TU

Grazm

SCIENCE
PASSION
TECHNOLOGY

Data Integration and Analysis
11 Distributed Data-Parallel Computation

Matthias Boehm

Graz University of Technology, Austria

Computer Science and Biomedical Engineering
Institute of Interactive Systems and Data Science
BMVIT endowed chair for Data Management

Last update: Jan 17, 2020 “ISDS

TU

Grazm

Announcements/Org

#1 Video Recording o TU be

= Link in TeachCenter & TUbe (lectures will be public)

#2 DIA Projects

= 13 Projects selected (various topics) If problems,
please ask for

= 3 Exercises selected (distributed data deduplication) help

= SystemDS: apps into ./scripts/staging/<your_project>

#3 Exam
= Feb 3, 1pm - Feb 5, 2pm, remote exam possible

= QOral exam, 45min slots, first-come, first-serve
= https://doodle.com/poll/ikzsffek2vhd85g4

= #4 Course Evaluation
= Evaluation time frame: Jan 14 — Feb 14 - feedback

706.520 Data Integration and Large-Scale Analysis — 11 Distributed, Data-Parallel Computation .ISDS
Matthias Boehm, Graz University of Technology, WS 2019/20

TU

Grazm

Course Outline Part B:
Large-Scale Data Management and Analysis

12 Distributed Stream 13 Distributed Machine
Processing [Jan 24] Learning Systems [Jan 31]

11 Distributed Data-Parallel Computation [Jan 17]

Compute/

Storage
10 Distributed Data Storage [Jan 10]

09 Cloud Resource Management and Scheduling [Dec 13]

08 Cloud Computing Fundamentals [Dec 06]

Infra

706.520 Data Integration and Large-Scale Analysis — 11 Distributed, Data-Parallel Computation .ISDS
Matthias Boehm, Graz University of Technology, WS 2019/20

TU

Grazm

Agenda

= Motivation and Terminology

= Data-Parallel Collection Processing

= Data-Parallel DataFrame Operations

= Data-Parallel Computation in SystemDS

706.520 Data Integration and Large-Scale Analysis — 11 Distributed, Data-Parallel Computation
Matthias Boehm, Graz University of Technology, WS 2019/20

"ISDS

TU

Grazm

Motivation and Terminology

INF.01017UF Data Management / 706.010 Databases — 11/12 Distributed Storage and Analytics
Matthias Boehm, Graz University of Technology, WS 2019/20

"ISDS

TU

Motivation and Terminology Graza

Recap: Central Data Abstractions

= #1 Files and Objects
= File: Arbitrarily large sequential data in specific file format (CSV, binary, etc)
= Object: binary large object, with certain meta data

= #2 Distributed Collections Key

= Logical multi-set (bag) of key-value pairs

(unsorted collection) 4 Delta
= Different physical representations 2 Bravo
= Easy distribution of pairs 1 Alpha
via horizontal partitioning)
(aka shards, partitions) 3 Charlie
= Can be created from single file, 5 Echo
or directory of files (unsorted) 6 Foxtrott
7 Golf
706.520 Data Integration and Large-Scale Analysis — 11 Distributed, Data-Parallel Computation .ISDS

Matthias Boehm, Graz University of Technology, WS 2019/20

Motivation and Terminology

TU

Grazm

Excursus: Nehalem Architecture

= Multi-core CPU
= 4 core w/ hyper-threading
= Per core: L1i/L1d, L2 cache
= Per CPU: L3 cache (8MB)

= 3 memory channels
(8B width, max 1.333Ghz)

= Pipeline
= Frontend: Instruction Fetch,
Pre-Decode, and Decode

= Backend: Rename/Allocate,
Scheduler, Execute

= Qut-of-Order
Execution Engine (IPC=4)

= 128b FP Multiply
= 128b FP Add

Nehalem RISC
micro-operations

Viemory Controller

Shared L3 Cache

Nehalem Execution Engine
Out-of-order Pipelines AVY

micro-op issue

out-of-order dispatch
and execution

= 5 . leyc
&
Retirement Register File |«
(Architected State) | ™

1 Req

e / port

[Michael E. Thomadakis:
The Architecture of the
Nehalem Processor and Nehalem-
EP SMP Platforms, Report, 2010]

