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Announcements / Org

#1 Hybrid & Video Recording

= Hybrid lectures (in-person, zoom) with optional attendance

https://tu-berlin.zoom.us/j/9529634787?pwd=R1ZsN1M3SC9BOU10cFdmem9zT202UT09 zoom
= Zoom video recordings, links from website

https://mboehm7.github.io/teaching/ss25 amls/index.htm

#2 Exam Registration

* Thu July 24, 4-6pm (A 151, max 50) - 14 registrations
= ThulJuly 31, 4-6pm (EW 201, max 47) - 41 registrations
* Thu Aug 14, 4-6pm (A 151, max 50) —> 24 registrations

= #3 Projects & Exercises
= Submission deadline: Jul 15 EOD
= Get started, use the office hour (Tue 4pm-5.30), and mentor meetings

#4 PhD Position on ML System Internals
= https://www.jobs.tu-berlin.de/en/job-postings/194921, Deadline Jul 18
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Recap: The Data Science Lifecycle
(aka KDD Process, aka CRISP-DM)

Data
Scientist

w

Data Integration Model Selection Validate & Debug
Data Cleaning Training Deployment
Data Preparation Hyper-parameters Scoring & Feedback

|

Exploratory Process
(experimentation, refinements, ML pipelines)

Data/SW DevOps
Engineer Engineer
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Agenda

= Data Augmentation
= Model Selection Techniques

= Model Management & Provenance

@Y atthias Boehm | FG DAMS | AMLS SoSe 2025 — 10 Model Selection and Management \‘ BI FOLD




Data Augmentation

B Matthias Boehm | FG DAMS | AMLS SoSe 2025 — 10 Model Selection and Management \‘ BI FOLD



Motivation and Basic Data Augmentation

1 /]

= Motivation Data Augmentation [Alex Krizhevsky, llya Sutskever, Geoffrey E.
- Complex ML models / deep NNs need lots of Hintf)n: ImageNet Classification with Deep
. o . Convolutional Neural Networks. NeurlPS 2012]
labeled data to avoid overfitting = expensive _
o ] AlexNet (see Section 4.1)
= Augment training data by synthetically generated labeled data

= Translations & Reflections
= Random 224x224 patches and their
reflections (from 256x256 images
with known labels)
= |ncreased data by 2048x
= Test: corner/center patches
+ reflections = prediction

= Alternating Intensities
= Intuition: object identity is invariant to illumination and color intensity

= PCA on dataset = add eigenvalues times a random variable N(0,0.1)
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Basic Data Augmentation

= Scaling and Normalization
= Standardization: subtract per-channel global pixel means
= Normalization: normalized to range [-1,1] (see min-max)

= General Principles
= #1: Mlovement/selection (translation, rotation, reflection, cropping)
= #2: Distortions (stretching, shearing, lens distortions, color, mixup of images)
* |In many different combinations =» often trial & error / domain expertise

= Excursus: Reducing Training Time
= Transfer learning: Use pre-trained model on ImageNet;
freeze lower NN layers, fine-tune last layers w/ domain-specific data
= Multi-scale learning: Use cropping and scaling to train

_ . _ . [Karen Simonyan, Andrew Zisserman: Very
256 x 256 model as starting point for a more compute-intensive Deep Convolu-tional Networks for Large-
384x384 model (no changes required for CNNs) Scale Image Recognition. ICLR 2015]
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Basic Data Augmentation, cont.

= Distortions
= Translations, rotations, skewing
= Compute for every pixel a new target
location via rand displacement fields)

— [Patrice Y. Simard, David Steinkraus, John
C. Platt: Best Practices for Convolutional
Neural Networks Applied to Visual
Document Analysis. ICDAR 2003]

= Cutout
= Randomly masking out square regions of input images
= Size more important than shape

[Terrance Devries, Graham W. Taylor:
Improved Regularization of Convolutional
Neural Networks with Cutout. CoRR 2017]
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Domain Randomization

W

= Training on Simulated Images
= Random rendering of objects with non-realistic textures
= Large variability for generalization to real world objects

[Josh Tobin et al.: Domain randomization for
transferring deep neural networks from
simulation to the real world. IROS 2017]

= Pre-Training on Simulated Images
= Random 3D objects and flying distractors
w/ random textures
= Random lights and rendered onto
random background

