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▪ #1 Hybrid & Video Recording
▪ Hybrid lectures (in-person, zoom) with optional attendance

https://tu-berlin.zoom.us/j/9529634787?pwd=R1ZsN1M3SC9BOU1OcFdmem9zT202UT09

▪ Zoom video recordings, links from website

https://mboehm7.github.io/teaching/ss25_amls/index.htm

▪ #2 Exercise/Project Submissions
▪ 64 submissions alternative exercise

▪ 6+7 submissions SystemDS/DAPHNE projects

▪ #3 Written Exams
▪ Thu July 24, 4-6pm (A 151, max 50) → 24 registrations

▪ Thu July 31, 4-6pm (EW 201, max 47) → 48 registrations

▪ Thu Aug 14, 4-6pm (A 151, max 50) → 34 registrations

Announcements / Org

https://tu-berlin.zoom.us/j/9529634787?pwd=R1ZsN1M3SC9BOU1OcFdmem9zT202UT09
https://tu-berlin.zoom.us/j/9529634787?pwd=R1ZsN1M3SC9BOU1OcFdmem9zT202UT09
https://tu-berlin.zoom.us/j/9529634787?pwd=R1ZsN1M3SC9BOU1OcFdmem9zT202UT09
https://mboehm7.github.io/teaching/ss25_amls/index.htm
https://mboehm7.github.io/teaching/ss25_amls/index.htm
https://mboehm7.github.io/teaching/ss25_amls/index.htm
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Recap: The Data Science Lifecycle
(aka KDD Process, aka CRISP-DM)

Data/SW 
Engineer

DevOps 
Engineer

Data Integration 
Data Cleaning 

Data Preparation

Model Selection
Training 

Hyper-parameters

Validate & Debug
Deployment

Scoring & Feedback

Data 
Scientist

Exploratory Process 
(experimentation, refinements, ML pipelines)

Data-centric View:
Application perspective
Workload perspective

System perspective
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▪ Model Exchange and Serving

▪ Model Monitoring and Updates

Agenda
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Model Exchange and Serving
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▪ Definition Deployed Model
▪ #1 Trained ML model (weight/parameter matrix)

▪ #2 Trained weights AND operator graph / entire ML pipeline

➔ especially for DNN (many weight/bias tensors, hyper parameters, etc)

▪ Recap: Data Exchange Formats (model + meta data)
▪ General-purpose formats: CSV, JSON, XML, Protobuf

▪ Sparse matrix formats: matrix market, libsvm

▪ Scientific formats: NetCDF, HDF5

▪ ML-system-specific binary formats (e.g., SystemDS, PyTorch serialized)

▪ Problem ML System Landscape
▪ Different languages and frameworks, including versions

▪ Lack of standardization → DSLs for ML is wild west

Model Exchange Formats
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▪ Why Open Standards?
▪ Open source allows inspection but no control

▪ Open governance necessary for open standard

▪ Cons: needs adoption, moves slowly

▪ #1 Predictive Model Markup Language (PMML)
▪ Model exchange format in XML, created by Data Mining Group 1997

▪ Package model weights, hyper parameters, and limited set of algorithms

▪ #2 Portable Format for Analytics (PFA)
▪ Attempt to fix limitations of PMML, created by Data Mining Group

▪ JSON and AVRO exchange format

▪ Minimal functional math language→ arbitrary custom models

▪ Scoring in JVM, Python, R

Model Exchange Formats, cont.

[Nick Pentreath: Open Standards 
for Machine Learning Deployment, 

bbuzz 2019]
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▪ #3 Open Neural Network Exchange (ONNX)
▪ Model exchange format (data and operator graph) via Protobuf

▪ First Facebook and Microsoft, then IBM, Amazon → PyTorch, MXNet

▪ Focused on deep learning and tensor operations

▪ ONNX-ML: support for traditional ML algorithms

▪ Scoring engine: https://github.com/Microsoft/onnxruntime

▪ Cons: low level (e.g., fused ops), DNN-centric → ONNX-ML

▪ TensorFlow Saved Models
▪ TensorFlow-specific exchange format for model and operator graph

▪ Freezes input weights and literals, for additional optimizations

(e.g., constant folding, quantization, etc)

▪ Cloud providers may not be interested in open exchange standards

Model Exchange Formats, cont.

