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▪ #1 Hybrid & Video Recording
▪ Hybrid lectures (in-person, zoom) with optional attendance

https://tu-berlin.zoom.us/j/9529634787?pwd=R1ZsN1M3SC9BOU1OcFdmem9zT202UT09

▪ Zoom video recordings, links from website

https://mboehm7.github.io/teaching/ss25_amls/index.htm

▪ #2 Exam Registration
▪ Thu July 24, 4-6pm (A 151, max 50) → 14 registrations

▪ Thu July 31, 4-6pm (EW 201, max 47) → 41 registrations

▪ Thu Aug 14, 4-6pm (A 151, max 50) → 24 registrations

▪ #3 Projects & Exercises
▪ Submission deadline: Jul 15 EOD

▪ Get started, use the office hour (Tue 4pm-5.30), and mentor meetings 

▪ #4 PhD Position on ML System Internals
▪ https://www.jobs.tu-berlin.de/en/job-postings/194921, Deadline Jul 18

Announcements / Org

https://tu-berlin.zoom.us/j/9529634787?pwd=R1ZsN1M3SC9BOU1OcFdmem9zT202UT09
https://mboehm7.github.io/teaching/ss25_amls/index.htm
https://www.jobs.tu-berlin.de/en/job-postings/194921
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Recap: The Data Science Lifecycle
(aka KDD Process, aka CRISP-DM)

Data/SW 
Engineer

DevOps 
Engineer

Data Integration 
Data Cleaning 

Data Preparation

Model Selection
Training 

Hyper-parameters

Validate & Debug
Deployment

Scoring & Feedback

Data 
Scientist

Exploratory Process 
(experimentation, refinements, ML pipelines)
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▪ Data Augmentation

▪ Model Selection Techniques

▪ Model Management & Provenance

Agenda
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Data Augmentation
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▪ Motivation Data Augmentation
▪ Complex ML models / deep NNs need lots of 

labeled data to avoid overfitting ➔ expensive

▪ Augment training data by synthetically generated labeled data

▪ Translations & Reflections
▪ Random 224x224 patches and their

reflections (from 256x256 images

with known labels)

▪ Increased data by 2048x

▪ Test: corner/center patches 

+ reflections → prediction

▪ Alternating Intensities
▪ Intuition: object identity is invariant to illumination and color intensity

▪ PCA on dataset → add eigenvalues times a random variable N(0,0.1)

Motivation and Basic Data Augmentation

[Alex Krizhevsky, Ilya Sutskever, Geoffrey E. 
Hinton: ImageNet Classification with Deep 

Convolutional Neural Networks. NeurIPS 2012]

AlexNet (see Section 4.1)
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▪ Scaling and Normalization
▪ Standardization: subtract per-channel global pixel means

▪ Normalization: normalized to range [-1,1] (see min-max)

▪ General Principles
▪ #1: Movement/selection (translation, rotation, reflection, cropping)

▪ #2: Distortions (stretching, shearing, lens distortions, color, mixup of images)

▪ In many different combinations ➔ often trial & error / domain expertise

▪ Excursus: Reducing Training Time
▪ Transfer learning: Use pre-trained model on ImageNet; 

freeze lower NN layers, fine-tune last layers w/ domain-specific data

▪ Multi-scale learning: Use cropping and scaling to train 

256 x 256 model as starting point for a more compute-intensive 

384x384 model (no changes required for CNNs)

Basic Data Augmentation

[Karen Simonyan, Andrew Zisserman: Very 
Deep Convolu-tional Networks for Large-

Scale Image Recognition. ICLR 2015]
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▪ Distortions
▪ Translations, rotations, skewing

▪ Compute for every pixel a new target 

location via rand displacement fields)

▪ Cutout
▪ Randomly masking out square regions of input images

▪ Size more important than shape

Basic Data Augmentation, cont.

