
Univ.-Prof. Dr.-Ing. Matthias Boehm
Technische Universität Berlin
Faculty IV - Electrical Engineering and Computer Science
Berlin Institute for the Foundations of Learning and Data (BIFOLD)
Big Data Engineering (DAMS Lab) Group

1 AMLS SoSe 2025: Exercise – ECG Time Series Classification

Published: Apr 12, 2025 (last update: May 7)
Deadline: Jul 15, 2025; 11.59pm

This exercise is an alternative to the AMLS programming projects and aims to provide practical
experience in the exploratory development of machine learning (ML) pipelines. The task is to create
a classifier for univariate echocardiogram (ECG) time series data. You may choose any programming
language(s) and utilize existing open-source ML systems and libraries. The expected result is a zip
archive named AMLS Exercise <student ID>.zip (replace <student ID> by your student ID) of max
20MB, containing:

• The source code used to solve the individual sub-tasks (in a sub-folder each).

• A PDF report of up to 8 pages (10pt), including the names of all team members, a summary of
how to run your code, and an explanation of the solutions to the individual sub-tasks.

• Three CSV files with your test predictions, located in the root of your .zip archive, named
base.csv, augment.csv, and reduced.csv. These files should use the same format as y train.csv.

Data: This exercise uses ECG time series. Training and test data can be downloaded from the
TU-Cloud. We only provide training labels, and in the different subtasks you should use the test data
to materialize your predictions (which will be included as part of your submission). Each ECG signal
is classified into four classes: (0) normal, (1) AF (tachyarrhythmia, which is uncoordinated atrial
activation), (2) other (rhythms that do not fall into either normal or AF), and (3) noisy (too noisy
to classify) heart rhythms. The signals are sampled at 300 Hz. The training data is given in a binary
format of a 32-bit integer for the length of the time series, followed by the values as 16-bit signed
integers (see the data parser for help).

0 1000 2000 3000 4000

0

500

1000

Class 0

0 1000 2000 3000 4000

500

0

500

Class 1

0 1000 2000 3000 4000
500

0

500

Class 2

0 1000 2000 3000 4000
500

0

500

Class 3

Grading: This exercise is conducted in teams of 1 to 3 persons (one submission). The grading is a
pass/fail for the entire team. Exercises with ≥ 50/100 points are a pass, and the quality expectations
increase with the team size. Exercises with ≥ 90 points receive 5 extra points in the exam.

1

https://tubcloud.tu-berlin.de/s/iWCbQtmnTRsLt2i


def forward(self , x, lengths):

x, _ = pad_packed_sequence(x, batch_first=True)

x, lengths = self.stft(x, lengths)

x = log2(x.unsqueeze (1))

x, lengths = self.conv1(x, lengths)

x, lengths = self.conv2(x, lengths)

x = x.view(x.size (0), -1, x.size (3))

x = x.permute(0, 2, 1)

x = pack_padded_sequence(x, lengths ,

batch_first=True , enforce_sorted=False)

_, (ht, ct) = self.rnn(x)

x = self.fc(ht[-1])

return x

Figure 1: A baseline you can include or start from is a model using a short-time Fourier transform on
the univariate input, followed by two 2D convolutions with pooling and ReLU activation,
then a recurrent neural network layer, of which you feed the last hidden state of the time
series into a linear layer, to produce an output prediction. Note that we intentionally do not
provide the model size in order to encourage exploration.

1.1 Dataset Exploration (15/100 points)

As a starting point, analyze the provided data. Summarize the class distribution, the lengths of time
series, and basic descriptive statistics. In particular, report any characteristics that could be used
to deduce which class a time series belongs to. After analyzing the data characteristics, construct a
validation split from your training data that reflects the characteristics of the full training data. In
the report, justify your selection.
Expected Results: Summarize the data characteristics, visualize ECG time series of the individual

classes, and explain the differences between classes by utilizing the collected statistics. Finally, provide
the code to select a validation subset of the training data.

1.2 Modeling and Tuning (40/100 points)

Construct an ML pipeline—using the prepared training and validation sets—for classifying the ECG
time series into the four classes. Figure 1 shows an optional model architecture. Choose an appropriate
loss function and evaluation metric and evaluate this metric on both the train and validation data.
Train models for at least two different model architectures, and tune the hyper-parameters of your
model (e.g., regularization parameters, channels, learning rate, optimizers, early stopping). Finally,
report the evaluation metric on the test data.

Expected Results: Runnable code for training and inference, as well as descriptions of the used
model architectures, ML pipelines, and their evaluation. The report must include statistics or plots
highlighting the quality of the trained models. You should further justify the selected architectures
and solutions, as well as reason why they are applicable to ECG data. Use your final model to produce
the base.csv predictions of the test dataset for your submission.

1.3 Data Augmentation and Feature Engineering (30/100 points)

Improve your model quality via data augmentation techniques and feature engineering. Suggestions
for augmentations include time stretching/compression, time shifting, adding noise, random cropping,
resampling, amplitude scaling, and frequency domain augmentations via inverse Fourier transforma-
tions. You can use specialized libraries of your choice to extract additional features or perform data

2



augmentation. Suggested libraries include: BioSPPy, HeartPy, WFDB and pyECG. Depending on the
level of engineered features, it might be beneficial for you to change the model into an ensemble of
various techniques (e.g., random forest, SVM, and NN).

