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Announcements/Org

#1 Video Recording 0 TU be

= Link in TeachCenter & TUbe (lectures will be public)

#2 DIA Projects
= 13 Projects selected (various topics)
= /4 Exercises selected (distributed data deduplication)
= Few discussions pending (= m.boehm@tugraz.at)

= SystemDS: apps into ./scripts/staging/<your_project>

#3 Exam
= Feb 3, 1pm - Feb 5, 2pm, remote exam possible

= QOral exam, 45min slots, first-come, first-serve
= https://doodle.com/poll/ikzsffek2vhd85g4

#4 Course Evaluation
= Evaluation time frame: Jan 14 — Feb 14 - feedback
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Course Outline Part B:
Large-Scale Data Management and Analysis

12 Distributed Stream 13 Distributed Machine
Processing [Jan 24] Learning Systems [Jan 31]

11 Distributed Data-Parallel Computation [Jan 17]
Compute/
Storage
10 Distributed Data Storage [Jan 10]
09 Cloud Resource Management and Scheduling [Dec 13]
Infra

08 Cloud Computing Fundamentals [Dec 06]
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Agenda

= Motivation and Terminology
= Object Stores and Distributed File Systems
= Key-Value Stores and Cloud DBMS
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Motivation and Terminology
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Motivation and Terminology Graza

Overview Distributed Data Storage

Global
= Recap: Distributed DBS (03 Replication, MoM, and EAI) l Q
= Distributed DB: Virtual (logical) DB, appears like a

local DB but consists of multiple physical DBs

= Components for global query processing
= Virtual DBS (homo.) vs federated DBS (hetero.)

= Cloud and Distributed Data Storage
= Motivation: size (large-scale), semi-structured/nested , fault tolerance
= #1 Cloud and Distributed Storage
= Block storage: files split into blocks, read/write (e.g., SAN, AWS EBS)
= Object storage: objects of limited size, read/replace (e.g., AWS S3)
= Distributed file systems: file system on block/object stores (NFS, HDFS)
= #2 Database as a Service
= NoSQL stores: Key-value stores, document stores
= Cloud DBMSs (SQL, for OLTP and OLAP workloads)
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Central Data Abstractions

= #1 Files and Objects
= File: Arbitrarily large sequential data in specific file format (CSV, binary, etc)
= Object: binary large object, with certain meta data

= #2 Distributed Collections Key

= Logical multi-set (bag) of key-value pairs

(unsorted collection) 4 Delta
= Different physical representations 2 Bravo
= Easy distribution of pairs 1 Alpha
via horizontal partitioning )
(aka shards, partitions) 3 Charlie
= Can be created from single file, 5 Echo
or directory of files (unsorted) 6 Foxtrott
7 Golf
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Data Lakes

= Concept “Data Lake”

= Store massive amounts of un/semi-structured, and structured data
(append only, no update in place)

= No need for architected schema or upfront costs (unknown analysis)
= Typically: file storage in open, raw formats (inputs and intermediates)
=>» Distributed storage and analytics for scalability and agility

= Criticism: Data Swamp

DATA LAKE .I DATA SWAMP
= Low data quality (lack of schema,
integrity constraints, validation)

= Missing meta data (context) and &/

data catalog for search _ym

=» Requires proper data curation / tools [Credit: www.collibra.com]
According to priorities (data governance)
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Catalogs of Data and Artefacts  Rrecap FAIR Data Principles

(see )
= Data Catalogs
= Data curation in repositories for finding relevant datasets in data lakes
= Augment data with open and linked data sources

= Examples [Alon Y. Halevy et al: Goods: Organizing
Google's Datasets. SIGMOD 2016]

SAP Data Hub Google Data Search

Dataset Organizing Tools

Dataset Provenance

Moniforin Visualization H Ainnction

Metadata ﬂ'\ddiliunal Sources of Metadata ‘\!
Path/ldentifier - Logs
Size | F - Source code repository
T - - User and group membership database
[bigtable/foo/bar 100G | written_by: job_A proto:foo.Bar - Team and project database
- Content analysis modules
Igfsinlu/foo 10G read_by: job_B proto:nlu.Schema ‘ - Contributed by users/teams through

GOODS API

L 4

written_by: job_C

" Dala Access

= =

[SAP Sapphire Now 2019] EET [rosyemz | | spemer | [ DR
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Object Storage

= Recap: Key-Value Stores
= Key-value mapping, where values can be of a variety of data types
= APIs for CRUD operations; scalability via sharding (objects or object segments)

= Object Store
= Similar to key-value stores, but: optimized for large objects in GBs and TBs
= Object identifier (key), meta data, and object as binary large object (BLOB)
= APIs: often REST APIs, SDKs, sometimes implementation of DFS APIs

= Partitioning g D, | g D, 1 D,

Distribution Mribution
(partitioning + parity)
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Object Stores and Distributed File Systems -ErLa!.

