

Data Management 02 Conceptual Design

Matthias Boehm

Graz University of Technology, Austria
Computer Science and Biomedical Engineering
Institute of Interactive Systems and Data Science
BMVIT endowed chair for Data Management

Last update: Oct 14, 2019

SCIENCE PASSION

TECHNOLOGY

Announcements/Org

- #1 Video Recording
 - Link in TeachCenter & TUbe (lectures will be public)
- #2 CS Talks x5 (Oct 15, 5pm, Aula Alte Technik)
 - Margarita Chli (ETH Zurich)
 - Title: How Robots See Current Challenges and Developments in Vision-based Robotic Perception
- #3 Course Registrations WS19/20
 - Data Management (separate lectures/exercises)
 - Databases (combined lectures/exercises)
- #4 Info Study Abroad
 - 5-10min in lecture Oct 28
 - Probably beginning of the lecture

100/86 55

POP-UP INFORMATION BOOTH - OCTOBER 2019
Mobility Programmes for students

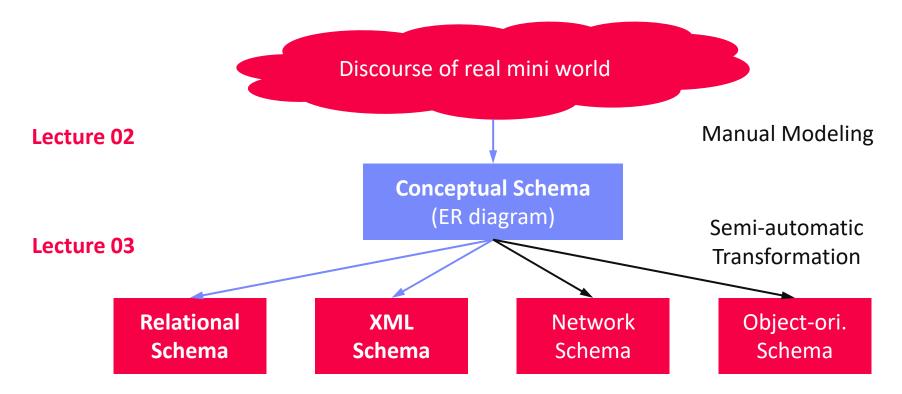
- exchange programmes
- summer programmes
- internships
- research

Agenda

- DB Design Lifecycle
- ER Model and Diagrams
- Exercise 01 Data Modeling

[**Credit:** Alfons Kemper, André Eickler: Datenbanksysteme - Eine Einführung, 10. Auflage. De Gruyter Studium, de Gruyter Oldenbourg 2015, ISBN 978-3-11-044375-2, pp. 1-879]

DB Design Lifecycle



Data Modeling

Data Model

- Concepts for describing data objects and their relationships (meta model)
- Schema: Description (structure, semantics) of specific data collection

Data Models

Conceptual Data Models

- Entity-Relationship Model (ERM), focus on data, ~1975
- Unified Modeling Language (UML), focus on data and behavior, ~1990

Logical Data Models

Relational

Key-Value
 Graph
 Document (XML, JSON)
 Matrix/Tensor

Partly covered in part B

Object-oriented

Network

Hierarchical

Mostly obsolete

DB Design Lifecycle Phases

- Collect and analyze data and application requirements
- Specification documents

- Model data semantics and structure, independent of logical data model
- → ER model / diagram
- #3 Logical Design (next lecture, exercise 1)
 - Model data with implementation primitives of concrete data model
 - → e.g., relational schema + integrity constraints, views, permissions, etc

#4 Physical Design

- Model user-level data organization in a specific DBMS (and data model)
- Account for deployment environment and performance requirements

Relevance in Practice

Analogy ERM-UML

- Model-driven development (self-documenting, but quickly outdated)
- But: Once data is loaded, data model and schema harder to change

Observation: Full-fledged ER modeling rarely used in practice

- Often the logical schema (relational schema) is directly created,
 maintained and used for documentation
- Reasons: redundancy, indirection, single target (relational)
- Simplified ER modeling used for brainstorming and early ideas