=== | [Jonathan Tremblay et al.: Training Deep Networks
| With Synthetic Data: Bridging the Reality Gap by
Domain Randomization. CVPR Workshops 2018]
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Learning Data Augmentation Policies

= AutoAugment [Ekin Dogus Cubuk, Barret Zoph, Dandelion
= Search space of DA poIicies Mané, Vijay Vasudevan, Quoc V. Le:
. . . ] AutoAugment: Learning Augmentation Policies
= Goal: Find best augmentation policy (e.g., via from Data. CVPR 2019]
reinforcement learning, evolutionary algorithms)
= #1: Image processing functions =» New state-of-the
(translation, rotation, color normalization) art top-1 error on
= #2: Probabilities of applying these functions ImageNet and CIFAR10

= Data Augmentation GAN (DAGAN)
= |mage-conditional generative model for
creating within-class images from inputs
= No need for known invariants

[Antreas Antoniou, Amos J. Storkey, Harrison Edwards:
Augmenting Image Classifiers Using Data Augmentation
Generative Adversarial Networks. ICANN 2018]
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Weak Supervision

[Alex Ratner, Paroma Varma, Braden Hancock,
Chris Ré, and others: Weak Supervision: A New
Programming Paradigm for Machine Learning,
ai.stanford.edu/blog/weak-supervision/, 2019]

= Heuristically Generated Training Data
= Hand labeling expensive and time consuming, but abundant unlabeled data

= Changing labeling guidelines
=» labeling heuristics

E ]

Traditional Supervision:
Have subject matter
experts (SMEs) hand-label
more training data

.
Too expensivel
L |

Active Learning:

Estimate which points
are most valuable to

solicit labels for
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How to get more lab

led training data?

& g

Semi-supervised Learning:
Use structural assumptions
to automatically leverage
unlabeled data

L L

Transfer Learning: Use
models already trained
on a different task

Weak Supervision: Get
lower-guality labels more
efficiently and/or at a
higher abstraction level

- | ~__ -
" L Ta
Get cheaper, lower-quality Get higher-level supervision Use one or more (noisy /
labels from non-experts over unlabeled data from SMEs  bigsed) pre-trained models
x*'ﬂ:}i‘u to provide supervision
P AN
- | &“;m T~ basic data
L (4
Heuristics Supervision Constraints ... o tions| IMVrionces augme ntation
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Weak Supervision, cont.

(coverage a,, accuracy B.)

= Data Programming Input: Labeling Functions, Generative Model Noise-Aware
. Unlabeled data Discriminative Model
Overview

DOMAIN
EXPERT

B OO = ol

O Output: Probabilistic 4 h;,s |
Training Labels

= [Alexander J. Ratner, Christopher De Sa, Sen Wu, | [Paroma Varma, Christopher Ré: Snuba:
~ | Daniel Selsam, Christopher Ré: Data Programming: | Automating Weak Supervision to Label
Creating Large Training Sets, Quickly. NeurIPS 2016] | Training Data. PVLDB 2018]
— [Alexander Ratner, Stephen H. Bach, Henry R. —— [Stephen H. Bach, Daniel Rodriguez, Yintao Liu, Chong Luo, Haidong Shao,
. Ehrenberg, Jason Alan Fries, Sen Wu, Christopher —r— Cassandra Xia, Souvik Sen, Alexander Ratner, Braden Hancock, Houman Alborzi,
Ré: Snorkel: Rapid Training Data Creation with ~ | Rahul Kuchhal, Christopher Ré, Rob Malkin: Snorkel DryBell: A Case Study in
Weak Supervision. PVLDB 2017] Deploying Weak Supervision at Industrial Scale. SIGMOD 2019]
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Weak Supervision, cont.

