

Database Systems 12 Distributed Analytics

Matthias Boehm, Arnab Phani

Last update: Jan 10, 2020

Graz University of Technology, Austria
Computer Science and Biomedical Engineering
Institute of Interactive Systems and Data Science
BMVIT endowed chair for Data Management

ISDS

Hadoop History and Architecture

Recap: Brief History

- Google's GFS [SOSP'03] + MapReduce [ODSI'04] → Apache Hadoop (2006)
- Apache Hive (SQL), Pig (ETL), Mahout (ML), Giraph (Graph)

Hadoop Architecture / Eco System

Management (Ambari) Worker Node 1 Worker Node n Coordination / workflows (Zookeeper, Oozie) MR MR MR MR Storage (HDFS) **Head Node AM** task task task Resources (YARN) MR MR MR MR [SoCC'13] task task task task **Processing** Resource (MapReduce) Node Node Manager Manager Manager NameNode **DataNode DataNode MR Client**

MapReduce – Programming Model

- Overview Programming Model
 - Inspired by functional programming languages
 - Implicit parallelism (abstracts distributed storage and processing)
 - Map function: key/value pair → set of intermediate key/value pairs
 - Reduce function: merge all intermediate values by key
- Example SELECT Dep, count(*) FROM csv_files GROUP BY Dep

Name	Dep
Χ	CS
Υ	CS
Α	EE
Z	CS

Collection of key/value pairs

```
map(Long pos, String line) {
  parts ← line.split(",")
  emit(parts[1], 1)
}
```

CS	1
CS	1
EE	1
CS	1

MapReduce – Execution Model

Spark History and Architecture

Summary MapReduce

- Large-scale & fault-tolerant processing w/ UDFs and files → Flexibility
- Restricted functional APIs -> Implicit parallelism and fault tolerance
- Criticism: #1 Performance, #2 Low-level APIs, #3 Many different systems
- Evolution to Spark (and Flink)
 - Spark [HotCloud'10] + RDDs [NSDI'12] → Apache Spark (2014)

- Design: standing executors with in-memory storage, lazy evaluation, and fault-tolerance via RDD lineage
- Performance: In-memory storage and fast job scheduling (100ms vs 10s)
- APIs: Richer functional APIs and general computation DAGs, high-level APIs (e.g., DataFrame/Dataset), unified platform

→ But many shared concepts/infrastructure

- Implicit parallelism through dist. collections (data access, fault tolerance)
- Resource negotiators (YARN, Mesos, Kubernetes)
- HDFS and object store connectors (e.g., Swift, S3)

Spark History and Architecture, cont.

High-Level Architecture

- Different language bindings:
 Scala, Java, Python, R
- Different libraries: SQL, ML, Stream, Graph
- Spark core (incl RDDs)
- Different cluster managers:
 Standalone, Mesos,
 Yarn, Kubernetes
- Different file systems/ formats, and data sources:
 HDFS, S3, SWIFT, DBs, NoSQL

[https://spark.apache.org/] Spark GraphX Spark MLlib (machine (graph) SQL Streaming learning) Apache Spark **MESOS** Standalone **YARN** Kubernetes Apache MESOS 🚳 kubernetes

Focus on a unified platform for data-parallel computation

Resilient Distributed Datasets (RDDs)

RDD Abstraction

Immutable, partitioned collections of key-value pairs

JavaPairRDD
 <MatrixIndexes,MatrixBlock>

- Coarse-grained deterministic operations (transformations/actions)
- Fault tolerance via lineage-based re-computation

Operations

- Transformations: define new RDDs
- Actions: return result to driver

Туре	Examples
Transformation (lazy)	<pre>map, hadoopFile, textFile, flatMap, filter, sample, join, groupByKey, cogroup, reduceByKey, cross, sortByKey, mapValues</pre>
Action	<pre>reduce, save, collect, count, lookupKey</pre>

Distributed Caching

- Use fraction of worker memory for caching
- Eviction at granularity of individual partitions
- Different storage levels (e.g., mem/disk x serialization x compression)

Partitions and Implicit/Explicit Partitioning

Spark Partitions

- Logical key-value collections are split into physical partitions
- Partitions are granularity of tasks, I/O (HDFS blocks/files), shuffling, evictions

Partitioning via Partitioners

- Implicitly on every data shuffling
- Explicitly via R.repartition(n)

Example Hash Partitioning:

For all (k,v) of R: pid = hash(k) % n

Partitioning-Preserving

 All operations that are guaranteed to keep keys unchanged (e.g. mapValues(), mapPartitions() w/ preservesPart flag)

Partitioning-Exploiting

- Join: R3 = R1.join(R2)
- Lookups: v = C.lookup(k)

Lazy Evaluation, Caching, and Lineage

[Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauly, Michael J. Franklin, Scott Shenker, Ion Stoica: Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing. **NSDI 2012**]

Example: k-Means Clustering

k-Means Algorithm

- Given dataset D and number of clusters k, find cluster centroids ("mean" of assigned points) that minimize within-cluster variance
- Euclidean distance: sqrt(sum((a-b)^2))

Pseudo Code

```
function Kmeans(D, k, maxiter) {
   C' = randCentroids(D, k);
   C = {};
   i = 0; //until convergence
   while( C' != C & i<=maxiter ) {
        C = C';
        i = i + 1;
        A = getAssignments(D, C);
        C' = getCentroids(D, A, k);
   }
   return C'
}</pre>
```


