No Lecture Materials or Mobile Devices

90min, 100 points

Architecture of ML Systems (AMLS) 12b Q&A and Exam Preparation [continues 5.45pm]

Prof. Dr. Matthias Boehm

Technische Universität Berlin Berlin Institute for the Foundations of Learning and Data Big Data Engineering (DAMS Lab)

Task 1 Parameter Servers [question appeared in every exam]

- Task 1a: Describe the overall system architecture of data-parallel parameter servers, explain its components and interaction among these components [10/100 points]
- System Architecture
 - M Parameter Servers w/ model
 - N Workers w/ data partitions
 - Optional Coordinator

Interactions

- Workers pull model from parameter servers, slice a mini-batch of data, run a forward and backward pass to compute gradients, which are pushed back to parameter serves
- Parameter servers wait for gradients, aggregate the gradients/models, and perform a global model update

10/100

berlin

N Workers

 Task 1b: Describe synchronous (BSP) and asynchronous (ASP) update strategies in data-parallel parameter servers and name their advantages and disadvantages. [6/100 points]

	Synchronous	Asynchronous
Description	Per-batch or -n-batches synchronization barrier (wait for all workers before update)	Every pushed gradient updates the model, workers obtain model immediately
Advantages	Consistent learning process and model updates	No waiting for stragglers
Disadvantages	Workers wait for slowest worker (repeatedly)	Workers use stale models, potential divergence

Task 2 Data Preparation

Task 2a: Given the raw input data below, apply recoding and one-hot encoding to all categorical columns, and binning with 3 equi-width bins to all numerical columns. [10/100 points]

Α	В	С	ALow	AMed	AHigh	В	CS	СМ	CL	CXL
Low	0	S	1	0	0	1	1	0	0	0
High	3	Μ	0	0	1	1	0	1	0	0
Med	7	L	0	1	0	2	0	0	1	0
Low	9	XL	1	0	0	2	0	0	0	1
Low	15	Μ	1	0	0	3	0	1	0	0
Low	7	Μ	1	0	0	2	0	1	0	0
Med	4	L	0	1	0	1	0	0	1	0
High	12	XL	0	0	1	3	0	0	0	1
High	13	L	0	0	1	3	0	0	1	0

Task 2c: Describe the text encodings bag-of-word and word-embeddings. [6/100 points]

- Bag-of-word: encode sentence as a vector of token counts (how often every distinct token appeared in the sentence)
- Word Embedding: continuous bag-of-words,
 learned numerical vectors for predicting the context words from a word or a word from its context
- Task 2d: What is data augmentation and name 2 concrete techniques. [3/100 points]
 - Synthetically generate labeled examples from small real labeled dataset through transformations
 - Examples: rotations, reflections, shearing, noise modulation

Task 2 Data Preparation, cont.

- Task 2b: What is feature hashing and what is its advantage over recoding? [3/100 points]
 - Hash values and compute modulo with user-provided k
 - Reduces the number of distinct items, and thus columns in one-hot-encoded representation

Task 3 Model Selection

Task 3a: Describe the task of hyper-parameter tuning by example of GridSearch. Assume three hyper-parameters with 10 discretized values each, how many models do we need to train? [8/100 points]

Hyper Parameter Tuning

Given a model and dataset, find best hyper parameter values

 (e.g., learning rate, regularization, kernel parameters, tree params)
 by training the model and evaluating it on the validation set.

Grid Search

- Discretize continuous parameters (linearly or exponentially)
- Every hyper-parameter is a dimension of a hyper-cube
- For all combinations, train and evaluate the model
- Example: 10^3 = 1000 trained models

46/100

Task 3 Model Selection, cont.