O Labeling @
= Excursus: Snorkel OOO QRN LN @O@ ©
[https://www.snorkel.org/] O QO] meemts | O @O
= Programmatically Buildin
g M4 y' M4 g ® @ Data Ai ntati é @ @ Q’]
and Managing Training Data NGRS # © @
3 © 00 Mrnctions (v | ()@ O
&' snorkel
® Montoring Criical l,"”@n\@
00 O | 2 g 5,0
. @ @ @ Fl.r:l‘ctionfl(nSgFS) @ . -@ ®
= Effects of Augmentation

= #1 Regularization for reduced generalization error,
not always training error (penalization of model complexity)
= #2 Invariance increase by averaging features of augmented data points
=>» Data Augmentation as a Kernel
= Kernel metric for augmentation selection
= Affine transforms on approx. kernel features
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11 Model
~ Selection &
Management

12 Model
Debugging
Techniques

[Tri Dao et al: A Kernel
Theory of Modern Data
Augmentation. ICML 2019]
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Model Selection Techniques
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. [Chris Thornton, Frank Hutter, Holger H. Hoos,
AutoML Overview Kevin Leyton-Brown: Auto-WEKA: combined

selection and hyperparameter optimization of
classification algorithms. KDD 2013]

= #1 Model Selection

= Given a dataset and ML task (e.g., classification or regression) .
= Select the model (type) that performs best AT e ME?,;“ k Z LA, Diyiim Drai)
(e.g.: LogReg, Naive Bayes, SVM, Decision Tree, Random Forest, DNN)

= #2 Hyper Parameter Tuning
. .
Given a model and dataset, find best hyper parameter values (e.g., A'xc  argmin + ZE (A9 DO pl)
learning rate, regularization, kernels, kernel parameters, tree params) AG eANEAD)

= Validation: Generalization Error
= Goodness of fit to held-out data (e.g., 80-20 train/test)
= Cross validation (e.g., leave one out = k=5 runs w/ 80-20 train/test)

=» AutoML Systems/Services
= Often providing both model selection and hyper parameter search
» Integrated ML system, often in distributed/cloud environments
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Basic Grid Search

1 /]

= Basic Approach gridSearch() .ﬂn
= Given n hyper parameters A1, ..., A\n with domains Al, ..., An GridSearchCVv()

* Enumerate and evaluate parameter space A € A; X ... X A,
(often strict subset due to dependency structure of parameters)

= Continuous hyper parameters = discretization

. Non-convex or unknown
= Equi-width

- Exponential A parameter space
(e.g., regularization 0.1, 0.01, 0.001, etc) 1 ¢&—9¢—o9—9o—0
= Problem: Only applicable with small domains *—e L ‘ ®
B ¢—¢—¢—¢—¢
= Heuristic: Monte-Carlo ¢ ﬁ oo o
(random search, anytime) P D W S W W
0 1
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Basic Grid Search, cont.

= Example Adult Dataset (train 32,561 x 14)
= Binary classification (>50K), https://archive.ics.uci.edu/ml/datasets/adult
= #1 MLogReg defaults w/ one-hot categoricals Accuracy (%): 82.35
= #2 MLogReg defaults w/ one-hot + binning Accuracy (%): 84.73

= #3 GridSearch MLogReg:

Accuracy (%): 90.07

params = list("icpt"”, "reg", "numBins");
paramRanges = list(seq(©,2), 10”seq(3,-6), 10"seq(1,4));

= Example SystemDS
gridSearch

05 Data- and Task-
Parallel Execution

45
46
47
48
49

61
62
63
64
65
66
67
68
69
7@

HP = matrix(®, numConfigs, numParams);
parfor( i in 1l:nrow(HP) ) { ST .
for( 3 in 1:numparams )  # Materialize Configs
HP[i,j] = paramVals[j,as.scalar(((i-1)/cumLens[j,1])%%paramLens[],1]+1)];

h

parfor( i in l:nrow(HP) ) {
# a) replace training arguments
largs = trainArgs;
for{ j in 1:numParams )
largs[as.scalar(params[j])] = as.scalar(HP[i,]j]);
# b) core training/scoring and write-back
lbeta = t(eval(train, largs))
Rbeta[i,1:ncol(lbeta)] = lbeta;
Rloss[i,] = eval(predict, list(X, y, t(lbeta)));


https://archive.ics.uci.edu/ml/datasets/adult

Basic Iterative Algorithms

. _ Exploration vs
= Simulated Annealing exploitation

» Decaying temperature schedules: T,,, =a - T,
" #1 Generate neighbor in e-env of old point P(Ty) = 1
= #2 Accept better points and worse points w/ f 1+ exp((f' = f)/Tx)

= Recursive Random Search
= Repeated restart
= Sample and evaluate points
= Determine best and shrink area
if optimum unchanged
= Realign area if new optimum found - ke

