TU

Grazm

SCIENCE
PASSION
TECHNOLOGY

Data Integration and Analysis
10 Distributed Data Storage

Matthias Boehm

Graz University of Technology, Austria

Computer Science and Biomedical Engineering
Institute of Interactive Systems and Data Science
BMVIT endowed chair for Data Management

Last update: Jan 10, 2019 “ISDS

TU

Grazm

Announcements/Org

#1 Video Recording 0 TU be

= Link in TeachCenter & TUbe (lectures will be public)

#2 DIA Projects
= 13 Projects selected (various topics)
= /4 Exercises selected (distributed data deduplication)
= Few discussions pending (= m.boehm@tugraz.at)

= SystemDS: apps into ./scripts/staging/<your_project>

#3 Exam
= Feb 3, 1pm - Feb 5, 2pm, remote exam possible

= QOral exam, 45min slots, first-come, first-serve
= https://doodle.com/poll/ikzsffek2vhd85g4

#4 Course Evaluation
= Evaluation time frame: Jan 14 — Feb 14 - feedback

706.520 Data Integration and Large-Scale Analysis — 10 Distributed Data Storage .ISDS
Matthias Boehm, Graz University of Technology, WS 2019/20

TU

Grazm

Course Outline Part B:
Large-Scale Data Management and Analysis

12 Distributed Stream 13 Distributed Machine
Processing [Jan 24] Learning Systems [Jan 31]

11 Distributed Data-Parallel Computation [Jan 17]
Compute/
Storage
10 Distributed Data Storage [Jan 10]
09 Cloud Resource Management and Scheduling [Dec 13]
Infra

08 Cloud Computing Fundamentals [Dec 06]

706.520 Data Integration and Large-Scale Analysis — 10 Distributed Data Storage .ISDS
Matthias Boehm, Graz University of Technology, WS 2019/20

TU

Grazm

Agenda

= Motivation and Terminology
= Object Stores and Distributed File Systems
= Key-Value Stores and Cloud DBMS

706.520 Data Integration and Large-Scale Analysis — 10 Distributed Data Storage
Matthias Boehm, Graz University of Technology, WS 2019/20

"ISDS

TU

Grazm

Motivation and Terminology

706.520 Data Integration and Large-Scale Analysis — 10 Distributed Data Storage
Matthias Boehm, Graz University of Technology, WS 2019/20

"ISDS

TU

Motivation and Terminology Graza

Overview Distributed Data Storage

Global
= Recap: Distributed DBS (03 Replication, MoM, and EAI) l Q
= Distributed DB: Virtual (logical) DB, appears like a

local DB but consists of multiple physical DBs

= Components for global query processing
= Virtual DBS (homo.) vs federated DBS (hetero.)

= Cloud and Distributed Data Storage
= Motivation: size (large-scale), semi-structured/nested , fault tolerance
= #1 Cloud and Distributed Storage
= Block storage: files split into blocks, read/write (e.g., SAN, AWS EBS)
= Object storage: objects of limited size, read/replace (e.g., AWS S3)
= Distributed file systems: file system on block/object stores (NFS, HDFS)
= #2 Database as a Service
= NoSQL stores: Key-value stores, document stores
= Cloud DBMSs (SQL, for OLTP and OLAP workloads)

706.520 Data Integration and Large-Scale Analysis — 10 Distributed Data Storage .ISDS
Matthias Boehm, Graz University of Technology, WS 2019/20

TU

Motivation and Terminology Graza

Central Data Abstractions

= #1 Files and Objects
= File: Arbitrarily large sequential data in specific file format (CSV, binary, etc)
= Object: binary large object, with certain meta data

= #2 Distributed Collections Key

= Logical multi-set (bag) of key-value pairs

(unsorted collection) 4 Delta
= Different physical representations 2 Bravo
= Easy distribution of pairs 1 Alpha
via horizontal partitioning)
(aka shards, partitions) 3 Charlie
= Can be created from single file, 5 Echo
or directory of files (unsorted) 6 Foxtrott
7 Golf
706.520 Data Integration and Large-Scale Analysis — 10 Distributed Data Storage .ISDS

Matthias Boehm, Graz University of Technology, WS 2019/20

Motivation and Terminology -I(;rE!l

Data Lakes

= Concept “Data Lake”

= Store massive amounts of un/semi-structured, and structured data
(append only, no update in place)

= No need for architected schema or upfront costs (unknown analysis)
= Typically: file storage in open, raw formats (inputs and intermediates)
=>» Distributed storage and analytics for scalability and agility