Example: K-Means Clustering in Spark

```
// create spark context (allocate configured executors)
 JavaSparkContext sc = new JavaSparkContext();
// read and cache data, initialize centroids
JavaRDD<Row> D = sc.textFile("hdfs:/user/mboehm/data/D.csv")
    .map(new ParseRow()).cache(); // cache data in spark executors
Map<Integer, Mean> C = asCentroidMap(D.takeSample(false, k));
// until convergence
while( !equals(C, C2) & i<=maxiter ) {</pre>
    C2 = C; i++;
    // assign points to closest centroid, recompute centroid
    Broadcast<Map<Integer,Row>> bC = sc.broadcast(C)
    C = D.mapToPair(new NearestAssignment(bC))
         .foldByKey(new Mean(0), new IncComputeCentroids())
         .collectAsMap();
                                             Note: Existing library algorithm
                                      [https://github.com/apache/spark/blob/master/mllib/src/
return C;
                                     main/scala/org/apache/spark/mllib/clustering/KMeans.scalal
```


Serverless Computing

[Joseph M. Hellerstein et al: Serverless Computing: One Step Forward, Two Steps Back. CIDR 2019]

Definition Serverless

- FaaS: functions-as-a-service (event-driven, stateless input-output mapping)
- Infrastructure for deployment and auto-scaling of APIs/functions
- Examples: Amazon Lambda, Microsoft Azure Functions, etc

Exercise 4: Large-Scale Data Analysis

Published: Dec 31

Deadline: Jan 21

Task 4.1 Apache Spark Setup

#1 Pick your Spark Language Binding

■ Java, Scala, Python

4/25 points

#2 Install Dependencies

- Java: Maven spark-core, spark-sql
- Python: pip install pyspark

```
<dependency>
    <groupId>org.apache.spark</groupId>
    <artifactId>spark-core_2.11</artifactId>
    <version>2.4.3</version>
    </dependency>
    <groupId>org.apache.spark</groupId>
        <artifactId>spark-sql_2.11</artifactId>
        <version>2.4.3</version>
    </dependency>
</dependency>
</dependency>
</dependency>
</dependency>
</dependency>
```

(#3 Win Environment)

- Download https://github.com/steveloughran/winutils/tree/master/hadoop-2.7.1/bin/winutils.exe
- Create environment variable HADOOP_HOME="<some-path>/hadoop"

Task 4.2 SQL Query Processing

Q09: Top 5 Cities by Route Departures

- Consider all their airports
- Total number of route departures
- Return (City Name, Number of departures)
- Sorted in descending order of the number of routes

Q10: Frequently used Plane Types

- Plane types used on more than 2048 routes
- Return (Plane type name, Number of routes it is used on)

5/25 points

Task 4.2 SQL Query Processing, cont.

Expected Results with provided Schema and Data

Q09: Top 5 Cities by Route
Departures

name	count
London Atlanta Paris Shanghai Beijing (5 rows)	1090 760 681 603 600

Q10: Frequently used Plane
Types

name	count
	
Airbus A320	15406
Airbus A319	7847
Boeing 737	2751
Boeing 737-800	10329
Airbus A321	3611
(5 rows)	

Task 4.3 Query Processing via Spark RDDs

#1 Spark Context Creation

Create a spark context sc w/ local master (local[*])

10/25 points

#2 Implement Q09 via RDD Operations

- Implement Q09 self-contained in executeQ09RDD()
- All reads should use sc.textFile(fname)
- RDD operations only → stdout

See Spark online documentation for details

#3 Implement Q10 via RDD Operations

- Implement Q10 self-contained in executeQ10RDD()
- All reads should use sc.textFile(fname)
- RDD operations only → stdout

Task 4.4 Query Processing via Spark SQL

#1 Spark Session Creation

Create a spark session via a spark session builder and w. local master (local[*]) 6/25 points

#2 Implement Q09 via Dataset Operations

- Implement Q09 self-contained in executeQ09Dataset()
- All reads should use sc.read().format("csv")
- SQL or Dataset operations only → JSON

See Spark online documentation for details

#3 Implement Q10 via Dataset Operations

- Implement Q10 self-contained in executeQ10Dataset()
- All reads should use sc.read().format("csv")
- SQL or Dataset operations only → JSON

→ SQL processing of high importance in modern data management

Task 4.4 Query Processing via Spark SQL, cont.

- Optional: Explore Spark Web UI
 - Web UI started even in local mode
 - Explore distributed jobs and stages
 - Explore effects of caching on repeated query processing
 - Explore statistics

INFO Utils: Successfully started
 service 'SparkUI' on port 4040.

INFO SparkUI: Bound SparkUI to 0.0.0.0, and

started at http://192.168.108.220:4040

Task 4.5 Extra Credit: SQL Query Processing

Q11: Longest route computed via Haversine distance

5 points

- Longest route in km
- Computed via Haversine distance (using longitude & latitude)
- Return (Departure City Name, Arrival City Name, Distance in km)

$$\operatorname{haversine}\left(\frac{d}{r}\right) = \operatorname{haversine}(\phi_2 - \phi_1) + \cos(\phi_1)\cos(\phi_2)\operatorname{haversine}(\lambda_2 - \lambda_1)$$

$$(\phi_1, \lambda_1)$$

$$(\phi_2, \lambda_2)$$

$$d = 2r\arcsin\left(\sqrt{\sin^2\left(\frac{\phi_2 - \phi_1}{2}\right) + \cos(\phi_1)\cos(\phi_2)\sin^2\left(\frac{\lambda_2 - \lambda_1}{2}\right)}\right)$$

Where, \emptyset = latitude and λ = longitude

Conclusions and Q&A

- Summary 11/12 Distributed Storage/Data Analysis
 - Cloud Computing Overview
 - Distributed Storage
 - Distributed Data Analytics
- Next Lectures (Part B: Modern Data Management)
 - 13 Data stream processing systems [Jan 20]
 - Jan 27: Q&A and exam preparation