QPI ... Quick Path
4—
Interconnect

of

File WB |Regisler Alias Table and Allocalorl

Reorder-Buffer

(=]
Integer ALU &
Shift

(ROB) 128 entries

A \'\095

Unified Reservation Stations (URS) 36 entries

Integer ALU &
LEA

I FP Multiply I FP Add

o) o)
c
=4
w

Store

Address

Store
Data

p
o

=3
[$)

Integer ALU &
Shift

Divide Memory Order-Buffer FP Shuffle
nteger
SSE Integer ALU i SSE Integer (MoB) ek alom
Integer Shuffies Muiltiply rieger Shlies
v) e
\ \
Nehalem RISC 1168 228 A28p° 1168
micro-operations load ; store
lcycle 32kiB L1 leycle
Data Cache

Motivation and Terminology -I(;rE!l

Terminology
Singe Data Multiple Data
= Flynn’s Classification
= SISD, SIMD Singe. SISD SIMD
Instruction (uni-core) (vector)

= (MISD), MIMD

[Michael J. Flynn, Kevin W. _
Rudd: Parallel Architectures. Multiple MISD MIMD
ACM Comput. Surv. 28(1) 1996] Instruction (pipelining) (multi-core)

= Example: SIMD Processing
= Streaming SIMD Extensions (SSE)

= Process the same operation on
multiple elements at a time
(packed vs scalar SSE instructions)

2009 Nehalem: 128b (2xFP64)
2012 Sandy Bridge: 256b (4xFP64)
2017 Skylake: 512b (8xFP64)

_ ¢ = _mm512_fmadd_pd(a, b);
= Data parallelism] T [| |

. . . a | I
(aka: instruction-level parallelism) bl T T T T T 1T 11
= Example: VFMADD132PD c(1 [I 1T I T [1}

706.520 Data Integration and Large-Scale Analysis — 11 Distributed, Data-Parallel Computation .ISDS
Matthias Boehm, Graz University of Technology, WS 2019/20

Motivation and Terminology -I(;rla'!l

Terminology cont.

= Distributed, Data-Parallel Y = X.map(x -> foo(x))
Computation

= Parallel computation of function foo() =
= Collection X of data items (key-value pairs) =»

= Data parallelism similar to SIMD but more coarse-grained notion of
“instruction” and “data” =» SPMD (single program, multiple data)

[Frederica Darema: The SPMD Model : Past,
Present and Future. PVM/MPI 2001]

= Additional Terminology

= Bulk Synchronous Parallel (global barriers)
= Asynchronous Parallel (no barriers, often with accuracy impact)
= Stale-synchronous parallel (staleness constraint on fastest-slowest)

= Qther: Fork&Join, Hogwild!, event-based, decentralized

= Beware: used in very different contexts (e.g., Param Server)
706.520 Data Integration and Large-Scale Analysis — 11 Distributed, Data-Parallel Computation B S S
Matthias Boehm, Graz University of Technology, WS 2019/20 I D

TU

Grazm

Data-Parallel Collection Processing

INF.01017UF Data Management / 706.010 Databases — 11/12 Distributed Storage and Analytics B ISDS
Matthias Boehm, Graz University of Technology, WS 2019/20

Data-Parallel Collection Processing -I(;rE!l

Hadoop History and Architecture

[Jeffrey Dean, Sanjay
Ghemawat: MapReduce:
Simplified Data Processing on
Large Clusters. OSDI 2004]

G liEREED

= Recap: Brief History

= Google’s GFS [SOSP’03] + MapReduce
- Apache Hadoop (2006)

= Apache Hive (SQL), Pig (ETL), Mahout (ML), Giraph (Graph)

= Hadoop Architecture / Eco System

= Management (Ambari)

Worker Node1 Worker Node n

= Coordination / workflows

(Zookeeper, Oozie) :_ ________ 1| :_ ________ 1|
= Storage (HDFS) 2"“'; MR |I'[MR][MR ||
= Resources (YARN) - ———_—= task . task || task |

[SoCC’13] MR |[MR |, [MR |[MR |,
" Processing Resource task || task ||| task || task |,

r— R I I

Manager | Manager §
R lent Toe Bag
TEEY -- B EY -

Data-Parallel Collection Processing

TU

Grazm

MapReduce — Programming Model

= Overview Programming Model

= |nspired by functional programming languages

= Implicit parallelism (abstracts distributed storage and processing)

= Example
X CS
Y CS
A EE
VA CS

Collection of
key/value pairs

function: key/value pair = set of intermediate key/value pairs
function: merge all intermediate values by key

