
Architecture of ML Systems (AMLS)
13 Model Deployment and Serving

Prof. Dr. Matthias Boehm
Technische Universität Berlin
Berlin Institute for the Foundations of Learning and Data
Big Data Engineering (DAMS Lab)

Last update: Jul 16, 2025

Matthias Boehm | FG DAMS | AMLS SoSe 2025 – 13 Model Deployment and Serving2

▪ #1 Hybrid & Video Recording
▪ Hybrid lectures (in-person, zoom) with optional attendance

https://tu-berlin.zoom.us/j/9529634787?pwd=R1ZsN1M3SC9BOU1OcFdmem9zT202UT09

▪ Zoom video recordings, links from website

https://mboehm7.github.io/teaching/ss25_amls/index.htm

▪ #2 Exercise/Project Submissions
▪ 64 submissions alternative exercise

▪ 6+7 submissions SystemDS/DAPHNE projects

▪ #3 Written Exams
▪ Thu July 24, 4-6pm (A 151, max 50) → 24 registrations

▪ Thu July 31, 4-6pm (EW 201, max 47) → 48 registrations

▪ Thu Aug 14, 4-6pm (A 151, max 50) → 34 registrations

Announcements / Org

https://tu-berlin.zoom.us/j/9529634787?pwd=R1ZsN1M3SC9BOU1OcFdmem9zT202UT09
https://tu-berlin.zoom.us/j/9529634787?pwd=R1ZsN1M3SC9BOU1OcFdmem9zT202UT09
https://tu-berlin.zoom.us/j/9529634787?pwd=R1ZsN1M3SC9BOU1OcFdmem9zT202UT09
https://mboehm7.github.io/teaching/ss25_amls/index.htm
https://mboehm7.github.io/teaching/ss25_amls/index.htm
https://mboehm7.github.io/teaching/ss25_amls/index.htm

Matthias Boehm | FG DAMS | AMLS SoSe 2025 – 13 Model Deployment and Serving3

Recap: The Data Science Lifecycle
(aka KDD Process, aka CRISP-DM)

Data/SW
Engineer

DevOps
Engineer

Data Integration
Data Cleaning

Data Preparation

Model Selection
Training

Hyper-parameters

Validate & Debug
Deployment

Scoring & Feedback

Data
Scientist

Exploratory Process
(experimentation, refinements, ML pipelines)

Data-centric View:
Application perspective
Workload perspective

System perspective

Matthias Boehm | FG DAMS | AMLS SoSe 2025 – 13 Model Deployment and Serving4

▪ Model Exchange and Serving

▪ Model Monitoring and Updates

Agenda

Matthias Boehm | FG DAMS | AMLS SoSe 2025 – 13 Model Deployment and Serving5

Model Exchange and Serving

Matthias Boehm | FG DAMS | AMLS SoSe 2025 – 13 Model Deployment and Serving6

▪ Definition Deployed Model
▪ #1 Trained ML model (weight/parameter matrix)

▪ #2 Trained weights AND operator graph / entire ML pipeline

➔ especially for DNN (many weight/bias tensors, hyper parameters, etc)

▪ Recap: Data Exchange Formats (model + meta data)
▪ General-purpose formats: CSV, JSON, XML, Protobuf

▪ Sparse matrix formats: matrix market, libsvm

▪ Scientific formats: NetCDF, HDF5

▪ ML-system-specific binary formats (e.g., SystemDS, PyTorch serialized)

▪ Problem ML System Landscape
▪ Different languages and frameworks, including versions

▪ Lack of standardization → DSLs for ML is wild west

Model Exchange Formats

Matthias Boehm | FG DAMS | AMLS SoSe 2025 – 13 Model Deployment and Serving7

▪ Why Open Standards?
▪ Open source allows inspection but no control

▪ Open governance necessary for open standard

▪ Cons: needs adoption, moves slowly

▪ #1 Predictive Model Markup Language (PMML)
▪ Model exchange format in XML, created by Data Mining Group 1997

▪ Package model weights, hyper parameters, and limited set of algorithms

▪ #2 Portable Format for Analytics (PFA)
▪ Attempt to fix limitations of PMML, created by Data Mining Group

▪ JSON and AVRO exchange format

▪ Minimal functional math language→ arbitrary custom models

▪ Scoring in JVM, Python, R

Model Exchange Formats, cont.