- Task 3b: Explain Bayesian Optimization as a more directed search strategy, and how it balances exploitation and exploration? [5/100 points]
 - Use lightweight ML models like Gaussian Processes to find next points
 - Acquisition function to balance exploitation (expected mean) and exploration (uncertainty, expected variance)
- Task 3c: Describe the problem of neural architecture search, and how to deal with multiple optimization objectives (e.g., accuracy and runtime). [5/100 points]
 - Automatically compose neural network architectures from building blocks
 - Search strategies: evolutionary algorithms and bayesian optimization
 - Multi-objective optimization:
 - (1) linearization, (2) pareto front to user, (3) primary objective w/ constraints on other dims

Task 4 Model Debugging

- Task 4a: Describe sources of bias in machine learning and name examples how to ensure fairness when building ML models with examples. [4/100 points]
 - Sources: selection bias, sample bias, data bias (e.g., NMAR), confirmation bias
 - Fairness constraints: monotonicity, group fairness constraints
- Task 4b: Explain the concept of a confusion matrix and describe it in detail. [4/100 points]
 - Matrix of correct versus predicted labels
 - Cells contain counts or relative frequencies of correct/predicted pair occurrences
 - Enables understanding which classes are "confused" with each other

predicted label

0 0 21

Task 4 Model Debugging, cont.

- 68/100
- Task 4c: Explain the concept of occlusion-based explanations by example of classifying below hand-written digit as a seven [4/100].

- Slide black/gray square over input image
- Measure how feature maps (layer activation) and classifier output change
 (b) Layer 5, strongest
- Show a heat map of these changes

Task 5 Compilation Techniques

- Task 5a: Describe the purpose of the rewrite common subexpression elimination (CSE) and sketch an algorithm to perform CSE on a directed acyclic graph (DAG) of operators. [5/100 points]
 - Convert tree/graph of operators with redundant common subexpressions into redundancy-free operator graph
 - Step 1: Collect and replace leaf nodes (variable reads and literals)
 - Step 2: recursively remove CSEs bottom-up starting at the leaves by merging nodes with same inputs (beware non-determinism)
- Task 5b: Explain the concept of operator fusion and how it can improve runtime performance [3/100 points]
 - Merge sequence or sub-DAG of data-dependent operators into a single operator
 - Performance Improvements: avoid unnecessary allocation, reduced write/read memory bandwidth requirements / cache locality, additional specialization (e.g., data types, dimensions)

Task 5 Compilation Techniques

- Task 5c: Assume an example chain of matrix multiplications (A B C D E), describe the problem of matrix multiplication chain optimization, and a dynamic programming algorithm for solving it efficiently [7/100 points]
- Matrix Multiplication is associative, mmchain opt aims to find optimal parenthesization
- Dynamic programming applies because
 (1) optimal substructure, and
 (2) overlapping subproblems
- Bottom-up sub-chain optimization via composition from solved subproblems
- Top-down read-out of optimal split matrix

83/100

berlin

Task 6 Data Access Optimizations

Task 6a: Describe min-max quantization of an FP64 (floating point) representation into UINT8 (integer). Why does such an encoding increasing training and/or inference performance? [8/100 points]

Determine min/max range of matrix

Performance Improvements

- Split range into 2^8 = 256 buckets/bins
- Encode FP64 values in a bin via binID (lossy, but order-preserving)

(1) Reduced memory bandwidth requirements

91/100

	Operation	Energy
	Load from DRAM	640 pJ
	Load from large SRAM	50 pJ
	Move 10mm across chip	32 pJ
3 FP64 → 64 UINT8 ops)	Load from local SRAM	5 pJ
	64-bit FMA	5 pJ
	32-bit FMA	1.2 pJ
[Jonathan Ragan-Kelly: The Future of Fast Code:	16-bit IMUL	0.26 pJ
Keynote (inspired by Bill Dally on 14nm)]	8-bit IADD	0.01 pJ

Task 7 Model Deployment

 Task 7a: Consider a deployed model M in a cloud serving environment and assume 1000s of clients. Explain three strategies for improving model scoring throughput at the serving site. [9/100 points]

- Reuse of input-prediction pairs (fewer model invocations)
- Batching of client requests / vectorization
 (fewer kernel launches, utilize compute better, less sync barriers)
- Quantization of input data (data transfer to serving systems, instruction parallelism)
- Inference Program Compilation
- Specialized, Smaller Models

Final Questions & Answering

THANKS and GOOD LUCK!

14 Matthias Boehm | FG DAMS | AMLS SoSe 2024 – **12b Q&A and Exam Preparation**