[Tao Ye, Shivkumar Kalyanaraman: A recursive $'
random search algorithm for large-scale network #*
parameter configuration. SIGMETRICS 2003]

Parameter Space




. L. . [Chris Thornton, Frank Hutter, Holger H. Hoos,
Bayesian Optimization Kevin Leyton-Brown: Auto-WEKA: combined |
selection and hyperparameter optimization of | l

classification algorithms. KDD 2013]

= Overview BO
= Sequential Model-Based Optimization
= Fit a probabilistic model based on the first n-1

Algorithm 1 SMBO

. initialise model Myp; H <+ 0
: while time budget for optimization has not been ex-
hausted do
A < candidate configuration from My,

Compute ¢ = E(AA,D(“ D' )

train?

1
2
3

. 1 vali

= Use model to select next candidate 5 H <« HU{(N )} "
6
7
8

evaluated hyper parameters

. Update My, given H
= Gaussian process (GP) models, or " end while
tree-based Bayesian Optimization

: return A from H with minimal ¢

= Underlying Foundations

= The posterior probability of a model M given P(M|E) = P(E|IM)P(M)/P(E)
evidence E is proportional to the likelihood of >
E given M multiplied by prior probability of M P(M|E) < P(E|M)P(M)

= Prior knowledge: e.g., smoothness, noise-free after next before

= Maximize acquisition function:
GP high objective (exploitation) and high prediction uncertainty (exploration)
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Bayesian Optimization, cont.

= Example 1D Problem
= Gaussian Process
= 4 jterations

observation (x)

-

_______ #— objective fn (f())

acquisition function (u(-))

—
=~
-
-
-

W acquisition max

[Eric Brochu, Vlad M. Cora, Nando de
Freitas: A Tutorial on Bayesian
Optimization of Expensive Cost
Functions, with Application to Active
User Modeling and Hierarchical
Reinforcement Learning. CoRR 2010]

posterior uncertainty

(u(-) £ea(-))
\ /\

posterior mean (u(-))

v

T~
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[https://ekamperi.github.io/machin

e learning/2021/06/11/acquisition-
functions.html]

Example Acquisition Functions:

#1 Upper Confidence Bound (UCB)
a(2;A) = p(z) + Ao(z)

#2 Probability of Improvement (Pl)
I(z) = max(f(z) — f(z"),0)
f(2) ~ N (p(),0% ()

#3 Expected Improvement (El)

El(z) =E[I(z)] = /‘00 I(z)p(z)d=

—00
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Multi-armed Bandits and Hyperband

1 /]

[Credit:
blogs.mathworks.com]

= Overview Multi-armed Bandits
= Motivation: model types have different quality
= Select among k model types 2 k-armed bandit problem
= Running score for each arm = scheduling policy

[Sébastien Bubeck, Nicold Cesa-Bianchi: Regret
Analysis of Stochastic and Nonstochastic Multi- | =
armed Bandit Problems. Foundations and
Trends in Machine Learning 2012]

= Hyperband
= Non-stochastic setting, without parametric assumptions
= Pure exploration algorithm for infinite-armed bandits

5 buckets with R=81 resources and n =3
(exploitation vs exploration)

= Based on Successive Halving | s=4 | s=3 |s=2 |s=1 |s=
= Successively discarding the worst-performing half of arms | L i Li | ™ " | Vi | T T LR T
. . . . 0181 1 27 3 9 9 6 2715 &1
= Extended by doubling budget of arms in each iteration o7 3lo o133 o709 a1
(no need to configure k, random search included) olg olls 92711 =1
[Lisha Li, Kevin G. Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, 313 2711 81
Ameet Talwalkar: Hyperband: A Novel Bandit-Based Approach to i.%

Hyperparameter Optimization. JMLR 2017]
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Selected AutoML Systems