Goals

- Understanding of proper database design from conceptual to physical schema
- ER modeling as a helpful tool in database design
- Schema transformation and normalization as blueprint for good designs

Tool Support

- #1 Visual Design Tools
 - Draw ER diagrams in any presentation software (e.g., MS PowerPoint, LibreOffice)
 - Many desktop or web-based tools support ER diagrams directly (e.g., MS Visio, creately.com)
- #2 Design Tools w/ Code Generation
 - Draw and validate ER diagrams
 - Generate relational schemas as SQL DDL scripts
 - Examples: SAP (Sybase) PowerDesigner,
 MS Visual Studio plugins (SQL server), etc.
- → Note: For the exercises, please use basic drawing tools (existing tools use slightly diverging notations)

Entity-Relationship (ER) Model and Diagrams

[Peter P. Chen: The Entity-Relationship Model - Toward a Unified View of Data. **ACM Trans. Database Syst. 1(1) 1976**]

[Peter P. Chen: The Entity-Relationship Model: Toward a

Unified View of Data. VLDB 1975]

ER Diagram Components (Chen Notation)

Entity Type (noun)

- Entities are objects of the real world
- An entity type (or entity set) represents a collection of entities

Employee Weak entities

Relationship Type (verb)

- Relationships are concrete associations of entities
- Relationship type (or relationship set) or relationship of entity types

Attribute

- Entities or relationships are characterized by attribute-value pairs
- Attribute types (or value sets) describe entity and relationship types
- Extended attributes: composite, multi-valued, derived

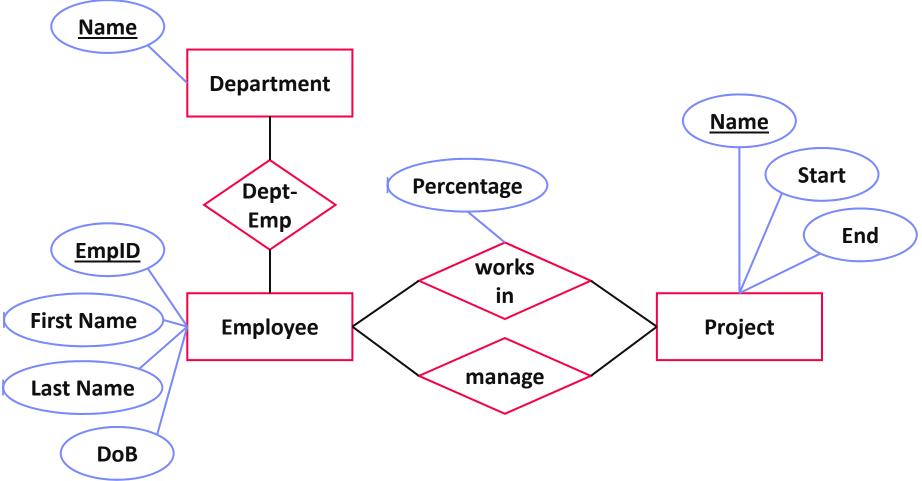
ER Diagram Components (Chen Notation), cont.

Keys

- Attributes that uniquely identify an entity
- Every entity type must have such a key
- Natural or surrogate (artificial) keys

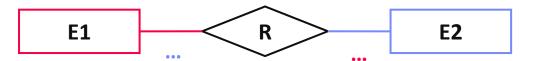
Role

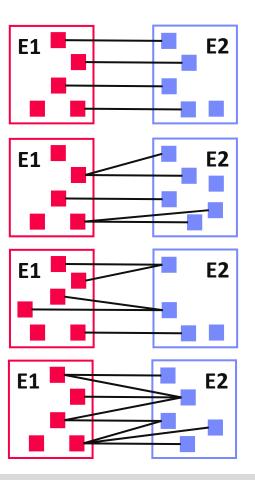
- Optional description of relationship types
- Useful for recursive relationships



An EmployeeDB Example

[Peter P. Chen: The Entity-Relationship Model - Toward a Unified View of Data. ACM Trans. Database Syst. 1(1) 1976]