python/systemds/
onnx_systemds

https://github.com/Microsoft/onnxruntime
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▪ #1 Embedded ML Serving
▪ TensorFlow Lite and new language bindings (small footprint, 

dedicated HW acceleration, APIs, and models: MobileNet, SqueezeNet)

▪ TorchScript: Compile Python functions into ScriptModule/ScriptFunction

▪ SystemML JMLC (Java ML Connector), IREE (data centers / edge – small footprint)

▪ #2 ML Serving Services
▪ Motivation: Complex DNN models, ran on dedicated HW

▪ RPC/REST interface for applications 

▪ TensorFlow Serving: configurable serving w/ batching

▪ TorchServe: Specialized model for HW, batching/parallelism

▪ Clipper: Decoupled multi-framework scoring, w/ batching and  result caching 

▪ Pretzel: Batching and multi-model optimizations in ML.NET

▪ Rafiki: Optimizations for accuracy s.t. latency constraints, batching, multi-model opt

ML Systems for Serving

Google Translate 
140B words/day

→ 82K GPUs in 2016

[Christopher Olston et al: 
TensorFlow-Serving: 
Flexible, High-
Performance ML Serving.  
ML Systems@NeurIPS
2017]

[Daniel Crankshaw
et al: Clipper: A 
Low-Latency Online 
Prediction Serving 
System. NSDI 2017]

[Yunseong Lee et al.: 
PRETZEL: Opening the Black 
Box of Machine Learning 
Prediction Serving Systems. 
OSDI 2018]

[Wei Wang et al: Rafiki: 
Machine Learning as 
an Analytics Service 
System. PVLDB 2018]

PyTorch TorchServe Config
models={
"resnet-152": {"1.0": {
"minWorkers": 1,
"maxWorkers": 1,
"batchSize": 8,
"maxBatchDelay": 50,
"responseTimeout": 120

}}}
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▪ Definition Serverless
▪ FaaS: functions-as-a-service (event-driven, stateless input-output mapping)

▪ Infrastructure for deployment and auto-scaling of APIs/functions

▪ Examples: Amazon Lambda, Microsoft Azure Functions, etc

▪ Example

Serverless Computing

Event Source 
(e.g., cloud 

services)

Lambda Functions

Other APIs 
and Services

Auto scaling 
Pay-per-request 

(1M x 100ms = 0.2$)

[Joseph M. Hellerstein et al: Serverless
Computing: One Step Forward, Two 

Steps Back. CIDR 2019]

import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestHandler;

public class MyHandler implements RequestHandler<Tuple, MyResponse> {
@Override
public MyResponse handleRequest(Tuple input, Context context) {

return expensiveModelScoring(input); // with read-only model
}

}
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▪ Example 
Scenario 

▪ Challenges
▪ Scoring part of larger end-to-end pipeline

▪ External parallelization w/o materialization

▪ Simple synchronous scoring

▪ Data size (tiny ΔX, huge model M) 

▪ Seamless integration & model consistency

Example SystemDS JMLC

Sentence 
Classification

Sentence 
Classification

Feature Extraction
(e.g., doc structure, sentences, 

tokenization, n-grams)

…
(e.g., ⨝, )

ΔX

M
“Model”

Token Features

Sentences

➔ Embedded scoring

➔ Latency⇒ Throughput

➔Minimize overhead per ΔX

➔ Token inputs & outputs
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▪ Background: Frame
▪ Abstract data type with schema (BIN, INT64, FP64, STR)

▪ Column-wise block layout, with ragged arrays

▪ Local and distributed operations

▪ Data Preparation 
via Transform

Example SystemDS JMLC, cont.

Schema

…

Distributed 
representation: 

? x ncol(F) blocks

(shuffle-free
conversion of 
csv / datasets)

Training

FY

BMY

YFX transformencode X

MX

Scoring
ΔŶ

transformapplyΔFX ΔX

transformdecodeΔFŶ
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▪ Motivation
➔ Embedded scoring

➔ Latency⇒ Throughput

➔Minimize overhead per ΔX

▪ Example

Example SystemML JMLC, cont.