Object Storage, cont.

—
= Example Object Stores / Protocols =_2 openstack.

= Amazon Simple Storage Service (S3) Amason S3 (
= QOpenStack Object Storage (Swift) .
= |BM Object Storage

= Microsoft Azure Blob Storage

IBM Cloud
Object Storage

= Amazon S3
= Reliable object store for photos, videos, documents or any binary data

= Bucket: Uniquely named, static data container
http://s3.aws-eu-central-1.amazonaws.com/mboehm7datab

= Object: key, version ID, value, metadata, access control

= Single (5GB)/multi-part (5TB) upload and direct/BitTorrent download
= Storage classes: STANDARD, STANDARD _IA, GLACIER, DEEP_ARCHIVE
= QOperations: GET/PUT/LIST/DEL, and SQL over CSV/JSON objects
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Hadoop Distributed File System (HDFS)

= Brief Hadoop History .

[Sanjay Ghemawat, Howard
= Google’s GFS + MapReduce [ODSI’04] Gobioff, Shun-Tak Leung: The

- Apache Hadoop (2006) Google file system. SOSP 2003]

= Apache Hive (SQL), Pig (ETL), Mahout/SystemML (ML), Giraph (Graph)

= HDFS Overview

= Hadoop’s distributed file system, for large clusters and datasets

= Implemented in Java, w/ native libraries for compression, 1/0, CRC32
= Files split into 128 MB blocks, replicated (3x), and distributed Client

/

sﬁz,}%mmp Hadoop Distributed File System (HDFS)

Da

Data

Node

ta
Node

Name Data ata Data
Node Node Nod Node
e~ e~ e~ e~

Head Node Worker Nodes (shared-nothing cluster)

@
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HDFS Daemon Processes

= HDFS NameNode hadoop fs -1s
= Master daemon that manages file system R '
namespace and access by clients

./data/mnistlim.bin

= Metadata for all files (e.g., replication,
permissions, sizes, block ids, etc)

= FSImage: checkpoint of FS namespace
= EditLog: of file write operations (merged on startup)

= HDFS DataNode
= Worker daemon per cluster node that manages block storage (list of disks)
= Block creation, deletion, replication as individual files in local FS
= On startup: scan local blocks and send block report to name node
= Serving block read and write requests

= Send heartbeats to NameNode (capacity, current transfers) and
receives replies (replication, removal of block replicas)

706.520 Data Integration and Large-Scale Analysis — 10 Distributed Data Storage .ISDS
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HDEFS InputFormats and RecordReaders

= QOverview InputFormats
= InputFormat: implements access to distributed collections in files
= Split: record-aligned block of file (alighed with HDFS block size)
= RecordReader: API for reading key-value pairs from file splits
= Examples: FilelnputFormat, TextInputFormat, SequenceFilelnputFormat

= Example FileInputFormat.addInputPath(job, path); # path: dir/file
Text Read TextInpu’FFor'mat %nfor'mz.;\t = new TextIn[?uth?rmat(); .
InputSplit[] splits = informat.getSplits(job, numSplits);

LongWritable key = new LongWritable();
Text value = new Text();
for(InputSplit split : splits) {
RecordReader<LongWritable,Text> reader = informat
.getRecordReader(split, job, Reporter.NULL);
while( reader.next(key, value) )
... //process individual text lines

}
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HDEFES InputFormats and RecordReaders, cont.

