Database Systems
12 Distributed Analytics

Matthias Boehm, Arnab Phani

Graz University of Technology, Austria

Computer Science and Biomedical Engineering
Institute of Interactive Systems and Data Science
BMVIT endowed chair for Data Management

Last update: Jan 10, 2020

TU

Grazm

SCIENCE
PASSION
TECHNOLOGY

"ISDS

Distributed Data Analysis

TU

Grazm

Hadoop History and Architecture

= Recap: Brief History
= Google’s GFS [SOSP’03] + MapReduce [ODSI'04] - Apache Hadoop (2006)
= Apache Hive (SQL), Pig (ETL), Mahout (ML), Giraph (Graph)

= Hadoop Architecture / Eco System

Management (Ambari)

Coordination / workflows
(Zookeeper, Oozie)

Storage (HDFS)

Resources (YARN)
[SoCC’13]

Processing
(MapReduce)

MR Client

Resource
Manager

CTEREEm

Worker Node 1

Worker Node n

Fr————=—==-- e e
11
MR MR |1 MR [MR
AM
task | 11| task task
|
MR |[MR |.[MR |[MR
task || task [''[| task || task

Node ::
\

anager |&

DataNode [
113]2

-l

Node
Manager

DataNode
31219

L o o oo oo oo oo o o o e o o o wd

Distributed Data Analysis -Erla'!l

MapReduce — Programming Model

= Overview Programming Model
= |nspired by functional programming languages
= Implicit parallelism (abstracts distributed storage and processing)
L function: key/value pair = set of intermediate key/value pairs
= function: merge all intermediate values by key

= Example SELECT Dep, count(*) FROM csv_files GROUP BY Dep

mm (Long pos, String line) {

parts & line.split(“,”)

X = emit(parts[1], 1)
Y CS .

} cs 1 (String dep, .
A EE Iterator<Long> iter) {
7 cS CS 1 total <& iter.sum();

EE 1 emit(dep, total)
: CS 3
Collection of CS 1 }

key/value pairs EE 1

Distributed Data Analysis -I(;rlagl

MapReduce — Execution Model

#1 Data Locality (delay sched., write affinity)

Input CSV files Map-Phase #2 Reduced shuffle (combine)
(stored in HDFS) #3 Fault tolerance (replication, attempts)

,m
co st
Filel | ,~~~~~ \

1 Split 12

\

/
\

[Reduce-Phase] Output Files
(HDFS)

/

reduce out 1

task 7
reduce out 2

f
csv | ! Spllt 21
\)

File 2 (- - T T T \
7 |\ Split 22 k
\

task 7

reduce out 3
task

(
\
File 3

]
\
]

m
L

Shuffle, Merge,
[Combine]

N

Sort, [Combine], [Compress] w/ #reducers = 3

Distributed Data Analysis TJ

Grazm

Spark History and Architecture

= Summary MapReduce
= Large-scale & fault-tolerant processing w/ UDFs and files =» Flexibility
= Restricted functional APIs =» Implicit parallelism and fault tolerance
= Criticism: #1 Performance, #2 Low-level APIs, #3 Many different systems

= Evolution to Spark (and Flink)

= Spark [HotCloud’10] + RDDs [NSDI’12] = Apache Spark (2014) Spqﬁzz

= Design: standing executors with in-memory storage,
lazy evaluation, and fault-tolerance via RDD lineage

= Performance: In-memory storage and fast job scheduling (100ms vs 10s)

= APIs: Richer functional APIs and general computation DAGs,
high-level APIs (e.g., DataFrame/Dataset), unified platform

=» But many shared concepts/infrastructure
= Implicit parallelism through dist. collections (data access, fault tolerance)
= Resource negotiators (YARN, Mesos, Kubernetes)
= HDFS and object store connectors (e.g., Swift, S3)

TU

Distributed Data Analysis Graza

ﬂ Spark History and Architecture, cont.