[Nick Pentreath: Open Standards
for Machine Learning Deployment,

bbuzz 2019]

Matthias Boehm | FG DAMS | AMLS SoSe 2025 – 13 Model Deployment and Serving8

▪ #3 Open Neural Network Exchange (ONNX)
▪ Model exchange format (data and operator graph) via Protobuf

▪ First Facebook and Microsoft, then IBM, Amazon → PyTorch, MXNet

▪ Focused on deep learning and tensor operations

▪ ONNX-ML: support for traditional ML algorithms

▪ Scoring engine: https://github.com/Microsoft/onnxruntime

▪ Cons: low level (e.g., fused ops), DNN-centric → ONNX-ML

▪ TensorFlow Saved Models
▪ TensorFlow-specific exchange format for model and operator graph

▪ Freezes input weights and literals, for additional optimizations

(e.g., constant folding, quantization, etc)

▪ Cloud providers may not be interested in open exchange standards

Model Exchange Formats, cont.

python/systemds/
onnx_systemds

https://github.com/Microsoft/onnxruntime

Matthias Boehm | FG DAMS | AMLS SoSe 2025 – 13 Model Deployment and Serving9

▪ #1 Embedded ML Serving
▪ TensorFlow Lite and new language bindings (small footprint,

dedicated HW acceleration, APIs, and models: MobileNet, SqueezeNet)

▪ TorchScript: Compile Python functions into ScriptModule/ScriptFunction

▪ SystemML JMLC (Java ML Connector), IREE (data centers / edge – small footprint)

▪ #2 ML Serving Services
▪ Motivation: Complex DNN models, ran on dedicated HW

▪ RPC/REST interface for applications

▪ TensorFlow Serving: configurable serving w/ batching

▪ TorchServe: Specialized model for HW, batching/parallelism

▪ Clipper: Decoupled multi-framework scoring, w/ batching and result caching

▪ Pretzel: Batching and multi-model optimizations in ML.NET

▪ Rafiki: Optimizations for accuracy s.t. latency constraints, batching, multi-model opt

ML Systems for Serving

Google Translate
140B words/day

→ 82K GPUs in 2016

[Christopher Olston et al:
TensorFlow-Serving:
Flexible, High-
Performance ML Serving.
ML Systems@NeurIPS
2017]

[Daniel Crankshaw
et al: Clipper: A
Low-Latency Online
Prediction Serving
System. NSDI 2017]

[Yunseong Lee et al.:
PRETZEL: Opening the Black
Box of Machine Learning
Prediction Serving Systems.
OSDI 2018]

[Wei Wang et al: Rafiki:
Machine Learning as
an Analytics Service
System. PVLDB 2018]

PyTorch TorchServe Config
models={
"resnet-152": {"1.0": {
"minWorkers": 1,
"maxWorkers": 1,
"batchSize": 8,
"maxBatchDelay": 50,
"responseTimeout": 120

}}}

Matthias Boehm | FG DAMS | AMLS SoSe 2025 – 13 Model Deployment and Serving10

▪ Definition Serverless
▪ FaaS: functions-as-a-service (event-driven, stateless input-output mapping)

▪ Infrastructure for deployment and auto-scaling of APIs/functions

▪ Examples: Amazon Lambda, Microsoft Azure Functions, etc

▪ Example

Serverless Computing

Event Source
(e.g., cloud

services)

Lambda Functions

Other APIs
and Services

Auto scaling
Pay-per-request

(1M x 100ms = 0.2$)

[Joseph M. Hellerstein et al: Serverless
Computing: One Step Forward, Two

Steps Back. CIDR 2019]

import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestHandler;

public class MyHandler implements RequestHandler<Tuple, MyResponse> {
@Override
public MyResponse handleRequest(Tuple input, Context context) {

return expensiveModelScoring(input); // with read-only model
}

}

Matthias Boehm | FG DAMS | AMLS SoSe 2025 – 13 Model Deployment and Serving11

▪ Example
Scenario

▪ Challenges
▪ Scoring part of larger end-to-end pipeline

▪ External parallelization w/o materialization

▪ Simple synchronous scoring

▪ Data size (tiny ΔX, huge model M)

▪ Seamless integration & model consistency

Example SystemDS JMLC

Sentence
Classification

Sentence
Classification

Feature Extraction
(e.g., doc structure, sentences,

tokenization, n-grams)

…
(e.g., ⨝, )

ΔX

M
“Model”

Token Features

Sentences

➔ Embedded scoring

➔ Latency⇒ Throughput

➔Minimize overhead per ΔX

➔ Token inputs & outputs

Matthias Boehm | FG DAMS | AMLS SoSe 2025 – 13 Model Deployment and Serving12

▪ Background: Frame
▪ Abstract data type with schema (BIN, INT64, FP64, STR)

▪ Column-wise block layout, with ragged arrays

▪ Local and distributed operations

▪ Data Preparation
via Transform

Example SystemDS JMLC, cont.

Schema

…

Distributed
representation:

? x ncol(F) blocks

(shuffle-free
conversion of
csv / datasets)

Training

FY

BMY

YFX transformencode X

MX

Scoring
ΔŶ

transformapplyΔFX ΔX

transformdecodeΔFŶ

Matthias Boehm | FG DAMS | AMLS SoSe 2025 – 13 Model Deployment and Serving13

▪ Motivation
➔ Embedded scoring

➔ Latency⇒ Throughput

➔Minimize overhead per ΔX

▪ Example

Example SystemML JMLC, cont.

