]

https://scikit-multiflow.readthedocs.io/en/stable/api/generated/skmultiflow.drift_detection.ADWIN.html
https://scikit-multiflow.readthedocs.io/en/stable/api/generated/skmultiflow.drift_detection.ADWIN.html

Matthias Boehm | FG DAMS | AMLS SoSe 2023 – 12 Model Deployment and Serving 29

▪ Model-agnostic Performance Predictor
▪ Approach 2: Event-based Re-Training

▪ User-defined error generators

▪ Synthetic data corruption → impact on black-box model

▪ Train performance predictor (regression/classification at threshold t)

for expected prediction quality on percentiles of target variable ŷ

▪ Results
PPM

Concept Drift, cont. [Sebastian Schelter, Tammo Rukat, Felix Bießmann:
Learning to Validate the Predictions of Black Box

Classifiers on Unseen Data. SIGMOD 2020]

Matthias Boehm | FG DAMS | AMLS SoSe 2023 – 12 Model Deployment and Serving 30

▪ GDPR “Right to be Forgotten”
▪ Recent laws such as GDPR require

companies and institutions to

delete user data upon request

▪ Personal data must not only be deleted

from primary data stores but also from

ML models trained on it (Recital 75)

▪ Example Deanonymization
▪ Recommender systems: models retain user similarly

▪ Social network data / clustering / KNN

▪ Large language models (e.g., GPT-3)

GDPR (General Data Protection Regulation)

U V
┬≈X

[Sebastian Schelter: "Amnesia" - Machine Learning
Models That Can Forget User Data Very Fast. CIDR 2020]

[https://gdpr.eu/article-17-right-to-be-forgotten/]

See incremental computations in
03 Sizes Inferences and Rewrites

https://gdpr.eu/article-17-right-to-be-forgotten/

Matthias Boehm | FG DAMS | AMLS SoSe 2023 – 12 Model Deployment and Serving 31

▪ HedgeCut Overview
▪ Extremely Randomized Trees (ERT): ensemble of

DTs w/ randomized attributes and cut-off points

▪ Online unlearning requests < 1ms

w/o retraining for few points

▪ Handling of Non-robust Splits

GDPR (General Data Protection Regulation), cont.
[Sebastian Schelter, Stefan Grafberger,

Ted Dunning: HedgeCut: Maintaining
Randomised Trees for Low-Latency

Machine Unlearning, SIGMOD 2021]

Matthias Boehm | FG DAMS | AMLS SoSe 2023 – 12 Model Deployment and Serving 32

▪ Model Exchange and Serving

▪ Model Monitoring and Updates

▪ #1 Finalize Programming Projects / Exercises

▪ #2 Exam Preparation – Ask Questions in the Forum

▪ #3 Oral Exams
▪ Register for an exam slot July 14 – July 28 (ISIS or email w/ preferences)

▪ Part 1: Describe you programming project / exercise solution (warm-up)

▪ Part 2: Questions on 3-5 topic areas of lectures 02 - 12

(basic understanding of the discussed concepts / topics / techniques)

Summary & QA

Thanks

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