= Sequence Files

= Binary files for key/value pairs, w/ optional compression
(MapReduce/Spark inputs/outputs, MapReduce intermediates)

= |nputFormat with readers, writers, and sorters

= Example Uncompressed SequencefFile

= Header: SEQ+version (4 bytes), keyClassName, valueClassName, compression,
blockCompression, compressor class (codec), meta data

= Splittable binary representation of key-value pair collection

(O] (&)
Header u§’. Record Record Record :>,. Record

_—

Record Key
Length Length

SystemDS: values are

Key 1k x 1k matrix blocks

706.520 Data Integration and Large-Scale Analysis — 10 Distributed Data Storage .ISDS
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HDFS Write and Read
Client B
v

= HDFS Write
= #1 Client RPC to NameNode HDFS Client D,

to create file = lease/replica DNs

= #2 Write blocks to DNs, pipelined ~ foo.txt: Node mea Nod
replication to other DNs D1-1,2 — —

= #3 DNs report to NN via heartbeat D2-1,2 - m m

= HDFS Read

= #1 Client RPC to NameNode 1. Open t
to open file > DNs for blocks HDFS Client IZW

= #2 Read blocks sequentially from
closest DN w/ block foo.txt: Data Data
Node Node

706.520 Data Integration and Large-Scale Analysis — 10 Distributed Data Storage .ISDS
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1. Create
foo.txt

foo.txt

» |nputFormats and RecordReaders  D1-1,2
as abstraction for multi-part files D2-1,2
(incl. compression/encryption)
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HDFS Data Locality

= Data Locality

= (node-local, rack-local, other)

= Schedule reads from closest data node

= (rep 3): local DN, other-rack DN, same-rack DN

= MapReduce/Spark: locality-aware execution (function vs data shipping)

= Custom Locality Information public class MyFileSplit extends FileSplit

" Custom InputFormat and { public MyFileSplit(FileSplit x, ...) {}
FileSplit implementations @verride
= Return customized mapping public String[] getLocations() {
of locations on getLocations() return new String[ ]{“nodel”,“node7”};
= Can use block locations ) }

of arbitrary files

FileStatus st = fs.getFileStatus(new Path(fname));
BlockLocation[] tmpl = fs.getFileBlockLocations(st, 0, st.getLen());

706.520 Data Integration and Large-Scale Analysis — 10 Distributed Data Storage .ISDS
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HDFS Federated NameNodes
= HDFS Federation 3 'an NNk @ dNNn
Eliminate NameNode as £l - N m\_\ - ‘S i
namespace scalability bottleneck =+ - , i
= |Independent NameNodes, o o
responsible for name spaces b : . J
= DataNodes store blocks of EE — g A — —
all NameNodes 8 e Datanode? | A —r
o il..1 TPy ™
= Client-side mount tables Common Storage

[Credit: https://hadoop.apache.org/docs/current/hadoop-
project-dist/hadoop-hdfs/Federation.html]

= GFS Multiple Cells
= “We also ended up doing what we call

" H " H H
a mul.t/-cell .approach, wh/Fh basically [Kirk McKusick, Sean Quinlan: |
made it possible to put multiple GFS GFS: evolution on fast-forward. |~
masters on top of a pool of chunkservers.” Commun. ACM 53(3) 2010]

-- Sean Quinlan
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Other DFS

= HDFS FileSystem Implementations (subset)
= LocalFileSystem (file), DistributedFileSystem ( )

= FTPFileSystem, HttpFileSystem, ViewFilesystem (ViewFs — mount table)

= NativeS3FileSystem (s3, ), NativeSwiftFileSystem, NativeAzureFileSystem

= Google Colossus

Other proprietary: IBM GPFS, Databricks FS (DBFS)

[WIRED: Google Remakes
Online Empire With 'Colossus',

More fine-grained accesses, Google Cloud Storage https://www.wired.com/2012/
07/google-colossus/]

= High-Performance Computing

Scope: Focus on high IOPs (instead of bandwidth) with block write

IBM GPFS (General Parallel File System) / Spectrum Scale

BeeGFS (Fraunhofer GFS) — focus on usability, storage/metadata servers

Lustre (Linux + Cluster) — GPL license, LNET protocol / metadata / object storage
RedHat GFS2 (Global File System) — Linux cluster file system, close to local

NAS (Network Attached Storage), SAN (Storage Area Network)

706.520 Data Integration and Large-Scale Analysis — 10 Distributed Data Storage .ISDS
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Key-Value Stores and Cloud DBMS
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Motivation and Terminology

= Motivation

= Basic key-value mapping via simple APl (more complex data models
can be mapped to key-value representations)

= Reliability at massive scale on commodity HW (cloud computing)

= System Architecture users:1:a “Inffeldgasse 13, Graz”

= Key-value maps, where values
can be of a variety of data types BEEEIERHY “[12, 34, 45, 67, 89]”