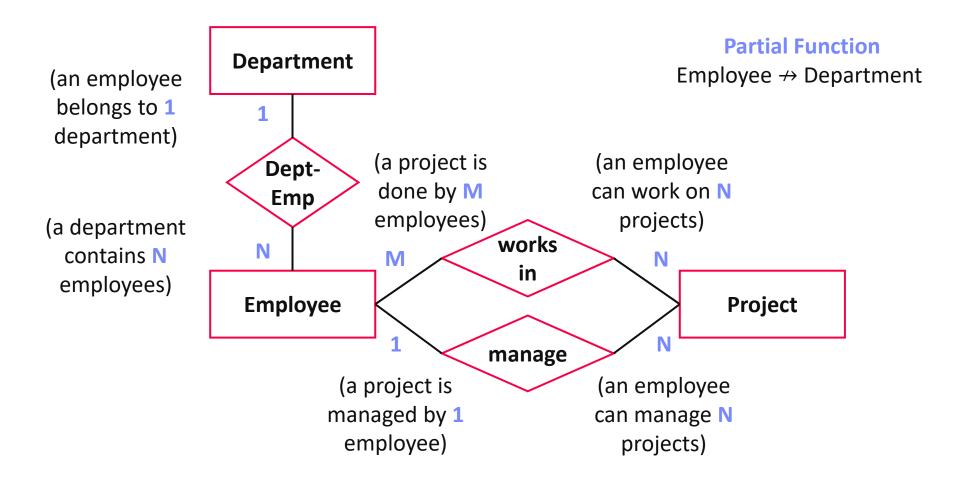



Multiplicity/Cardinality in Chen Notation

1 .. [0,1] N ... [0,1,N]

 $R \subseteq E1 \times E2$

- 1:1 (one-to-one) —
 - Each e1 relates to at most one e2
 - Each e2 relates to at most one e1
- 1:N (one-to-many) ←
 - Each e1 relates to many e2 (0,1,...N)
 - Each e2 relates to at most one e1
- N:1 (many-to-one) →
 - Symmetric to 1:N
- N:M (many-to-many)
 - Each e1 relates to many e2 (0,1,...M)
 - Each e2 related to many e1 (0,1,...N)



An EmployeeDB Example, cont.

[Peter P. Chen: The Entity-Relationship Model - Toward a Unified View of Data. ACM Trans. Database Syst. 1(1) 1976]

4 alternatives (1, C, M, MC) $\Rightarrow 2^4 = 16 \text{ combinations}$

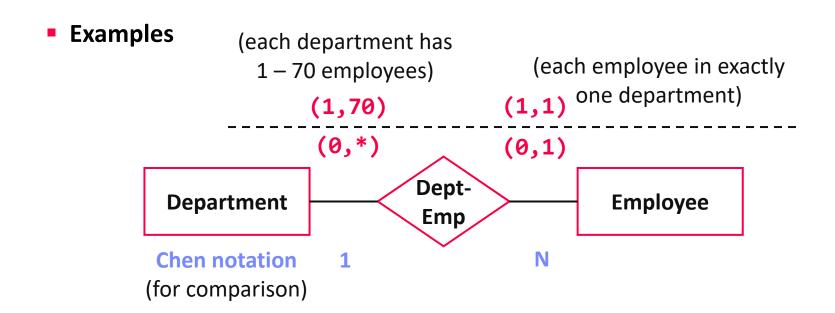
(symmetric combinations omitted)

Multiplicity in Modified Chen Notation

- Extension: C ("choice"/"can") to model 0 or 1, while 1 means exactly 1 and M means at least 1.
- **1:1** [1] to [1]
- **1:C** [1] to [0 or 1]
- **1:M** [1] to [at least 1]
- **1:MC** [1] to [arbitrary many]
- **C:C** [0 or 1] to [0 or 1] → see 1:1 in Chen
- **C:M** [0 or 1] to [at least 1]
- C:MC [0 or 1] to [arbitrary many] → see 1:N in Chen
- M:M [at least 1] to [at least 1]
- M:MC [at least 1] to [arbitrary many]
- MC:MC [arbitrary many] to [arbitrary many] → see M:N in Chen