= Criticism: Data Swamp

DATA LAKE .I DATA SWAMP
= Low data quality (lack of schema,
integrity constraints, validation)

= Missing meta data (context) and &/

data catalog for search _ym

=» Requires proper data curation / tools [Credit: www.collibra.com]
According to priorities (data governance)

TU

Motivation and Terminology Graza

Catalogs of Data and Artefacts Rrecap FAIR Data Principles

(see)
= Data Catalogs
= Data curation in repositories for finding relevant datasets in data lakes
= Augment data with open and linked data sources

= Examples [Alon Y. Halevy et al: Goods: Organizing
Google's Datasets. SIGMOD 2016]

SAP Data Hub Google Data Search

Dataset Organizing Tools

Dataset Provenance

Moniforin Visualization H Ainnction

Metadata ﬂ'\ddiliunal Sources of Metadata ‘\!
Path/ldentifier - Logs
Size | F - Source code repository
T - - User and group membership database
[bigtable/foo/bar 100G | written_by: job_A proto:foo.Bar - Team and project database
- Content analysis modules
Igfsinlu/foo 10G read_by: job_B proto:nlu.Schema ‘ - Contributed by users/teams through

GOODS API

L 4

written_by: job_C

" Dala Access

= =

[SAP Sapphire Now 2019] EET [rosyemz | | spemer | [DR
706.520 Data Integration and Large-Scale Analysis — 10 Distributed Data Storage B
ISDS

Matthias Boehm, Graz University of Technology, WS 2019/20

Object Stores and
Distributed File Systems

706.520 Data Integration and Large-Scale Analysis — 10 Distributed Data Storage
Matthias Boehm, Graz University of Technology, WS 2019/20

"ISDS

Object Stores and Distributed File Systems -I(;rE!l

Object Storage

= Recap: Key-Value Stores
= Key-value mapping, where values can be of a variety of data types
= APIs for CRUD operations; scalability via sharding (objects or object segments)

= Object Store
= Similar to key-value stores, but: optimized for large objects in GBs and TBs
= Object identifier (key), meta data, and object as binary large object (BLOB)
= APIs: often REST APIs, SDKs, sometimes implementation of DFS APIs

= Partitioning g D, | g D, 1 D,

Distribution Mribution
(partitioning + parity)

706.520 Data Integration and Large-Scale Analysis — 10 Distributed Data Storage .ISDS
Matthias Boehm, Graz University of Technology, WS 2019/20

= Key Techniques B Partitioning | Replication [N D

Object Stores and Distributed File Systems -ErLa!.

Object Storage, cont.

—
= Example Object Stores / Protocols =_2 openstack.

= Amazon Simple Storage Service (S3) Amason S3 (
= QOpenStack Object Storage (Swift) .
= |BM Object Storage

= Microsoft Azure Blob Storage

IBM Cloud
Object Storage

= Amazon S3
= Reliable object store for photos, videos, documents or any binary data

= Bucket: Uniquely named, static data container
http://s3.aws-eu-central-1.amazonaws.com/mboehm7datab

= Object: key, version ID, value, metadata, access control

= Single (5GB)/multi-part (5TB) upload and direct/BitTorrent download
= Storage classes: STANDARD, STANDARD _IA, GLACIER, DEEP_ARCHIVE
= QOperations: GET/PUT/LIST/DEL, and SQL over CSV/JSON objects

706.520 Data Integration and Large-Scale Analysis — 10 Distributed Data Storage .ISDS
Matthias Boehm, Graz University of Technology, WS 2019/20

Object Stores and Distributed File Systems -I(;rE!l

Hadoop Distributed File System (HDFS)

= Brief Hadoop History .

[Sanjay Ghemawat, Howard
= Google’s GFS + MapReduce [ODSI’04] Gobioff, Shun-Tak Leung: The

- Apache Hadoop (2006) Google file system. SOSP 2003]

= Apache Hive (SQL), Pig (ETL), Mahout/SystemML (ML), Giraph (Graph)

= HDFS Overview

= Hadoop’s distributed file system, for large clusters and datasets

= Implemented in Java, w/ native libraries for compression, 1/0, CRC32
= Files split into 128 MB blocks, replicated (3x), and distributed Client

/

sﬁz,}%mmp Hadoop Distributed File System (HDFS)

Da

Data

Node

ta
Node

Name Data ata Data
Node Node Nod Node
e~ e~ e~ e~

Head Node Worker Nodes (shared-nothing cluster)