Typical compiler/runtime overheads:
Script parsing and config: ~100ms
Validation, compile, IPA: ~10ms
HOP DAG (re-)compile: ~1ms
Instruction execute: <0.1μs

1: Connection conn = new Connection();
2: PreparedScript pscript = conn.prepareScript(

getScriptAsString(“glm-predict-extended.dml”),
new String[]{“FX”,“MX”,“MY”,“B”}, new String[]{“FY”});

3: // ... Setup constant inputs
4: for(Document d : documents) {
5: FrameBlock FX = ...; //Input pipeline
6: pscript.setFrame(“FX”, FX);
7: FrameBlock FY = pscript.executeScript().getFrame(“FY”);
8: // ... Remaining pipeline
9: }

// single-node, no evictions,
// no recompile, no multithread.

// execute precompiled script
// many times

Matthias Boehm | FG DAMS | AMLS SoSe 2025 – 13 Model Deployment and Serving14

▪ Recap: Model Batching (see 08 Data Access)
▪ One-pass evaluation of multiple configurations

▪ EL, CV, feature selection, hyper parameter tuning

▪ E.g.: TUPAQ [SoCC’16], Columbus [SIGMOD’14]

▪ Data Batching
▪ Batching to utilize the HW more efficiently under SLA

▪ Use case: multiple users use the same model (wait and collect requests)

▪ Adaptive: additive increase, multiplicative decrease

Serving Optimizations – Batching

Xm

n

k

O(m*n)
read

O(m*n*k)
compute

m >> n >> k

X1

m

n

X2

X3

Benefits for
multi-class /

complex
models[Clipper @

NSDI’17]

Fewer kernel
launches,

Parallelization

Matthias Boehm | FG DAMS | AMLS SoSe 2025 – 13 Model Deployment and Serving15

▪ Quantization
▪ Lossy compression via ultra-low precision / fixed-point

▪ Ex.: 62.7% energy spent on data movement

▪ Quantization for Model Scoring
▪ Usually much smaller data types (e.g., UINT8)

▪ Quantization of model weights, and sometimes also activations

→ reduced memory requirements and better latency / throughput (SIMD)

Serving Optimizations – Quantization
08 Data Access

Methods

[Amirali Boroumand et al.: Google
Workloads for Consumer Devices:

Mitigating Data Movement
Bottlenecks. ASPLOS 2018]

import tensorflow as tf
converter = tf.lite.TFLiteConverter.from_saved_model(saved_model_dir)
converter.optimizations = [tf.lite.Optimize.OPTIMIZE_FOR_SIZE]
tflite_quant_model = converter.convert()

[Credit: https://www.tensorflow.org/lite/performance/post_training_quantization]

[Jonathan Ragan-Kelly: The Future of Fast Code:
Giving Hardware What It Wants, PLDI 2024

Keynote (inspired by Bill Dally on 14nm)]

https://www.tensorflow.org/lite/performance/post_training_quantization

Matthias Boehm | FG DAMS | AMLS SoSe 2025 – 13 Model Deployment and Serving16

Serving Optimizations – Sparsification / Quantization, cont.

Sparsification Quantization

[Credit: Xiaozhe Yao (ETH Zurich)]

[Credit: Arnab Phani
(DEEM@TU Berlin)]

LogReg on Covtype

LogReg on Criteo

Matthias Boehm | FG DAMS | AMLS SoSe 2025 – 13 Model Deployment and Serving17

▪ Result Caching
▪ Establish a function cache for X → Y

(memoization of deterministic function evaluation)

▪ E.g., translation use case

▪ Multi Model Optimizations
▪ Same input fed into multiple partially redundant model evaluations

▪ Common subexpression elimination between prediction programs

▪ In PRETZEL, programs compiled into physical stages and

registered with the runtime + caching for stages

(decided based on hashing the inputs)

Serving Optimizations – MQO

[Yunseong Lee et al.: PRETZEL: Opening
the Black Box of Machine Learning
Prediction Serving Systems. OSDI 2018]

Matthias Boehm | FG DAMS | AMLS SoSe 2025 – 13 Model Deployment and Serving18

▪ TensorFlow tf.compile
▪ Compile entire TF graph into binary function w/ low footprint

▪ Input: Graph, config (feeds+fetches w/ fixes shape sizes)

▪ Output: x86 binary and C++ header (e.g., inference)

▪ Specialization for frozen model and sizes

▪ PyTorch Compile
▪ Compile Python functions into ScriptModule/ScriptFunction

▪ Lazily collect operations, optimize, and JIT compile

▪ Explicit jit.script call or @torch.jit.script

Serving Optimizations – Compilation

[Chris Leary, Todd Wang:
XLA – TensorFlow, Compiled!,

TF Dev Summit 2017]

04 Adaptation,
Fusion, and JIT

a = torch.rand(5)
def func(x):
for i in range(10):
x = x * x # unrolled into graph

return x

jitfunc = torch.jit.script(func) # JIT
jitfunc.save("func.pt")

