

Data Integration and Analysis 11 Distributed Data-Parallel Computation

Matthias Boehm

Last update: Jan 17, 2020

Graz University of Technology, Austria
Computer Science and Biomedical Engineering
Institute of Interactive Systems and Data Science
BMVIT endowed chair for Data Management

Announcements/Org

#1 Video Recording

Link in TeachCenter & TUbe (lectures will be public)

#2 DIA Projects

- 13 Projects selected (various topics)
- 3 Exercises selected (distributed data deduplication)
- SystemDS: apps into ./scripts/staging/<your_project>

If problems, please ask for help

#3 Exam

- Feb 3, 1pm Feb 5, 2pm, remote exam possible
- Oral exam, 45min slots, first-come, first-serve
- https://doodle.com/poll/ikzsffek2vhd85q4

#4 Course Evaluation

■ Evaluation time frame: Jan 14 – Feb 14 → feedback

Course Outline Part B:

Large-Scale Data Management and Analysis

12 Distributed Stream Processing [Jan 24]

13 Distributed Machine Learning Systems [Jan 31]

Compute/ Storage 11 Distributed Data-Parallel Computation [Jan 17]

10 Distributed Data Storage [Jan 10]

Infra

09 Cloud Resource Management and Scheduling [Dec 13]

08 Cloud Computing Fundamentals [Dec 06]

Agenda

- Motivation and Terminology
- Data-Parallel Collection Processing
- Data-Parallel DataFrame Operations
- Data-Parallel Computation in SystemDS

Motivation and Terminology

Recap: Central Data Abstractions

#1 Files and Objects

- File: Arbitrarily large sequential data in specific file format (CSV, binary, etc)
- Object: binary large object, with certain meta data

#2 Distributed Collections

- Logical multi-set (bag) of key-value pairs (unsorted collection)
- Different physical representations
- Easy distribution of pairs via horizontal partitioning (aka shards, partitions)
- Can be created from single file, or directory of files (unsorted)

Key	Value
4	Delta
2	Bravo
1	Alpha
3	Charlie
5	Echo
6	Foxtrott
7	Golf

Excursus: Nehalem Architecture

[Michael E. Thomadakis: The Architecture of the

Nehalem Processor and Nehalem-EP SMP Platforms, Report, 2010]

Multi-core CPU

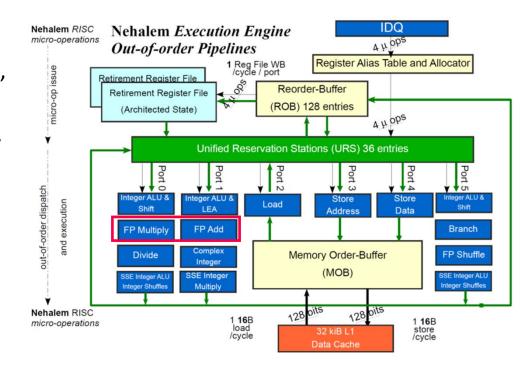
- 4 core w/ hyper-threading
- Per core: L1i/L1d, L2 cache
- Per CPU: L3 cache (8MB)
- 3 memory channels (8B width, max 1.333Ghz)

Memory Controller M S C Core Core Q Core Core Q O P I Shared L3 Cache 0

QPI ... Quick Path Interconnect

Pipeline

- Frontend: Instruction Fetch, Pre-Decode, and Decode
- Backend: Rename/Allocate, Scheduler, Execute
- Out-of-OrderExecution Engine (IPC=4)
 - 128b FP Multiply
 - 128b FP Add



Terminology

Flynn's Classification

- SISD, SIMD
- (MISD), MIMD

[Michael J. Flynn, Kevin W. Rudd: Parallel Architectures. **ACM Comput. Surv. 28(1) 1996**]

Singe Instruction

SISD (uni-core)

Multiple **MISD** Instruction (pipelining)

Singe Data

Multiple Data

SIMD (vector)

MIMD (multi-core)

Example: SIMD Processing

- Streaming SIMD Extensions (SSE)
- Process the same operation on multiple elements at a time (packed vs scalar SSE instructions)
- Data parallelism (aka: instruction-level parallelism)
- Example: VFMADD132PD

2009 Nehalem: **128b** (2xFP64)

2012 Sandy Bridge: **256b** (4xFP64)

2017 Skylake: **512b** (8xFP64)

c =	_m	m5:	12_	_fm	add	l_p	d(a	Ι,	b);
а]
b									
c									1

Terminology cont.