= High-Level Architecture https://spark.apache.org/]

Different language bindings:

Scala, Java, Python, R :
Spark MLIib

Different libraries:
SQL, ML, Stream, Graph

Spark core (incl RDDs)

Different cluster managers:

Yarn, Kubernetes
. N
formats, and data sources:

HDFS, S3, SWIFT, DBs, NoSQL S"p“aErK had@gp
PR -
S MESOS kubernetes

Streamingl (machine
learning)

= Focus on a unified platform
for data-parallel computation

INF.01017UF Data Management / 706.010 Databases — 11/12 Distributed Storage and Analytics .ISDS
Matthias Boehm, Graz University of Technology, WS 2019/20

Distributed Data Analysis -ErLa!.

Resilient Distributed Datasets (RDDs)

= RDD Abstraction JavaPairRDD

collections of key-value pairs
= Coarse-grained deterministic operations (transformations/actions)
= Fault tolerance via lineage-based re-computation

= Operations

= Transformations: Transformation

map, hadoopFile, textFile,
flatMap, filter, sample, join,

define new RDDs (lazy) groupByKey, cogroup, reduceByKey,
= Actions: return cross, sortByKey, mapValues
result to driver Action reduce, save,
collect, count, lookupKey
= Distributed Caching Nodel Node2

= Use fraction of worker memory for caching ‘-\ ‘-\
= Eviction at granularity of individual partitions
= Different storage levels (e.g., mem/disk x serialization x compression)

INF.01017UF Data Management / 706.010 Databases — 11/12 Distributed Storage and Analytics B ISDS
Matthias Boehm, Graz University of Technology, WS 2019/20

Distributed Data Analysis -ErLa!.

Partitions and Implicit/Explicit Partitioning

= Spark Partitions
= Logical key-value collections are split into physical partitions
= Partitions are granularity of tasks, I/O (HDFS blocks/files), shuffling, evictions

= Partitioning via Partitioners Example Hash Partitioning:
= |Implicitly on every data shuffling For all (k,v) of R:
= Explicitly via R.repartition(n) pid = hash(k) % n

= Partitioning-Preserving

= All operations that are guaranteed to keep keys unchanged
(e.g. mapValues (), mapPartitions() w/ preservesPart flag)

Hash partitioned

X
- B P5
A X

= Partitioning-Exploiting
= Join: R3 = R1.join(R2)

= Lookups:
v = C.lookup(k)

INF.01017UF Data Management / 706.010 Databases — 11/12 Distributed Storage and Analytics .ISDS
Matthias Boehm, Graz University of Technology, WS 2019/20

Distributed Data Analysis -I(;rE!l

ﬂ Lazy Evaluation, Caching, and Lineage

/’::__::__::__: _____________________ N
', \ \\
[A partitioning- I
b aware !
| |
: 1
| G |
|\ Stage1l |
| T I
il
I ——>-m
C I
I
: : - .‘ :r‘educe
I
L _J |
I : :
; 1
|
¥ - | |
I : !
X - , -
RN Stage 2 v Stage3
NS oo oo oo oo oo n -7 cached

[Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy
McCauly, Michael J. Franklin, Scott Shenker, lon Stoica: Resilient Distributed Datasets: A
Fault-Tolerant Abstraction for In-Memory Cluster Computing. NSDI 2012]

Distributed Data Analysis -ErLa!.

Example: k-Means Clustering

= k-Means Algorithm

= Gjven dataset D and number of clusters k, find cluster centroids
(“mean” of assigned points) that minimize within-cluster variance

= Euclidean distance: sqrt(sum((a-b)"2))

|| Pseudo COde Clustering Result with k = 4, nax_iterations = 18, seed = 1468
function Kmeans(D, k, maxiter) { 1y
C¢ = randCentroids(D, k); ol
C={};
i = @; //until convergence b
while(C¢ != C & i<=maxiter) { s
C =C5
. . 6
1 =1+ 1;
A = getAssignments(D, C); a
c _ 4 .
C¢ = getCentroids(D, A, k); Nl
return C°¢ "o 2 y 5 s 10 12 14
INF.01017UF Data Management / 706.010 Databases — 11/12 Distributed Storage and Analytics B ISDS
Matthias Boehm, Graz University of Technology, WS 2019/20

Distributed Data Analysis -ErLa!.