[Vincent Quenneville-Bélair: How PyTorch
Optimizes Deep Learning Computations,
Guest Lecture Stanford 2020]

Matthias Boehm | FG DAMS | AMLS SoSe 2025 – 13 Model Deployment and Serving19

▪ Compile ML scoring pipelines into tensor ops (3 strategies w/ different redundancy)

▪ #1 Matmult (GEMM)

Serving Optimizations – Model Vectorization

input [n x m]

predicate map
[m x #inodes]

predicate values
[1 x #inodes]

predicate compare
[1 x #inodes]

bucket paths [#inodes x #paths]
1 (lhs) / 0 / -1 (rhs)

paths ∑
[1 x #paths]

selected path
class map

[#paths x #classes]

[Supun Nakandala et al: A Tensor
Compiler for Unified Machine Learning

Prediction Serving. OSDI 2020,
https://github.com/microsoft/hummingbird]

https://github.com/microsoft/hummingbird

Matthias Boehm | FG DAMS | AMLS SoSe 2025 – 13 Model Deployment and Serving20

▪ #2 Tree Traversal (TT)
▪ Traversal for batch of records via value indexing / table()

and ifelse(Tv<Tt, Tl, Tr)

Serving Optimizations – Model Vectorization, cont.

3 2 5 3 1 1 1 1 1

0.5 2.0 5.5 2.4 0 0 0 0 0

2 5 4 7 5 6 7 8 9

1

2 3

45 6

7 8

9

3 6 9 8 5 6 7 8 9

TF

F1 F2 F3 F4 F5

F1 F2 F3 F4 F5

F1 F2 F3 F4 F5

Input data

1

1

1

0 0 0 0 1 0 0 1 1

0 0 0 0 0 1 1 0 0

Tl

NL

NR

NF

NT

t(NC)

Nodes position
of individual

tuples

Matthias Boehm | FG DAMS | AMLS SoSe 2025 – 13 Model Deployment and Serving21

Serving Optimizations – Model Vectorization, cont.
Batch Scoring Experiments

Azure NC6 v2
(6 vcores, 112GB, P1 GPU)

Batch of 10K records
[seconds]

Forest Inference
Library (FIL)

Lowest Cost
w/ K80

Matthias Boehm | FG DAMS | AMLS SoSe 2025 – 13 Model Deployment and Serving22

▪ Model Distillation
▪ Ensembles of models → single NN model

▪ Specialized models for different classes

(found via differences to generalist model)

▪ Trained on soft targets (softmax w/ temperature T)

▪ Example Experiments
▪ Automatic Speech Recognition

▪ Frame classification accuracy,

and word error rate

Serving Optimizations – Model Distillation

[Geoffrey E. Hinton, Oriol Vinyals, Jeffrey
Dean: Distilling the Knowledge in a

Neural Network. CoRR 2015]

System Test Frame Accuracy Word Error Rate

Baseline 58.9% 10.9%

10x Ensemble 61.1% 10.7%

Distilled 1x Model 60.8% 10.7%

Matthias Boehm | FG DAMS | AMLS SoSe 2025 – 13 Model Deployment and Serving23

▪ LLaMA 2 Model Variants
▪ mmlu dataset

▪ Tradeoff normalized

accuracy and costs

▪ Simple router model

for improved tradeoff

Serving Optimizations – Model Distillation, cont.

[Credit:
Runsheng
Benson Guo
(UWaterloo)]

Matthias Boehm | FG DAMS | AMLS SoSe 2025 – 13 Model Deployment and Serving24

▪ NoScope Architecture
▪ Baseline: YOLOv2 on 1 GPU

per video camera @30fps

▪ Optimizer to find filters

▪ #1 Model Specialization
▪ Given query and baseline model

▪ Trained shallow NN (based on AlexNet) on output of baseline model

▪ Short-circuit if prediction with high confidence

▪ #2 Difference Detection
▪ Compute difference to ref-image/earlier-frame

▪ Short-circuit w/ ref label if no significant difference

Serving Optimizations – Specialization

[Daniel Kang et al: NoScope: Optimizing
Deep CNN-Based Queries over Video
Streams at Scale. PVLDB 2017]

Matthias Boehm | FG DAMS | AMLS SoSe 2025 – 13 Model Deployment and Serving25

Model Monitoring and Updates

Part of Model Management and MLOps
(see 10 Model Selection & Management)

Matthias Boehm | FG DAMS | AMLS SoSe 2025 – 13 Model Deployment and Serving26

Model Deployment Workflow

Data Integration
Data Cleaning

Data Preparation

Model Selection
Training

Hyper-parameters

Model Serving

BMYMX

#1 Model
Deployment

DevOps
Engineer

#2 Continuous Data Validation /
Concept Drift Detection

#3 Model
Monitoring#4 Periodic / Event-based

Re-Training & Updates
(automatic / semi-manual)

Prediction
Requests

Matthias Boehm | FG DAMS | AMLS SoSe 2025 – 13 Model Deployment and Serving27

▪ Goals:

▪ #1 Check Deviations Training/Serving Data
▪ Different data distributions, distinct items → impact on model accuracy?