@

706.520 Data Integration and Large-Scale Analysis — 10 Distributed Data Storage .ISDS
Matthias Boehm, Graz University of Technology, WS 2019/20

Object Stores and Distributed File Systems -I(;rla'!l

HDFS Daemon Processes

= HDFS NameNode hadoop fs -1s
= Master daemon that manages file system R '
namespace and access by clients

./data/mnistlim.bin

= Metadata for all files (e.g., replication,
permissions, sizes, block ids, etc)

= FSImage: checkpoint of FS namespace
= EditLog: of file write operations (merged on startup)

= HDFS DataNode
= Worker daemon per cluster node that manages block storage (list of disks)
= Block creation, deletion, replication as individual files in local FS
= On startup: scan local blocks and send block report to name node
= Serving block read and write requests

= Send heartbeats to NameNode (capacity, current transfers) and
receives replies (replication, removal of block replicas)

706.520 Data Integration and Large-Scale Analysis — 10 Distributed Data Storage .ISDS
Matthias Boehm, Graz University of Technology, WS 2019/20

Object Stores and Distributed File Systems -ErE!l

HDEFS InputFormats and RecordReaders

= QOverview InputFormats
= InputFormat: implements access to distributed collections in files
= Split: record-aligned block of file (alighed with HDFS block size)
= RecordReader: API for reading key-value pairs from file splits
= Examples: FilelnputFormat, TextInputFormat, SequenceFilelnputFormat

= Example FileInputFormat.addInputPath(job, path); # path: dir/file
Text Read TextInpu’FFor'mat %nfor'mz.;\t = new TextIn[?uth?rmat(); .
InputSplit[] splits = informat.getSplits(job, numSplits);

LongWritable key = new LongWritable();
Text value = new Text();
for(InputSplit split : splits) {
RecordReader<LongWritable,Text> reader = informat
.getRecordReader(split, job, Reporter.NULL);
while(reader.next(key, value))
... //process individual text lines

}

706.520 Data Integration and Large-Scale Analysis — 10 Distributed Data Storage .ISDS
Matthias Boehm, Graz University of Technology, WS 2019/20

Object Stores and Distributed File Systems TU

Grazm

HDEFES InputFormats and RecordReaders, cont.

= Sequence Files

= Binary files for key/value pairs, w/ optional compression
(MapReduce/Spark inputs/outputs, MapReduce intermediates)

= |nputFormat with readers, writers, and sorters

= Example Uncompressed SequencefFile

= Header: SEQ+version (4 bytes), keyClassName, valueClassName, compression,
blockCompression, compressor class (codec), meta data

= Splittable binary representation of key-value pair collection

(O] (&)
Header u§’. Record Record Record :>,. Record

_—

Record Key
Length Length

SystemDS: values are

Key 1k x 1k matrix blocks

706.520 Data Integration and Large-Scale Analysis — 10 Distributed Data Storage .ISDS
Matthias Boehm, Graz University of Technology, WS 2019/20

Object Stores and Distributed File Systems TU

HDFS Write and Read
Client B
v

= HDFS Write
= #1 Client RPC to NameNode HDFS Client D,

to create file = lease/replica DNs

= #2 Write blocks to DNs, pipelined ~ foo.txt: Node mea Nod
replication to other DNs D1-1,2 — —

= #3 DNs report to NN via heartbeat D2-1,2 - m m

= HDFS Read

= #1 Client RPC to NameNode 1. Open t
to open file > DNs for blocks HDFS Client IZW

= #2 Read blocks sequentially from
closest DN w/ block foo.txt: Data Data
Node Node

706.520 Data Integration and Large-Scale Analysis — 10 Distributed Data Storage .ISDS
Matthias Boehm, Graz University of Technology, WS 2019/20

1. Create
foo.txt

foo.txt

» |nputFormats and RecordReaders D1-1,2
as abstraction for multi-part files D2-1,2
(incl. compression/encryption)

Object Stores and Distributed File Systems -Erla'!l

HDFS Data Locality

= Data Locality

= (node-local, rack-local, other)

= Schedule reads from closest data node

= (rep 3): local DN, other-rack DN, same-rack DN

= MapReduce/Spark: locality-aware execution (function vs data shipping)