= APIs for CRUD operations @~~~ """~ """~~~ °"°"""°"°"""-"-"--TTToTTTo
(create, read, update, delete) users:2:a “MandellstraBe 12, Graz”

= Scalability via sharding
(horizontal partitioning)

users:2:b “[12, 212, 3212, 43212]”

= Example Systems

al: Dynamo: amazon's

= Dynamo (2007, AP) > Amazon DynamoDB (2012)  [Giuseppe DeCandia et e
= Redis (2009, CP/AP) - highly available key- | .
é rEdlS . value store. SOSP 2007]
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Example Systems: Dynamo

[Giuseppe DeCandia et al:
Dynamo: amazon's highly available
key-value store. SOSP 2007]

Motivation
= Simple, highly-available data storage for small objects in ~1MB range
= Aim for good load balance (99.9t" percentile SLAs) A
mazon
e-Commerce

Client Requests

#1 System Interface

= Simple get(k, ctx) and put(k, ctx) ops
= #2 Partitioning

= Consistent hashing of nodes and keys
on circular ring for incremental scaling

= Nodes hold multiple virtual nodes
for load balance (add/rm, heterogeneous)

\ ‘ / Platform

g

~. .

| Request Routing

Page
Rendering

Components

Aggregator
Services

Request Routing

Services

= #3 Replication ri]?/ \ﬁf@\/
= Each data item replicated N times l ) @ ‘I" ""%;
(at coord node and N-1 successors) Utj t) @ l/
= Eventual consistency with async update (@ j> s EJ) e X
propagation based on vector clocks U U U @

= Replica synchronization via Merkle trees

Dynamo instances

Other datastores
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Example Systems, cont.

= Redis Data Types a redis

= Redis is not a plain KV-store, but “data structure server” with
persistent log (appendfsync no/everysec/always)

= Key: ASCII string (max 512MB, common key schemes: comment:1234:reply.to)
= Values: strings, lists, sets, sorted sets, hashes (map of string-string), etc

= Redis APIs
= SET/GET/DEL: insert a key-value pair, lookup value by key, or delete by key
= MSET/MGET: insert or lookup multiple keys at once
= INCRBY/DECBY: increment/decrement counters
= QOthers: EXISTS, LPUSH, LPOP, LRANGE, LTRIM, LLEN, etc

= Other systems -ﬁridk

= Classic KV stores (AP): Riak, Aerospike, Voldemort, = seeeeei
LevelDB, RocksDB, FoundationDB, Memcached

= Wide-column stores: Google BigTable (CP),

Apache HBase (CP), Apache Cassandra (AP) a e o c e @ P 2 E;

cassandra

===
FOUNDATIONDB




Key-Value Stores and Cloud DBMS

LOg-Stru Ctu rEd M e rge Trees [Patrick E. O'Neil, Edward Cheng,

Dieter Gawlick, Elizabeth J. O'Neil:
The Log-Structured Merge-Tree

= LSM Overview (LSM-Tree). Acta Inf. 1996]

= Many KV-stores rely on LSM-trees as their storage engine
(e.g., BigTable, DynamoDB, LevelDB, Riak, RocksDB, Cassandra, HBase)

= Approach: Buffers writes in memory, flushes data as sorted runs to storage,
merges runs into larger runs of next level (compaction)

= System Architecture
= Writes in CO

= Reads against
CO and C1 (w/
buffer for C1)

= Compaction
(rolling merge):
sort, merge,
including
deduplication

on-disk

706.520 Data Integration and Large-Scale Analysis — 10 Distributed Data Storage .ISDS
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Log-structured Merge Trees, cont.

= LSM Tiering

= Keep up to T-1 runs per level L log Write-

Grazm

= Merge all runs of L, into 1 run of L, optimized
NN ||| %
- Q..
v Z
" L2 .. . S ®  Basic read-
> I o iswree  optimized
Y
@]
L ) Sorted
] S eve/”’g array
= LSM Leveling
= Keep 1 run per level L
= Merge run of Li with Li+1 Insertion cost
= L1 . [Niv Dayan: Log-Structured-
= 2 - Merge Trees, Comp115 | " =o=r™
guest lecture, 2017] |, v- v
- 13 I
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Cloud Databases (DBaaS)