[Terrance Devries, Graham W. Taylor: 
Improved Regularization of Convolutional 
Neural Networks with Cutout. CoRR 2017]

[Patrice Y. Simard, David Steinkraus, John 
C. Platt: Best Practices for Convolutional 
Neural Networks Applied to Visual 
Document Analysis. ICDAR 2003]
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▪ Training on Simulated Images
▪ Random rendering of objects with non-realistic textures

▪ Large variability for generalization to real world objects

▪ Pre-Training on Simulated Images
▪ Random 3D objects and flying distractors 

w/ random textures

▪ Random lights and rendered onto 

random background

Domain Randomization

[Josh Tobin et al.: Domain randomization for 
transferring deep neural networks from 
simulation to the real world. IROS 2017]

[Jonathan Tremblay et al.: Training Deep Networks 
With Synthetic Data: Bridging the Reality Gap by 
Domain Randomization. CVPR Workshops 2018]
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▪ AutoAugment
▪ Search space of DA policies

▪ Goal: Find best augmentation policy (e.g., via 

reinforcement learning, evolutionary algorithms)

▪ #1: Image processing functions

(translation, rotation, color normalization)

▪ #2: Probabilities of applying these functions

▪ Data Augmentation GAN (DAGAN)
▪ Image-conditional generative model for 

creating within-class images from inputs

▪ No need for known invariants

Learning Data Augmentation Policies

➔ New state-of-the 
art top-1 error on 

ImageNet and CIFAR10

[Ekin Dogus Cubuk, Barret Zoph, Dandelion 
Mané, Vijay Vasudevan, Quoc V. Le: 

AutoAugment: Learning Augmentation Policies 
from Data. CVPR 2019]

Real 
input 
image

[Antreas Antoniou, Amos J. Storkey, Harrison Edwards: 
Augmenting Image Classifiers Using Data Augmentation 
Generative Adversarial Networks. ICANN 2018]
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▪ Heuristically Generated Training Data
▪ Hand labeling expensive and time consuming, but abundant unlabeled data

▪ Changing labeling guidelines 

➔ labeling heuristics

Weak Supervision
[Alex Ratner, Paroma Varma, Braden Hancock, 

Chris Ré, and others:  Weak Supervision: A New 
Programming Paradigm for Machine Learning, 

ai.stanford.edu/blog/weak-supervision/, 2019]

basic data 
augmentation

http://ai.stanford.edu/blog/weak-supervision/
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▪ Data Programming 
Overview

Weak Supervision, cont.

(coverage αi, accuracy βi) 

[Alexander J. Ratner, Christopher De Sa, Sen Wu, 
Daniel Selsam, Christopher Ré: Data Programming: 
Creating Large Training Sets, Quickly. NeurIPS 2016]

[Alexander Ratner, Stephen H. Bach, Henry R. 
Ehrenberg, Jason Alan Fries, Sen Wu, Christopher 
Ré: Snorkel: Rapid Training Data Creation with 
Weak Supervision. PVLDB 2017]

[Paroma Varma, Christopher Ré: Snuba:
Automating Weak Supervision to Label 
Training Data. PVLDB 2018]

[Stephen H. Bach, Daniel Rodriguez, Yintao Liu, Chong Luo, Haidong Shao, 
Cassandra Xia, Souvik Sen, Alexander Ratner, Braden Hancock, Houman Alborzi, 
Rahul Kuchhal, Christopher Ré, Rob Malkin: Snorkel DryBell: A Case Study in 
Deploying Weak Supervision at Industrial Scale. SIGMOD 2019]
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▪ Excursus: Snorkel
[https://www.snorkel.org/]
▪ Programmatically Building 

and Managing Training Data

▪ Effects of Augmentation
▪ #1 Regularization for reduced generalization error, 

not always training error (penalization of model complexity)

▪ #2 Invariance increase by averaging features of augmented data points

➔ Data Augmentation as a Kernel

▪ Kernel metric for augmentation selection
▪ Affine transforms on approx. kernel features

Weak Supervision, cont.

[Tri Dao et al: A Kernel 
Theory of Modern Data 

Augmentation. ICML 2019]

11 Model 
Selection & 

Management

12 Model 
Debugging 
Techniques

https://www.snorkel.org/
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Model Selection Techniques
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▪ #1 Model Selection
▪ Given a dataset and ML task (e.g., classification or regression) 

▪ Select the model (type) that performs best 

(e.g.: LogReg, Naïve Bayes, SVM, Decision Tree, Random Forest, DNN)

▪ #2 Hyper Parameter Tuning
▪ Given a model and dataset, find best hyper parameter values (e.g., 

learning rate, regularization, kernels, kernel parameters, tree params)

▪ Validation: Generalization Error
▪ Goodness of fit to held-out data (e.g., 80-20 train/test)