Typical compiler/runtime overheads:
Script parsing and config: ~100ms
Validation, compile, IPA: ~10ms
HOP DAG (re-)compile:  ~1ms
Instruction execute: <0.1μs

1: Connection conn = new Connection();
2: PreparedScript pscript = conn.prepareScript(

getScriptAsString(“glm-predict-extended.dml”), 
new String[]{“FX”,“MX”,“MY”,“B”}, new String[]{“FY”});

3: // ... Setup constant inputs
4: for( Document d : documents ) {
5: FrameBlock FX = ...; //Input pipeline
6: pscript.setFrame(“FX”, FX);
7: FrameBlock FY = pscript.executeScript().getFrame(“FY”);
8: // ... Remaining pipeline 
9: }

// single-node, no evictions, 
// no recompile, no multithread.

// execute precompiled script
// many times
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▪ Recap: Model Batching (see 08 Data Access)
▪ One-pass evaluation of multiple configurations

▪ EL, CV, feature selection, hyper parameter tuning

▪ E.g.: TUPAQ [SoCC’16], Columbus [SIGMOD’14]

▪ Data Batching
▪ Batching to utilize the HW more efficiently under SLA

▪ Use case: multiple users use the same model (wait and collect requests)

▪ Adaptive: additive increase, multiplicative decrease

Serving Optimizations – Batching 

Xm

n

k

O(m*n) 
read

O(m*n*k) 
compute

m >> n >> k

X1

m

n

X2

X3

Benefits for 
multi-class / 

complex 
models[Clipper @ 

NSDI’17]

Fewer kernel 
launches,

Parallelization
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▪ Quantization
▪ Lossy compression via ultra-low precision / fixed-point 

▪ Ex.: 62.7% energy spent on data movement

▪ Quantization for Model Scoring
▪ Usually much smaller data types (e.g., UINT8)

▪ Quantization of model weights, and sometimes also activations

→ reduced memory requirements and better latency / throughput (SIMD)

Serving Optimizations – Quantization 
08 Data Access 

Methods

[Amirali Boroumand et al.: Google 
Workloads for Consumer Devices: 

Mitigating Data Movement 
Bottlenecks. ASPLOS 2018]

import tensorflow as tf
converter = tf.lite.TFLiteConverter.from_saved_model(saved_model_dir)
converter.optimizations = [tf.lite.Optimize.OPTIMIZE_FOR_SIZE]
tflite_quant_model = converter.convert()

[Credit: https://www.tensorflow.org/lite/performance/post_training_quantization ]

[Jonathan Ragan-Kelly: The Future of Fast Code: 
Giving Hardware What It Wants, PLDI 2024

Keynote (inspired by Bill Dally on 14nm)]

https://www.tensorflow.org/lite/performance/post_training_quantization
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Serving Optimizations – Sparsification / Quantization, cont. 

Sparsification Quantization

[Credit: Xiaozhe Yao (ETH Zurich)]

[Credit: Arnab Phani 
(DEEM@TU Berlin)]

LogReg on Covtype

LogReg on Criteo



Matthias Boehm | FG DAMS | AMLS SoSe 2025 – 13 Model Deployment and Serving17

▪ Result Caching
▪ Establish a function cache for X → Y

(memoization of deterministic function evaluation)

▪ E.g., translation use case

▪ Multi Model Optimizations
▪ Same input fed into multiple partially redundant model evaluations

▪ Common subexpression elimination between prediction programs

▪ In PRETZEL, programs compiled into physical stages and 

registered with the runtime + caching for stages 

(decided based on hashing the inputs)

Serving Optimizations – MQO 

[Yunseong Lee et al.: PRETZEL: Opening 
the Black Box of Machine Learning 
Prediction Serving Systems. OSDI 2018]
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▪ TensorFlow tf.compile
▪ Compile entire TF graph into binary function w/ low footprint

▪ Input: Graph, config (feeds+fetches w/ fixes shape sizes)

▪ Output: x86 binary and C++ header (e.g., inference)

▪ Specialization for frozen model and sizes

▪ PyTorch Compile
▪ Compile Python functions into ScriptModule/ScriptFunction

▪ Lazily collect operations,  optimize, and JIT compile

▪ Explicit jit.script call or @torch.jit.script

Serving Optimizations – Compilation

[Chris Leary, Todd Wang: 
XLA – TensorFlow, Compiled!, 

TF Dev Summit 2017]

04 Adaptation, 
Fusion, and JIT

a = torch.rand(5)
def func(x):
for i in range(10):
x = x * x # unrolled into graph

return x

jitfunc = torch.jit.script(func) # JIT
jitfunc.save("func.pt")

[Vincent Quenneville-Bélair: How PyTorch
Optimizes Deep Learning Computations, 
Guest Lecture Stanford 2020]
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▪ Compile ML scoring pipelines  into tensor ops (3 strategies w/ different redundancy)

