

Data Integration and Analysis 06 Data Cleaning

Matthias Boehm

Last update: Nov 15, 2019

Graz University of Technology, Austria
Computer Science and Biomedical Engineering
Institute of Interactive Systems and Data Science
BMVIT endowed chair for Data Management

Announcements/Org

#1 Video Recording

#2 DIA Projects

- 13 Projects selected (various topics)
- 3 Exercises selected (distributed data deduplication)
- Deadline Nov 14 (yesterday)

Agenda

- Motivation and Terminology
- Data Cleaning and Fusion
- Missing Value Imputation

Motivation and Terminology

Recap: Corrupted/Inconsistent Data

#1 Heterogeneity of Data Sources

- Update anomalies on denormalized data / eventual consistency
- Changes of app/prep over time (US vs us) → inconsistencies

#2 Human Error

- Errors in semi-manual data collection, laziness (see default values), bias
- Errors in data labeling (especially if large-scale: crowd workers / users)

#3 Measurement/Processing Errors

- Unreliable HW/SW and measurement equipment (e.g., batteries)
- Harsh environments (temperature, movement) → aging

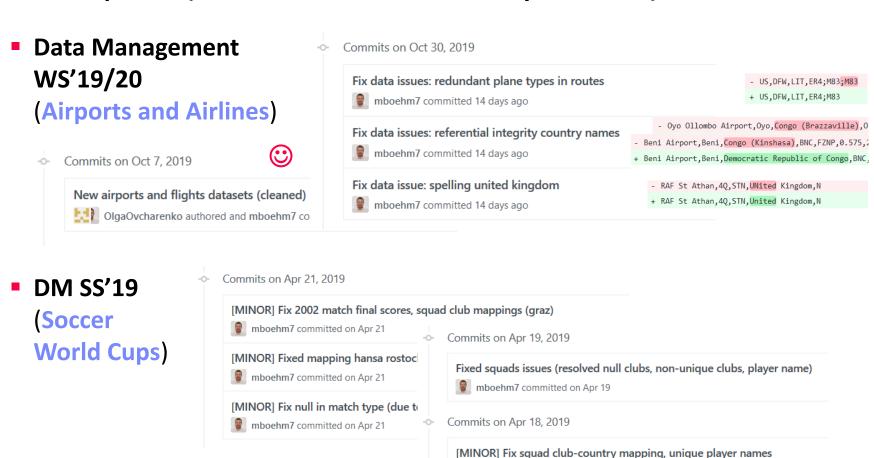
Uniqueness &	Contradictions &	Missing		[Credit: Felix
duplicates	wrong values	Values	Ref. Integrity	Naumann]

<u>ID</u>	Name	BDay	Age	Sex	Phone	Zip
3	Smith, Jane	05/06/1975	44	F	999-9999	98120
3	John Smith	38/12/1963	55	M	867-4511	11111
7	Jane Smith	05/06/1975	24	F	567-3211	98120

Zip	City
98120	San Jose
90001	Lost Angeles

Typos

Examples (aka errors are everywhere)



mboehm7 committed on Apr 18

mboehm7 committed on Apr 18

[MINOR] Fix squad club-country mapping, and spurious spaces

Terminology

- #1 Data Cleaning (aka Data Cleansing)
 - Detection and repair of data errors
 - Outliers/anomalies: values or objects that do not match normal behavior (different goals: data cleaning vs finding interesting patterns)
 - Data Fusion: resolution of inconsistencies and errors (e.g., entity resolution see Lecture 05)

#2 Missing Value Imputation

- Fill missing info with "best guess"
- Difference between NAs and 0 (or special values like NaN) for ML models

#3 Data Wrangling

- Automatic cleaning unrealistic? → Interactive data transformations
- Recommended transforms + user selection
- Note: Partial Overlap w/ KDDM → it's fine, different perspectives

Express Expectations as Validity Constraints

Manual Approach: "Common Sense"

<u>Route</u> <u>Planes</u>

- (Semi-)Automatic Approach: Expectations!
 - PK → Values must be unique and defined (not null)
- US,DFW,LIT,ER4;M83;M83
- + US,DFW,LIT,ER4;M83

(Airline, From, To)

- Exact PK-FK → Inclusion dependencies
- Noisy PK-FK → Robust inclusion dependencies $|R[X] \in S[Y]| / |R[X]| > \delta$
- Semantics of attributes → Value ranges / # distinct values

Age=9999?

