

SCIENCE PASSION TECHNOLOGY

Data Management 13 Stream Processing

Matthias Boehm

Last update: Jan 20, 2019

Graz University of Technology, Austria
Computer Science and Biomedical Engineering
Institute of Interactive Systems and Data Science
BMVIT endowed chair for Data Management

ISDS

Announcements/Org

#1 Video Recording

#2 Exercises

- Exercise 1/2 graded, feedback in TC, office hours
- Exercise 3 in progress of being graded
- Exercise 4 due Jan 21, 11.59pm

#3 Course Evaluation

- Evaluation period: Jan 14 Feb 14
- Please, participate w/ honest feedback (pos/neg)

#4 Exam

- Dates: Jan 30, 5.30pm; Jan 31, 5.30pm; Feb 6, 4pm
- Registration closes one day before exam
- Q&A and Exam Preparation in today's lecture

#5 Data Management Courses

Agenda

- Data Stream Processing
- Distributed Stream Processing
- Q&A and Exam Preparation

Data Integration and
Large-Scale Analysis (DIA)
(bachelor/master)

Data Stream Processing

Stream Processing Terminology

Ubiquitous Data Streams

- Event and message streams (e.g., click stream, twitter, etc)
- Sensor networks, IoT, and monitoring (traffic, env, networks)

Stream Processing Architecture

- Infinite input streams, often with window semantics
- Continuous (aka standing) queries

Stream Processing Terminology, cont.

Use Cases

- Monitoring and alerting (notifications on events / patterns)
- Real-time reporting (aggregate statistics for dashboards)
- Real-time ETL and event-driven data updates
- Real-time decision making (fraud detection)
- Data stream mining (summary statistics w/ limited memory)

Continuously active

Data Stream

- Unbounded stream of data tuples $S = (s_1, s_2, ...)$ with $s_i = (t_i, d_i)$
- See 08 NoSQL Systems (time series)

Real-time Latency Requirements

- Real-time: guaranteed task completion by a given deadline (30 fps)
- Near Real-time: few milliseconds to seconds
- In practice, used with much weaker meaning

History of Stream Processing Systems

2000s

- Data stream management systems (DSMS, mostly academic prototypes): STREAM (Stanford'01), Aurora (Brown/MIT/Brandeis'02) → Borealis ('05), NiagaraCQ (Wisconsin), TelegraphCQ (Berkeley'03), and many others
 - → but mostly unsuccessful in industry/practice
- Message-oriented middleware and Enterprise Application Integration (EAI): IBM Message Broker, SAP exchange Infra., MS Biztalk Server, TransConnect

2010s

- Distributed stream processing engines, and "unified" batch/stream processing
- Proprietary systems: Google Cloud Dataflow, MS StreamInsight / Azure Stream Analytics, IBM InfoSphere Streams / Streaming Analytics, AWS Kinesis
- Open-source systems: Apache Spark Streaming (Databricks), Apache Flink (Data Artisans), Apache Kafka (Confluent), Apache Storm

System Architecture – Native Streaming

Basic System Architecture

- Data flow graphs (potentially w/ multiple consumers)
- Nodes: asynchronous ops (w/ state) (e.g., separate threads)
- Edges: data dependencies (tuple/message streams)
- Push model: data production controlled by source

Operator Model

- Read from input queue
- Write to potentially many output queues
- Example Selection $\sigma_{A=7}$


```
while( !stopped ) {
    r = in.dequeue(); // blocking
    if( pred(r.A) ) // A==7
        for( Queue o : out )
          o.enqueue(r); // blocking
}
```


System Architecture – Sharing

Multi-Query Optimization

 Given set of continuous queries (deployed), compile minimal DAG w/o redundancy (see 08 Physical Design MV) → subexpression elimination

Operator and Queue Sharing

- Operator sharing: complex ops w/ multiple predicates for adaptive reordering
- Queue sharing: avoid duplicates in output queues via masks

System Architecture – Handling Overload

#1 Back Pressure

- Graceful handling of overload w/o data loss
- Slow down sources
- E.g., blocking queues

Self-adjusting operator scheduling Pipeline runs at rate of slowest op

#2 Load Shedding

- #1 Random-sampling-based load shedding
- #2 Relevance-based load shedding
- #3 Summary-based load shedding (synopses)
- Given SLA, select queries and shedding placement that minimize error and satisfy constraints

[Nesime Tatbul et al: Load Shedding in a Data Stream Manager. **VLDB 2003**]

#3 Distributed Stream Processing (see course DIA)

- Data flow partitioning (distribute the query)
- Key range partitioning (distribute the data stream)

Time (Event, System, Processing)

Event Time

 Real time when the event/ data item was created

Ingestion Time

 System time when the data item was received

Processing Time

 System time when the data item is processed

In Practice

- Delayed and unordered data items
- Use of heuristics (e.g., water marks = delay threshold)
- Use of more complex triggers (speculative and late results)

Durability and Consistency Guarantees

#1 At Most Once

- "Send and forget", ensure data is never counted twice
- Might cause data loss on failures

#2 At Least Once

- "Store and forward" or acknowledgements from receiver, replay stream from a checkpoint on failures
- Might create incorrect state (processed multiple times)

#3 Exactly Once

- "Store and forward" w/ guarantees regarding state updates and sent msgs
- Often via dedicated transaction mechanisms

Window Semantics

Windowing Approach

- Many operations like joins/aggregation undefined over unbounded streams
- Compute operations over windows of time or elements

#1 Tumbling Window

- Every data item is only part of a single window
- Aka Jumping window

#2 Sliding Window

- Time- or tuple-based sliding windows
- Insert new and expire old data items

Stream Joins

- Basic Stream Join
 - Tumbling window: use classic join methods
 - Sliding window (symmetric for both R and S)
 - Applies to arbitrary join pred
 - See 08 Query Processing (NLJ)
- Excursus: How Soccer PlayersWould do Stream Joins
 - Handshake-join w/ 2-phase forwarding

For each new r in R:

- Scan window of stream S to find match tuples
- 2. **Insert** new r into window of stream R
- 3. **Invalidate** expired tuples in window of stream R

[Jens Teubner, René Müller: How soccer players would do stream joins. **SIGMOD 2011**]

Stream Joins, cont.

[Zachary G. Ives, Daniela Florescu, Marc Friedman, Alon Y. Levy, Daniel S. Weld: An Adaptive Query Execution System for Data Integration. **SIGMOD 1999**]

Double-Pipelined Hash Join

- Join of bounded streams (or unbounded w/ invalidation)
- Equi join predicate, symmetric and non-blocking
- For every incoming tuple (e.g. left): probe (right)+emit, and build (left)

Excursus: Example Twitter Heron

[Credit: Karthik Ramasamy]

Motivation

- Heavy use of Apache Storm at Twitter
- Issues: debugging, performance, shared cluster resources, back pressure mechanism

STORM @TWITTER			
Data per day	Cluster Size	# of Topologies	# of Msgs per day
t1 >50TB	>2400	>250	>3B

Twitter Heron

- API-compatible distributed streaming engine
- De-facto streaming engine at Twitter since 2014

[Sanjeev Kulkarni et al: Twitter Heron: Stream Processing at Scale. SIGMOD 2015]

Dhalion (Heron Extension)

 Automatically reconfigure Heron topologies to meet throughput SLO [Avrilia Floratou et al: Dhalion: Self-Regulating Stream Processing in Heron. PVLDB 2017]

Now back pressure implemented in Apache Storm 2.0 (May 2019)