All selected techniques must be implemented as a part of your ML pipeline to operate as pre-
processing steps on the entire dataset, or on individual mini-batch elements during training.
Expected Results: Code for applying the data augmentation techniques and a summary of their

impact on model quality. For full points, the report must include justifications for the selected aug-
mentation techniques and their placement in your ML pipeline (on batches or the entire dataset). Use
the model trained on augmented data to produce the augment.csv predictions of the test dataset.

1.4 Data Reduction (15/100 points)

Finally, please try to reduce the input data. The provided training data in the zip archive is 62MB =
64,131,756 Bytes, while the uncompressed binary file is 116 MB = 120,641,086 Bytes. Using the same
pipeline from your augmentation pipeline, construct a new parser that directly reads your own input
data format. This task can take many directions, and you are encouraged to analyze the compound
effect of multiple techniques:

• Data Sampling: One direction is to select a representative subset of the original time series. A
näıve approach (and thus, only baseline) is random sampling. More advanced techniques include
finding a coreset (i.e., a subset of the original data achieving high accuracy) [1, 2] and generating
a smaller synthetic training dataset that produces similar or better accuracy [3].

• Lossy Compression: Another strategy is to approximate the time series via lossy compression.
Examples include Piecewise Constant Approximation (PCA), Piecewise Linear Approximation
(PLA), Quantization, Line Simplification, and Fourier Transform with thresholding. If you use
any lossy approximation of data, include the means absolute error (MAE) and the mean square
error (MSE) of the original and the lossy approximation.

• Lossless Compression: While Zip does provide good compression ratios, other lossless com-
pression techniques could produce better compression and runtime tradeoffs. Furthermore, the
provided binary files use 16-bit for each value. However, the ECG signal rarely uses the entire
value range of 16-bit. Therefore, an option for better lossless serialized data is to treat the outliers
as exceptions and store the normal data using fewer bits (e.g., PDICT, PDELTA, PFOR).

• Embeddings: Alternatively, one could reduce the data size by creating fixed-length embeddings
of the individual ECG time series.

Note that the code of your solution is not allowed to exceed 1MB (including external libraries). Zip in
Ubuntu is 199KB = 203,768 Bytes, making it valid together with the data parser. We do not include
the programming language, compiler, or runtime memory/disk usage in this limit.
Expected Results: Code to reduce the training data, and code to read the custom training data

you constructed. The report should contain results from reducing the dataset to (at least) 10%, 25%,
and 50% of the original dataset size (the zipped version). Additionally, make a line plot that shows your
metrics as we vary the datasize, including the training results of the original and augmented model
on 100% of the data. For full points, your solution must beat (or at least be equal to) a stratified
random sample on all selected size ratios. Use the 25% reduced dataset to produce the reduced.csv
predictions of the test dataset for your submission.

3

https://biosppy.readthedocs.io/en/stable/tutorial.html
https://python-heart-rate-analysis-toolkit.readthedocs.io/en/latest/
https://wfdb.io/
https://github.com/taoyilee/pyECG


Data parser

The following code is an example of reading binary training data in Python. There are two examples:
one reads the unzipped binary, and one directly reads the zipped binary fused with decompression.

import struct

import zipfile

def read_zip_binary(path):

ragged_array = []

with zipfile.ZipFile(path , ’r’) as zf:

inner_path = path.split("/")[-1]. split(".")[0]

with zf.open(f’{inner_path }.bin’, ’r’) as r:

read_binary_from(ragged_array , r)

return ragged_array

def read_binary(path):

ragged_array = []

with open(path , "rb")as r:

read_binary_from(ragged_array , r)

return ragged_array

def read_binary_from(ragged_array , r):

while(True):

size_bytes = r.read (4)

if not size_bytes:

break

sub_array_size = struct.unpack(’i’, size_bytes)[0]

sub_array = list(struct.unpack(f’{sub_array_size}h’, r.read(

sub_array_size * 2)))

ragged_array.append(sub_array)

References

[1] Chengcheng Guo, Bo Zhao, and Yanbing Bai. 2022. DeepCore: A Comprehensive Library for Coreset
Selection in Deep Learning. arXiv:2204.08499 [cs.LG] https://arxiv.org/abs/2204.08499

[2] Yeachan Kim and Bonggun Shin. 2022. In Defense of Core-set: A Density-aware Core-set Selection for
Active Learning. arXiv:2206.04838 [cs.LG] https://arxiv.org/abs/2206.04838

[3] Shiye Lei and Dacheng Tao. 2024. A Comprehensive Survey of Dataset Distillation. IEEE Transactions on
Pattern Analysis and Machine Intelligence 46, 1 (Jan. 2024), 17–32. https://doi.org/10.1109/tpami.

2023.3322540

4

https://arxiv.org/abs/2204.08499
https://arxiv.org/abs/2206.04838
https://doi.org/10.1109/tpami.2023.3322540
https://doi.org/10.1109/tpami.2023.3322540

	1 AMLS SoSe 2025: Exercise – ECG Time Series Classification
	1.1 Dataset Exploration (15/100 points)
	1.2 Modeling and Tuning (40/100 points)
	1.3 Data Augmentation and Feature Engineering (30/100 points)
	1.4 Data Reduction (15/100 points)

	References

