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Hadoop History and Architecture

= Recap: Brief History
= Google’s GFS [SOSP’03] + MapReduce [ODSI'04] - Apache Hadoop (2006)
= Apache Hive (SQL), Pig (ETL), Mahout (ML), Giraph (Graph)

= Hadoop Architecture / Eco System
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MapReduce — Programming Model

= Overview Programming Model
= |nspired by functional programming languages
= Implicit parallelism (abstracts distributed storage and processing)
L function: key/value pair = set of intermediate key/value pairs
= function: merge all intermediate values by key

= Example SELECT Dep, count(*) FROM csv_files GROUP BY Dep

mm (Long pos, String line) {

parts & line.split(“,”)

X = emit(parts[1], 1)
Y CS .

} cs 1 (String dep, .
A EE Iterator<Long> iter) {
7 cS CS 1 total <& iter.sum();

EE 1 emit(dep, total)
: CS 3
Collection of CS 1 }

key/value pairs EE 1
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MapReduce — Execution Model

#1 Data Locality (delay sched., write affinity)

Input CSV files Map-Phase #2 Reduced shuffle (combine)
(stored in HDFS) #3 Fault tolerance (replication, attempts)
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Spark History and Architecture

= Summary MapReduce
= Large-scale & fault-tolerant processing w/ UDFs and files =» Flexibility
= Restricted functional APIs =» Implicit parallelism and fault tolerance
= Criticism: #1 Performance, #2 Low-level APIs, #3 Many different systems

= Evolution to Spark (and Flink)

= Spark [HotCloud’10] + RDDs [NSDI’12] = Apache Spark (2014) Spqﬁzz

= Design: standing executors with in-memory storage,
lazy evaluation, and fault-tolerance via RDD lineage

= Performance: In-memory storage and fast job scheduling (100ms vs 10s)

= APIs: Richer functional APIs and general computation DAGs,
high-level APIs (e.g., DataFrame/Dataset), unified platform

=» But many shared concepts/infrastructure
= Implicit parallelism through dist. collections (data access, fault tolerance)
= Resource negotiators (YARN, Mesos, Kubernetes)
= HDFS and object store connectors (e.g., Swift, S3)
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ﬂ Spark History and Architecture, cont.

= High-Level Architecture https://spark.apache.org/]

Different language bindings:

Scala, Java, Python, R :
Spark MLIib

Different libraries:
SQL, ML, Stream, Graph

Spark core (incl RDDs)

Different cluster managers:

Yarn, Kubernetes
. N
formats, and data sources:

HDFS, S3, SWIFT, DBs, NoSQL S"p“aErK had@gp
PR -
S MESOS kubernetes

Streamingl (machine
learning)

= Focus on a unified platform
for data-parallel computation
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Resilient Distributed Datasets (RDDs)

= RDD Abstraction JavaPairRDD

collections of key-value pairs
= Coarse-grained deterministic operations (transformations/actions)
= Fault tolerance via lineage-based re-computation

= Operations

= Transformations:  Transformation

map, hadoopFile, textFile,
flatMap, filter, sample, join,

define new RDDs (lazy) groupByKey, cogroup, reduceByKey,
= Actions: return cross, sortByKey, mapValues
result to driver Action reduce, save,
collect, count, lookupKey
= Distributed Caching Nodel Node2

= Use fraction of worker memory for caching ‘-\ ‘-\
= Eviction at granularity of individual partitions
= Different storage levels (e.g., mem/disk x serialization x compression)
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Partitions and Implicit/Explicit Partitioning

= Spark Partitions
= Logical key-value collections are split into physical partitions
= Partitions are granularity of tasks, I/O (HDFS blocks/files), shuffling, evictions

= Partitioning via Partitioners Example Hash Partitioning:
= |Implicitly on every data shuffling For all (k,v) of R:
= Explicitly via R.repartition(n) pid = hash(k) % n