→ See 09 Data Acquisition and Preparation (Data Validation)

▪ #2 Definition of Alerts
▪ Understandable and actionable

▪ Sensitivity for alerts (ignored if too frequent)

▪ #3 Data Fixes
▪ Identify problematic parts

▪ Impact of fix on accuracy

▪ How to backfill into training data

Monitoring Deployed Models

Robustness (e.g., data, latency)
and model accuracy

[Neoklis Polyzotis, Sudip Roy, Steven Whang,
Martin Zinkevich: Data Management Challenges
in Production Machine Learning, SIGMOD 2017]

During serving:
0.11?

“The question is not whether something is ‘wrong’.
The question is whether it gets fixed”

Matthias Boehm | FG DAMS | AMLS SoSe 2025 – 13 Model Deployment and Serving28

▪ Alert Guidelines
▪ Make them actionable

missing field,

field has new values,

distribution changes

▪ Question data AND constraints

▪ Combining repairs:

principle of minimality

▪ Complex Data Lifecycle
▪ Adding new features to production ML pipelines is a complex process

▪ Data does not live in a DBMS; data often resides in multiple storage systems

that have different characteristics

▪ Collecting data for training can be hard and expensive

Monitoring Deployed Models, cont.

[Neoklis Polyzotis, Sudip Roy, Steven Whang,
Martin Zinkevich: Data Management Challenges
in Production Machine Learning, SIGMOD 2017]

[Xu Chu, Ihab F. Ilyas: Qualitative Data
Cleaning. Tutorial, PVLDB 2016]

less
actionable

[George Beskales et al: On the relative
trust between inconsistent data and

inaccurate constraints. ICDE 2013]

Matthias Boehm | FG DAMS | AMLS SoSe 2025 – 13 Model Deployment and Serving29

▪ Recap Concept Drift (features → labels)
▪ Change of statistical properties / dependencies (features-labels)

▪ Requires re-training, parametric approaches for deciding when to retrain

▪ #1 Input Data Changes
▪ Population change (gradual/sudden), but also new categories, data errors

▪ Covariance shift p(x) with constant p(y|x)

▪ #2 Output Data Changes
▪ Label shift p(y)

▪ Constant conditional feature distributed p(x|y)

▪ Goals: Fast adaptation; noise vs change, recurring contexts, small overhead

Concept Drift
[A. Bifet, J. Gama, M. Pechenizkiy, I. Žliobaitė:

Handling Concept Drift: Importance,
Challenges & Solutions, PAKDD 2011]

Matthias Boehm | FG DAMS | AMLS SoSe 2025 – 13 Model Deployment and Serving30

▪ Approach 1: Periodic Re-Training
▪ Training: window of latest data + data selection/weighting

▪ Alternatives: incremental maintenance, warm starting, online learning

▪ Approach 2: Event-based Re-Training
▪ Change detection (supervised, unsupervised)

▪ Often model-dependent, specific techniques for time series

▪ Drift Detection Method: binomial distribution, if error outside scaled

standard-deviation → raise warnings and alerts

▪ Adaptive Windowing (ADWIN):

window W, append data to W, drop

old values until avg windows W=W1-W2

similar (below epsilon), raise alerts

▪ Kolmogorov-Smirnov distance / Chi-Squared:

univariate statistical tests training/serving

Concept Drift, cont.
[A. Bifet, J. Gama, M. Pechenizkiy, I. Žliobaitė:

Handling Concept Drift: Importance,
Challenges & Solutions, PAKDD 2011]

[https://scikitmultiflow.readthedocs.io/
en/stable/api/generated/

skmultiflow.drift_detection.ADWIN.html]

[Albert Bifet, Ricard Gavaldà:
Learning from Time-Changing Data

with Adaptive Windowing. SDM 2007]

https://scikit-multiflow.readthedocs.io/en/stable/api/generated/skmultiflow.drift_detection.ADWIN.html
https://scikit-multiflow.readthedocs.io/en/stable/api/generated/skmultiflow.drift_detection.ADWIN.html
https://scikit-multiflow.readthedocs.io/en/stable/api/generated/skmultiflow.drift_detection.ADWIN.html
https://scikit-multiflow.readthedocs.io/en/stable/api/generated/skmultiflow.drift_detection.ADWIN.html
https://scikit-multiflow.readthedocs.io/en/stable/api/generated/skmultiflow.drift_detection.ADWIN.html
https://scikit-multiflow.readthedocs.io/en/stable/api/generated/skmultiflow.drift_detection.ADWIN.html

Matthias Boehm | FG DAMS | AMLS SoSe 2025 – 13 Model Deployment and Serving31

▪ Model-agnostic Performance Predictor
▪ Approach 2: Event-based Re-Training

▪ User-defined error generators

▪ Synthetic data corruption → impact on black-box model

▪ Train performance predictor (regression/classification at threshold t)

for expected prediction quality on percentiles of target variable ŷ

▪ Results
PPM

Concept Drift, cont. [Sebastian Schelter, Tammo Rukat, Felix Bießmann:
Learning to Validate the Predictions of Black Box

Classifiers on Unseen Data. SIGMOD 2020]

Matthias Boehm | FG DAMS | AMLS SoSe 2025 – 13 Model Deployment and Serving32

▪ Yearbook Dataset
▪ Frontal-facing American

high-school seniors

▪ 1905 - 2013

▪ Classification:

male/female, smiles

hair-styles

Concept Drift, cont.