▪ #1 Matmult (GEMM) 

Serving Optimizations – Model Vectorization

input [n x m]

predicate map
[m x #inodes]

predicate values
[1 x #inodes]

predicate compare
[1 x #inodes]

bucket paths [#inodes x #paths]
1 (lhs) / 0 / -1 (rhs)

paths ∑ 
[1 x #paths]

selected path
class map 

[#paths x #classes]

[Supun Nakandala et al: A Tensor 
Compiler for Unified Machine Learning 

Prediction Serving. OSDI 2020,
https://github.com/microsoft/hummingbird]

https://github.com/microsoft/hummingbird


Matthias Boehm | FG DAMS | AMLS SoSe 2025 – 13 Model Deployment and Serving20

▪ #2 Tree Traversal (TT) 
▪ Traversal for batch of records via value indexing / table()

and ifelse(Tv<Tt, Tl, Tr)

Serving Optimizations – Model Vectorization, cont.

3 2 5 3 1 1 1 1 1

0.5 2.0 5.5 2.4 0 0 0 0 0

2 5 4 7 5 6 7 8 9

1

2 3

45 6

7 8

9

3 6 9 8 5 6 7 8 9

TF

F1 F2 F3 F4 F5

F1 F2 F3 F4 F5

F1 F2 F3 F4 F5

Input data 

1

1

1

0 0 0 0 1 0 0 1 1

0 0 0 0 0 1 1 0 0

Tl

NL

NR

NF

NT

t(NC)

Nodes position 
of individual 

tuples
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Serving Optimizations – Model Vectorization, cont.
Batch Scoring Experiments

Azure NC6 v2 
(6 vcores, 112GB, P1 GPU)

Batch of 10K records 
[seconds]

Forest Inference 
Library (FIL)

Lowest Cost 
w/ K80
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▪ Model Distillation
▪ Ensembles of models → single NN model

▪ Specialized models for different classes 

(found via differences to generalist model)

▪ Trained on soft targets (softmax w/ temperature T)

▪ Example Experiments
▪ Automatic Speech Recognition

▪ Frame classification accuracy, 

and word error rate

Serving Optimizations – Model Distillation

[Geoffrey E. Hinton, Oriol Vinyals, Jeffrey 
Dean: Distilling the Knowledge in a 

Neural Network. CoRR 2015]

System Test Frame Accuracy Word Error Rate

Baseline 58.9% 10.9%

10x Ensemble 61.1% 10.7%

Distilled 1x Model 60.8% 10.7%
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▪ LLaMA 2 Model Variants
▪ mmlu dataset

▪ Tradeoff normalized 

accuracy and costs

▪ Simple router model

for improved tradeoff  

Serving Optimizations – Model Distillation, cont.

[Credit:
Runsheng
Benson Guo 
(UWaterloo)]
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▪ NoScope Architecture
▪ Baseline: YOLOv2 on 1 GPU

per video camera @30fps

▪ Optimizer to find filters

▪ #1 Model Specialization
▪ Given query and baseline model

▪ Trained shallow NN (based on AlexNet) on output of baseline model 

▪ Short-circuit if prediction with high confidence

▪ #2 Difference Detection
▪ Compute difference to ref-image/earlier-frame

▪ Short-circuit w/ ref label if no significant difference

Serving Optimizations – Specialization  

[Daniel Kang et al: NoScope:  Optimizing 
Deep CNN-Based Queries over Video 
Streams at Scale. PVLDB 2017]
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Model Monitoring and Updates 

Part of Model Management and MLOps
(see 10 Model Selection & Management)
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Model Deployment Workflow

Data Integration 
Data Cleaning 

Data Preparation

Model Selection
Training 

Hyper-parameters

Model Serving 

BMYMX

#1 Model
Deployment

DevOps 
Engineer

#2 Continuous Data Validation / 
Concept Drift Detection

#3 Model
Monitoring#4 Periodic / Event-based 

Re-Training & Updates
(automatic / semi-manual)

Prediction 
Requests
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▪ Goals:

▪ #1 Check Deviations Training/Serving Data
▪ Different data distributions, distinct items → impact on model accuracy?