= Custom Locality Information public class MyFileSplit extends FileSplit

" Custom InputFormat and { public MyFileSplit(FileSplit x, ...) {}
FileSplit implementations @verride
= Return customized mapping public String[] getLocations() {
of locations on getLocations() return new String[]{“nodel”,“node7”};
= Can use block locations) }

of arbitrary files

FileStatus st = fs.getFileStatus(new Path(fname));
BlockLocation[] tmpl = fs.getFileBlockLocations(st, 0, st.getLen());

706.520 Data Integration and Large-Scale Analysis — 10 Distributed Data Storage .ISDS
Matthias Boehm, Graz University of Technology, WS 2019/20

TU

Object Stores and Distributed File Systems Graza
HDFS Federated NameNodes
= HDFS Federation 3 'an NNk @ dNNn
Eliminate NameNode as £l - N m_\ - ‘S i
namespace scalability bottleneck =+ - , i
= |Independent NameNodes, o o
responsible for name spaces b : . J
= DataNodes store blocks of EE — g A — —
all NameNodes 8 e Datanode? | A —r
o il..1 TPy ™
= Client-side mount tables Common Storage

[Credit: https://hadoop.apache.org/docs/current/hadoop-
project-dist/hadoop-hdfs/Federation.html]

= GFS Multiple Cells
= “We also ended up doing what we call

" H " H H
a mul.t/-cell .approach, wh/Fh basically [Kirk McKusick, Sean Quinlan: |
made it possible to put multiple GFS GFS: evolution on fast-forward. |~
masters on top of a pool of chunkservers.” Commun. ACM 53(3) 2010]

-- Sean Quinlan

706.520 Data Integration and Large-Scale Analysis — 10 Distributed Data Storage .ISDS
Matthias Boehm, Graz University of Technology, WS 2019/20

Object Stores and Distributed File Systems TU

Grazm

Other DFS

= HDFS FileSystem Implementations (subset)
= LocalFileSystem (file), DistributedFileSystem ()

= FTPFileSystem, HttpFileSystem, ViewFilesystem (ViewFs — mount table)

= NativeS3FileSystem (s3,), NativeSwiftFileSystem, NativeAzureFileSystem

= Google Colossus

Other proprietary: IBM GPFS, Databricks FS (DBFS)

[WIRED: Google Remakes
Online Empire With 'Colossus',

More fine-grained accesses, Google Cloud Storage https://www.wired.com/2012/
07/google-colossus/]

= High-Performance Computing

Scope: Focus on high IOPs (instead of bandwidth) with block write

IBM GPFS (General Parallel File System) / Spectrum Scale

BeeGFS (Fraunhofer GFS) — focus on usability, storage/metadata servers

Lustre (Linux + Cluster) — GPL license, LNET protocol / metadata / object storage
RedHat GFS2 (Global File System) — Linux cluster file system, close to local

NAS (Network Attached Storage), SAN (Storage Area Network)

706.520 Data Integration and Large-Scale Analysis — 10 Distributed Data Storage .ISDS
Matthias Boehm, Graz University of Technology, WS 2019/20

TU

Grazm

Key-Value Stores and Cloud DBMS

706.520 Data Integration and Large-Scale Analysis — 10 Distributed Data Storage .ISDS
Matthias Boehm, Graz University of Technology, WS 2019/20

Key-Value Stores and Cloud DBMS -I(;rE!l

Motivation and Terminology

= Motivation

= Basic key-value mapping via simple APl (more complex data models
can be mapped to key-value representations)

= Reliability at massive scale on commodity HW (cloud computing)

= System Architecture users:1:a “Inffeldgasse 13, Graz”

= Key-value maps, where values
can be of a variety of data types BEEEIERHY “[12, 34, 45, 67, 89]”

= APIs for CRUD operations @~~~ """~ """~~~ °"°"""°"°"""-"-"--TTToTTTo
(create, read, update, delete) users:2:a “MandellstraBe 12, Graz”

= Scalability via sharding
(horizontal partitioning)

users:2:b “[12, 212, 3212, 43212]”

= Example Systems

al: Dynamo: amazon's

= Dynamo (2007, AP) > Amazon DynamoDB (2012) [Giuseppe DeCandia et e
= Redis (2009, CP/AP) - highly available key- | .
é rEdlS . value store. SOSP 2007]

Key-Value Stores and Cloud DBMS -ErLa!.

