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Announcements/Org

= Link in TeachCenter & TUbe (lectures will be public)

#2 Exercises
= Exercise 1/2 graded, feedback in TC, office hours
= Exercise 3 in progress of being graded
= Exercise 4 due Jan 21, 11.59pm

#3 Course Evaluation
= Evaluation period: Jan 14 — Feb 14
= Please, participate w/ honest feedback (pos/neg)

#4 Exam
= Dates: Jan 30, 5.30pm; Jan 31, 5.30pm; Feb 6, 4pm
= Registration closes one day before exam
= Q&A and Exam Preparation in today’s lecture
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#5 Data Management Courses

ML system
Architecture of DB system Architecture of . y
) internals
DEIEEA G U internals ML Systems .
. + prog. project
(ADBS, WS) + prog. project (AMLS, SS)

in SystemDS
[github.com/tugraz-isds/systemds]

Master Data Integration and Distributed
——————————— Large-Scale Analysis Data Management
Bachelor (DIA, WS) (usage and internals)

Data Management /

Data management from
DEIELEES

user/application perspective

(DM, SS+WS)
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Agenda

= Data Stream Processing Data Integration and

=_Distributed-Stream-Processing » Large-Scale Analysis (DIA)
= Q&A and Exam Preparation (bachelor/master)
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Data Stream Processing
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Data Stream Processing

' Stream Processing Terminology
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= Ubiquitous Data Streams

= Event and message streams (e.g., click stream, twitter, etc)

= Sensor networks, loT, and monitoring (traffic, env, networks)

= Stream Processing Architecture
= Infinite input streams, often with window semantics
= Continuous (aka standing) queries

Stream Processing Engines

Queries
Input Output
“data at Stream .\ Stream
— gl
“data in
Stored (Continuous) motion”

Queries

Stored Data
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Data Stream Processing -ErLa!.

Stream Processing Terminology, cont.

= Use Cases
= Monitoring and alerting (notifications on events / patterns)
= Real-time reporting (aggregate statistics for dashboards) Continuously
= Real-time ETL and event-driven data updates - active

= Real-time decision making (fraud detection)

= Data stream mining (summary statistics w/ limited memory)

= Data Stream
= Unbounded stream of data tuples S = (s, s,, ...) with s, = (t,, d)
= See 08 NoSQOL Systems (time series)

= Real-time Latency Requirements
= Real-time: guaranteed task completion by a given deadline (30 fps)
= Near Real-time: few milliseconds to seconds
= |n practice, used with much weaker meaning
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History of Stream Processing Systems

= 2000s

= Data stream management systems (DSMS, mostly academic prototypes):
STREAM (Stanford’01), Aurora (Brown/MIT/Brandeis’02) - Borealis (‘05),
NiagaraCQ (Wisconsin), TelegraphCQ, (Berkeley’03), and many others

=>» but mostly unsuccessful in industry/practice

= Message-oriented middleware and Enterprise Application Integration (EAI):
IBM Message Broker, SAP eXchange Infra., MS Biztalk Server, TransConnect

= 2010s

= Distributed stream processing engines, and “unified” batch/stream processing

= Proprietary systems: Google Cloud Dataflow, MS StreamlInsight / Azure Stream
Analytics, IBM InfoSphere Streams / Streaming Analytics, AWS Kinesis

= Open-source systems: Apache Spark Streaming (Databricks), Apache Flink
(Data Artisans), Apache Kafka (Confluent), Apache Storm

SEEK

%A APACHE
- kafka. 2> STORM

A distributed streaming platform
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System Architecture — Native Streaming

= Basic System Architecture -

= Data flow graphs (potentially
w/ multiple consumers) - .
— —r
= Nodes: asynchronous ops (w/ state)
(e.g., separate threads)

= Edges: data dependencies

(tuple/message streams) L m
= Push model: data production State

controlled by source

= Operator Model while( !stopped ) {
= Read from input queue r = in.dequeue(); // blocking
if( pred(r.A) ) // A==7
for( Queue o : out )
o.enqueue(r); // blocking

= Write to potentially
many output queues

= Example Selection }
Op=7 _’( E
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System Architecture — Sharing

= Multi-Query Optimization

= Given set of continuous queries (deployed), compile minimal DAG w/o
redundancy (see 08 Physical Design MV) =» subexpression elimination
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= Operator and Queue Sharing
= QOperator sharing: complex ops w/ multiple predicates for adaptive reordering
= Queue sharing: avoid duplicates in output queues via masks
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Data Stream Processing -ErLa!.