L =y
Auto Weka [Chris Thornton et al: Auto-WEKA: combined selectionand |
= Bayesian optimization with hyperparameter optimization of classification algorithms. KDD 2013] |
28 learners, 11 ensemble/meta methods
[Lars Kotthoffet al: Auto-WEKA 2.0: Automatic model selection
= Auto Sklearn and hyper-parameter optimization in WEKA. JMLR 2017]
= Bayesian optimization with
15 classifiers. 14 feature prep. 4 data pre [Matthias Feurer et al: Auto-sklearn: Efficient and Robust Automated
! Prep, prep Machine Learning. Automated Machine Learning 2019]
|
TuPaQ [Evan R. Sparks, Ameet Talwalkar, Daniel Haas, MichaelJ. | —
= Multi-armed bandit and large-scale Franklin, Michael I. Jordan, Tim Kraska: Automating model |
search for large scale machine learning. SoCC 2015]
= TPOT
= Genetic brogrammin [Randal S. Olson, Jason H. Moore: TPOT: A Tree-Based Pipeline Optimization
prog g Tool for Automating Machine Learning. Automated Machine Learning 2019] |
. .
Other Serwces/Systems [Hantian Zhang, Luyuan Zeng, Wentao Wu, Ce Zhang: | =
= Azure ML, Amazon ML, Google AutoML, H20 AutoML How Good Are Machine Learning Clouds for Binary '
] e : 5
= AutoKeras (tuners: greedy, bayesian, hyperband, or random) Classification with Good Features? CoRR 2017]

m Matthias Boehm | FG DAMS | AMLS SoSe 2025 — 10 Model Selection and Management \‘ BI Fo LD




Selected AutoML Systems, cont.

1 /]

= Alpine Meadow
» Logical and physical ML pipelines [Zeyuan Shang et al: Democratizing Data | =
. ) ) ) . Science through Interactive Curationof |
= Multi-armed bandit for pipeline selection ML Pipelines. SIGMOD 2019]

= Bayesian optimization for hyper-parameters

Dabl (Data Analysis Baseline Library) (https://amueller.github.io/
= Tools for simple data preparation and ML training dabl/dev/user guide.html]
= Hyperband (successive halving) for optimization

= BOHB [Stefan Falkner, Aaron Klein, Frank Hutter: | —
. P BOHB: Robust and Efficient Hyper-parameter
" Bayesian optimization & hyperband Optimization at Sci?e I(FZ)ML 2018) |

= Queue-based parallelization of successive halving

SAutoML. orq

BlFreiburg-Hannover
v

AutoML (https://www.automl.org/)
Paper Collections/Benchmarks
= HPOBench/NASBench
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Neural Architecture Search

= Motivation
= Design neural networks (type of layers / network)
is often trial & error process
= Accuracy vs necessary computation characterizes an architecture
=» Automatic neural architecture search

= #1 Search Space of Building Blocks
= Define possible operations (e.g., identity,
3x3/5x5 separable convolution, avg/max pooling)
= Define approach for connecting operations
(pick 2 inputs, apply op, and add results)

[Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V.
Le, Jeff Dean: Efficient Neural Architecture Search
via Parameter Sharing. ICML 2018]
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sep ) avg sep
2 2 5x5 i 3 ! 3x3 3x3
jindex! jindex! i op ! i op ! jindexi jindex! i op ! i op !

A P LB P i AP LB F i AL LB F LA LB

Block for node 4

Layeri+1

Block for node 3

Exploration of cell
designs
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Neural Architecture Search, cont.

= #2 Search Strategy
= Classical evolutionary algorithms
= Recurrent neural networks (e.g., LSTM)
= Bayesian optimization (with special distance metric)

[Barret Zoph, Quoc V. Le: Neural Architecture
Search with Reinforcement Learning. ICLR 2017]

[Kirthevasan Kandasamy, Willie Neiswanger, Jeff
Schneider, Barnabas Pdczos, Eric P. Xing: Neural
Architecture Search with Bayesian Optimisation

and Optimal Transport. NeurlPS 2018]

= #3 Optimization Objective

844 EfficientNet-B6

AmoebaNet-C

= Max accuracy (min error) oot e ¥
. . . 521 /,’ NASNetA ...t 2ENet
= Multi-objective LT e
(accuracy and runtime) ] e hestieXt 101

- ” .'. . )
.+ Xception
.
.

78+

Imagenet Top 1 Accuracy (%)

oResNet-152

4

I

| -

: DenseNet-201
1]

[Mingxing Tan, Quoc V. Le:

Topl Acc. FLOPS
= Excursus: Model Scaling : Ercentnetnt | g o EfficientNet: Rethinking Model
TGfBl :' . ResNeXt-101 (Xie et al., 2017) 80.9% 32B S I. f C I t. I

. : . EfficientNet.B3 §11%  18B
= Automatical Iy scale-u P sSma Il g Fleshetsd SERet (ot #1207 §27% 428 caling for Lonvolutiona
" ¢ NASNet-A (Zoph et al., 2018) 80.7%  24B Neural Networks. ICML 2019]

i Inception-v2 EfficientNet-B4 82.6% 4.2B :
model for better accuracy ™ Nastget-A R R A
ResNet-34

= EfficientNet

3 10

15 20 % 30
FLOPS (Billions)

35 40
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Neural Architecture Search, cont.

