



# Data Integration and Analysis 01 Introduction and Overview

### **Matthias Boehm**

Last update: Oct 04, 2019

Graz University of Technology, Austria
Computer Science and Biomedical Engineering
Institute of Interactive Systems and Data Science
BMVIT endowed chair for Data Management





# Announcements/Org

- #1 CS Talks x5 (Oct 15, 5pm, Aula Alte Technik)
  - Margarita Chli (ETH Zurich)
  - Title: How Robots See Current Challenges and Developments in Vision-based Robotic Perception



- #2 Course Architecture of DB Systems
  - Canceled due to <10 students and overload w/ other courses</p>
  - Will be offered in WS2020/21, 706.543
- #3 Course Intro International Entrepreneurship
  - Basic and systematic understanding of international business, as well as markets and the people
  - Lecturer: Univ.-Prof. Dr. techn. Hongying Foscht
  - Beginning Oct 9, 2019; 4 ECTS, 706.319







# Announcements/Org, cont.

### #4 Master Thesis – JOANNEUM RESEARCH Health

- Thesis topic: Development and validation of a hybrid decision model to identify frailty in older adults with care needs in geriatric care facilities
- Supervisors: Klaus Donsa (JOANNEUM RESEARCH),
   Matthias Boehm (TU Graz), Peter Mrak (QiGG)
- 60% part-time employment JOANNEUM RESEARCH,
   8 months, monthly salary of € 831







# Agenda

- Data Management Group
- Course Organization
- Course Motivation and Goals
- Course Outline and Projects
- Excursus: SystemDS





# Data Management Group





### **About Me**

- **09/2018 TU Graz**, Austria
  - BMVIT endowed chair for data management
  - Data management for data science
     (ML systems internals, end-to-end data science lifecycle)













https://github.com/
tugraz-isds/systemds

- 2012-2018 IBM Research Almaden, USA
  - Declarative large-scale machine learning
  - Optimizer and runtime of Apache SystemML



- 2011 PhD TU Dresden, Germany
  - Cost-based optimization of integration flows
  - Systems support for time series forecasting
  - In-memory indexing and query processing



DB group





## Data Management Courses





### Team Staff Members

### Head



Matthias Boehm

Email: m.boehm@tugraz.at

Personal Website: matthiasboehm.org

### Researchers



Mark Dokter

Email: mdokter@know-center.at

### PhD Students



Arnab Phani

Email: arnab.phani@tugraz.at



Shafaq Siddiqi

Email: shafaq.siddiqi@tugraz.at

### **Undergraduate Students**



### Benjamin Rath

Email: benjamin.rath@student.tugraz.at



Kevin Innerebner

Email: innerebner@student.tugraz.at



Florijan Klezin

Email: fklezin@know-center.at





# **Course Organization**





# **Basic Course Organization**

### Staff

- Lecturer: Univ.-Prof. Dr.-Ing. Matthias Boehm, ISDS
- Assistant: M.Sc. Shafaq Siddiqi, ISDS



- Lectures and slides: English
- Communication and examination: English/German

### Course Format

- VU 2/1, 5 ECTS (2x 1.5 ECTS + 1x 2 ECTS), bachelor/master
- Weekly lectures (Fri 3pm, including Q&A), attendance optional
- Mandatory exercises or programming project (2 ECTS)
- Recommended papers for additional reading on your own

### Prerequisites

- Preferred: course Data Management / Databases is very good start
- Sufficient: basic understanding of SQL / RA (or willingness to fill gaps)
- Basic programming skills







# **Course Logistics**

### Website

- https://mboehm7.github.io/teaching/ws1920\_dia/index.htm
- All course material (lecture slides) and dates
- Video Recording Lectures (TUbe)?