System Architecture — Handling Overload

= #1 Back Pressure .-»“—».—»B"D]]"B"
3ms 9ms

= Graceful handling of

overload w/o data loss 2ms
» Slow down sources Self-adjusting operator scheduling
= E.g., blocking queues Pipeline runs at rate of slowest op

= #2 Load Shedding

= #1 Random-sampling-based load shedding

_ [Nesime Tatbul et al: Load
= #2 Relevance-based load shedding Shedding in a Data Stream

= #3 Summary-based load shedding (synopses) Manager. VLDB 2003]

= Given SLA, select queries and shedding placement
that minimize error and satisfy constraints

= #3 Distributed Stream Processing (see course DIA)
= Data flow partitioning (distribute the query)
= Key range partitioning (distribute the data stream)
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= Event Time

= Real time when the event/
data item was created

= |Ingestion Time

= System time when the
data item was received

= Processing Time

= System time when the
data item is processed

= |n Practice

Processing
Time

= Delayed and unordered data items

Time (Event, System, Processing)

ideal
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= Use of heuristics (e.g., water marks = delay threshold)

= Use of more complex triggers (speculative and late results)
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Durability and Consistency Guarantees

= #1 At Most Once

= “Send and forget”, ensure data is never counted twice
= Might cause data loss on failures

= #2 At Least Once

= “Store and forward” or acknowledgements from receiver,
replay stream from a checkpoint on failures

= Might create incorrect state (processed multiple times)

= #3 Exactly Once

= “Store and forward” w/ guarantees regarding state updates and sent msgs

*
-

4@ Flink A distributed streaming platform
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Window Semantics

= Windowing Approach
= Many operations like joins/aggregation undefined over unbounded streams
= Compute operations over windows of time or elements

size = 2min
= #1 Tumbling Window
= Every data item is only 8 8 a8 “ . 88
part of a single window | | | .
" AkaJumping window 12:05  12:07  12:09
= #2 Sliding Window size = 2min, step = 1min
= Time- or tuple-based |
sliding windows 58 8 88 “ AL
" |nsert new and | ; i: >
expire old data items 12:05 12:07 12:09
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Stream Joins

= Basic Stream Join For each new r in R:
* Tumbling window: 1. Scan window of stream S
use classic join methods to find match tuples

= Sliding window (symmetric 2. Insert new r into window

for both R and S) of stream R
3. Invalidate expired tuples

= Applies to arbitrary join pred in window of stream R

= See 08 Query Processing (NLJ)

= Excursus: How Soccer Players
Would do Stream Joins

» Handshake-join w/ 2-phase forwarding

R-—AAAAAR-A AN N0 ¢ n Nl
o000 O @ oo o @ O I

L fnnnnnnn nonnnnhd nnn g [Jens Teubner, René Miiller: How
L O I [ O [ s O | N O O O N " soccer players would do stream
g T — L —— L —— S — $ joins. SIGMOD 2011]
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16 . [Zachary G. Ives, Daniela Florescu, Marc
. St rea m J O I n SI CO nt' Friedman, Alon Y. Levy, Daniel S. Weld: An
Adaptive Query Execution System for Data

Integration. SIGMOD 1999]

= Double-Pipelined Hash Join
= Join of bounded streams (or unbounded w/ invalidation)
= Equi join predicate, symmetric and non-blocking
= For every incoming tuple (e.g. left): probe (right)+emit, and build (left)

!

 Hooo [T Hooo
1,2,7 1,7
1 ab 7 zy
2 cd 1 XW  emit 1(abxw)
emit 1(efxw) 1 ef 7 vu emit 7(ghvu)
Stream Stream
emit 7(ghzy) 7 gh R S
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Excursus: Example Twitter Heron

[Credit: Karthik Ramasamy]

" Motivation STORM @TWITTER

= Heavy use of Apache Storm

at Twitter Data per Cluster # of # of Msgs
= |ssues: debugging, Size Topologies per day
performance, shared

cluster resources,
back pressure mechanism >2400

= Twitter Heron

[Sanjeev Kulkarni et al:
= API-compatible distributed streaming engine Twitter Heron: Stream
. . . . Processing at Scale.
= De-facto streaming engine at Twitter since 2014 SIGMOD 2015]
= Dhalion (Heron Extension) [Avrilia Floratou et al: [———
) ) . Dhalion: Self-Regulating
= Automatically reconfigure Heron topologies Stream Processing in Heron.
to meet throughput SLO PVLDB 2017]

= Now back pressure implemented in Apache Storm 2.0 (May 2019)