▪ Cross validation (e.g., leave one out → k=5 runs w/ 80-20 train/test)

➔AutoML Systems/Services
▪ Often providing both model selection and hyper parameter search

▪ Integrated ML system, often in distributed/cloud environments

AutoML Overview
[Chris Thornton, Frank Hutter, Holger H. Hoos, 

Kevin Leyton-Brown: Auto-WEKA: combined 
selection and hyperparameter optimization of 

classification algorithms. KDD 2013]
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▪ Basic Approach
▪ Given n hyper parameters λ1, …, λn with domains Λ1, …, Λn

▪ Enumerate and evaluate parameter space Λ ⊆ Λ1 × … × Λ𝑛
(often strict subset due to dependency structure of parameters)

▪ Continuous hyper parameters → discretization

▪ Equi-width
▪ Exponential 

(e.g., regularization 0.1, 0.01, 0.001, etc)

▪ Problem: Only applicable with small domains 

▪ Heuristic: Monte-Carlo
(random search, anytime)

Basic Grid Search

0

1

1α

β

Non-convex or unknown 
parameter space 

gridSearch()

GridSearchCV()
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▪ Example Adult Dataset (train 32,561 x 14)
▪ Binary classification (>50K), https://archive.ics.uci.edu/ml/datasets/adult

▪ #1 MLogReg defaults w/ one-hot categoricals Accuracy (%): 82.35

▪ #2 MLogReg defaults w/ one-hot + binning Accuracy (%): 84.73

▪ #3 GridSearch MLogReg: Accuracy (%): 90.07

▪ Example SystemDS
gridSearch

Basic Grid Search, cont.

params = list("icpt", "reg", "numBins");
paramRanges = list(seq(0,2), 10^seq(3,-6), 10^seq(1,4));

05 Data- and Task-
Parallel Execution

# Materialize Configs

https://archive.ics.uci.edu/ml/datasets/adult
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▪ Simulated Annealing
▪ Decaying temperature schedules: Tk+1 = α ∙ Tk

▪ #1 Generate neighbor in ε-env of old point

▪ #2 Accept better points and worse points w/

▪ Recursive Random Search
▪ Repeated restart

▪ Sample and evaluate points

▪ Determine best and shrink area 

if optimum unchanged

▪ Realign area if new optimum found 

Basic Iterative Algorithms

Exploration vs 
exploitation

𝑃(𝑇𝑘) =
1

1 + exp((𝑓′ − 𝑓)/𝑇𝑘)

Parameter Space

[Tao Ye, Shivkumar Kalyanaraman: A recursive 
random search algorithm for large-scale network 
parameter configuration. SIGMETRICS 2003]
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▪ Overview BO
▪ Sequential Model-Based Optimization

▪ Fit a probabilistic model based on the first n-1 

evaluated hyper parameters

▪ Use model to select next candidate

▪ Gaussian process (GP) models, or 

tree-based Bayesian Optimization

▪ Underlying Foundations
▪ The posterior probability of a model M given 

evidence E is proportional to the likelihood of 

E given M multiplied by prior probability of M

▪ Prior knowledge: e.g., smoothness, noise-free 

▪ Maximize acquisition function:

GP high objective (exploitation) and high prediction uncertainty (exploration) 

Bayesian Optimization

𝑃 𝑀 𝐸 = 𝑃 𝐸 𝑀 𝑃(𝑀)/𝑃(𝐸)
→

𝑃 𝑀 𝐸 ∝ 𝑃 𝐸 𝑀 𝑃(𝑀)

beforenext after 

[Chris Thornton, Frank Hutter, Holger H. Hoos, 
Kevin Leyton-Brown: Auto-WEKA: combined 

selection and hyperparameter optimization of 
classification algorithms. KDD 2013]
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▪ Example 1D Problem
▪ Gaussian Process

▪ 4 iterations

Bayesian Optimization, cont.