= Problem: Computational Resources
= Huge computational requirements for NAS (even on small datasets)
=>» #1 Difficult to reproduce, and #2 barrier-to-entry

= Excursus: NAS-Bench-101 Outer Skeleton
. . . dense
= 423K unique convolutional architectures ["giobal avg poo |
® Training and evaluated ALL architectures, multiple times on CIFAR-10 stack 3 ( cel 1)
= Shared dataset: 5M trained models [ downsample ]| L=
stack 2 { Zeg
[Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real, | downsample | c'e”

Kevin Murphy, Frank Hutter: NAS-Bench-101: Towards stack 1 \ L2
Reproducible Neural Architecture Search. ICML 2019] [ convstem |

1
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Model Management & Provenance
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Overview Model Management

1 /]

= Motivation How did you create
= Exploratory data science process = trial and error that model?
(preparation, feature engineering, model selection) Did you consider X?

= Different personas (data engineer, ML expert, devops)

= Problems 9 9

= No record of experiments, insights lost along the way oaoos 5y
= Difficult to reproduce results o —
" Cannot search for or query models [Manasi Vartak: ModelDB: A system
= Difficult to collaborate to manage machine learning models,
Spark Summit 2017]
= Overview

= Experiment tracking and visualization
= Coarse-grained ML pipeline provenance and versioning
» Fine-grained data provenance (data-/ops-oriented)

“NBIFOLD
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Model Management Systems (MLOps)

= ModelHub [Hui Miao, Ang Li, Larry S. Davis,
= Versioning system for DNN models, including provenance tracking Amol Deshpande: ModelHub:

. . . Deep Learning Lifecycle

= DSL for model exploration and enumeration queries Mana;ement I%DE 28'17]
(model selection + hyper parameters)

= Model versions stored as deltas

: [Manasi Vartak, Samuel Madden: MODELDB: | =
|
ModelDB 9 Verta.al ] . . Opportunities and Challenges in Managing Machine
" Model and provenance logging for ML pipelines Learning Models. IEEE Data Eng. Bull. 2018] |

via programmatic APIs
= Support for different ML systems = EEr=a
(e.g., spark.ml, scikit-learn, others) 2] e

= GUIs for capturing meta data and metric visualization [Verta Enterprise R o
MLOps Platform = =
https://www.verta.ai/

platform/ ] y
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Model Management Systems (MLOps), cont.

= MLflow m

An open-source platform for the machine learning lifecycle

Use of existing ML systems and various language bindings T O PyTorch Keras
. . . . TensorFlow
MLflow Tracking: logging and querying experiments
MLflow Projects: packaging/reproduction of ML pipeline results Sple‘llg O lean H,0.0i

MLflow Models: deployment of models in various services/tools
MLflow Model Registry: cataloging models and managing deployment

[Matei Zaharia, Andrew Chen, Aaron Davidson, Ali Ghodsi, Sue Ann Hong, Andy Konwinski, Siddharth Murching, Tomas Nykodym, Paul
Ogilvie, Mani Parkhe, Fen Xie, Corey Zumar: Accelerating the Machine Learning Lifecycle with MLflow. IEEE Data Eng. Bull. 41(4) 2018]

[Andrew Chen, Andy Chow, Aaron Davidson, Arjun DCunha, Ali Ghodsi, Sue Ann Hong, Andy Konwinski, Clemens Mewald, Siddharth
Murching, Tomas Nykodym, Paul Ogilvie, Mani Parkhe, Avesh Singh, Fen Xie, Matei Zaharia, Richard Zang, Juntai Zheng, Corey Zumar:
Developments in MLflow: A System to Accelerate the Machine Learning Lifecycle. DEEM@SIGMOD 2020]
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Experiment Tracking