### Communication

- Informal language (first name is fine)
- Please, immediate feedback (unclear content, missing background)
- Newsgroup: N/A email is fine, summarized in following lectures
- Office hours: by appointment or after lecture

#### Exam

- Completed exercises or project (checked by staff)
- Final written exam (oral exam if <10 students take the exam)</li>
- Grading (40% project/exercises, 60% exam)





# Course Logistics, cont.

### Course Applicability

- Bachelor programs computer science (CS), as well as software engineering and management (SEM)
- Master programs CS catalog "Knowledge Technologies", and SEM catalog "Web and Data Science"
- Free subject course in any other study program or university
- Future master CS/SEM catalog "Data Science" (unconfirmed)
   → compulsory course in major/minor





# Course Motivation and Goals





# Data Sources and Heterogeneity

### Terminology

- Integration (Latin integer = whole): consolidation of data objects / sources
- Homogeneity (Greek homo/homoios = same): similarity
- Heterogeneity: dissimilarity, different representation / meaning

### Heterogeneous IT Infrastructure

- Common enterprise IT infrastructure contains >100s of heterogeneous and distributed systems and applications
- E.g., health care data management: 20 120 systems



### Multi-Modal Data (example health care)

- Structured patient data, patient records incl. prescribed drugs
- Knowledge base drug APIs (active pharmaceutical ingredients) + interactions
- Doctor notes (text), diagnostic codes, outcomes
- Radiology images (e.g., MRI scans), patient videos
- Time series (e.g., EEG, ECoG, heart rate, blood pressure)





# The Data Science Lifecycle

### **Data-centric View:**

Application perspective
Workload perspective
System perspective



Data Scientist





Data Integration
Data Cleaning
Data Preparation

Model Selection
Training
Hyper-parameters

Validate & Debug
Deployment
Scoring & Feedback



### **Exploratory Process**

(experimentation, refinements, ML pipelines)







# The 80% Argument

### Data Sourcing Effort

 Data scientists spend 80-90% time on finding relevant datasets and data integration/cleaning. [Michael Stonebraker, Ihab F. Ilyas: Data Integration: The Current Status and the Way Forward. IEEE Data Eng. Bull. 41(2) (2018)]

### Technical Debts in ML Systems



- Glue code, pipeline jungles, dead code paths
- Plain-old-data types, multiple languages, prototypes
- Abstraction and configuration debts
- Data testing, reproducibility, process management, and cultural debts











### **Course Goals**

- Common Data and System Characteristics
  - Heterogeneous data sources and formats, often distributed
  - Large data collections → distributed data storage and analysis
- #1 Major data integration architectures
- #2 Key techniques for data integration and cleaning
- #3 Methods for large-scale data storage and analysis





# **Course Outline and Projects**





# Part A: Data Integration and Preparation

### **Data Integration Architectures**

- 01 Introduction and Overview [Oct 04]
- 02 Data Warehousing, ETL, and SQL/OLAP [Oct 11]
- 03 Message-oriented Middleware, EAI, and Replication [Oct 18]

### **Key Integration Techniques**

- 04 Schema Matching and Mapping [Oct 25]
- 05 Entity Linking and Deduplication [Nov 08]
- 06 Data Cleaning and Data Fusion [Nov 15]
- 07 Data Provenance and Blockchain [Nov 22]





# Part B: Large-Scale Data Management & Analysis

### **Cloud Computing**

- 08 Cloud Computing Foundations [Nov 29]
- 09 Cloud Resource Management and Scheduling [Dec 06]
- 10 Distributed Data Storage [Dec 13]

### **Large-Scale Analysis**

- 11 Distributed, Data-Parallel Computation [Jan 10]
- 12 Distributed Stream Processing [Jan 17]
- 13 Distributed Machine Learning Systems [Jan 24]
- 14 Q&A and exam preparation [Jan 31]





## Overview Projects or Exercises

#### Team

Individuals or two-person teams (w/ clearly separated responsibilities)

### Objectives

- Non-trivial programming project in DIA context (2 ECTS → 50 hours)
- Preferred: Open source contribution to SystemDS
  - https://github.com/tugraz-isds/systemds
  - Topics throughout the stack (from HW to high-level scripting)
- Alternatively: 3 of 4 provided exercises (2 per part)

#### Timeline

- Oct 25: List of projects proposals, feel free to bring your own
- Nov 08: Binding project/exercise selection
- Jan 31: Final project/exercise deadline