SELECT Dep, count(*) FROM csv_files GROUP BY Dep
(Long pos, String line) {

parts <& line.split(“,”)
emit(parts[1], 1)

} cS 1 (String dep,
Iterator<Long> iter) {
S 1 total <& iter.sum();
EE 1 emit(dep, total)
} CS
CS 1
EE

Data-Parallel Collection Processing -I(;rlagl

MapReduce — Execution Model

#1 Data Locality (delay sched., write affinity)

Input CSV files Map-Phase #2 Reduced shuffle (combine)
(stored in HDFS) #3 Fault tolerance (replication, attempts)

,m
co st 11
Filel | ,~~~~~ \

1 Split 12

\

/
\

[Reduce-Phase] Output Files
(HDFS)

/

reduce out 1

task 7
reduce out 2

f
csv | ! Spllt 21
\)

File 2 (- - T T T \
7 |\ Split 22 k
\

task 7

reduce Out 3
task

(
\
File 3

]
\
]

m
L

Shuffle, Merge,
[Combine]

N

Sort, [Combine], [Compress] w/ #reducers = 3

Data-Parallel Collection Processing -I(;rla'!l

MapReduce — Query Processing

= Basic Unary Operations
= Selections (brute-force), projections
= QOrdering (e.g., TeraSort): Sample, pick k quantiles; shuffle-based partition sort
= Additive and semi-additive aggregation with grouping, distinct

" Binary Operatlons [Spyros Blanas et al.: A comparison
= Set operations of join algorithms for log processing

. in MapReduce. SIGMOD 2010
(union, intersect, difference) and joins ! priedd |

= Different physical operators for R < S

= : broadcast S, build HT S, map-side HJOIN

= : shuffle (repartition) R and S, reduce-side MJOIN

= avoid buffering via key-tag sorting

n (pre/co-partitioned): map-only, R input, S read side-ways

= Hybrid SQL-on-Hadoop Systems [VLDB’15]
= E.g.: Hadapt (HadoopDB), Impala, IBM BigSQL, Presto, Drill, Actian

706.520 Data Integration and Large-Scale Analysis — 11 Distributed, Data-Parallel Computation .ISDS
Matthias Boehm, Graz University of Technology, WS 2019/20

Data-Parallel Collection Processing

TU

Grazm

Spark History and Architecture

= Summary MapReduce
= Large-scale & fault-tolerant processing w/ UDFs and files =» Flexibility
= Restricted functional APIs =» Implicit parallelism and fault tolerance
= Criticism: #1 Performance, #2 Low-level APIs, #3 Many different systems

= Evolution to Spark (and Flink)
= Spark [HotCloud’10] + RDDs [NSDI'12] = Apache Spark (2014) S0Q

= Design: standing executors with in-memory storage,
lazy evaluation, and fault-tolerance via RDD lineage

= Performance: In-memory storage and fast job scheduling (100ms vs 10s)

= APIs: Richer functional APIs and general computation DAGs,
high-level APIs (e.g., DataFrame/Dataset), unified platform

=» But many shared concepts/infrastructure
= Implicit parallelism through dist. collections (data access, fault tolerance)
= Resource negotiators (YARN, Mesos, Kubernetes)
= HDFS and object store connectors (e.g., Swift, S3)

TU

Data-Parallel Collection Processing Graza

Spark History and Architecture, cont.

= High-Level Architecture https://spark.apache.org/]

Different language bindings:

Scala, Java, Python, R :
Spark MLIib

Different libraries:
SQL, ML, Stream, Graph

Spark core (incl RDDs)

Different cluster managers:

Yarn, Kubernetes
. N
formats, and data sources:

HDFS, S3, SWIFT, DBs, NoSQL S"p“aErK had@gp
PR -
S MESOS kubernetes

Streamingl (machine
learning)

= Focus on a unified platform
for data-parallel computation (Apache Flink w/ similar goals)

706.520 Data Integration and Large-Scale Analysis — 11 Distributed, Data-Parallel Computation .ISDS
Matthias Boehm, Graz University of Technology, WS 2019/20

Data-Parallel Collection Processing -ErLa!.