[Eric Brochu, Vlad M. Cora, Nando de 
Freitas: A Tutorial on Bayesian 
Optimization of Expensive Cost 
Functions, with Application to Active 
User Modeling and Hierarchical 
Reinforcement Learning. CoRR 2010]

Example Acquisition Functions:

#1 Upper Confidence Bound (UCB)

[https://ekamperi.github.io/machin
e learning/2021/06/11/acquisition-

functions.html]

#2 Probability of Improvement (PI)

#3 Expected Improvement (EI)

https://ekamperi.github.io/machine%20learning/2021/06/11/acquisition-functions.html
https://ekamperi.github.io/machine%20learning/2021/06/11/acquisition-functions.html
https://ekamperi.github.io/machine%20learning/2021/06/11/acquisition-functions.html
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▪ Overview Multi-armed Bandits
▪ Motivation: model types have different quality

▪ Select among k model types → k-armed bandit problem

▪ Running score for each arm → scheduling policy

▪ Hyperband
▪ Non-stochastic setting, without parametric assumptions

▪ Pure exploration algorithm for infinite-armed bandits

▪ Based on Successive Halving

▪ Successively discarding the worst-performing half of arms
▪ Extended by doubling budget of arms in each iteration 

(no need to configure k, random search included)

Multi-armed Bandits and Hyperband

[Credit:
blogs.mathworks.com]

[Sébastien Bubeck, Nicolò Cesa-Bianchi: Regret 
Analysis of Stochastic and Nonstochastic Multi-

armed Bandit Problems. Foundations and 
Trends in Machine Learning 2012]

[Lisha Li, Kevin G. Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, 
Ameet Talwalkar: Hyperband: A Novel Bandit-Based Approach to 
Hyperparameter Optimization. JMLR 2017]

5 buckets with R=81 resources and η = 3 
(exploitation vs exploration)

https://blogs.mathworks.com/
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▪ Auto Weka
▪ Bayesian optimization with 

28 learners, 11 ensemble/meta methods

▪ Auto Sklearn
▪ Bayesian optimization with 

15 classifiers, 14 feature prep, 4 data prep 

▪ TuPaQ
▪ Multi-armed bandit and large-scale

▪ TPOT 
▪ Genetic programming

▪ Other Services/Systems
▪ Azure ML, Amazon ML, Google AutoML, H20 AutoML

▪ AutoKeras (tuners: greedy, bayesian, hyperband, or random)

Selected AutoML Systems

[Hantian Zhang, Luyuan Zeng, Wentao Wu, Ce Zhang: 
How Good Are Machine Learning Clouds for Binary 

Classification with Good Features? CoRR 2017]

[Chris Thornton et al: Auto-WEKA: combined selection and 
hyperparameter optimization of classification algorithms. KDD 2013]

[Lars Kotthoffet al: Auto-WEKA 2.0: Automatic model selection 
and hyper-parameter optimization in WEKA. JMLR 2017]

[Matthias Feurer et al: Auto-sklearn: Efficient and Robust Automated 
Machine Learning. Automated Machine Learning 2019]

[Evan R. Sparks, Ameet Talwalkar, Daniel Haas, Michael J. 
Franklin, Michael I. Jordan, Tim Kraska: Automating model 

search for large scale machine learning. SoCC 2015]

[Randal S. Olson, Jason H. Moore: TPOT: A Tree-Based Pipeline Optimization 
Tool for Automating Machine Learning. Automated Machine Learning 2019]
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▪ Alpine Meadow
▪ Logical and physical ML pipelines

▪ Multi-armed bandit for pipeline selection

▪ Bayesian optimization for hyper-parameters

▪ Dabl (Data Analysis Baseline Library)
▪ Tools for simple data preparation and ML training

▪ Hyperband (successive halving) for optimization

▪ BOHB
▪ Bayesian optimization & hyperband

▪ Queue-based parallelization of successive halving

▪ AutoML (https://www.automl.org/)
Paper Collections/Benchmarks
▪ HPOBench/NASBench

Selected AutoML Systems, cont.

[https://amueller.github.io/
dabl/dev/user_guide.html]

[Stefan Falkner, Aaron Klein, Frank Hutter: 
BOHB: Robust and Efficient Hyper-parameter 

Optimization at Scale. ICML 2018]

[Zeyuan Shang et al: Democratizing Data 
Science through Interactive Curation of 

ML Pipelines. SIGMOD 2019]

https://www.automl.org/
https://amueller.github.io/dabl/dev/user_guide.html
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▪ Motivation
▪ Design neural networks (type of layers / network) 

is often trial & error process

▪ Accuracy vs necessary computation characterizes an architecture

➔ Automatic neural architecture search

▪ #1 Search Space of Building Blocks
▪ Define possible operations (e.g., identity, 