# Excursus: SystemDS

(An open source ML system for the end-to-end data science lifecycle )

https://github.com/tugraz-isds/systemds

https://arxiv.org/pdf/1909.02976.pdf





# What is an ML System?





# **Motivation SystemDS**

- Existing ML Systems (primarily ML training/scoring)
  - Variety of ML algorithms and lack of standards
  - #1 Numerical computing frameworks
  - #2 ML Algorithm libraries (local, large-scale)
  - #3 Large-scale linear algebra systems
  - #4 Deep neural network (DNN) frameworks



MAHOUT















K Keras



- Exploratory Data-Science Lifecycle
  - Open-ended problems w/ underspecified objectives
  - Wide variety of heterogeneous data sources
  - Hypotheses, integrate data, run analytics, look for interesting patterns/models
  - Unknown value → lack of system infrastructure
    - Redundancy of manual efforts and computation

"Take these datasets and show value or competitive advantage"





# Motivation SystemDS, cont.

### Data Preparation Problem

- 80% Argument: 80-90% of time for finding, integrating, cleaning data
- Dedicated subsystems for data collection, verification, and extraction
- Diversity of tools → boundary crossing, lack of optimization
- In-DBMS ML toolkits largely unsuccessful (stateful, data loading, verbose)



- Specify data science lifecycle in R or Python syntax and use stateless systems
- Key observation: SotA data integration based on ML
- Data cleaning, outlier detection, data augmentation, feature and model selection, hyper-parameter optimization, model debugging
- Our approach: High-level abstractions for data science lifecycle tasks, implemented in DSL for ML training/scoring
  - → Avoid boundary crossing and optimizations across lifecycle

[Xin Luna Dong, Theodoros Rekatsinas: Data Integration and Machine Learning: A Natural Synergy. **SIGMOD 2018**]









# Example: Linear Regression Conjugate Gradient

```
1: X = read(\$1); # n x m matrix
                                                               Read matrices
Note:
                     2: y = read(\$2); # n x 1 vector
                                                               from HDFS/S3
#1 Data Independence
                         maxi = 50; lambda = 0.001;
                     3:
#2 Implementation-
                         intercept = $3;
                     4:
Agnostic Operations
                     5:
                                                                Compute initial
                         r = -(t(X) \% *\% y);
                     6:
                        norm_r2 = sum(r * r); p = -r;
                                                                   gradient
                     7:
                         w = matrix(0, ncol(X), 1); i = 0;
                     8:
                         while(i<maxi & norm_r2>norm_r2_trgt)
                     9:
  Compute
                     10: {
  conjugate
                            q = (t(X) %*% (X %*% p))+lambda*p;
                     11:
   gradient
                                                                     Compute
                            alpha = norm_r2 / sum(p * q);
                     12:
                                                                      step size
                            w = w + alpha * p;
                     13:
                     14: old norm r2 = norm r2;
                     15:
                         r = r + alpha * q;
       Update
                          norm_r2 = sum(r * r);
                     16:
     model and
                     17:
                             beta = norm r2 / old norm r2;
      residuals
                     18:
                             p = -r + beta * p; i = i + 1;
                                                                "Separation
                     19: }
                                                                of Concerns"
                     20: write(w, $4, format="text");
```



# High-Level SystemML Architecture





# Basic HOP and LOP DAG Compilation

### **LinregDS (Direct Solve)**

```
X = read($1);
y = read($2);
intercept = $3;
lambda = 0.001;
...

if( intercept == 1 ) {
    ones = matrix(1, nrow(X), 1);
    |X = append(X, ones);
}

I = matrix(1, ncol(X), 1);
A = t(X) %*% X + diag(I)*lambda;
b = t(X) %*% y;
beta = solve(A, b);
...
write(beta, $4);
```

# HOP DAG 8KB CP write • driver mem: 20 GB

172KB

CP r(diag) ba(+\*) SP ba(+\*) 800GB

1.6TB

SP r(t)

8KB

CP dg(rand) X 800GB y 800MB

(103x1,103) (108x103,1011) (108x1,108)

### LOP DAG

(after rewrites)