Spark Resilient Distributed Datasets (RDDs)

= RDD Abstraction JavaPairRDD<MatrixIndexes,MatrixBlock>

= Immutable, partitioned
collections of key-value pairs

= Coarse-grained deterministic operations (transformations/actions)
= Fault tolerance via lineage-based re-computation

= Operations

= Transformations: Transformation

map, hadoopFile, textFile,
flatMap, filter, sample, join,

define new RDDs (lazy) groupByKey, cogroup, reduceByKey,
= Actions: return cross, sortByKey, mapValues
result to driver Action reduce, save,
collect, count, lookupKey
= Distributed Caching Nodel Node2

= Use fraction of worker memory for caching ‘-\ ‘-\
= Eviction at granularity of individual partitions
= Different storage levels (e.g., mem/disk x serialization x compression)

706.520 Data Integration and Large-Scale Analysis — 11 Distributed, Data-Parallel Computation .ISDS
Matthias Boehm, Graz University of Technology, WS 2019/20

Data-Parallel Collection Processing -I(;rE!l

Spark Resilient Distributed Datasets (RDDs), cont.

"= Lifecycle of an RDD X.filter(foo())
= Note: can’t broadcast X.mapValues(foo())
an RDD directly X.reduceByKey(foo())
X.cache()

sc.parallelize(lst)

Local Data = Distributed
(value, collection) [Collection

1st = X.collect()
v = X.reduce(foo())

sc.hadoopFile(f)
sc.textFile(f)

X.saveAsObjectFile(f)
X.saveAsTextFile(f)

706.520 Data Integration and Large-Scale Analysis — 11 Distributed, Data-Parallel Computation .ISDS
Matthias Boehm, Graz University of Technology, WS 2019/20

Data-Parallel Collection Processing -ErLa!.

Spark Partitions and Implicit/Explicit Partitioning

Spark Partitions

= Logical key-value collections are split into physical partitions

~128MB
= Partitions are granularity of tasks, 1/0, shuffling, evictions
= Partitioning via Partitioners Example Hash Partitioning:
= |Implicitly on every data shuffling For all (k,v) of R:
= Explicitly via R.repartition(n) pid = hash(k) % n

Partitioning-Preserving

= All operations that are guaranteed to keep keys unchanged
(e.g. mapValues (), mapPartitions() w/ preservesPart flag)

Hash partitioned

X
- B P5
A X

Partitioning-Exploiting
= Join: R3 = R1.join(R2)

= Lookups:
v = C.lookup(k)

706.520 Data Integration and Large-Scale Analysis — 11 Distributed, Data-Parallel Computation .ISDS
Matthias Boehm, Graz University of Technology, WS 2019/20

Data-Parallel Collection Processing -ErLa!.

Spark Scheduling Process [Tilmann Rabl

Big Data Systems,
HPI WS2019/20]

RDD Objects DAGScheduler TaskScheduler Workers
I I I
| | |
: : Scheduler : '
| | Backend | Threads
DAG @ | TaskSet
1 I} manager

/7

rdd1.join(rdd2) split graph into launch tasks at execute tasks

A
\ 4
-
D RO DU Uy«)
v
vt

-reduceByKey (...) stages of tasks workers
.filter(..)
build submit each retry failed or store and serve
operator DAG stage as ready straggling tasks blocks
706.520 Data Integration and Large-Scale Analysis — 11 Distributed, Data-Parallel Computation .ISDS

Matthias Boehm, Graz University of Technology, WS 2019/20

TU

Data-Parallel Collection Processing Graza

Spark Lazy Evaluation, Caching, and Lineage

/’::__::__::__: _____________________ RN

/ l’ \ \\
[A partitioning- I
L aware !
I ! I

: I
| G |
I
1 Stagel :
| Tmm—m—m—————— I
: // —————————————————————
I
: : ¢ - .‘ | reduce
I

;|
L 3 |
: I :
;|
¥ s | |
: I
L 3] : o
\ Y Stage 2 J Stage3

\ N o o o o e o e e o e e e e e e -’ y

~ -7 cached

[Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy
McCauly, Michael J. Franklin, Scott Shenker, lon Stoica: Resilient Distributed Datasets: A
Fault-Tolerant Abstraction for In-Memory Cluster Computing. NSDI 2012]

Data-Parallel Collection Processing -ErLa!.