[https://shiry.ttic.edu/projects/
yearbooks/yearbooks.html]

[Maximilian Böther, Ties Robroek, Viktor Gsteiger, Robin
Holzinger, Xianzhe Ma, Pinar Tözün, Ana Klimovic: Modyn: Data-

Centric Machine Learning Pipeline Orchestration, SIGMOD 2025]

https://shiry.ttic.edu/projects/yearbooks/yearbooks.html
https://shiry.ttic.edu/projects/yearbooks/yearbooks.html

Matthias Boehm | FG DAMS | AMLS SoSe 2025 – 13 Model Deployment and Serving33

▪ GDPR “Right to be Forgotten”
▪ Recent laws such as GDPR require

companies and institutions to

delete user data upon request

▪ Personal data must not only be deleted

from primary data stores but also from

ML models trained on it (Recital 75)

▪ Example Deanonymization
▪ Recommender systems: models retain user similarly

▪ Social network data / clustering / KNN

▪ Large language models (e.g., GPT-3)

GDPR (General Data Protection Regulation)

U V
┬≈X

[Sebastian Schelter: "Amnesia" - Machine Learning
Models That Can Forget User Data Very Fast. CIDR 2020]

[https://gdpr.eu/article-17-right-to-be-forgotten/]

See incremental computations in
03 Sizes Inferences and Rewrites

https://gdpr.eu/article-17-right-to-be-forgotten/
https://gdpr.eu/article-17-right-to-be-forgotten/
https://gdpr.eu/article-17-right-to-be-forgotten/
https://gdpr.eu/article-17-right-to-be-forgotten/
https://gdpr.eu/article-17-right-to-be-forgotten/
https://gdpr.eu/article-17-right-to-be-forgotten/
https://gdpr.eu/article-17-right-to-be-forgotten/
https://gdpr.eu/article-17-right-to-be-forgotten/
https://gdpr.eu/article-17-right-to-be-forgotten/
https://gdpr.eu/article-17-right-to-be-forgotten/
https://gdpr.eu/article-17-right-to-be-forgotten/

Matthias Boehm | FG DAMS | AMLS SoSe 2025 – 13 Model Deployment and Serving34

▪ HedgeCut Overview
▪ Extremely Randomized Trees (ERT): ensemble of

DTs w/ randomized attributes and cut-off points

▪ Online unlearning requests < 1ms

w/o retraining for few points

▪ Handling of Non-robust Splits

GDPR (General Data Protection Regulation), cont.
[Sebastian Schelter, Stefan Grafberger,

Ted Dunning: HedgeCut: Maintaining
Randomised Trees for Low-Latency

Machine Unlearning, SIGMOD 2021]

Matthias Boehm | FG DAMS | AMLS SoSe 2025 – 13 Model Deployment and Serving35

▪ Model Exchange and Serving

▪ Model Monitoring and Updates

▪ #1 Exam Preparation – Ask Questions in the Forum

▪ #2 Written Exams
▪ Thu July 24, 4-6pm (A 151, max 50) → 24 registrations

▪ Thu July 31, 4-6pm (EW 201, max 47) → 48 registrations

▪ Thu Aug 14, 4-6pm (A 151, max 50) → 34 registrations

Summary & QA

Thanks

Architecture of ML Systems (AMLS)
14 Q&A and Exam Preparation [continues 5.45pm]

Prof. Dr. Matthias Boehm
Technische Universität Berlin
Berlin Institute for the Foundations of Learning and Data
Big Data Engineering (DAMS Lab)

Last update: Jul 15, 2025

Example AMLS Exams (90min for 100/100 points)
https://mboehm7.github.io/teaching/ss24_amls/ExamAMLS24_v1.pdf
https://mboehm7.github.io/teaching/ss24_amls/ExamAMLS24_v2.pdf
https://mboehm7.github.io/teaching/ss24_amls/ExamAMLS24_v3.pdf

No Lecture
Materials or

Mobile Devices

https://mboehm7.github.io/teaching/ss24_amls/ExamAMLS24_v1.pdf
https://mboehm7.github.io/teaching/ss24_amls/ExamAMLS24_v2.pdf
https://mboehm7.github.io/teaching/ss24_amls/ExamAMLS24_v3.pdf