3x3/5x5 separable convolution, avg/max pooling)

▪ Define approach for connecting operations 

(pick 2 inputs, apply op, and add results) 

Neural Architecture Search

Exploration of cell 
designs

[Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. 
Le, Jeff Dean: Efficient Neural Architecture Search 
via Parameter Sharing. ICML 2018]
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▪ #2 Search Strategy
▪ Classical evolutionary algorithms

▪ Recurrent neural networks (e.g., LSTM)

▪ Bayesian optimization (with special distance metric)

▪ #3 Optimization Objective
▪ Max accuracy (min error)

▪ Multi-objective 

(accuracy and runtime)

▪ Excursus: Model Scaling
▪ Automatically scale-up small 

model for better accuracy

▪ EfficientNet

Neural Architecture Search, cont.

[Barret Zoph, Quoc V. Le: Neural Architecture 
Search with Reinforcement Learning. ICLR 2017]

[Kirthevasan Kandasamy, Willie Neiswanger, Jeff 
Schneider, Barnabás Póczos, Eric P. Xing: Neural 
Architecture Search with Bayesian Optimisation

and Optimal Transport. NeurIPS 2018]

[Mingxing Tan, Quoc V. Le: 
EfficientNet: Rethinking Model 

Scaling for Convolutional 
Neural Networks. ICML 2019]
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▪ Problem: Computational Resources
▪ Huge computational requirements for NAS (even on small datasets)

➔ #1 Difficult to reproduce, and #2 barrier-to-entry

▪ Excursus: NAS-Bench-101
▪ 423K unique convolutional architectures

▪ Training and evaluated ALL architectures, multiple times on CIFAR-10

▪ Shared dataset: 5M trained models

Neural Architecture Search, cont.

Outer Skeleton

[Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real, 
Kevin Murphy, Frank Hutter: NAS-Bench-101: Towards 
Reproducible Neural Architecture Search. ICML 2019]
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Model Management & Provenance
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▪ Motivation
▪ Exploratory data science process → trial and error

(preparation, feature engineering, model selection)

▪ Different personas (data engineer, ML expert, devops)

▪ Problems
▪ No record of experiments, insights lost along the way

▪ Difficult to reproduce results

▪ Cannot search for or query models 

▪ Difficult to collaborate

▪ Overview
▪ Experiment tracking and visualization

▪ Coarse-grained ML pipeline provenance and versioning

▪ Fine-grained data provenance (data-/ops-oriented)

Overview Model Management

How did you create 
that model?

Did you consider X?

[Manasi Vartak: ModelDB: A system 
to manage machine learning models, 

Spark Summit 2017]
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▪ ModelHub
▪ Versioning system for DNN models, including provenance tracking

▪ DSL for model exploration and enumeration queries 

(model selection + hyper parameters)

▪ Model versions stored as deltas

▪ ModelDB→ Verta.ai
▪ Model and provenance logging for ML pipelines 

via programmatic APIs

▪ Support for different ML systems 

(e.g., spark.ml, scikit-learn, others)

▪ GUIs for capturing meta data and  metric visualization

Model Management Systems (MLOps)

[Hui Miao, Ang Li, Larry S. Davis, 
Amol Deshpande: ModelHub: 

Deep Learning Lifecycle 
Management. ICDE 2017]

[Manasi Vartak, Samuel Madden: MODELDB: 
Opportunities and Challenges in Managing Machine 

Learning Models. IEEE Data Eng. Bull. 2018]

[Verta Enterprise 
MLOps Platform 

https://www.verta.ai/
platform/ ]

https://www.verta.ai/platform/
https://www.verta.ai/platform/
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▪ MLflow
▪ An open-source platform for the machine learning lifecycle

▪ Use of existing ML systems and various language bindings

▪ MLflow Tracking: logging and querying experiments

▪ MLflow Projects: packaging/reproduction of ML pipeline results 

▪ MLflow Models: deployment of models in various services/tools

▪ MLflow Model Registry: cataloging models and managing deployment

Model Management Systems (MLOps), cont.