(min, max)-Notation

Alternative Cardinality Notation

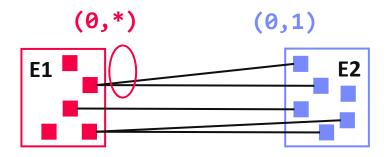

E2 E1 Indicate concrete min/max constraints

 $(\min_1, \max_1) \quad (\min_2, \max_2)$

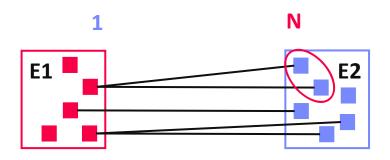
Chen and (min,max) notation generally incomparable

(each entity is part of at least/at most x relationships)

Wildcard * indicates arbitrary many (i.e., N)



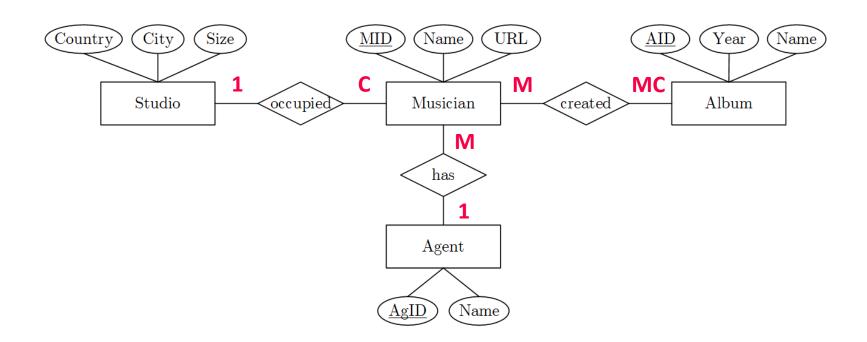
(min,max)-Notation, cont.


- Problem: Where do these conflicting notations come from?
- Understanding (min, max)-Notation
 - Focus on relationships!
 - Describes number of outgoing relationships for each entity

Understanding Chen- /

Modified-Chen-Notation

- Focus on entities!
- Describes number of target entities (over relationships) for each entity



BREAK (and Test Yourself)

- Task: Cardinalities in Modified-Chen Notation (prev. exam 6/100 points)
 - A musician might have created none or arbitrary many albums, and any album is created by at least one musician.
 - Every musician has exactly one agent, and an agent might be responsible for one to ten musicians.
 - Every musician occupies exactly one studio, and musicians never share a studio.

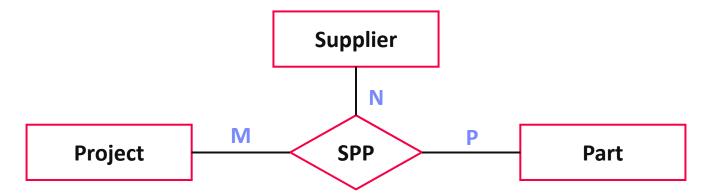
Weak Entity Types

Existence Dependencies

- Entities E2 whose existence depends on the other entities E1
- Visualized as a special rectangle with double border
- Primary key is contains primary key of E1
- Relationship between strong and weak entity types 1:N (sometimes 1:1)

Examples

- Dependents of an employee (spouse, children)
- Rooms of a building



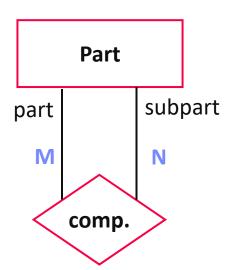
N-ary Relationships

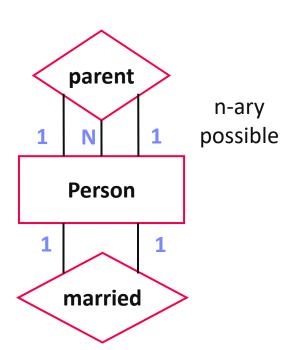
Use of n-ary relationships

- Relationship type among multiple entity types
- N-ary relationship can be converted to binary relationships
- Design choice: simplicity and consistency constraints