- Invariant to capitalization→ Duplicates that differ in capitalization
- RAF St Athan, 4Q, STN, UNited Kingdom, N + RAF St Athan, 4Q, STN, United Kingdom, N

■ Patterns → regular expressions

2019-11-15 vs Nov 15, 2019

Formal Constraints

- Functional dependencies (FD), conditional FDs (CFD), metric dependencies
- Inclusion dependencies, matching dependencies
- Denial constraints $\forall t_{\alpha}t_{\beta} \in R: \neg(t_{\alpha}.Role = t_{\beta}.Role \land t_{\alpha}.City = 'NYC' \land t_{\beta}.City \neq 'NYC' \land t_{\alpha}.Salary < t_{\beta}.Salary)$

Data Cleaning and Fusion

Data Validation

Sanity checks on expected shape

before training first model

[Neoklis Polyzotis, Sudip Roy, Steven Euijong Whang, Martin Zinkevich: Data Management Challenges in Production Machine Learning. Tutorial, **SIGMOD 2017**]

(Google Research)

- Check a feature's min, max, and most common value
 - Ex: Latitude values must be within the range [-90, 90] or $[-\pi/2, \pi/2]$
- The histograms of continuous or categorical values are as expected
 - Ex: There are similar numbers of positive and negative labels
- Whether a feature is present in enough examples
 - Ex: Country code must be in at least 70% of the examples
- Whether a feature has the right number of values (i.e., cardinality)
 - Ex: There cannot be more than one age of a person

Data Validation, cont.

 Constraints and Metrics for quality check UDFs

constraint	arguments
dimension completeness	
isComplete	column
hasCompleteness	column, udf
dimension consistency	
isUnique	column
hasUniqueness	column, udf
hasDistinctness	column, udf
isInRange	column, value range
hasConsistentType	column
isNonNegative	column
isLessThan	column pair
satisfies	predicate
satisfiesIf	predicate pair
hasPredictability	column, column(s), udf
statistics (can be used to v	verify dimension consistency
hasSize	udf
hasTypeConsistency	column, udf
hasCountDistinct	column
hasApproxCountDistinct	column, udf
hasMin	column, udf
hasMax	column, udf
hasMean	column, udf
hasStandardDeviation	column, udf
hasApproxQuantile	column, quantile, udf
hasEntropy	column, udf
hasMutualInformation	column pair, udf
hasHistogramValues	column, udf
hasCorrelation	column pair, udf
time	
hasNoAnomalies	metric, detector

[Sebastian Schelter, Dustin Lange, Philipp Schmidt, Meltem Celikel, Felix Bießmann, Andreas Grafberger: Automating Large-Scale

Data Quality Verification. PVLDB 2018]

metric
dimension completeness
Completeness
dimension consistency
Size
Compliance
Uniqueness
Distinctness
ValueRange
DataType
Predictability
statistics (can be used to
Minimum
Maximum
Mean
StandardDeviation
CountDistinct
ApproxCountDistinct
ApproxQuantile
Correlation
Entropy
шогору
Histogram
${ t MutualInformation}$

(Amazon Research)

Organizational Lesson:

benefit of shared vocabulary/procedures

Technical Lesson:

fast/scalable; reduce manual and ad-hoc analysis

Approach

- #1 Quality checks on basic metrics, computed in Apache Spark
- #2 Incremental maintenance of metrics and quality checks

Standardization and Normalization

#1 Standardization

- Centering and scaling to mean 0 and variance 1
- Ensures well-behaved training
- Densifying operation
- Awareness of NaNs
- Awareness of Mains
- Batch normalization in DNN: standardization of activations

#2 Normalization

- Rescale values into common range [0,1]
- Avoid bias to large-scale features
- Aka min-max normalization
- Does not handle outliers