[Matei Zaharia, Andrew Chen, Aaron Davidson, Ali Ghodsi, Sue Ann Hong, Andy Konwinski, Siddharth Murching, Tomas Nykodym, Paul 
Ogilvie, Mani Parkhe, Fen Xie, Corey Zumar: Accelerating the Machine Learning Lifecycle with MLflow. IEEE Data Eng. Bull. 41(4) 2018]

[Andrew Chen, Andy Chow, Aaron Davidson, Arjun DCunha, Ali Ghodsi, Sue Ann Hong, Andy Konwinski, Clemens Mewald, Siddharth
Murching, Tomas Nykodym, Paul Ogilvie, Mani Parkhe, Avesh Singh, Fen Xie, Matei Zaharia, Richard Zang, Juntai Zheng, Corey Zumar: 
Developments in MLflow: A System to Accelerate the Machine Learning Lifecycle. DEEM@SIGMOD 2020]
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▪ TensorFlow: TensorBoard
▪ Suite of visualization tools

▪ Explicitly track and write 

summary statistics 

▪ Visualize behavior over

time and across experiments

▪ Different folders for 

model versioning? 

▪ Other Tools:
▪ Integration w/ TensorBoard

▪ Lots of custom logging

and plotting tools

Experiment Tracking

[Credit: https://www.tensorflow.org/guide/ 
summaries_and_tensorboard]

https://www.tensorflow.org/guide/summaries_and_tensorboard
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▪ Databricks Machine Learning
▪ MLOps, Feature Store, AutoML

ML Lifecycle Management

[Clemens Mewald: Announcing Databricks
Machine Learning, Feature Store, AutoML, 

Keynote Data+ AI Summit 2021]

MLOps = DataOps + DevOps + ModelOps
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▪ #1 ML Collections
▪ Dictionary-like data structures for configurations 

of experiments and models (hyper-parameters, loss, optimizer)

▪ ConfigDict and FrozenConfigDict

▪ #2 Fiddle
▪ Configurations for model training via build() for creating training instances

▪ Auto-config for creating a config object from a (control-flow-free) function

▪ Explain and visualization

▪ #3 Croissant Metadata
▪ Meta data format (JSON) for ML datasets (dataset metadata, 

resources, structure) → used by NeurIPS’24 workshop

▪ Integrations with data repositories, data loaders, dataset search 

Configuration Management

https://github.com/
google/ml_collections

https://github.com/
google/fiddle

[Mubashara Akhtar et al: Croissant: A 
Metadata Format for ML-Ready Datasets, 

DEEM@SIGMOD’24 Workshop]

https://github.com/google/ml_collections
https://github.com/google/ml_collections
https://github.com/google/fiddle
https://github.com/google/fiddle
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▪ DEX: Dataset Versioning
▪ Versioning of datasets, stored with delta encoding

▪ Checkout, intersection, union queries over deltas

▪ Query optimization for finding efficient plans

▪ MISTIQUE: Intermediates of ML Pipelines
▪ Capturing, storage, querying of intermediates

▪ Lossy deduplication and compression

▪ Adaptive querying/materialization for finding efficient plans

▪ Linear Algebra Provenance
▪ Provenance propagation by decomposition

▪ Annotate parts w/ provenance polynomials (contributing inputs + impact)

Provenance for ML Pipelines (fine-grained)

B C

D E

A

Sx Sy

Tu

Tv

[Amit Chavan, Amol Deshpande: DEX: 
Query Execution in a Delta-based 

Storage System. SIGMOD 2017]

[Manasi Vartak et al: MISTIQUE: A System to 
Store and Query Model Intermediates for 

Model Diagnosis. SIGMOD 2018]

𝐴 = 𝑆𝑥𝐵𝑇𝑢 + 𝑆𝑥𝐶𝑇𝑣
+𝑆𝑦𝐷𝑇𝑢 + 𝑆𝑦𝐸𝑇𝑣

[Zhepeng Yan, Val Tannen, Zachary G. Ives: 
Fine-grained Provenance for Linear Algebra 
Operators. TaPP 2016]
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▪ MLflow
▪ Programmatic API for tracking parameters, 

experiments, and results

▪ autolog() for specific params

▪ Flor (on Ground)
▪ DSL embedded in python for managing the workflow development 

phase of the ML lifecycle

▪ DAGs of actions, artifacts, and literals

▪ Data context generated by activities in Ground 

▪ Dataset Relationship Management
▪ Reuse, reveal, revise, retarget, reward

▪ Code-to-data relationships (data provenance)