= TensorFlow: TensorBoard

TensorBoard SCALARS IMAGES GRAPHS > INACTVE ~ C & ®
= Suite of visualization tools
L. . Show data download links Q, Filter tags (regular expressions supported)
. EXpI'CltIy traCk and Wl"lte Ignore outliers in chart scaling
accuracy
summary statistics ool LA p—
u Visua“ZE bEhaViOF over Smoothing cross entropy
time and across experiments = o0 ]
= Different folders for LeE e
. . RELATIVE WALL 0.0150
model versioning?
Runs -5.000e-3
Writearegf-:x to filter runs =0 0.000 :ir::j :Io\-.u::::{)v :Z:.jsou
| Other Tools: 8::: lﬁme Smoothed Value Step Relative
" |ntegrati0n W/ TensorBoard TOGGLE ALL RUNS
. /tmp/mnist-logs
= Lots of custom logging mean
and plotting tools [Credit: https://www.tensorflow.org/guide/

summaries and tensorboard]
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ML Lifecycle Management

[Clemens Mewald: Announcing Databricks

. . . Machine Learning, Feature Store, AutoML,
= Databricks Machine Learning Keynotge Data+ Al Summit 2021]
= MLOps, Feature Store, AutoML

MLOps = DataOps + DevOps + ModelOps

Workspace Experiment Tracking Model Registry Model Serving
EEF Notebooks and Git @ |G; %l "_;Z; @%&o Staq--nq P'utlfi_ctu'm a&rc:wnd
(;_:TEE Ciusters Maetrics ﬁrar:ulur Artifacts Models m ” B o ., Q}fg = %
> e —— -
% Runtime and Libraries A ot—)"._g @ 3% bl-;;’
= Data Versioning oo g

@ MLOps / Governance
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Configuration Management

= #1 ML Collections

https://github.com/ 1

: fs?kgclzr%giiﬁainer)
google/ml collection |
of experiments and models (hyper-parameters, loss, optimizer)

= ConfigDict and FrozenConfigDict

= Dictionary-like data structures for configurations

fdl.Config(

name="snli"
tfds.load) p—

— T 1

split="train" ) yo
fdl.Config( -
BertEncoder)

— hidden_size=768

fdl.Config(
CategoricalCrossentropy)

& from:loglts;True b
fdl.Config(
" #2 Fiddle

e T S
fdl.build() Fortton e e

= Configurations for model training via build () for creating training instances p—

= Auto-config for creating a config object from a (control-flow-free) function |

= Explain and visualization

< name="snli"
tfds.load — -

https://github.com/
google/fiddle
= #3 Croissant Metadata

split="train" '_ )

BertEncoder 7- hidden_size=768

CategoricalCrossentropy ) 7 from_logits=True

- learning_rate=0.01 )

= Meta data format (JSON) for ML datasets (dataset metadata,
resources, structure) = used by NeurlPS’24 workshop

[Mubashara Akhtar et al: Croissant: A | — -
Metadata Format for ML-Ready Datasets, | -
= |ntegrations with data repositories, data loaders, dataset search

DEEM@SIGMOD’24 Workshop]

“NBIFOLD
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Provenance for ML Pipelines (fine-grained)

1 /]

= DEX: Dataset Versioning

= Versioning of datasets, stored with delta encoding [Amit Chavan, Amol Deshpande: DEX:
) ) i ) Query Execution in a Delta-based
= Checkout, intersection, union queries over deltas Storage System. SIGMOD 2017]

= Query optimization for finding efficient plans

= MISTIQUE: Intermediates of ML Pipelines [Manasi Vartak et al: MISTIQUE: A System to
= Capturing, storage, querying of intermediates Store and Query Model Intermediates for
Model Diagnosis. SIGMOD 2018]

= Lossy deduplication and compression

= Adaptive querying/materialization for finding efficient plans

= Linear Algebra Provenance

A
= Provenance propagation by decomposition
= Annotate parts w/ provenance polynomials (contributing inputs + impact)
[Zhepeng Yan, Val Tannen, Zachary G. Ives: A=S,BT, +S,CT, S¢Sy
Fine-grained Provenance for Linear Algebra _|_SyDTu + SyETv
Operators. TaPP 2016] T




Provenance for ML Pipelines (coarse-grained)

1 /]