Example Systems: Dynamo

[Giuseppe DeCandia et al:
Dynamo: amazon's highly available
key-value store. SOSP 2007]

Motivation
= Simple, highly-available data storage for small objects in ~1MB range
= Aim for good load balance (99.9t" percentile SLAs) A
mazon
e-Commerce

Client Requests

#1 System Interface

= Simple get(k, ctx) and put(k, ctx) ops
= #2 Partitioning

= Consistent hashing of nodes and keys
on circular ring for incremental scaling

= Nodes hold multiple virtual nodes
for load balance (add/rm, heterogeneous)

\ ‘ / Platform

g

~. .

| Request Routing

Page
Rendering

Components

Aggregator
Services

Request Routing

Services

= #3 Replication ri]?/ \ﬁf@\/
= Each data item replicated N times l) @ ‘I" ""%;
(at coord node and N-1 successors) Utj t) @ l/
= Eventual consistency with async update (@ j> s EJ) e X
propagation based on vector clocks U U U @

= Replica synchronization via Merkle trees

Dynamo instances

Other datastores

Key-Value Stores and Cloud DBMS -ErLa!.

Example Systems, cont.

= Redis Data Types a redis

= Redis is not a plain KV-store, but “data structure server” with
persistent log (appendfsync no/everysec/always)

= Key: ASCII string (max 512MB, common key schemes: comment:1234:reply.to)
= Values: strings, lists, sets, sorted sets, hashes (map of string-string), etc

= Redis APIs
= SET/GET/DEL: insert a key-value pair, lookup value by key, or delete by key
= MSET/MGET: insert or lookup multiple keys at once
= INCRBY/DECBY: increment/decrement counters
= QOthers: EXISTS, LPUSH, LPOP, LRANGE, LTRIM, LLEN, etc

= Other systems -ﬁridk

= Classic KV stores (AP): Riak, Aerospike, Voldemort, = seeeeei
LevelDB, RocksDB, FoundationDB, Memcached

= Wide-column stores: Google BigTable (CP),

Apache HBase (CP), Apache Cassandra (AP) a e o c e @ P 2 E;

cassandra

===
FOUNDATIONDB

Key-Value Stores and Cloud DBMS

LOg-Stru Ctu rEd M e rge Trees [Patrick E. O'Neil, Edward Cheng,

Dieter Gawlick, Elizabeth J. O'Neil:
The Log-Structured Merge-Tree

= LSM Overview (LSM-Tree). Acta Inf. 1996]

= Many KV-stores rely on LSM-trees as their storage engine
(e.g., BigTable, DynamoDB, LevelDB, Riak, RocksDB, Cassandra, HBase)

= Approach: Buffers writes in memory, flushes data as sorted runs to storage,
merges runs into larger runs of next level (compaction)

= System Architecture
= Writes in CO

= Reads against
CO and C1 (w/
buffer for C1)

= Compaction
(rolling merge):
sort, merge,
including
deduplication

on-disk

706.520 Data Integration and Large-Scale Analysis — 10 Distributed Data Storage .ISDS

Matthias Boehm, Graz University of Technology, WS 2019/20

in-memory
buffer (CO)
max capacity T

storage (C1)

Key-Value Stores and Cloud DBMS TU

Log-structured Merge Trees, cont.

= LSM Tiering

= Keep up to T-1 runs per level L log Write-

Grazm

= Merge all runs of L, into 1 run of L, optimized
NN ||| %
- Q..
v Z
" L2 .. . S ® Basic read-
> I o iswree optimized
Y
@]
L) Sorted
] S eve/”’g array
= LSM Leveling
= Keep 1 run per level L
= Merge run of Li with Li+1 Insertion cost
= L1 . [Niv Dayan: Log-Structured-
= 2 - Merge Trees, Comp115 | " =o=r™
guest lecture, 2017] |, v- v
- 13 I

706.520 Data Integration and Large-Scale Analysis — 10 Distributed Data Storage .ISDS
Matthias Boehm, Graz University of Technology, WS 2019/20

Key-Value Stores and Cloud DBMS -ErLa!.

Cloud Databases (DBaaS)

. . Google
= Motivation DBaaS Bugouery . amazon

REDSHIFT

= Simplified setup, maintenance, tuning and auto scaling Microsoft

= Multi-tenant systems (scalability, learning opportunities) @VSP.
= Different types based on workload (OLTP vs OLAP) =

= Elastic Data Warehouses

= Motivation: Intersection of data warehousing (02 DWH, ETL, SOL/OLAP),
cloud computing (08/09 Cloud Computing), Distributed Storage (10 today)

= Example Systems

" #1 Snowflake Commonalities:
= #2 Google BigQuery (Dremel) SQL, column stores,
=
= #3 Amazon Redshift data on object store / DFS,
= Azure SQL Data Warehouse B elastic cloud scaling
706.520 Data Integration and Large-Scale Analysis — 10 Distributed Data Storage .ISDS
Matthias Boehm, Graz University of Technology, WS 2019/20