▪ Data-to-code relationships (potential transforms)

Provenance for ML Pipelines (coarse-grained)

import mlflow
mlflow.log_param("num_dimensions", 8)
mlflow.log_param("regularization", 0.1)
mlflow.log_metric("accuracy", 0.1)
mlflow.log_artifact("roc.png")

[Credit: https://databricks.com/
blog/2018/06/05 ]

https://rise.cs.berkeley.edu/projects/jarvis/

[Joseph M. Hellerstein et al: Ground: A 
Data Context Service. CIDR 2017]

[Zachary G. Ives, Yi Zhang, Soonbo Han, 
Nan Zheng,: Dataset Relationship 

Management. CIDR 2019]

https://databricks.com/blog/2018/06/05
https://databricks.com/blog/2018/06/05
https://rise.cs.berkeley.edu/projects/jarvis/
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▪ HELIX
▪ Goal: focus on iterative development w/ small 

modifications (trial & error)

▪ Caching, reuse, and recomputation

▪ Reuse as Max-Flow problem

→ NP-hard→ heuristics

▪ Materialization to disk for future reuse

▪ Collaborative Optimizer

Provenance for ML Pipelines (coarse-grained), cont.

[Doris Xin, Stephen Macke, Litian Ma, Jialin Liu, Shuchen
Song, Aditya G. Parameswaran: Helix: Holistic Optimization 

for Accelerating Iterative Machine Learning. PVLDB 2018]

recompute

load

[Behrouz Derakhshan, Alireza Rezaei Mahdiraji, 
Ziawasch Abedjan, Tilmann Rabl, Volker Markl: 
Optimizing Machine Learning Workloads in 
Collaborative Environments. SIGMOD 2020]
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▪ Problem
▪ Exploratory data science (data preprocessing, model configurations)

▪ Reproducibility and explainability of trained models (data, parameters, prep)

➔ Lineage/Provenance as Key Enabling Technique:

Model versioning, reuse of intermediates, incremental maintenance,

auto differentiation, and debugging (query processing over lineage)

▪ Efficient Lineage Tracing
▪ Tracing of inputs, literals, 

and non-determinism

▪ Trace lineage of 

logical operations

▪ Deduplication for loops/functions

▪ Program/output reconstruction

Lineage Tracing & Reuse in SystemDS

[Arnab Phani, Benjamin Rath, 
Matthias Boehm: LIMA: Fine-grained 

Lineage Tracing and Reuse in Machine 
Learning Systems, SIGMOD 2021]



Matthias Boehm | FG DAMS | AMLS SoSe 2025 – 10 Model Selection and Management38

▪ Multi-level, Lineage-based Reuse
▪ Lineage trace uniquely identifies intermediates

▪ Reuse intermediates at function / block / operation level

▪ Full Reuse of Intermediates
▪ Before executing instruction, probe output lineage in cache 

Map<Lineage, MatrixBlock>

▪ Cost-based/heuristic caching and eviction decisions 

(compiler-assisted)

▪ Partial Reuse of Intermediates
▪ Problem: Often partial result overlap

▪ Reuse partial results via dedicated rewrites (compensation plans)

▪ Example: steplm

▪ Next Steps: multi-backend, unified mem mgmt

Lineage Tracing & Reuse in SystemDS, cont.

for( i in 1:numModels ) 
R[,i] = lm(X, y, lambda[i,], ...)

m_lmDS = function(...) {
l = matrix(reg,ncol(X),1)
A = t(X) %*% X + diag(l)
b = t(X) %*% y
beta = solve(A, b) ...}

m_steplm = function(...) {
while( continue ) {

parfor( i in 1:n ) {
if( !fixed[1,i] ) {

Xi = cbind(Xg, X[,i])
B[,i] = lm(Xi, y, ...)

} }
# add best to Xg (AIC)

} }

X

t(X)

m>>n



Matthias Boehm | FG DAMS | AMLS SoSe 2025 – 10 Model Selection and Management39

▪ Data Augmentation

▪ Model Selection Techniques

▪ Model Management & Provenance

▪ Next Lectures (Part B)
▪ 12 Model Debugging, Fairness, Explainability [Jul 10]

▪ 13 Model Serving Systems and Techniques [Jul 17]

Q&A and Exam Preparation [Jul 17]

Summary & QA
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