= Partitioning-Preserving

= All operations that are guaranteed to keep keys unchanged
(e.g. mapValues (), mapPartitions() w/ preservesPart flag)

Hash partitioned

X
- B P5
A X

= Partitioning-Exploiting
= Join: R3 = R1.join(R2)

= Lookups:
v = C.lookup(k)
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ﬂ Lazy Evaluation, Caching, and Lineage
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[Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy
McCauly, Michael J. Franklin, Scott Shenker, lon Stoica: Resilient Distributed Datasets: A
Fault-Tolerant Abstraction for In-Memory Cluster Computing. NSDI 2012]
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Example: k-Means Clustering

= k-Means Algorithm

= Gjven dataset D and number of clusters k, find cluster centroids
(“mean” of assigned points) that minimize within-cluster variance

= Euclidean distance: sqrt(sum((a-b)"2))

|| Pseudo COde Clustering Result with k = 4, nax_iterations = 18, seed = 1468
function Kmeans(D, k, maxiter) { 1y
C¢ = randCentroids(D, k); ol
C={};
i = @; //until convergence b
while( C¢ != C & i<=maxiter ) { s
C =C5
. . 6
1 =1+ 1;
A = getAssignments(D, C); a
c _ 4 .
C¢ = getCentroids(D, A, k); Nl
return C°¢ "o 2 y 5 s 10 12 14
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Example: K-Means Clustering in Spark

// create spark context (allocate configured executors)
JavaSparkContext sc = new JavaSparkContext();

// read and cache data, initialize centroids

JavaRDD<Row> D = sc.textFile(“hdfs:/user/mboehm/data/D.csv*)
.map(new ParseRow()).cache(); // cache data in spark executors

Map<Integer,Mean> C = asCentroidMap(D.takeSample(false, k));

// until convergence
while( !equals(C, C2) & i<=maxiter ) {
C2 = C; i++;
// assign points to closest centroid, recompute centroid
Broadcast<Map<Integer,Row>> bC = sc.broadcast(C)
C = D.mapToPair(new NearestAssignment(bC))
.foldByKey(new Mean(@), new IncComputeCentroids())
.collectAsMap();
}
Note: Existing library algorithm

return C; [https://github.com/apache/spark/blob/master/mllib/src/
main/scala/org/apache/spark/mllib/clustering/KMeans.scala]
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Se rve rI ess CO m p utl ng [Joseph M. Hellerstein et al: Serverless

Computing: One Step Forward, Two
Steps Back. CIDR 2019]

= Definition Serverless

= FaaS: functions-as-a-service (event-driven, stateless input-output mapping)
= |nfrastructure for deployment and auto-scaling of APls/functions
= Examples: Amazon Lambda, Microsoft Azure Functions, etc Jx) < >

Lambda Functions
Event Source 1 . Other APIs
. ) I d P P Dnﬂuuﬂ@ . i
(e.g., clou - - \D - and Services

services hazon
) Aeatewﬁl Auto scaling
Pay-per-request
= Example (1M x 100ms = 0.25)

import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestHandler;

public class MyHandler implements RequestHandler<Tuple, MyResponse> {
@Override
public MyResponse handleRequest(Tuple input, Context context) {
return expensiveStatelessComputation(input);
}
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Exercise 4:
Large-Scale Data Analysis

Published: Dec 31
Deadline: Jan 21
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Task 4.1 Apache Spark Setup

= #1 Pick your Spark Language Binding 4/25
= Java, Scala, Python points
<dependency>
. <groupId>org.apache.spark</groupId>
= #2 Install Dependencies <artifactId>spark-core 2.11</artifactId>
= Java: Maven <version>2.4.3</version>
K k-sql </dependency>
SparkK-core, spark-sq <dependency>
= Python: <groupId>org.apache.spark</groupId>
pip install pyspark <artifactId>spark-sql_2.11</artifactId>
<version>2.4.3</version>
</dependency>