Multiplicity

- 1 Project and 1 Supplier → supply P parts
- 1 Project and 1 Part → supplied by N suppliers (1 instead of N?)
- 1 Supplier and 1 Part → supply for M projects

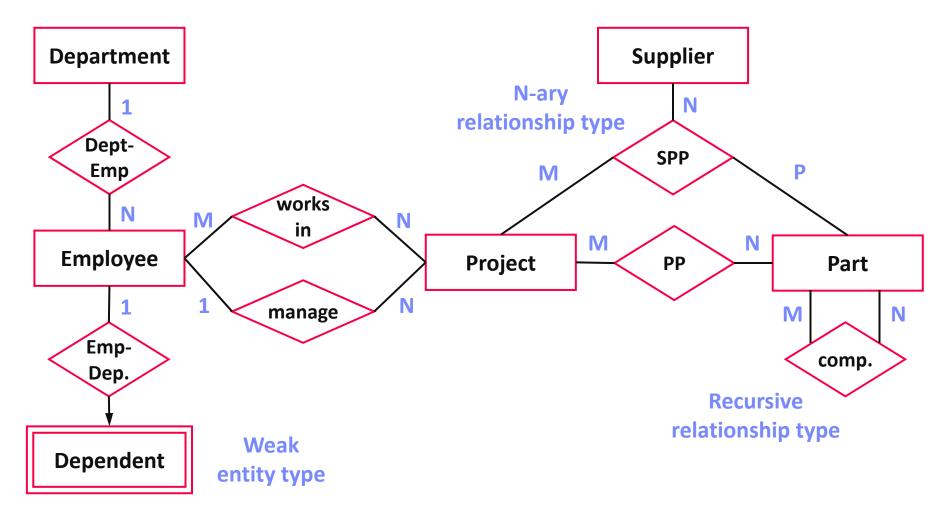




Recursive Relationships

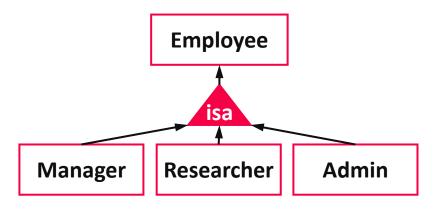
- Definition
 - Recursive relationships are relations between entities of the same type
 - Use roles to differentiate cardinalities

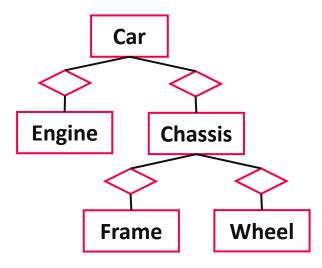
Examples


 Beware of [at least 1] constraints in recursive relationships (e.g., (min,max)-notation, or MC notation)

An EmployeeDB Example, cont.

[Peter P. Chen: The Entity-Relationship Model - Toward a Unified View of Data. ACM Trans. Database Syst. 1(1) 1976]





Specialization and Aggregation

- Specialization via Subclasses
 - Tree of specialized entity types (no multi-inheritance)
 - Graphical symbol: triangle (or hexagon, or subset)
 - Each entity of subclass is entity of superclass, but not vice versa

- Aggregation (composition, not specialization)
 - #1: Recursive relationship types, or
 - #2: Explicit tree of entity and relationship types
 - Design choice: number of types known and finite, and heterogeneous attributes
- Beware: Simplicity is key

First Name

DoB

Last Name

Types of Attributes

Atomic Attributes

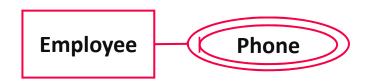
Basic, single-valued attributes

Composite Attributes

- Attributes as structured data types
- Can be represented as a hierarchy

Employee Name Last Name

Employee


Derived Attributes

- Attributes derived from other data
- Examples: Number of employees in dep, employee age, employee yearly salary

Employee Age

Multi-valued Attributes

Attributes with list of homogeneous entries

Excursus: Influence of Chinese Characters?

"What does the Chinese character construction principles have to do with ER modeling? The answer is: both Chinese characters and the ER model are trying to model the world – trying to use graphics to represent the entities in the real world. [...]"