→ See 09 Data Acquisition and Preparation (Data Validation)

▪ #2 Definition of Alerts
▪ Understandable and actionable 

▪ Sensitivity for alerts (ignored if too frequent)

▪ #3 Data Fixes
▪ Identify problematic parts

▪ Impact of fix on accuracy

▪ How to backfill into training data

Monitoring Deployed Models 

Robustness (e.g., data, latency) 
and model accuracy

[Neoklis Polyzotis, Sudip Roy, Steven Whang, 
Martin Zinkevich: Data Management Challenges 
in Production Machine Learning, SIGMOD 2017]

During serving: 
0.11?

“The question is not whether something is ‘wrong’. 
The question is whether it gets fixed”
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▪ Alert Guidelines
▪ Make them actionable

missing field, 

field has new values, 

distribution changes

▪ Question data AND constraints

▪ Combining repairs: 

principle of minimality

▪ Complex Data Lifecycle
▪ Adding new features to production ML pipelines is a complex process

▪ Data does not live in a DBMS; data often resides in multiple storage systems 

that have different characteristics

▪ Collecting data for training can be hard and expensive

Monitoring Deployed Models, cont.

[Neoklis Polyzotis, Sudip Roy, Steven Whang, 
Martin Zinkevich: Data Management Challenges 
in Production Machine Learning, SIGMOD 2017]

[Xu Chu, Ihab F. Ilyas: Qualitative Data 
Cleaning. Tutorial, PVLDB 2016]

less 
actionable

[George Beskales et al: On the relative 
trust between inconsistent data and 

inaccurate constraints. ICDE 2013]
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▪ Recap Concept Drift (features → labels)
▪ Change of statistical properties / dependencies (features-labels)

▪ Requires re-training, parametric approaches for deciding when to retrain 

▪ #1 Input Data Changes
▪ Population change (gradual/sudden), but also new categories, data errors

▪ Covariance shift p(x) with constant p(y|x)

▪ #2 Output Data Changes
▪ Label shift p(y)

▪ Constant conditional feature distributed p(x|y)

▪ Goals: Fast adaptation; noise vs change, recurring contexts, small overhead

Concept Drift
[A. Bifet, J. Gama, M. Pechenizkiy, I. Žliobaitė: 

Handling Concept Drift: Importance, 
Challenges & Solutions, PAKDD 2011]
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▪ Approach 1: Periodic Re-Training
▪ Training: window of latest data + data selection/weighting

▪ Alternatives: incremental maintenance, warm starting, online learning

▪ Approach 2: Event-based Re-Training
▪ Change detection (supervised, unsupervised)

▪ Often model-dependent, specific techniques for time series

▪ Drift Detection Method: binomial distribution, if error outside scaled 

standard-deviation → raise warnings and alerts

▪ Adaptive Windowing (ADWIN): 

window W, append data to W, drop 

old values until avg windows W=W1-W2 

similar (below epsilon), raise alerts

▪ Kolmogorov-Smirnov distance / Chi-Squared: 

univariate statistical tests training/serving

Concept Drift, cont.
[A. Bifet, J. Gama, M. Pechenizkiy, I. Žliobaitė: 

Handling Concept Drift: Importance, 
Challenges & Solutions, PAKDD 2011]

[https://scikitmultiflow.readthedocs.io/
en/stable/api/generated/

skmultiflow.drift_detection.ADWIN.html]

[Albert Bifet, Ricard Gavaldà:
Learning from Time-Changing Data 

with Adaptive Windowing. SDM 2007]

https://scikit-multiflow.readthedocs.io/en/stable/api/generated/skmultiflow.drift_detection.ADWIN.html
https://scikit-multiflow.readthedocs.io/en/stable/api/generated/skmultiflow.drift_detection.ADWIN.html
https://scikit-multiflow.readthedocs.io/en/stable/api/generated/skmultiflow.drift_detection.ADWIN.html
https://scikit-multiflow.readthedocs.io/en/stable/api/generated/skmultiflow.drift_detection.ADWIN.html
https://scikit-multiflow.readthedocs.io/en/stable/api/generated/skmultiflow.drift_detection.ADWIN.html
https://scikit-multiflow.readthedocs.io/en/stable/api/generated/skmultiflow.drift_detection.ADWIN.html
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▪ Model-agnostic Performance Predictor
▪ Approach 2: Event-based Re-Training

▪ User-defined error generators

▪ Synthetic data corruption → impact on black-box model

▪ Train performance predictor (regression/classification at threshold t)

for expected prediction quality on percentiles of target variable ŷ

▪ Results 
PPM

Concept Drift, cont. [Sebastian Schelter, Tammo Rukat, Felix Bießmann: 
Learning to Validate the Predictions of Black Box 

Classifiers on Unseen Data. SIGMOD 2020]
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▪ Yearbook Dataset
▪ Frontal-facing American 

high-school seniors

▪ 1905 - 2013 

▪ Classification: 

male/female, smiles

hair-styles

Concept Drift, cont.