= (#3 Win Environment)

= Download https://github.com/steveloughran/winutils/tree/master/hadoop-
2.7.1/bin/winutils.exe

= Create environment variable HADOOP_HOME=“<some-path>/hadoop”
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Task 4.2 SQL Query Processing

= QO09: Top 5 Cities by Route Departures
= Consider all their airports
= Total number of route departures
= Return (City Name, Number of departures)
= Sorted in descending order of the number of routes

= Q10: Frequently used Plane Types
= Plane types used on more than 2048 routes
= Return (Plane type name, Number of routes it is used on)

INF.01017UF Data Management / 706.010 Databases — 11/12 Distributed Storage and Analytics
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Exercise 4: Large-Scale Data Analysis TU

Task 4.2 SQL Query Processing, cont.

= Expected Results with provided Schema and Data

QO09: Top 5 Cities by Route Q10: Frequently used Plane
Departures Types
name count name count
__________ +_______ ________________+_____-_
London 1090 Airbus A320 15406
Atlanta 760 Airbus A319 7847
Paris 681 Boeing 737 2751
Shanghai 603 Boeing 737-800 | 10329
Beijing 600 Airbus A321 3611
(5 rows) (5 rows)
s Bt o s e oo e "ISDS
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Task 4.3 Query Processing via Spark RDDs

= #1 Spark Context Creation 10/25

= Create a spark context sc w/ local master (local[*]) points

= #2 Implement Q09 via RDD Operations
= |mplement Q09 self-contained in executeQO9RDD()
= All reads should use sc.textFile(fname)

= RDD i ly > .
operations only = stdout See Spark online

documentation for
= #3 Implement Q10 via RDD Operations details

= |mplement Q10 self-contained in executeQ10RDD()
= All reads should use sc.textFile(fname)
= RDD operations only = stdout
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Task 4.4 Query Processing via Spark SQL

= #1 Spark Session Creation 6/25

= Create a spark session via a spark session builder and w. points

local master (local[*])

= #2 Implement Q09 via Dataset Operations
= |mplement Q09 self-contained in executeQO09Dataset()
= All reads should use sc.read().format("csv"

= SQL or Dataset operations only = JSON See Spark online

documentation for
details
= #3 Implement Q10 via Dataset Operations

= |mplement Q10 self-contained in executeQ10Dataset()
= All reads should use sc.read().format("csv"

= SQL or Dataset operations only = JSON > SQL processing of high

importance in modern
data management
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Task 4.4 Query Processing via Spark SQL, cont.

= Optional: Explore Spark Web Ul
= Web Ul started even in local mode
= Explore distributed jobs and stages

= Explore effects of caching on
repeated query processing

= Explore statistics

INFO Utils: Successfully started
service 'SparkUI' on port 4040.

INFO SparkUI: Bound SparkUI to 0.0.0.0, and
started at http://192.168.108.220:4040
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Task 4.5 Extra Credit: SQL Query Processing

= Q11: Longest route computed via Haversine distance 5 points
= Longest route in km
= Computed via Haversine distance (using longitude & latitude)
= Return (Departure City Name, Arrival City Name, Distance in km)

havcrsine(i) = haversine(¢, — @,) + cos(¢, ) cos(¢, )haversine(A, - 4))
r
3
é,é‘ (. 2)

(2. 2)

d = 2r arcsin (Jﬁin2 (¢’3 ; ¢1) + cos(¢p;) cos(¢h,) sin? (AZ ; ll))

Where, O = latitude and X = longitude
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Conclusions and Q&A

= Summary 11/12 Distributed Storage/Data Analysis
= Cloud Computing Overview
= Distributed Storage
= Distributed Data Analytics

= Next Lectures (Part B: Modern Data Management)
= 13 Data stream processing systems [Jan 20]
= Jan 27: Q&A and exam preparation
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