[Peter Pin-Shan Chen: Entity-Relationship Modeling: Historical Events, Future Trends, and Lessons Learned. Software Pioneers 2002]

Chinese characters representing real-world entities Original Form Current Form Meaning

Sun

H Moon

Person

Composition of two Chinese characters

Design Decisions

Avoid redundancy Avoid unnecessary complexity

Meta-Level:

Which notations to use (Chen, Modified Chen, (min,max)-notation)?

Entities

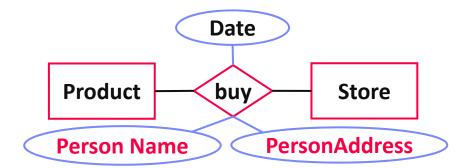
- What are the entity types (entity vs relationship vs attribute)?
- What are the attributes of each entity type?
- What are key attributes (one or many)?
- What are weak entities (with partial keys)?

Relationships

- What are the relationship types between entities (binary, n-ary)?
- What are the attributes of each relationship type?
- What are the cardinalities?

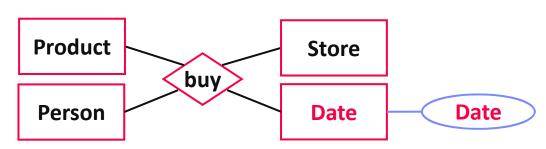
Attributes

What are composite, multi-valued, or derived attributes?



Design Decisions – Examples of Poor Choices

- #1 Overuse of weak entity types
- #2 Redundant attributes
 - Redundant supplier name in Part and Supplier
- Supplier Name
 Part PS Supplier Address


#3 Repeated information

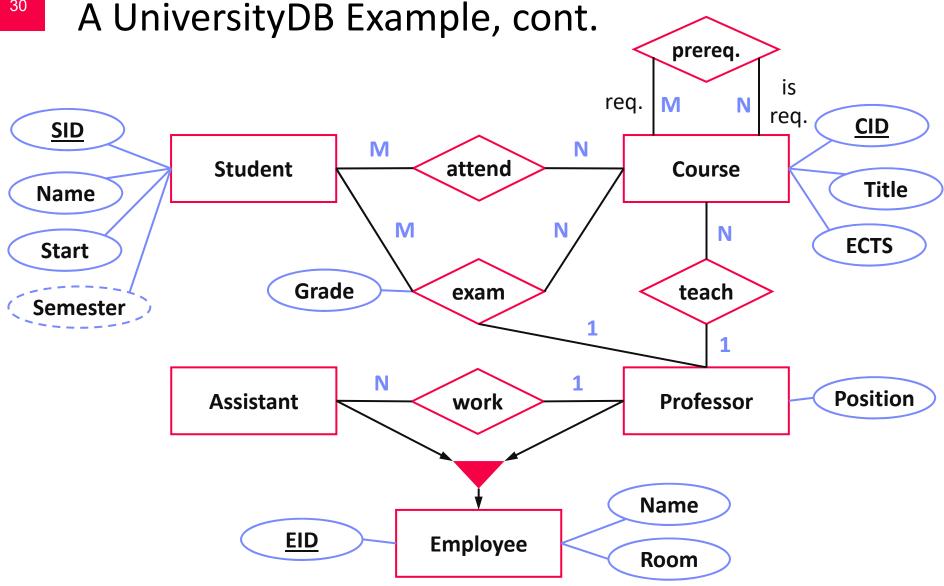
■ Missing person entity type
 → redundancy per purchase

#4 Unnecessary Complexity

- Unnecessary entity type Date
- Avoid single-attribute entity types unless in many relationships

A UniversityDB Example

Discourse of Real Mini World


- Students (with SID, name, and semester) attend courses (CID, title, ECTS), and take graded exams per course
- Professors teach courses and have positions, assistants work for professors
- A course may have another course as prerequisites
- Both professors and assistants are university employees (EID, name, and room number); professors also have a position

Task: Create an ER diagram in Chen notation

- Include entity types, relationship types, attributes, and generalizations
- Mark primary keys, roles for recursive relationships, and derived attributes