Example: k-Means Clustering

= k-Means Algorithm

= Gjven dataset D and number of clusters k, find cluster centroids
(“mean” of assigned points) that minimize within-cluster variance

= Euclidean distance: sqrt(sum((a-b)"2))

|| Pseudo COde Clustering Result with k = 4, nax_iterations = 18, seed = 1468
function Kmeans(D, k, maxiter) { 1y
C¢ = randCentroids(D, k); ol
C={};
i = @; //until convergence b
while(C¢ != C & i<=maxiter) { s
C =C5
. . 6
1 =1+ 1;
A = getAssignments(D, C); a
c _ 4 .
C¢ = getCentroids(D, A, k); Nl
return C°¢ "o 2 y 5 s 10 12 14
706.520 Data Integration and Large-Scale Analysis — 11 Distributed, Data-Parallel Computation .ISDS
Matthias Boehm, Graz University of Technology, WS 2019/20

TU

Data-Parallel Collection Processing Graza

Example: K-Means Clustering in Spark

// create spark context (allocate configured executors)
JavaSparkContext sc = new JavaSparkContext();

// read and cache data, initialize centroids

JavaRDD<Row> D = sc.textFile(“hdfs:/user/mboehm/data/D.csv*)
.map(new ParseRow()).cache(); // cache data in spark executors

Map<Integer,Mean> C = asCentroidMap(D.takeSample(false, k));

// until convergence
while(!equals(C, C2) & i<=maxiter) {
C2 = C; i++;
// assign points to closest centroid, recompute centroid
Broadcast<Map<Integer,Row>> bC = sc.broadcast(C)
C = D.mapToPair(new NearestAssignment(bC))
.foldByKey(new Mean(©), new IncComputeCentroids())

.collectAsMap();
} o .
Note: Existing library algorithm
return C; [https://github.com/apache/spark/blob/master/mllib/src/
main/scala/org/apache/spark/mllib/clustering/KMeans.scala]
706.520 Data Integration and Large-Scale Analysis — 11 Distributed, Data-Parallel Computation .ISDS

Matthias Boehm, Graz University of Technology, WS 2019/20

Data-Parallel DataFrame Operations

INF.01017UF Data Management / 706.010 Databases — 11/12 Distributed Storage and Analytics B ISDS
Matthias Boehm, Graz University of Technology, WS 2019/20

Data-Parallel DataFrame Operations -I(;rla'!l

Origins of DataFrames

= Recap: Data Preparation Problem
= 80% Argument: 80-90% time for finding, integrating, cleaning data
= Data scientists prefer scripting languages and in-memory libraries

= R and Python DataFrames

= Rdata.frame/dplyr and Python pandas DataFrame for
seamless data manipulations (most popular packages/features)

= DataFrame:
= Descriptive stats and basic math, reorganization, joins, grouping, windowing
= Limitation: Only in-memory, single-node operations

= Example import pandas as pd
Pandas df = pd.read_csv(‘data/tmpl.csv’)
df.head()

df = pd.concat(df, df[[‘A’, °C’]], axis=0)

706.520 Data Integration and Large-Scale Analysis — 11 Distributed, Data-Parallel Computation .ISDS
Matthias Boehm, Graz University of Technology, WS 2019/20

TU

Data-Parallel DataFrame Operations Graza

Spark DataFrames and DataSets

= Overview Spark DataFrame 1o5c | lconsare| | User Programs

(Java, Scala, Python)

= DataFrame is distributed collection of rows ¥ v
. Spark SQL DataFrame API
with named/typed columns | R —— |

= Relational operations (e.g., projection, * Soork

Selectlon’ jOInS, grouplng’ aggregatlon) l Resilient Distributed Datasets |

= DataSources (e.g., json, jdbc, parquet, hdfs, s3, avro, hbase, csv, cassandra)

= DataFrame and Dataset APIs DataFrame = Dataset[Row]

= DataFrame was introduced as basis for Spark SQL
= DataSets allow more customization and compile-time analysis errors (Spark 2)

= Example logs = spark.read.format("json").open("s3://logs")

DataFrame logs.groupBy(logs.user _id).agg(sum(logs.time))
.write.format("jdbc").save("jdbc:mysql//...")