Example: K-Means Clustering in Spark

// create spark context (allocate configured executors)
JavaSparkContext sc = new JavaSparkContext();

// read and cache data, initialize centroids

JavaRDD<Row> D = sc.textFile(“hdfs:/user/mboehm/data/D.csv*)
.map(new ParseRow()).cache(); // cache data in spark executors

Map<Integer,Mean> C = asCentroidMap(D.takeSample(false, k));

// until convergence
while(!equals(C, C2) & i<=maxiter) {
C2 = C; i++;
// assign points to closest centroid, recompute centroid
Broadcast<Map<Integer,Row>> bC = sc.broadcast(C)
C = D.mapToPair(new NearestAssignment(bC))
.foldByKey(new Mean(@), new IncComputeCentroids())
.collectAsMap();
}
Note: Existing library algorithm

return C; [https://github.com/apache/spark/blob/master/mllib/src/
main/scala/org/apache/spark/mllib/clustering/KMeans.scala]

INF.01017UF Data Management / 706.010 Databases — 11/12 Distributed Storage and Analytics .ISDS
Matthias Boehm, Graz University of Technology, WS 2019/20

Distributed Data Analysis TJ

Grazm

Se rve rI ess CO m p utl ng [Joseph M. Hellerstein et al: Serverless

Computing: One Step Forward, Two
Steps Back. CIDR 2019]

= Definition Serverless

= FaaS: functions-as-a-service (event-driven, stateless input-output mapping)
= |nfrastructure for deployment and auto-scaling of APls/functions
= Examples: Amazon Lambda, Microsoft Azure Functions, etc Jx) < >

Lambda Functions
Event Source 1 . Other APIs
.) I d P P Dnﬂuuﬂ@ . i
(e.g., clou - - \D - and Services

services hazon
) Aeatewﬁl Auto scaling
Pay-per-request
= Example (1M x 100ms = 0.25)

import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestHandler;

public class MyHandler implements RequestHandler<Tuple, MyResponse> {
@Override
public MyResponse handleRequest(Tuple input, Context context) {
return expensiveStatelessComputation(input);
}

TU

Grazm

Exercise 4:
Large-Scale Data Analysis

Published: Dec 31
Deadline: Jan 21

INF.01017UF Data Management / 706.010 Databases — 11/12 Distributed Storage and Analytics
Matthias Boehm, Graz University of Technology, WS 2019/20

"ISDS

Exercise 4: Large-Scale Data Analysis TU

Task 4.1 Apache Spark Setup

= #1 Pick your Spark Language Binding 4/25
= Java, Scala, Python points
<dependency>
. <groupId>org.apache.spark</groupId>
= #2 Install Dependencies <artifactId>spark-core 2.11</artifactId>
= Java: Maven <version>2.4.3</version>
K k-sql </dependency>
SparkK-core, spark-sq <dependency>
= Python: <groupId>org.apache.spark</groupId>
pip install pyspark <artifactId>spark-sql_2.11</artifactId>
<version>2.4.3</version>
</dependency>

= (#3 Win Environment)

= Download https://github.com/steveloughran/winutils/tree/master/hadoop-
2.7.1/bin/winutils.exe

= Create environment variable HADOOP_HOME=“<some-path>/hadoop”

INF.01017UF Data Management / 706.010 Databases — 11/12 Distributed Storage and Analytics B ISDS
Matthias Boehm, Graz University of Technology, WS 2019/20

Exercise 4: Large-Scale Data Analysis

TU

Grazm

Task 4.2 SQL Query Processing

= QO09: Top 5 Cities by Route Departures
= Consider all their airports
= Total number of route departures
= Return (City Name, Number of departures)
= Sorted in descending order of the number of routes

= Q10: Frequently used Plane Types
= Plane types used on more than 2048 routes
= Return (Plane type name, Number of routes it is used on)

INF.01017UF Data Management / 706.010 Databases — 11/12 Distributed Storage and Analytics
Matthias Boehm, Graz University of Technology, WS 2019/20

5/25
points

"ISDS

Exercise 4: Large-Scale Data Analysis TU

Task 4.2 SQL Query Processing, cont.