Matthias Boehm | FG DAMS | AMLS SoSe 2025 – 13 Model Deployment and Serving37

▪ Task 1a: Describe the overall system architecture of data-parallel parameter servers,
explain its components and interaction among these components [10/100 points]

▪ System Architecture
▪ M Parameter Servers w/ model

▪ N Workers w/ data partitions

▪ Optional Coordinator

▪ Interactions
▪ Workers pull model from parameter servers,

slice a mini-batch of data, run a forward and

backward pass to compute gradients,

which are pushed back to parameter serves

▪ Parameter servers wait for gradients,

aggregate the gradients/models, and

perform a global model update

Task 1 Parameter Servers [question appeared in every exam] 10/100

M

N

W .. Model
ΔW .. Gradient

Matthias Boehm | FG DAMS | AMLS SoSe 2025 – 13 Model Deployment and Serving38

▪ Task 1b: Describe synchronous (BSP) and asynchronous (ASP) update strategies in
data-parallel parameter servers and name their advantages and disadvantages. [6/100 points]

Task 1 Parameter Servers, cont. [question appeared in every exam] 16/100

Synchronous Asynchronous

Description

Advantages

Disadvantages

Synchronous Asynchronous

Description Per-batch or -n-batches
synchronization barrier (wait
for all workers before update)

Every pushed gradient
updates the model, workers
obtain model immediately

Advantages Consistent learning process
and model updates

No waiting for stragglers

Disadvantages Workers wait for slowest
worker (repeatedly)

Workers use stale models,
potential divergence

Matthias Boehm | FG DAMS | AMLS SoSe 2025 – 13 Model Deployment and Serving39

▪ Task 2a: Given the raw input data below, apply recoding and one-hot encoding to all categorical
columns, and binning with 3 equi-width bins to all numerical columns. [10/100 points]

Task 2 Data Preparation 26/100

A B C

Low 0 S

High 3 M

Med 7 L

Low 9 XL

Low 15 M

Low 7 M

Med 4 L

High 12 XL

High 13 L

ALow AMed AHigh B CS CM CL CXL

1 0 0 1 1 0 0 0

0 0 1 1 0 1 0 0

0 1 0 2 0 0 1 0

1 0 0 2 0 0 0 1

1 0 0 3 0 1 0 0

1 0 0 2 0 1 0 0

0 1 0 1 0 0 1 0

0 0 1 3 0 0 0 1

0 0 1 3 0 0 1 0

Matthias Boehm | FG DAMS | AMLS SoSe 2025 – 13 Model Deployment and Serving40

▪ Task 2b: What is feature hashing and what is its advantage over recoding? [3/100 points]
▪ Hash values and compute modulo with user-provided k

▪ Reduces the number of distinct items, and thus columns in one-hot-encoded representation

▪ Task 2c: Describe the text encodings bag-of-word and word-embeddings. [6/100 points]
▪ Bag-of-word: encode sentence as a vector of token counts

(how often every distinct token appeared in the sentence)

▪ Word Embedding: continuous bag-of-words,

learned numerical vectors for predicting the context words from a word or a word from its context

▪ Task 2d: What is data augmentation and name 2 concrete techniques. [3/100 points]
▪ Synthetically generate labeled examples from small real labeled dataset through transformations

▪ Examples: rotations, reflections, shearing, noise modulation

Task 2 Data Preparation, cont. 38/100

A B C D E

2 2 1 0 1

Matthias Boehm | FG DAMS | AMLS SoSe 2025 – 13 Model Deployment and Serving41

▪ Task 3a: Describe the task of hyper-parameter tuning by example of GridSearch. Assume three hyper-
parameters with 10 discretized values each, how many models do we need to train? [8/100 points]

▪ Hyper Parameter Tuning
▪ Given a model and dataset, find best hyper parameter values

(e.g., learning rate, regularization, kernel parameters, tree params)

by training the model and evaluating it on the validation set.

▪ Grid Search
▪ Discretize continuous parameters (linearly or exponentially)

▪ Every hyper-parameter is a dimension of a hyper-cube

▪ For all combinations, train and evaluate the model

▪ Example: 10^3 = 1000 trained models

Task 3 Model Selection 46/100

0

1

1α

β

Matthias Boehm | FG DAMS | AMLS SoSe 2025 – 13 Model Deployment and Serving42

▪ Task 3b: Explain Bayesian Optimization as a more directed search strategy,
and how it balances exploitation and exploration? [5/100 points]
▪ Use lightweight ML models like Gaussian Processes

to find next points

▪ Acquisition function to balance exploitation (expected mean)

and exploration (uncertainty, expected variance)

▪ Task 3c: Describe the problem of neural architecture search, and how to deal with
multiple optimization objectives (e.g., accuracy and runtime). [5/100 points]
▪ Automatically compose neural network architectures from building blocks

▪ Search strategies: evolutionary algorithms and Bayesian optimization

▪ Multi-objective optimization:

(1) linearization, (2) pareto front to user, (3) primary objective w/ constraints on other dims