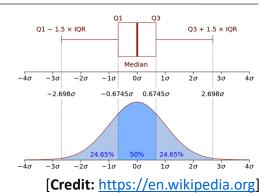
```
X = X - colMeans(X);
X = X / sqrt(colVars(X));

X = replace(X, pattern=NaN, replacement=0); #robustness
```


outlier()

Winsorizing and Trimming

- Recap: Quantiles
 - Quantile Q_p w/ $p \in (0,1)$ defined as $P[X \le x] = p$



Winsorizing

- Replace tails of data distribution at userspecified threshold
- Quantiles / std-dev
- → Reduce skew

Truncation/Trimming

- Remove tails of data distribution at userspecified threshold
- Largest Difference from Mean

```
# remove values outside [q1,qu]
I = X < qu | X > ql;
Y = removeEmpty(X, "rows", select = I);
```


Outliers and Outlier Detection

Types of Outliers

 Point outliers: single data points far from the data distribution [Varun Chandola, Arindam Banerjee, Vipin Kumar: Anomaly detection: A survey. **ACM Comput. Surv. 2009**]

- Contextual outliers: noise or other systematic anomalies in data
- Sequence (contextual) outliers: sequence of values w/ abnormal shape/agg
- Univariate vs multivariate analysis
- Beware of underlying assumptions (distributions)

Types of Outlier Detection

■ Type 1 Unsupervised: No prior knowledge of data, similar to unsupervised clustering
 → expectations: distance, # errors

[Victoria J. Hodge, Jim Austin: A Survey of Outlier Detection Methodologies. Artif. Intell. Rev. 2004]

- Type 2 Supervised: Labeled normal and abnormal data, similar to supervised classification
- Type 3 Normal Model: Represent normal behavior, similar to pattern recognition → expectations: rules/constraints

Outlier Detection Techniques

Classification

- Learn a classifier using labeled data
- Binary: normal / abnormal

[Varun Chandola, Arindam Banerjee, Vipin Kumar: Anomaly detection: A survey. **ACM Comput. Surv. 2009**]

- Multi-class: k normal / abnormal (one against the rest) → none=abnormal
- Examples: AutoEncoders, Bayesian Networks, SVM, decision trees

K-Nearest Neighbors

- Anomaly score: distance to kth nearest neighbor
- Compare distance to threshold + (optional) max number of outliers

Clustering

- Clustering of data points, anomalies are points not assigned / too far away
- Examples: DBSCAN (density), K-means (partitioning)
- Cluster-based local outlier factor (global, local, and size-specific density)

Frequent Itemset Mining

Rare itemset mining / sequence mining; Examples: Apriori/Eclat/FP-Growth

Time Series Anomaly Detection

Basic Problem Formulation

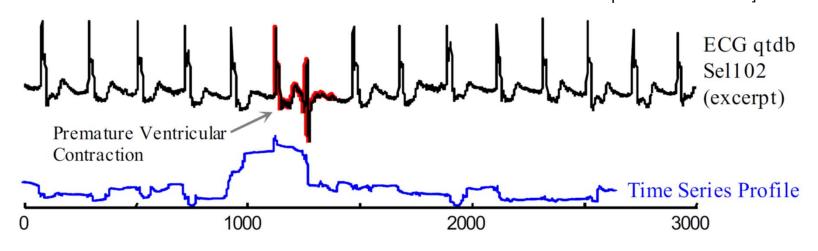
- Given regular (equi-distant) time series of measurements
- Detect anomalous subsequences s of length I (fixed/variable)

Anomaly Detection

- #1 Supervised: Classification problem
- #2 Unsupervised: k-Nearest Neighbors
 (discords) → All-pairs similarity join

[Matrix Profile XIV, SoCC'19]

[Chin-Chia Michael Yeh et al: Matrix Profile I: All Pairs Similarity Joins for Time Series: A Unifying View That Includes Motifs, Discords and Shapelets. ICDM 2016]



Automatic Data Repairs

Overview Repairs

- Question: Repair data, rules/constraints, or both?
- General principle: "minimality of repairs"

Example Data Repair

■ Functional dependency A → B

Violation for A=1

	OK, dist=1	
В	Δ	В

Α	В
1	2
1	3
1	3
4	5

Α	В
1	3
1	3
1	3
4	5

VS

[Xu Chu, Ihab F. Ilyas: Qualitative Data Cleaning. Tutorial, **PVLDB 2016**]

Α	В		Α	В
1	2		1	5
1	2	vs	1	5
1	2		1	5
4	5		4	5

Note: Piece-meal vs holistic data repairs

Automatic Data/Rule Repairs, cont.