Distributed, Data-Parallel Computation

$$Y = X.map(x -> foo(x))$$

- Parallel computation of function foo() → single instruction
- Collection X of data items (key-value pairs) → multiple data
- Data parallelism similar to SIMD but more coarse-grained notion of "instruction" and "data" → SPMD (single program, multiple data)

[Frederica Darema: The SPMD Model: Past, Present and Future. PVM/MPI 2001]

Additional Terminology

- BSP: Bulk Synchronous Parallel (global barriers)
- ASP: Asynchronous Parallel (no barriers, often with accuracy impact)
- SSP: Stale-synchronous parallel (staleness constraint on fastest-slowest)
- Other: Fork&Join, Hogwild!, event-based, decentralized
- Beware: data parallelism used in very different contexts (e.g., Param Server)

Data-Parallel Collection Processing

Hadoop History and Architecture

- Recap: Brief History
 - Google's GFS [SOSP'03] + MapReduce
 → Apache Hadoop (2006)
 - Apache Hive (SQL), Pig (ETL), Mahout (ML), Giraph (Graph)

[Jeffrey Dean, Sanjay Ghemawat: MapReduce: Simplified Data Processing on Large Clusters. **OSDI 2004**]

Hadoop Architecture / Eco System

Management (Ambari) Worker Node 1 Worker Node n Coordination / workflows (Zookeeper, Oozie) MR MR MR MR Storage (HDFS) **Head Node AM** task task task Resources (YARN) MR MR MR MR [SoCC'13] task task task task Processing Resource (MapReduce) Node Node Manager Manager Manager NameNode **DataNode DataNode MR Client**

MapReduce – Programming Model

- Overview Programming Model
 - Inspired by functional programming languages
 - Implicit parallelism (abstracts distributed storage and processing)
 - Map function: key/value pair → set of intermediate key/value pairs
 - Reduce function: merge all intermediate values by key
- Example SELECT Dep, count(*) FROM csv_files GROUP BY Dep

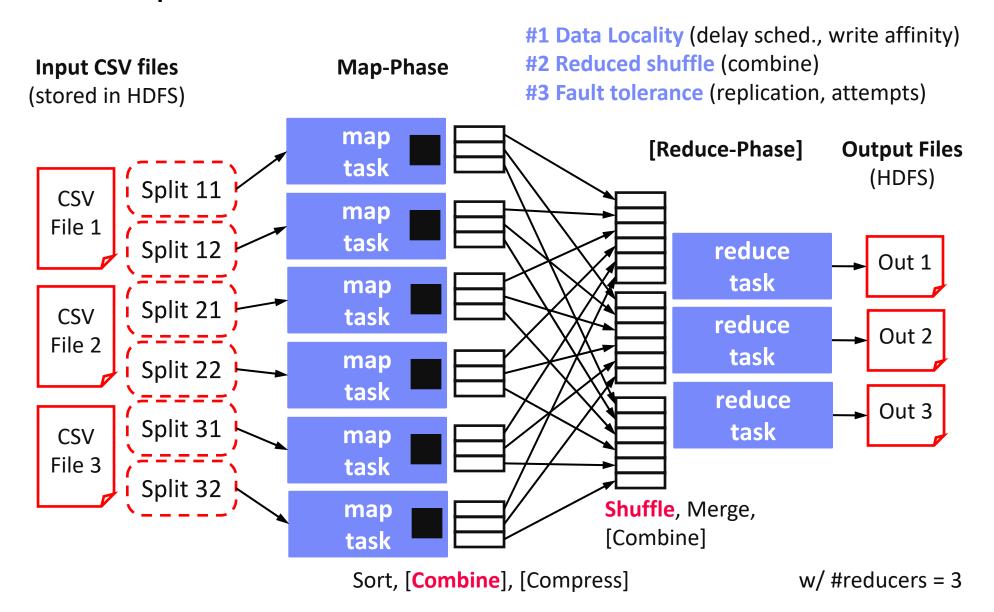
Name	Dep
X	CS
Υ	CS
Α	EE
Z	CS

Collection of key/value pairs

```
map(Long pos, String line) {
  parts ← line.split(",")
  emit(parts[1], 1)
```

CS	1
CS	1
EE	1
CS	1

MapReduce – Execution Model



MapReduce – Query Processing

Basic Unary Operations

- Selections (brute-force), projections
- Ordering (e.g., TeraSort): Sample, pick k quantiles; shuffle-based partition sort
- Additive and semi-additive aggregation with grouping, distinct

Binary Operations

Set operations (union, intersect, difference) and joins [Spyros Blanas et al.: A comparison of join algorithms for log processing in MapReduce. **SIGMOD 2010**]

- Different physical operators for R ⋈ S
 - Broadcast join: broadcast S, build HT S, map-side HJOIN
 - Repartition join: shuffle (repartition) R and S, reduce-side MJOIN
 - Improved repartition join: avoid buffering via key-tag sorting
 - Directed join (pre/co-partitioned): map-only, R input, S read side-ways

Hybrid SQL-on-Hadoop Systems [VLDB'15]

E.g.: Hadapt (HadoopDB), Impala, IBM BigSQL, Presto, Drill, Actian

Spark History and Architecture

Summary MapReduce

- Large-scale & fault-tolerant processing w/ UDFs and files → Flexibility
- Restricted functional APIs -> Implicit parallelism and fault tolerance
- Criticism: #1 Performance, #2 Low-level APIs, #3 Many different systems