[Credit: https://databricks.com/

= MLflow import mlflow blog/2018/06/05 |
= Programmatic API for tracking parameters, mlflow.log param("num_dimensions", 8)
experiments, and results mlflow.log_param("regularization", 0.1)
e mlflow.log metric("accuracy", 0.1)
= autolog() for specific params mlflow.log_artifact("roc.png")

= Flor (on Ground)
= DSL embedded in python for managing the workflow development
phase of the ML Iifecycle [Joseph M. Hellerstein et al: Ground: A
) i ) Data Context Service. CIDR 2017]
= DAGs of actions, artifacts, and literals
= Data context generated by activities in Ground

https://rise.cs.berkeley.edu/projects/jarvis/

= Dataset Relationship Management

. Zachary G. lves, Yi Zhang, Soonbo Han, | —
= Reuse, reveal, revise, retarget, reward [ Y & .

Nan Zheng,: Dataset Relationship
= Code-to-data relationships (data provenance) Management. CIDR 2019]

= Data-to-code relationships (potential transforms)
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Provenance for ML Pipelines (coarse-grained), cont.

|
HELIX [Doris Xin, Stephen Macke, Litian Ma, Jialin Liu, Shuchen
= Goal: focus on iterative development w/ small Song, Aditya G. Parameswaran: Helix: Holistic Optimization
modifications (trial & error) for Accelerating Iterative Machine Learning. PVLDB 2018]

= Caching, reuse, and recomputation . load
S @
= Reuse as Max-Flow problem ’

SP Sp
- NP-hard = heuristics Q? é . recompute
= Materialization to disk for future reuse : ’\ /( :
S @ S 90

= Collaborative Optimizer @ St
| [Behrouz Derakhshan, Alireza Rezaei Mahdiraji,

- " 0 @
Ziawasch Abedjan, Tilmann Rabl, Volker Markl:

Optimizing Machine Learning Workloads in v @
Collaborative Environments. SIGMOD 2020]

o«o—»b«
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Lineage Tracing & Reuse in SystemDS

1 /]

= Problem

= Exploratory data science (data preprocessing, model configurations)
= Reproducibility and explainability of trained models (data, parameters, prep)

=» Lineage/Provenance as Key Enabling Technique: [Arnab Phani, Benjamin Rath,
.. . . . . Matthias Boehm: LIMA: Fine-grained
Model versioning, reuse of intermediates, incremental maintenance, Lineage Tracing and Reuse in Machine
auto differentiation, and debugging (query processing over lineage) Learning Systems, SIGMOD 2021]
= Efficient Lineage Tracing Runtime trace  _ Lineage serialize Lineage
= Tracing of inputs, literals, Program “econstruct  Graph L ™ gegerialize Log

and non-determinism — S @) croa 2
= Trace lineage of while r w1t
logical operations = comparec
= Deduplication for loops/functions

= Program/output reconstruction
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Multi-level, Lineage-based Reuse
= Lineage trace uniquely identifies intermediates

Lineage Tracing & Reuse in SystemDS, cont. ﬁ . 3 ’ ﬂg

= Reuse intermediates at function / block / operation level

. FUII Reuse Of IntermEdiates -For-( i in 1:numModels )
= Before executing instruction, probe output lineage in cache R[,1i] = Im(X, y, lambda[i,], ...)
Map<Lineage, MatrixBlock>

m_1mDS = function(...) {

= Cost-based/heuristic caching and eviction decisions 1 = matrix(reg,ncol(X),1)
. . A = t(X) %*% X + diag(l)
(compiler-assisted) b = t(X) %*% y

beta = solve(A, b) ...} 7

= Partial Reuse of Intermediates
= Problem: Often partial result overlap
= Reuse partial results via dedicated rewrites (compensation plans)
= Example: steplm

m_steplm = function(...) {
while( continue ) {
parfor( i in 1:n ) {
if( !fixed[1,i] ) {
m>>n Xi = cbind(Xg, X[,i])
B[,i] = Im(Xi, vy, ...)

. . . pe }}
Next Steps: multi-backend, unified mem mgmt - ¥ 2dd best to Xg (ALC)
}} 74




Summary & QA

Data Augmentation

Model Selection Techniques

Model Management & Provenance

Next Lectures (Part B)
= 12 Model Debugging, Fairness, Explainability [Jul 10]
= 13 Model Serving Systems and Techniques [Jul 17]
Q&A and Exam Preparation [Jul 17]
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