Example

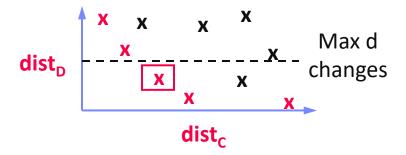
Expectation: City
 Country;
 new data conflicts

[George Beskales, Ihab F. Ilyas, Lukasz Golab, Artur Galiullin: On the relative trust between inconsistent data and inaccurate constraints. **ICDE 2013**]

IATA	ICAO	Name	City	Country
MEL	YMML	Melbourne International Airport	Melbourne	Australia
MLB	KMLB	Melbourne International Airport	Melbourne	USA

■ Relative Trust: {FName, LName} → Salary

- Trusted FD: → change salary according to {FName, LName} → Salary
- Trusted Data: → change FD to {FName, LName, DoB, Phone} → Salary
- Equally-trusted: → change FD to {FName, LName, DoB} → Salary AND data accordingly



Excursus: Simpson's Paradox

 Overview: Statistical paradox stating that an analysis of groups may yield different results at different aggregation levels

Example UC Berkeley '73

	Applicants	Admitted
Men	8442	44%
Women	4321	35%

→ more women had applied to departments that admitted a small percentage of applicants

	Men		Women	
	Appl.	Adm.	Appl.	Adm.
Α	825	62%	108	82%
В	560	63%	25	68%
С	325	37%	593	34%
D	417	33%	375	35%
E	191	28%	393	24%
F	373	6%	341	7%

"The real Berkeley story

A Wall Street Journal interview with Peter Bickel, one of the statisticians involved in the original study, makes clear that Berkeley was never sued—it was merely afraid of being sued"

[https://www.refsmmat.com/ posts/2016-05-08-simpsons -paradox-berkeley.html]

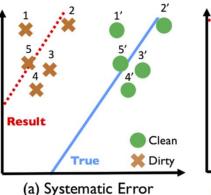
Selected Research

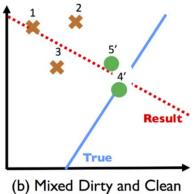
[Jiannan Wang et al: A sample-and-clean framework for fast and accurate query processing on dirty data. **SIGMOD 2014**]

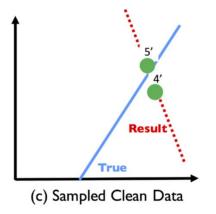
- ActiveClean (SampleClean)
 - Suggest sample of data for manual cleaning (rule/ML-based detectors, Simpson's paradox)

[Sanjay Krishnan et al: ActiveClean: Interactive Data Cleaning For Statistical Modeling. **PVLDB 2016**]

Example Linear Regression







- Approach: Cleaning and training as form of SGD
 - Initialization: model on dirty data
 - Suggest sample of data for cleaning
 - Compute gradients over newly cleaned data
 - Incrementally update model w/ weighted gradients of previous steps

Selected Research, cont.

HoloClean

 Clean and enrich based on quality rules, value correlations, and reference data [Theodoros Rekatsinas, Xu Chu, Ihab F. Ilyas, Christopher Ré: HoloClean: Holistic Data Repairs with Probabilistic Inference. **PVLDB 2017**]

- Probabilistic models for capturing data generation
- HoloDetect
 - Learn data representations of errors
 - Data augmentation w/ erroneous data from sample of clean data (add/remove/exchange characters)

[Alireza Heidari, Joshua McGrath, Ihab F. Ilyas, Theodoros Rekatsinas: HoloDetect: Few-Shot Learning for Error Detection, **SIGMOD 2019**]

Other Systems

- AlphaClean (generate data cleaning pipelines) [preprint 2019]
- BoostClean (generate repairs for domain value violations) [preprint 2017]

Query Planning w/ Data Cleaning

Problem

- Given query tree or data flow graph
- Find placement of data cleaning operators to reduce costs

Approach

- Budget B of user actions
- Active learning user feedback on query results
- Map query results back to sources via lineage
- Cleaning in decreasing order of impact

Extensions?