[Michael Armbrust: Structuring Apache Spark — SQL, > PySpark
|| DataFrames, Datasets, and Streaming, Spark Summit 2016]

706.520 Data Integration and Large-Scale Analysis — 11 Distributed, Data-Parallel Computation .ISDS
Matthias Boehm, Graz University of Technology, WS 2019/20

Data-Parallel DataFrame Operations TU

SparkSQL and DataFrame/Dataset Spark’soL
= Overview SparkSQL

[Michael Armbrust et al.: Spark

. SQL: Relational Data Processing
= Shark (~2013): academic prototype for SQL on Spark in Spark. SIGMOD 2015]

Grazm

= SparkSQL (~2015): reimplementation from scratch

= Common IR and compilation of SQL and DataFrame operations

= Catalyst: Query Planning

. Logical Physical Code
Analysis Optimization Planning Generation
SQL Query °
- o] Selected
Unresolved Logical Plan Optimized Physical B Physical RDDs
Logical Plan Logical Plan |l Plans ® Blan
o
DataFrame O
Catalog

= Performance features
= #1 Whole-stage code generation via Janino

= #2 Off-heap memory (sun.misc.Unsafe) for caching and certain operations

= #3 Pushdown of selection, projection, joins into data sources (+ join ordering)

706.520 Data Integration and Large-Scale Analysis — 11 Distributed, Data-Parallel Computation .ISDS
Matthias Boehm, Graz University of Technology, WS 2019/20

Data-Parallel DataFrame Operations

TU

Grazm

Dask 7/

= Overview Dask

[Matthew Rocklin: Dask: Parallel Computation with Blocked
algorithms and Task Scheduling, Python in Science 2015]
[Dask Development Team: Dask: Library for dynamic task

scheduling, 2016, https://dask.org]

Multi-threaded and distributed operations for arrays, bags, and dataframes

dask.array:

list of numpy n-dim arrays | v -
dask.dataframe: : N

list of pandas data frames
dask.bag:unordered list of tuples (second order functions)
Local and distributed schedulers:

Numpy Pandas

threads, processes, YARN, Kubernetes, containers, HPC, and cloud, GPUs

= Execution import dask.array as da

Lazy evaluation x = da.random.random(

Limitation: requires

. e . = X + X.T
static size inference y

y.persist() # cache in memory
Triggered via z = y[::2, 5000:].mean(axis=1)

(10000,10000), chunks=(1000,1000))

compute() ret = z.compute() # returns NumPy array

706.520 Data Integration and Large-Scale Analysis — 11 Distributed, Data-Parallel Computation
Matthias Boehm, Graz University of Technology, WS 2019/20

"ISDS

TU

Grazm

Data-Parallel Operations
In SystemDS

[Matthias Boehm et al.: SystemDS: A Declarative Machine Learning
System for the End-to-End Data Science Lifecycle. CIDR 2020]

[Matthias Boehm et al.: SystemVIL: Declarative Machine Learning
on Spark. PVLDB 9(13) 2016]

[Amol Ghoting et al.: SystemVIL: Declarative Machine Learning

on MapReduce. ICDE 2011]

INF.01017UF Data Management / 706.010 Databases — 11/12 Distributed Storage and Analytics B ISDS
Matthias Boehm, Graz University of Technology, WS 2019/20

TU

Data-Parallel Operations in SystemDS Graza

Background: Matrix Formats

= Matrix Block (m x n) Example
= Ak.a. tiles/chunks, most operations defined here 3x3 Matrix
= Local matrix: single block, different representations .7 .1
= Common Block Representations 2.4
= Dense (linearized arrays)

.3
= MCSR (modified CSR) ,/,.// \

= CSR (compressed sparse rows), CSC
= COO (Coordinate matrix)

MCSR CSR COoO
‘\»l;-a o .7 .7
Dense (row-major) O 2L PAl.1 1
.7101.1.2.4/0|0 .3/ 0 '\"m24 4\ Y4 |.2 .2
— - 5[\ kN .4 4
O(mn)
3 8.3 8.3
O(m + nnz(X)) O(nnz(X))
706.520 Data Integration and Large-Scale Analysis — 11 Distributed, Data-Parallel Computation .ISDS

Matthias Boehm, Graz University of Technology, WS 2019/20

Data-Parallel Operations in SystemDS

TU

Grazm

Distributed Matrix Representations

Logical Blocking

= Collection of “Matrix Blocks” (and keys) 3,400x2,700 Matrix
» Bag semantics (duplicates, unordered) (w/ B.=1,000)
= Logical (Fixed-Size) Blocking an || @2 |l@ws)
+ join processing / independence
- (sparsity skew) (2:1) || (2,2) ||(2,3)
= E.g., SystemML/SystemDS on Spark:
JavaPairRDD<MatrixIndexes,MatrixBlock> el (Rl
= Blocks encoded independently (dense/sparse) (4,1) || (42) ||(4:3)

hash partitioned: e.g., hash(3,2) 2 99,994 % 2 = 0

= Partitioning

[(32) (23) (21) (1L2) (42) (41)
= Logical Partitioning S US
) g Physical D S S D
(e.g., row-/column-wise) N
_ L Blocking and \ parkiton. >
= Physical Partitioning Partitioning [(22 (L) (13) (3 (@1 (@3)
: g
(e.g., hash / grid) > us | s | BB g || US 1
= PartitionPruning for Indexing partition 1