[https://shiry.ttic.edu/projects/
yearbooks/yearbooks.html] 

[Maximilian Böther, Ties Robroek, Viktor Gsteiger, Robin 
Holzinger, Xianzhe Ma, Pinar Tözün, Ana Klimovic: Modyn: Data-

Centric Machine Learning Pipeline Orchestration, SIGMOD 2025]

https://shiry.ttic.edu/projects/yearbooks/yearbooks.html
https://shiry.ttic.edu/projects/yearbooks/yearbooks.html
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▪ GDPR “Right to be Forgotten”
▪ Recent laws such as GDPR require

companies and institutions to

delete user data upon request

▪ Personal data must not only be deleted

from primary data stores but also from 

ML models trained on it (Recital 75)

▪ Example Deanonymization
▪ Recommender systems: models retain user similarly 

▪ Social network data / clustering / KNN

▪ Large language models (e.g., GPT-3)

GDPR (General Data Protection Regulation)

U V
┬≈X

[Sebastian Schelter: "Amnesia" - Machine Learning 
Models That Can Forget User Data Very Fast. CIDR 2020]

[https://gdpr.eu/article-17-right-to-be-forgotten/]

See incremental computations in 
03 Sizes Inferences and Rewrites

https://gdpr.eu/article-17-right-to-be-forgotten/
https://gdpr.eu/article-17-right-to-be-forgotten/
https://gdpr.eu/article-17-right-to-be-forgotten/
https://gdpr.eu/article-17-right-to-be-forgotten/
https://gdpr.eu/article-17-right-to-be-forgotten/
https://gdpr.eu/article-17-right-to-be-forgotten/
https://gdpr.eu/article-17-right-to-be-forgotten/
https://gdpr.eu/article-17-right-to-be-forgotten/
https://gdpr.eu/article-17-right-to-be-forgotten/
https://gdpr.eu/article-17-right-to-be-forgotten/
https://gdpr.eu/article-17-right-to-be-forgotten/
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▪ HedgeCut Overview
▪ Extremely Randomized Trees (ERT): ensemble of 

DTs w/ randomized attributes and cut-off points

▪ Online unlearning requests < 1ms

w/o retraining for few points

▪ Handling of Non-robust Splits

GDPR (General Data Protection Regulation), cont.
[Sebastian Schelter, Stefan Grafberger, 

Ted Dunning: HedgeCut: Maintaining 
Randomised Trees for Low-Latency 

Machine Unlearning, SIGMOD 2021]
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▪ Model Exchange and Serving

▪ Model Monitoring and Updates

▪ #1 Exam Preparation – Ask Questions in the Forum

▪ #2 Written Exams
▪ Thu July 24, 4-6pm (A 151, max 50) → 24 registrations

▪ Thu July 31, 4-6pm (EW 201, max 47) → 48 registrations

▪ Thu Aug 14, 4-6pm (A 151, max 50) → 34 registrations

Summary & QA

Thanks



Architecture of ML Systems (AMLS)
14 Q&A and Exam Preparation [continues 5.45pm]

Prof. Dr. Matthias Boehm
Technische Universität Berlin
Berlin Institute for the Foundations of Learning and Data
Big Data Engineering (DAMS Lab)

Last update: Jul 15, 2025

Example AMLS Exams (90min for 100/100 points)
https://mboehm7.github.io/teaching/ss24_amls/ExamAMLS24_v1.pdf
https://mboehm7.github.io/teaching/ss24_amls/ExamAMLS24_v2.pdf
https://mboehm7.github.io/teaching/ss24_amls/ExamAMLS24_v3.pdf

No Lecture 
Materials or 

Mobile Devices

https://mboehm7.github.io/teaching/ss24_amls/ExamAMLS24_v1.pdf
https://mboehm7.github.io/teaching/ss24_amls/ExamAMLS24_v2.pdf
https://mboehm7.github.io/teaching/ss24_amls/ExamAMLS24_v3.pdf
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▪ Task 1a: Describe the overall system architecture of data-parallel parameter servers, 
explain its components and interaction among these components [10/100 points]