Key-Value Stores and Cloud DBMS

TU

Grazm

Example Snowflake

= Motivation (impl started late 2012)

= Enterprise-ready DWH solution for the cloud (elasticity, semi-structured)

[Benoit Dageville et al.: The
Snowflake Elastic Data
Warehouse. SIGMOD 2016]

= Pure SaaS experience, high availability, cost efficient

= Cloud Services

= Manage virtual DHWs,
TXs, and queries

= Meta data and catalogs

= Virtual Warehouses
= Query execution in EC2
= Caching/intermediates

= Data Storage
= Storage in AWS S3
= PAX / hybrid columnar
= Min-max pruning

e p
Authentication and Access Control
Cloud Infrastructure o Transaction)
Services Manager Optimizer Manager Security
B85 83 Metadata Storage
g v
. . 4 . N\ .
Virtual Virtual Virtual Virtual
Warehouse Warehouse Warehouse Warehouse
Cache Cache Cache Cache
=4 Ny o
Data
Storage
706.520 Data Integration and Large-Scale Analysis — 10 Distributed Data Storage .ISDS

Matthias Boehm, Graz University of Technology, WS 2019/20

Key-Value Stores and Cloud DBMS

TU

Grazm

Example Google Bigquery [Sergey Melnik et al.: Dremel:

Interactive Analysis of Web-Scale
Datasets. PVLDB 3(1) 2010]

= Background Dremel

= Scalable and fast in-situ analysis of read-only nested data (DFS, BigTable)

= Data model: protocol buffers - strongly-typed nested records
= Storage model: columnar storage of nested data r, ipyligyTiyyliyy!

(efficient splitting and assembly records) o
= Query execution via multi-level serving tree
record-
= BigQuery System Architecture BHERSA
= Public impl of internal Dremel system (2012) client

= SQL over structured, nested data (OLAP, Bl) root server %

= Extensions: web Uis, REST APIs and ML

intermediate “
= Data storage: Colossus (NextGen GFS) servers DIII:[

) _ :. . _ \“-..\\ O OQ e
ﬂxﬁﬂqﬂm
I

leaf servers :

[Kazunori Sato: An Inside Look at Google
BigQuery, Google BigQuery White Paper 2012.]

column- T,
oriented

query execution tree

[l

]
i

ol

’ storage layer (e.g., GFS) |

706.520 Data Integration and Large-Scale Analysis — 10 Distributed Data Storage
Matthias Boehm, Graz University of Technology, WS 2019/20

"ISDS

Key-Value Stores and Cloud DBMS

TU

Grazm

Example Amazon Redshift

= Motivation (release 02/2013)

= Simplicity and cost-effectiveness
(fully-managed DWH at petabyte scale)

= System Architecture

= Data plane: data storage and SQL execution

[Anurag Gupta et al.: Amazon
Redshift and the Case for Simpler
Data Warehouses. SIGMOD 2015]

[Mengchu Cai et al.: Integrated
Querying of SQL database data
and S3 data in Amazon Redshift.
IEEE Data Eng. Bull. 41(2) 2018]

= Control plane: workflows for monitoring, . S— ;
and managing databases, AWS services ;Redj;}izggster e ;
= Data Plane o i : e
= |nitial engine licensed from ParAccel <8 |48 |<®
= Leader node + sliced compute nodes R
in EC2 (with local storage) | || [[oo
= Replication across nodes + S3 backup % % % % %
= Query compilation in C++ code prascicencnsal R A S T
= Support for flat and nested files Amazon S3 *
706.520 Data Integration and Large-Scale Analysis — 10 Distributed Data Storage .ISDS

Matthias Boehm, Graz University of Technology, WS 2019/20

TU

Grazm

Summary and Q&A

Motivation and Terminology

Object Stores and Distributed File Systems
Key-Value Stores and Cloud DBMS

Projects and Exercises
= 13 projects + 4 exercises
= Few students w/o discussions = setup skype call if help needed

Next Lectures
= 11 Distributed, Data-Parallel Computation [Jan 17]
= 12 Distributed Stream Processing [Jan 24]
= 13 Distributed Machine Learning Systems [Jan 31]

706.520 Data Integration and Large-Scale Analysis — 10 Distributed Data Storage .ISDS
Matthias Boehm, Graz University of Technology, WS 2019/20