#### 

# $X_{2,1}$ $X_{m,1}$

### → Hybrid Runtime Plans:

- Size propagation / memory estimates
- Integrated CP / Spark runtime
- Dynamic recompilation during runtime

#### Distributed Matrices

- Fixed-size (squared) matrix blocks
- Data-parallel operations



# Lessons Learned from SystemML

### L1 Data Independence & Logical Operations

- Independence of evolving technology stack (MR → Spark, GPUs)
- Simplifies development (libs) and deployment (large-scale vs. embedded)
- Enables adaptation to cluster/data characteristics (dense/spare/compressed)
- L2 User Categories (|Alg. Users| >> |Alg. Developers|)

- learn
- Focus on ML researchers and algorithm developers is a niche
- Data scientists and domain experts need higher-level abstractions

### L3 Diversity of ML Algorithms & Apps

- Variety of algorithms (batch 1st/2nd, mini-batch DNNs, hybrid)
- Different parallelization, ML + rules, numerical computing



### L4 Heterogeneous Structured Data

- Support for feature transformations on 2D frames
- Many apps deal with heterogeneous data and various structure





# Language Abstractions and APIs

### DSL with R-like Syntax

- Leverage SystemML's DML lang for linear algebra control flow programs (L1)
- Extended by stack of declarative abstractions for different users (L2)
- Mechanism for registering DML-bodied built-in functions







# Language Abstractions and APIs, cont.

Example: Stepwise Linear Regression

### **User Script**

```
X = read('features.csv')
Y = read('labels.csv')
[B,S] = steplm(X, Y,
    icpt=0, reg=0.001)
write(B, 'model.txt')
```

Facilitates optimization across data science lifecycle tasks

### **Built-in Functions**

```
m steplm = function(...) {
                                      m lmCG = function(...) {
                                        while( i<maxi&nr2>tgt ) {
  while( continue ) {
                                           q = (t(X) \% * \% (X \% * \% p))
    parfor( i in 1:n ) {
                                             + lambda * p
      if( !fixed[1,i] ) {
                                           beta = ... }
        Xi = cbind(Xg, X[,i])
        B[,i] = lm(Xi, y, ...)
    # add best to Xg
                            m lm = function(...) 
    # (AIC)
                              if(ncol(X) > 1024)
                                                         Linear
                                B = 1mCG(X, \sqrt{y}, \dots)
                                                        Algebra
                              else
 Feature
                                B = 1mDS(X, y, ...)
                                                       Programs
Selection
```

ML Algorithms

```
m_lmDS = function(...) {
    l = matrix(reg,ncol(X),1)
    A = t(X) %*% X + diag(1)
    b = t(X) %*% y
    beta = solve(A, b) ...}
```





# System Architecture





# Data Model: Heterogeneous Tensors

### Basic Tensor Block

- BasicTensorBlock: homogeneous tensors (FP32, FP64, INT32, INT64, BOOL, STRING/JSON)
- DataTensorBlock: composed from basic TBs
- Represents local tensor (CPU/GPU)

### Distributed Tensor Representation

- Collection of fix-sized tensor blocks
- Squared blocking schemes in n-dim space (e.g., 1024^2, 128^3, 32^4, 16^5, 8^6, 8^7)
- PairRDD<TensorIndex,TensorBlock>

# Time Appliances (e.g., production pipelines, wind mills, satellites)

Features
(e.g., sensor readings, flags, categories)



### Federated Tensor Representation

- Collection of meta data handles to TensorObjects, each of which might refer to data on a different worker instance (local or distributed)
- Generalizes to federated tensors of CPU and GPU data objects





# #1 Lineage and Reuse

### Problem

- Exploratory data science (data preprocessing, model configurations)
- Reproducibility and explanability of trained models (data, parameters, prep)

### Lineage/Provenance as Key Enabling Technique

 Model versioning, reuse of intermediates, incremental maintenance, auto differentiation, and debugging (results and intermediates, convergence behavior via query processing over lineage traces)

### a) Efficient Lineage Tracing

- Tracing of inputs, literals, and non-determinism
- Trace lineage of logical operations for all live variables, store along outputs, program/output reconstruction possible:
  - X = eval(deserialize(serialize(lineage(X))))
- Proactive deduplication of lineage traces for loops