. . Google
= Motivation DBaaS Bugouery . amazon

REDSHIFT

= Simplified setup, maintenance, tuning and auto scaling Microsoft

= Multi-tenant systems (scalability, learning opportunities) @VSP.
= Different types based on workload (OLTP vs OLAP) =

= Elastic Data Warehouses

= Motivation: Intersection of data warehousing (02 DWH, ETL, SOL/OLAP),
cloud computing (08/09 Cloud Computing), Distributed Storage (10 today)

= Example Systems

" #1 Snowflake Commonalities:
= #2 Google BigQuery (Dremel) SQL, column stores,
=
= #3 Amazon Redshift data on object store / DFS,
= Azure SQL Data Warehouse B elastic cloud scaling
706.520 Data Integration and Large-Scale Analysis — 10 Distributed Data Storage .ISDS
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Example Snowflake

= Motivation (impl started late 2012)

= Enterprise-ready DWH solution for the cloud (elasticity, semi-structured)

[Benoit Dageville et al.: The
Snowflake Elastic Data
Warehouse. SIGMOD 2016]

= Pure SaaS experience, high availability, cost efficient

= Cloud Services

= Manage virtual DHWs,
TXs, and queries

= Meta data and catalogs

= Virtual Warehouses
= Query execution in EC2
= Caching/intermediates

= Data Storage
= Storage in AWS S3
= PAX / hybrid columnar
= Min-max pruning

e p
Authentication and Access Control
Cloud Infrastructure o Transaction )
Services Manager Optimizer Manager Security
B85 83 Metadata Storage
g v
. . 4 . N\ .
Virtual Virtual Virtual Virtual
Warehouse Warehouse Warehouse Warehouse
Cache Cache Cache Cache
=4 Ny o
Data
Storage
706.520 Data Integration and Large-Scale Analysis — 10 Distributed Data Storage .ISDS
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Example Google Bigquery [Sergey Melnik et al.: Dremel:

Interactive Analysis of Web-Scale
Datasets. PVLDB 3(1) 2010]

= Background Dremel

= Scalable and fast in-situ analysis of read-only nested data (DFS, BigTable)

= Data model: protocol buffers - strongly-typed nested records
= Storage model: columnar storage of nested data r, ipyligyTiyyliyy!

(efficient splitting and assembly records) o
= Query execution via multi-level serving tree
record-
= BigQuery System Architecture BHERSA
= Public impl of internal Dremel system (2012) client

= SQL over structured, nested data (OLAP, Bl)  root server %

= Extensions: web Uis, REST APIs and ML

intermediate “
= Data storage: Colossus (NextGen GFS) servers DIII:[

) _ :. . _ \“-..\\ O OQ e
ﬂxﬁﬂqﬂm
I

leaf servers :

[Kazunori Sato: An Inside Look at Google
BigQuery, Google BigQuery White Paper 2012.]

column- T,
oriented

query execution tree

[l

]
i

ol

’ storage layer (e.g., GFS) |
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Example Amazon Redshift

= Motivation (release 02/2013)

= Simplicity and cost-effectiveness
(fully-managed DWH at petabyte scale)

= System Architecture

= Data plane: data storage and SQL execution

[Anurag Gupta et al.: Amazon
Redshift and the Case for Simpler
Data Warehouses. SIGMOD 2015]

[Mengchu Cai et al.: Integrated
Querying of SQL database data
and S3 data in Amazon Redshift.
IEEE Data Eng. Bull. 41(2) 2018]

= Control plane: workflows for monitoring, . S— ;
and managing databases, AWS services ;Redj;}izggster e ;
= Data Plane o i : e
= |nitial engine licensed from ParAccel <8 |48 |<®
= Leader node + sliced compute nodes R
in EC2 (with local storage) | || [ [ oo
= Replication across nodes + S3 backup % % % % %
= Query compilation in C++ code prascicencnsal R A S T
= Support for flat and nested files Amazon S3 *
706.520 Data Integration and Large-Scale Analysis — 10 Distributed Data Storage .ISDS
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Summary and Q&A

Motivation and Terminology

Object Stores and Distributed File Systems
Key-Value Stores and Cloud DBMS

Projects and Exercises
= 13 projects + 4 exercises
= Few students w/o discussions = setup skype call if help needed

Next Lectures
= 11 Distributed, Data-Parallel Computation [Jan 17]
= 12 Distributed Stream Processing [Jan 24]
= 13 Distributed Machine Learning Systems [Jan 31]
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