Task 3 Model Selection, cont. 56/100

Matthias Boehm | FG DAMS | AMLS SoSe 2025 – 13 Model Deployment and Serving43

▪ Task 4a: Describe sources of bias in machine learning and name examples how to
ensure fairness when building ML models with examples. [4/100 points]
▪ Sources: selection bias, sample bias, data bias (e.g., NMAR), confirmation bias

▪ Fairness constraints: monotonicity, group fairness constraints

▪ Task 4b: Explain the concept of a confusion matrix
and describe it in detail. [4/100 points]
▪ Matrix of correct versus predicted labels

▪ Cells contain counts or relative frequencies

of correct/predicted pair occurrences

▪ Enables understanding which classes are

“confused” with each other

Task 4 Model Debugging 64/100

Matthias Boehm | FG DAMS | AMLS SoSe 2025 – 13 Model Deployment and Serving44

▪ Task 4c: Explain the concept of occlusion-based explanations by example of classifying
below hand-written digit as a seven [4/100].

Task 4 Model Debugging, cont. 68/100

▪ Slide black/gray square over input image

▪ Measure how feature maps (layer activation)
and classifier output change

▪ Show a heat map
of these changes

Matthias Boehm | FG DAMS | AMLS SoSe 2025 – 13 Model Deployment and Serving45

▪ Task 5a: Describe the purpose of the rewrite common subexpression elimination (CSE) and
sketch an algorithm to perform CSE on a directed acyclic graph (DAG) of operators. [5/100 points]
▪ Convert tree/graph of operators with redundant

common subexpressions into redundancy-free operator graph

▪ Step 1: Collect and replace leaf nodes

(variable reads and literals)

▪ Step 2: recursively remove CSEs bottom-up

starting at the leaves by merging nodes with

same inputs (beware non-determinism)

▪ Task 5b: Explain the concept of operator fusion and
how it can improve runtime performance [3/100 points]
▪ Merge sequence or sub-DAG of data-dependent operators into a single operator

▪ Performance Improvements: avoid unnecessary allocation, reduced write/read memory bandwidth

requirements / cache locality, additional specialization (e.g., data types, dimensions)

Task 5 Compilation Techniques 76/100

7

-

R1

A B

abs

*

A B

+

rand

R2

abs

*

7

-

R1

+

rand

R2

A B

abs

*

Matthias Boehm | FG DAMS | AMLS SoSe 2025 – 13 Model Deployment and Serving46

▪ Task 5c: Assume an example chain of matrix multiplications (A B C D E), describe the
problem of matrix multiplication chain optimization, and a dynamic programming algorithm
for solving it efficiently [7/100 points]

▪ Matrix Multiplication is associative, mmchain
opt aims to find optimal parenthesization

▪ Dynamic programming applies because
(1) optimal substructure, and
(2) overlapping subproblems

▪ Bottom-up sub-chain optimization
via composition from solved subproblems

▪ Top-down read-out of optimal split matrix

Task 5 Compilation Techniques 83/100

M1 M2 M3 M4 M5

Cost matrix
m

0 0 0 0 0

1

2

3

4

5 1

2

3

4

5

j i

350 35 15 27

105 56 72

135 125

222

Matthias Boehm | FG DAMS | AMLS SoSe 2025 – 13 Model Deployment and Serving47

▪ Task 6a: Describe min-max quantization of an FP64 (floating point) representation into UINT8 (integer).
Why does such an encoding increase training and/or inference performance? [8/100 points]

▪ Determine min/max range of matrix

▪ Split range into 2^8 = 256 buckets/bins

▪ Encode FP64 values in a bin via binID (lossy, but order-preserving)

➔ Performance Improvements
▪ (1) Reduced memory bandwidth requirements

▪ (2) Increased instruction parallelism (e.g., AVX512: 8 FP64 → 64 UINT8 ops)

▪ (3) Reduced energy consumption

Task 6 Data Access Optimizations 91/100

FP64
Min/Max Quantization

[Jonathan Ragan-Kelly: The Future of Fast Code:
Giving Hardware What It Wants, PLDI 2024

Keynote (inspired by Bill Dally on 14nm)]

Matthias Boehm | FG DAMS | AMLS SoSe 2025 – 13 Model Deployment and Serving48

▪ Task 7a: Consider a deployed model M in a cloud serving
environment and assume 1000s of clients. Explain three
strategies for improving model scoring throughput
at the serving site. [9/100 points]

▪ Caching / Reuse of input-prediction pairs (fewer model invocations)

▪ Batching of client requests / vectorization
(fewer kernel launches, utilize compute better, less sync barriers)

▪ Quantization of input data (data transfer to serving systems, instruction parallelism)

▪ Inference Program Compilation

▪ Specialized, Smaller Models

Task 7 Model Deployment 100/100

M

Serving System

client
requests

predictions

Matthias Boehm | FG DAMS | AMLS SoSe 2025 – 13 Model Deployment and Serving49

Final Questions & Answering

THANKS
and

GOOD LUCK!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