Exercise 01 – Data Modeling

Published: Oct 15, 2019

(online, but minor changes possible until published date)

Deadline: Nov 05, 2019

Exercises: Airports and Airlines

Dataset

- Public-domain, derived (parsed, cleaned)
 from the OpenFlights Dataset
- Clone or download your copy from https://github.com/tugraz-isds/datasets.git

Exercises

- 01 Data modeling (relational schema)
- 02 Data ingestion and SQL query processing
- 03 Tuning, query processing, and transaction processing
- 04 Large-scale data analysis (distributed data ingestions and query processing)

Airlines.csv: The Airlines file contains the airlines information

#Name, IATA, ICAO, Country, Active Austrian Airlines,OS,AUA,Austria,Y Turkish Airlines,TH,THY,Turkey,Y Lufthansa,MH,DLH,Germany,Y

Airports.csv: The Airports file contains the airports informati

#Name, City, Country, IATA, ICAO, Latitude, Logtitude, Goroka Airport, Goroka, Papua New Guinea, GKA, AYGA, -6.0816 Kaduna Airport, Kaduna, Nigeria, KAD, DNKA, 10.6960000991821 Brussels Airport, Brussels, Belgium, BRU, EBBR, 50.901401519

Routes.csv: The Routes file contains the flights information. I

#Airline, Departure, Arrival, Plane NF,NUS,VLI,YN2;DHT;BNI Y9,IFN,MRX,TU3 6R,MJZ,YKS,TU3;AN4 3R,ASF,DME,SU9

Planes.csv: The Planes file contains the planes information. It

#Name, IATA, ICAO
Aerospatiale SN.601 Corvette,NDC,S601
Airbus A380-800,388,A388
Antonov AN-12,ANF,AN12
Boeing 737-400,734,B734

Task 1.1: ER Modeling (10/25 points)

- ER Diagram in Modified Chen Notation
 - Create the ER diagram (entity types, relationship types, attribute types, cardinalities, and keys) in presentation/data modeling tools, or by hand
 - Discourse
 - Airports (name, city, latitude, longitude, altitude, IATA, ICAO)
 - Airlines (name, country, IATA, ICAO, frequent flyer program [4])
 - Routes (departure, destination, airline, plane [16])
 - Plane (name, IATA, ICAO)
 - Locations (city, country, time zone, DST type)
 - Note: The ER diagram allows for alternative modeling choices but you'll loose points for factual mistakes are poor design choices
- Expected result (for all three subtasks)
 - DBExercise01_<studentID>.pdf

Don't get your own studentID wrong

Task 1.2: Mapping ER \rightarrow Relational (10/25 points)

Relational Schema

- Map your ER diagram into a relational schema (diagram, SQL DDL script, or list of relations)
- Your schema should include relations and typed attributes, as well as primary and foreign keys

```
<Table>(<PK>:<type>, <Attribute>:<type>, ..., <FK>:<type>)
```

PK .. Primary key name

FK .. Foreign key name

Task 1.3: Relational Normalization (5/25 points)

3NF Relational Schema

- Bring your relational schema into third normal form, and list necessary schema changes
- Explain with reference to specific relations why this schema is in 3NF

Extra Credit (5 points)

- Relationship types w/ cardinalities in (min,max)-Notation (3 points)
- 4 Additional semantic or domain constraints (2 points)

Requirement for Exercise Completion

- Submitted on time (in total at most 7 late days)
- >50% points in total (over all exercises)

Conclusions and Q&A

Summary

- DB Design lifecycle from requirements to physical design
- Entity-Relationship (ER) Model and Diagrams

Importance of Good Database Design

- Poor database design → development and maintenance costs, as well as performance problems
- Once data is loaded, schema changes very difficult (data model, or conceptual and logical schema)

Exercise 1: Data Modeling

- Published Oct 15, 2019; deadline: Nov 05, 2019
- Recommendation: start with task 1.1 this week;
 ask questions in upcoming lectures or on news group
- Next lecture (Oct 21): 03 Data Models and Normalization