= Expected Results with provided Schema and Data

QO09: Top 5 Cities by Route Q10: Frequently used Plane
Departures Types
name count name count
__________ +_______ ________________+_____-_
London 1090 Airbus A320 15406
Atlanta 760 Airbus A319 7847
Paris 681 Boeing 737 2751
Shanghai 603 Boeing 737-800 | 10329
Beijing 600 Airbus A321 3611
(5 rows) (5 rows)
s Bt o s e oo e "ISDS

Exercise 4: Large-Scale Data Analysis -ErE!l

Task 4.3 Query Processing via Spark RDDs

= #1 Spark Context Creation 10/25

= Create a spark context sc w/ local master (local[*]) points

= #2 Implement Q09 via RDD Operations
= |mplement Q09 self-contained in executeQO9RDD()
= All reads should use sc.textFile(fname)

= RDD i ly > .
operations only = stdout See Spark online

documentation for
= #3 Implement Q10 via RDD Operations details

= |mplement Q10 self-contained in executeQ10RDD()
= All reads should use sc.textFile(fname)
= RDD operations only = stdout

INF.01017UF Data Management / 706.010 Databases — 11/12 Distributed Storage and Analytics B ISDS
Matthias Boehm, Graz University of Technology, WS 2019/20

Exercise 4: Large-Scale Data Analysis -ErLa!.

Task 4.4 Query Processing via Spark SQL

= #1 Spark Session Creation 6/25

= Create a spark session via a spark session builder and w. points

local master (local[*])

= #2 Implement Q09 via Dataset Operations
= |mplement Q09 self-contained in executeQO09Dataset()
= All reads should use sc.read().format("csv"

= SQL or Dataset operations only = JSON See Spark online

documentation for
details
= #3 Implement Q10 via Dataset Operations

= |mplement Q10 self-contained in executeQ10Dataset()
= All reads should use sc.read().format("csv"

= SQL or Dataset operations only = JSON > SQL processing of high

importance in modern
data management

INF.01017UF Data Management / 706.010 Databases — 11/12 Distributed Storage and Analytics B ISDS
Matthias Boehm, Graz University of Technology, WS 2019/20

Exercise 4: Large-Scale Data Analysis TU

Task 4.4 Query Processing via Spark SQL, cont.

= Optional: Explore Spark Web Ul
= Web Ul started even in local mode
= Explore distributed jobs and stages

= Explore effects of caching on
repeated query processing

= Explore statistics

INFO Utils: Successfully started
service 'SparkUI' on port 4040.

INFO SparkUI: Bound SparkUI to 0.0.0.0, and
started at http://192.168.108.220:4040

INF.01017UF Data Management / 706.010 Databases — 11/12 Distributed Storage and Analytics B ISDS
Matthias Boehm, Graz University of Technology, WS 2019/20

Exercise 4: Large-Scale Data Analysis -ErLa!.

Task 4.5 Extra Credit: SQL Query Processing

= Q11: Longest route computed via Haversine distance 5 points
= Longest route in km
= Computed via Haversine distance (using longitude & latitude)
= Return (Departure City Name, Arrival City Name, Distance in km)

havcrsine(i) = haversine(¢, — @,) + cos(¢,) cos(¢,)haversine(A, - 4))
r
3
é,é‘ (. 2)

(2. 2)

d = 2r arcsin (Jﬁin2 (¢’3 ; ¢1) + cos(¢p;) cos(¢h,) sin? (AZ ; ll))

Where, O = latitude and X = longitude

INF.01017UF Data Management / 706.010 Databases — 11/12 Distributed Storage and Analytics B ISDS
Matthias Boehm, Graz University of Technology, WS 2019/20

TU

Grazm

Conclusions and Q&A

= Summary 11/12 Distributed Storage/Data Analysis
= Cloud Computing Overview
= Distributed Storage
= Distributed Data Analytics

= Next Lectures (Part B: Modern Data Management)
= 13 Data stream processing systems [Jan 20]
= Jan 27: Q&A and exam preparation

INF.01017UF Data Management / 706.010 Databases — 11/12 Distributed Storage and Analytics .ISDS
Matthias Boehm, Graz University of Technology, WS 2019/20