- Query-aware placement/refinement (e.g., UK) of cleaning primitives
- Ordering of cleaning primitives (norm, dedup, missing value?)

Data Wrangling

Data Wrangler Overview

- Interactive data cleaning via spreadsheet-like interfaces
- Iterative structure inference, recommendations, and data transformations
- Predictive interaction
 (infer next steps from interaction)

[Vijayshankar Raman, Joseph M. Hellerstein: Potter's Wheel: An Interactive Data Cleaning System. **VLDB 2001**]

[Sean Kandel, Andreas Paepcke, Joseph M. Hellerstein, Jeffrey Heer: Wrangler: interactive visual specification of data transformation scripts. **CHI 2011**]

[Jeffrey Heer, Joseph M. Hellerstein, Sean Kandel: Predictive Interaction for Data Transformation. **CIDR 2015**]

Commercial/Free Tools

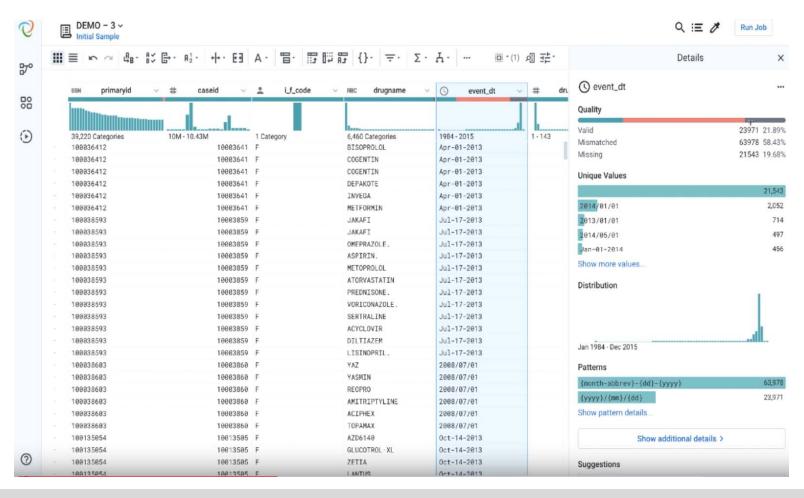
- Trifacta (from Data Wrangler)
- Google Fusion Tables: semi-automatic resolution and deduplication (sunset Dec 2019)

Data Wrangling, cont.

Example: Trifacta Smart Cleaning

[Credit: Alex Chan (Apr 2, 2019)

https://www.trifacta.com/blog/trifacta-fordata-quality-introducing-smart-cleaning/]



Missing Value Imputation

Basic Missing Value Imputation

Missing Value

- Application context defines if 0 is missing value or not
- If differences between 0 and missing values, use NA or NaN?

Relationship to Data Cleaning

- Missing value is error, need to generate data repair
- Data imputation techniques can be used as outlier/anomaly detectors

Recap: Reasons

- #1 Heterogeneity of Data Sources
- #2 Human Error
- #3 Measurement/Processing Errors

MCAR: Missing Completely at Random

MAR: Missing at Random

NMAR: Not Missing at Random

Basic Missing Value Imputation, cont.