▪ System Architecture
▪ M Parameter Servers w/ model

▪ N Workers w/ data partitions

▪ Optional Coordinator

▪ Interactions
▪ Workers pull model from parameter servers,

slice a mini-batch of data, run a forward and

backward pass to compute gradients,

which are pushed back to parameter serves

▪ Parameter servers wait for gradients,

aggregate the gradients/models, and

perform a global model update 

Task 1 Parameter Servers [question appeared in every exam] 10/100

M

N

W .. Model
ΔW .. Gradient
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▪ Task 1b: Describe synchronous (BSP) and asynchronous (ASP) update strategies in 
data-parallel parameter servers and name their advantages and disadvantages. [6/100 points]

Task 1 Parameter Servers, cont. [question appeared in every exam] 16/100

Synchronous Asynchronous

Description

Advantages

Disadvantages

Synchronous Asynchronous

Description Per-batch or -n-batches 
synchronization barrier (wait 
for all workers before update)

Every pushed gradient 
updates the model, workers 
obtain model immediately

Advantages Consistent learning process 
and model updates 

No waiting for stragglers

Disadvantages Workers wait for slowest 
worker (repeatedly)

Workers use stale models, 
potential divergence
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▪ Task 2a: Given the raw input data below, apply recoding and one-hot encoding to all categorical 
columns, and binning with 3 equi-width bins to all numerical columns. [10/100 points]

Task 2 Data Preparation 26/100

A B C

Low 0 S

High 3 M

Med 7 L

Low 9 XL

Low 15 M

Low 7 M

Med 4 L

High 12 XL

High 13 L

ALow AMed AHigh B CS CM CL CXL

1 0 0 1 1 0 0 0

0 0 1 1 0 1 0 0

0 1 0 2 0 0 1 0

1 0 0 2 0 0 0 1

1 0 0 3 0 1 0 0

1 0 0 2 0 1 0 0

0 1 0 1 0 0 1 0

0 0 1 3 0 0 0 1

0 0 1 3 0 0 1 0
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▪ Task 2b: What is feature hashing and what is its advantage over recoding? [3/100 points]
▪ Hash values and compute modulo with user-provided k

▪ Reduces the number of distinct items, and thus columns in one-hot-encoded representation

▪ Task 2c: Describe the text encodings bag-of-word and word-embeddings. [6/100 points]
▪ Bag-of-word: encode sentence as a vector of token counts

(how often every distinct token appeared in the sentence)

▪ Word Embedding: continuous bag-of-words, 

learned numerical vectors for predicting the context words from a word or a word from its context

▪ Task 2d: What is data augmentation and name 2 concrete techniques. [3/100 points]
▪ Synthetically generate labeled examples from small real labeled dataset through transformations 

▪ Examples: rotations, reflections, shearing, noise modulation

Task 2 Data Preparation, cont. 38/100

A B C D E

2 2 1 0 1
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▪ Task 3a: Describe the task of hyper-parameter tuning by example of GridSearch. Assume three hyper-
parameters with 10 discretized values each, how many models do we need to train? [8/100 points] 

▪ Hyper Parameter Tuning
▪ Given a model and dataset, find best hyper parameter values

(e.g., learning rate, regularization, kernel parameters, tree params) 

by training the model and evaluating it on the validation set.

▪ Grid Search 
▪ Discretize continuous parameters (linearly or exponentially)

▪ Every hyper-parameter is a dimension of a hyper-cube

▪ For all combinations, train and evaluate the model

▪ Example: 10^3 = 1000 trained models

Task 3 Model Selection 46/100

0

1

1α

β
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▪ Task 3b: Explain Bayesian Optimization as a more directed search strategy, 
and how it balances exploitation and exploration? [5/100 points]
▪ Use lightweight ML models like Gaussian Processes 

to find next points

▪ Acquisition function to balance exploitation (expected mean)

and exploration (uncertainty, expected variance)

▪ Task 3c: Describe the problem of neural architecture search, and how to deal with 
multiple optimization objectives (e.g., accuracy and runtime). [5/100 points]
▪ Automatically compose neural network architectures from building blocks

▪ Search strategies: evolutionary algorithms and Bayesian optimization

▪ Multi-objective optimization:

(1) linearization, (2) pareto front to user, (3) primary objective w/ constraints on other dims

Task 3 Model Selection, cont. 56/100
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▪ Task 4a: Describe sources of bias in machine learning and name examples how to 
ensure fairness when building ML models with examples. [4/100 points]
▪ Sources: selection bias, sample bias, data bias (e.g., NMAR), confirmation bias

▪ Fairness constraints: monotonicity, group fairness constraints 

▪ Task 4b: Explain the concept of a confusion matrix 
and describe it in detail. [4/100 points]
▪ Matrix of correct versus predicted labels

▪ Cells contain counts or relative frequencies

of correct/predicted pair occurrences

▪ Enables understanding which classes are

“confused” with each other

Task 4 Model Debugging 64/100
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▪ Task 4c: Explain the concept of occlusion-based explanations by example of classifying 
below hand-written digit as a seven [4/100].

Task 4 Model Debugging, cont. 68/100

▪ Slide black/gray square over input image

▪ Measure how feature maps (layer activation) 
and classifier output change

▪ Show a heat map
of these changes
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▪ Task 5a: Describe the purpose of the rewrite common subexpression elimination (CSE) and 
sketch an algorithm to perform CSE on a directed acyclic graph (DAG) of operators. [5/100 points]
▪ Convert tree/graph of operators with redundant 

common subexpressions into redundancy-free operator graph 

▪ Step 1: Collect and replace leaf nodes

(variable reads and literals)

▪ Step 2: recursively remove CSEs bottom-up

starting at the leaves by merging nodes with 

same inputs (beware non-determinism)

▪ Task 5b: Explain the concept of operator fusion and 
how it can improve runtime performance [3/100 points]
▪ Merge sequence or sub-DAG of data-dependent operators into a single operator

▪ Performance Improvements: avoid unnecessary allocation, reduced write/read memory bandwidth

requirements / cache locality, additional specialization (e.g., data types, dimensions) 

Task 5 Compilation Techniques 76/100

7

-

R1

A B

abs

*

A B

+

rand

R2

abs

*

7

-

R1

+

rand

R2

A B

abs

*
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▪ Task 5c: Assume an example chain of matrix multiplications (A B C D E), describe the 
problem of matrix multiplication chain optimization, and a dynamic programming algorithm
for solving it efficiently [7/100 points]

▪ Matrix Multiplication is associative, mmchain
opt aims to find optimal parenthesization

▪ Dynamic programming applies because 
(1) optimal substructure, and 
(2) overlapping subproblems

▪ Bottom-up sub-chain optimization 
via composition from solved subproblems

▪ Top-down read-out of optimal split matrix 

Task 5 Compilation Techniques 83/100

M1 M2 M3 M4 M5

Cost matrix 
m

0 0 0 0 0

1

2

3

4

5 1

2

3

4

5

j i

350 35 15 27

105 56 72

135 125

222
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▪ Task 6a: Describe min-max quantization of an FP64 (floating point) representation into UINT8 (integer). 
Why does such an encoding increase training and/or inference performance? [8/100 points]

▪ Determine min/max range of matrix

▪ Split range into 2^8 = 256 buckets/bins

▪ Encode FP64 values in a bin via binID (lossy, but order-preserving)

➔ Performance Improvements
▪ (1) Reduced memory bandwidth requirements

▪ (2) Increased instruction parallelism (e.g., AVX512: 8 FP64 → 64 UINT8 ops)

▪ (3) Reduced energy consumption

Task 6 Data Access Optimizations 91/100

FP64
Min/Max Quantization

[Jonathan Ragan-Kelly: The Future of Fast Code: 
Giving Hardware What It Wants, PLDI 2024

Keynote (inspired by Bill Dally on 14nm)]
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▪ Task 7a: Consider a deployed model M in a cloud serving 
environment and assume 1000s of clients. Explain three 
strategies for improving model scoring throughput
at the serving site. [9/100 points] 

▪ Caching / Reuse of input-prediction pairs (fewer model invocations)

▪ Batching of client requests / vectorization
(fewer kernel launches, utilize compute better, less sync barriers)

▪ Quantization of input data (data transfer to serving systems, instruction parallelism)

▪ Inference Program Compilation

▪ Specialized, Smaller Models

Task 7 Model Deployment 100/100

M

Serving System

client 
requests

predictions
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Final Questions & Answering

THANKS 
and 

GOOD LUCK!
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