# #1 Lineage and Reuse, cont.

- b) Full Reuse of Intermediates
  - Before executing instruction, probe output lineage in cache Map<Lineage, MatrixBlock>
  - Cost-based/heuristic caching and eviction decisions (compiler-assisted)
- c) Partial Reuse of Intermediates
  - Problem: Often partial result overlap
  - Reuse partial results via dedicated rewrites (compensation plans)
  - Example: steplm

```
m>>n

t(X)
```

 $O(k(mn^2+n^3)) \rightarrow O(mn^2+kn^3)$ 

```
m_steplm = function(...) {
  while( continue ) {
    parfor( i in 1:n ) {
       if( !fixed[1,i] ) {
          Xi = cbind(Xg, X[,i])
          B[,i] = lm(Xi, y, ...)
       } }
  # add best to Xg
  # (AIC)
  } }
```

beta = **solve**(A, b) ...}

 $O(n^2(mn^2+n^3)) \rightarrow O(n^2(mn+n^3))$ 





# #2 Data Integration and Cleaning

### a) Semi-automated Data Preparation

- Provide abstractions for composing data preparation pipelines
   (built-in functions: vectorized & pruning via sparsity exploitation)
- ML-assisted data integration and cleaning (extraction, schema alignment, entity linking, outlier detection, data augmentation, and feature transforms)
- Design choice: retain stateless appearance (consume models as tensors)

### b) Efficient Data Ingestion

- Codegen of efficient readers/writers from high-level descriptions
- Avoid unnecessary parsing on data extraction
- Avoid unnecessary shuffling on distributed data preparation
- Leverage lineage-based reuse and access methods for LA over raw data





ΔW

W

W

### #3 Federated ML

[Keith Bonawitz et al.: Towards Federated Learning at Scale: System Design. SysML 2019]



- Motivation Federated ML
  - Learn model w/o central data consolidation
  - Privacy + data/power caps vs personalization and sharing
- Data Ownership → Federated ML in the enterprise
   (machine vendor middle-person customer equipment)
- Federated ML Architecture
  - Multiple control programs w/ single master
  - Federated tensors (metadata handles)
  - Federated instructions and parameter server



- ExDRa Project (Exploratory Data Science over Raw Data)
  - Basic approach: Federated ML + ML over raw data
  - System infra, integration, data org & reuse, Exp DB, geo-dist.



Gefördert im Programm "IKT der Zukunft" vom Bundesministerium für Verkehr, Innovation, und Technologie (BMVIT)







# #4 Compiler and Runtime

# Stack of declarative abstractions requires major extensions

- a) ML & Rules
  - Complex ML apps often combine ML models and rules in meta model
  - Dedicated compilation and verification techniques
- b) Size Propagation
  - Better size propagation (dims, sparsity) over conditional control flow for cost-based optimization of complex pipelines
- c) Operator Fusion & Code Generation
  - Automatic operator fusion (composed ops) to avoid unnecessary intermediates, scan sharing, and sparsity exploitation across operations
- d) Lossless and Lossy Compression
  - Lossless matrix compression (CLA, TOC) and quantization for DNN workloads
  - Reconsideration for data tensors (n-dim, types) and federated ML
- e) Cloud and Auto Scaling
  - Resource optimization still an obstacle, especially for domain experts
  - Stateless design and size propagation simplifies auto scaling





### **Conclusions**

- Summary: SystemML is dead, long live SystemDS
  - #1 Support for data science lifecycle tasks (data prep, training, debugging), users w/ different expertise (ML researcher, data scientist, domain expert)
  - #2 Support for local, distributed, and federated ML, as well as hybrid parallelization strategies
  - #3 Underlying data model of heterogeneous data tensors w/ native support for lineage tracing, and automatic data reorganization and specialization
- Next Lectures (Data Integration Architectures)
  - 02 Data Warehousing, ETL, and SQL/OLAP [Oct 11]
  - 03 Message-oriented Middleware, EAI, and Replication [Oct 18]