Basic Value Imputation

- General-purpose: replace by user-specified constant, or drop records
- Continuous variables: replace by mean
- Categorical variables: replace by mode (most frequent category)

Iterative Algorithms (chained-equation imputation for MAR)

- Train ML model on available data to predict missing information
 - Initialize with basic imputation (e.g., mean)
 - One dirty variable at a time
 - Feature k → label, split data into training: observed / scoring: missing
 - Types: categorical → classification, continuous → regression

[Stef van Buuren, Karin Groothuis-Oudshoorn: mice: Multivariate Imputation by Chained Equations in R, J. of Stat. Software 2011]

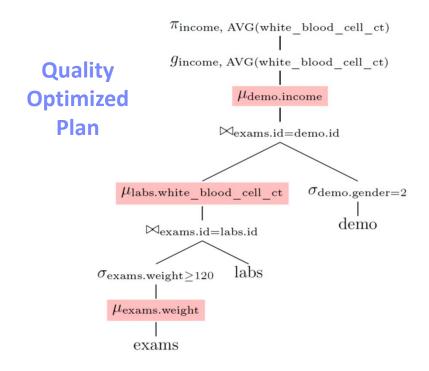
Noise reduction: train models over feature subsets + averaging

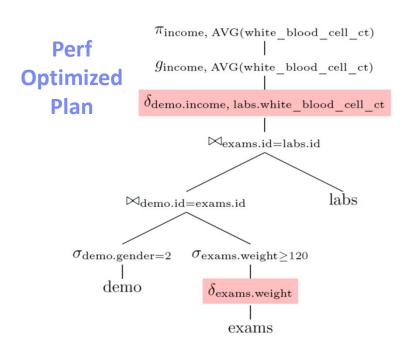
Query Planning w/ MV Imputation

Dynamic Imputation

- Data exploration w/ on-the-fly imputation
- Optimal placement of drop δ and impute μ
 (chained-equation imputation via decision trees)
- Multi-objective optimization

[Jose Cambronero, John K. Feser, Micah Smith, Samuel Madden: Query Optimization for Dynamic Imputation. **PVLDB 2017**]





Time Series Imputation

[Steffen Moritz and Thomas Bartz-Beielstein: imputeTS: Time Series Missing Value Imputation in R,

The R Journal 2017]

Example R Package imputeTS

Function	Option	Description
na.interpolation		
•	linear	Imputation by Linear Interpolation
	spline	Imputation by Spline Interpolation
	stine	Imputation by Stineman Interpolation
na.kalman		
	StructTS	Imputation by Structural Model & Kalman Smoothing
	auto.arima	Imputation by ARIMA State Space Representation & Kalman Sm.
na.locf		
	locf	Imputation by Last Observation Carried Forward
	nocb	Imputation by Next Observation Carried Backward
na.ma		
	simple	Missing Value Imputation by Simple Moving Average
	linear	Missing Value Imputation by Linear Weighted Moving Average
	exponential	Missing Value Imputation by Exponential Weighted Moving Average
na.mean		
	mean	MissingValue Imputation by Mean Value
	median	Missing Value Imputation by Median Value
	mode	Missing Value Imputation by Mode Value
na.random		Missing Value Imputation by Random Sample
na.replace		Replace Missing Values by a Defined Value

Excursus: Time Series Recovery

Motivating Use Case

- Given overlapping weekly aggregates y (daily moving average)
- Reconstruct the original time series X

Problem Formulation

- Aggregates y
- Original time series X (unknown)
- Mapping O of subsets of X to y
- **→** Least squares regression problem

$\underbrace{\begin{bmatrix} 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}}_{\mathbf{O}} \times \underbrace{\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix}}_{\mathbf{x}} = \underbrace{\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}}_{\mathbf{y}}$

Advanced Method

- Discrete Cosine Transform (DCT) (sparsest spectral representation)
- Non-negativity and smoothness constraints

[Faisal M. Almutairi et al: HomeRun: Scalable Sparse-Spectrum Reconstruction of Aggregated Historical Data. **PVLDB 2018**]

Summary and Q&A

- Motivation and Terminology
- Data Cleaning and Fusion
- Missing Value Imputation
- Projects and Exercises
 - Nov 14: grace period ended → 13 projects + 3 exercises
 - All unassigned students removed from course

Next Lectures

- 07 Data Provenance and Blockchain [Nov 22]
- Nov 29: no lecture → start with project (before DIA-part B)
- 08 Cloud Computing Foundations [Dec 06]
- 09 Cloud Resource Management and Scheduling [Dec 13]
- 10 Distributed Data Storage [Jan 10]