706.520 Data Integration and Large-Scale Analysis — 11 Distributed, Data-Parallel Computation
Matthias Boehm, Graz University of Technology, WS 2019/20

"ISDS

Data-Parallel Operations in SystemDS TU

Distributed Matrix Operations

Elementwise Multiplication T . Matrix
(Hadamard Product) ransposition Multiplication
C=A*B C = t(X) C =X %*% W

S T e — ™ | e . 2 W

Ay || Ane By || Bua N N Xay || X2 // (1.1)
T e T T/ | e

Apy) ||Apa B || Bpa
— G l— === __ |l _

A[S 1) A[32| B[S 1) B[SM

Note: also with
row/column vector rhs

Note: 1:N join

706.520 Data Integration and Large-Scale Analysis — 11 Distributed, Data-Parallel Computation .ISDS
Matthias Boehm, Graz University of Technology, WS 2019/20

Data-Parallel Operations in SystemDS -ErLa!.

Partitioning-Preserving Operations

Shuffle is major bottleneck for ML on Spark

Preserve Partitioning
= QOp is partitioning-preserving if keys unchanged (guaranteed)
» Implicit: Use restrictive APIs (mapValues() vs mapToPair())
= Explicit: Partition computation w/ declaration of partitioning-preserving

Exploit Partitioning
» Implicit: Operations based on join, cogroup, etc
= Explicit: Custom operators (e.g., zipmm)
_ <«—— repart, chkpt X MEM_DISK

= Example: parfor(iter_class in 1:num_classes) {
Multiclass SVM Y _local = 2 * (Y == iter_class) -1
_ g old = t(X) %*% Y_local
= \ectors fit <—— chkpt y_local MEM_DISK
neitherinto | while(continue) {
. = %*%
driver nor Xd .X %*% S <«—— chkpt Xd, Xw MEM_DISK
. inner while loop (compute step_sz)
broadcast Xw = Xw + step_sz * Xd;
= ncol(X)<B out = 1 - Y _local * Xw;
¢ out = (out > @) * out;
> L» g new = t(X) %*% (out * Y_local) ... Z1lpmm

Data-Parallel Operations in SystemDS

TU

Grazm

SystemDS Data Model: Heterogeneous Tensors

Features
(e.g., sensor readings, flags, categories)

= Basic Tensor Block

= BasicTensorBlock: homogeneous tensors
(FP32, FP64, INT32, INT64, BOOL, STRING/JSON)

= DataTensorBlock: composed from basic TBs
= Represents local tensor (CPU/GPU)

= Distributed Tensor Representation
= Collection of fix-sized tensor blocks

= Squared blocking schemes in n-dim space
(e.g., 102472, 12873, 3274, 16”5, 8”6, 8"7)

= PairRDD<TensorIndex,TensorBlock>

= Federated Tensor Representation

Time

111

21.1

221

241

3.1.1

321

341

411

421

441

Appliances
(e.g., production
pipelines, wind
mills, satellites)

= Collection of meta data handles to TensorObjects, each of which might
refer to data on a different worker instance (local or distributed)

= Generalizes to federated tensors of CPU and GPU data objects

706.520 Data Integration and Large-Scale Analysis — 11 Distributed, Data-Parallel Computation
Matthias Boehm, Graz University of Technology, WS 2019/20

"ISDS

TU

Grazm

Summary and Q&A

Motivation and Terminology

Data-Parallel Collection Processing

Data-Parallel DataFrame Operations

Data-Parallel Computation in SystemDS

Projects and Exercises
= 13 projects + 3 exercises
= |n case of problem: ask for help + problem scaling possible

Next Lectures
= 12 Distributed Stream Processing [Jan 24]
= 13 Distributed Machine Learning Systems [Jan 31]

706.520 Data Integration and Large-Scale Analysis — 11 Distributed, Data-Parallel Computation .ISDS
Matthias Boehm, Graz University of Technology, WS 2019/20