Evolution to Spark (and Flink)

- Spark [HotCloud'10] + RDDs [NSDI'12] → Apache Spark (2014)
- Design: standing executors with in-memory storage, lazy evaluation, and fault-tolerance via RDD lineage
- Performance: In-memory storage and fast job scheduling (100ms vs 10s)
- APIs: Richer functional APIs and general computation DAGs, high-level APIs (e.g., DataFrame/Dataset), unified platform

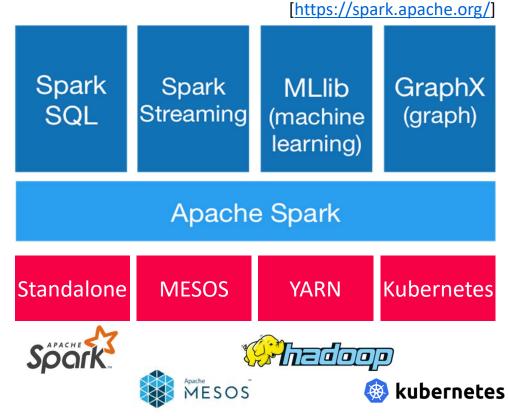
→ But many shared concepts/infrastructure

- Implicit parallelism through dist. collections (data access, fault tolerance)
- Resource negotiators (YARN, Mesos, Kubernetes)
- HDFS and object store connectors (e.g., Swift, S3)

Spark History and Architecture, cont.

High-Level Architecture

- Different language bindings:
 Scala, Java, Python, R
- Different libraries: SQL, ML, Stream, Graph
- Spark core (incl RDDs)
- Different cluster managers:
 Standalone, Mesos,
 Yarn, Kubernetes
- Different file systems/ formats, and data sources:
 HDFS, S3, SWIFT, DBs, NoSQL



Focus on a unified platform
 for data-parallel computation (Apache Flink w/ similar goals)

Spark Resilient Distributed Datasets (RDDs)

RDD Abstraction

JavaPairRDD<MatrixIndexes,MatrixBlock>

- Immutable, partitioned collections of key-value pairs
- Coarse-grained deterministic operations (transformations/actions)
- Fault tolerance via lineage-based re-computation

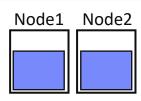
Operations

- Transformations: define new RDDs
- Actions: return result to driver

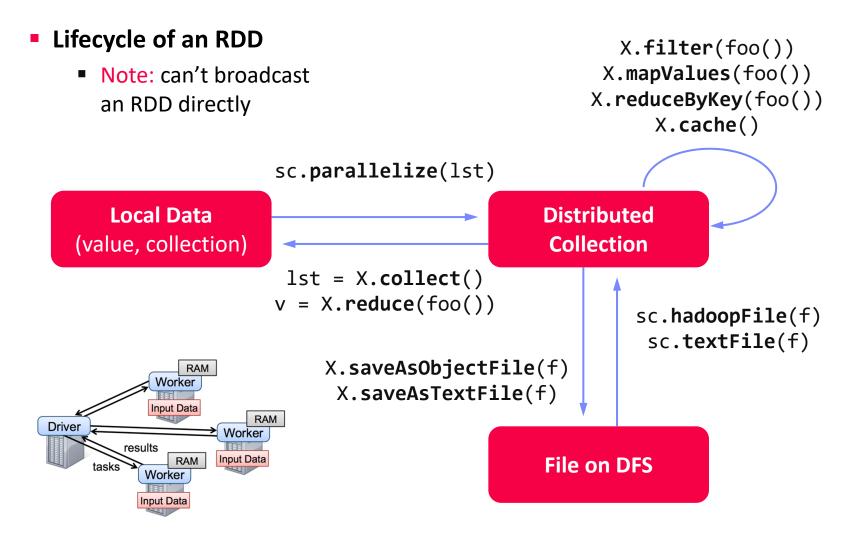
Туре	Examples
Transformation (lazy)	<pre>map, hadoopFile, textFile, flatMap, filter, sample, join, groupByKey, cogroup, reduceByKey,</pre>
Action	<pre>reduce, save, collect, count, lookupKey</pre>

Distributed Caching

- Use fraction of worker memory for caching
- Eviction at granularity of individual partitions
- Different storage levels (e.g., mem/disk x serialization x compression)



Spark Resilient Distributed Datasets (RDDs), cont.



Spark Partitions and Implicit/Explicit Partitioning

Spark Partitions

Logical key-value collections are split into physical partitions

~128MB

Partitions are granularity of tasks, I/O, shuffling, evictions

Partitioning via Partitioners

- Implicitly on every data shuffling
- Explicitly via R.repartition(n)

Example Hash Partitioning:

For all (k,v) of R: pid = hash(k) % n

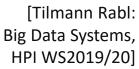
Partitioning-Preserving

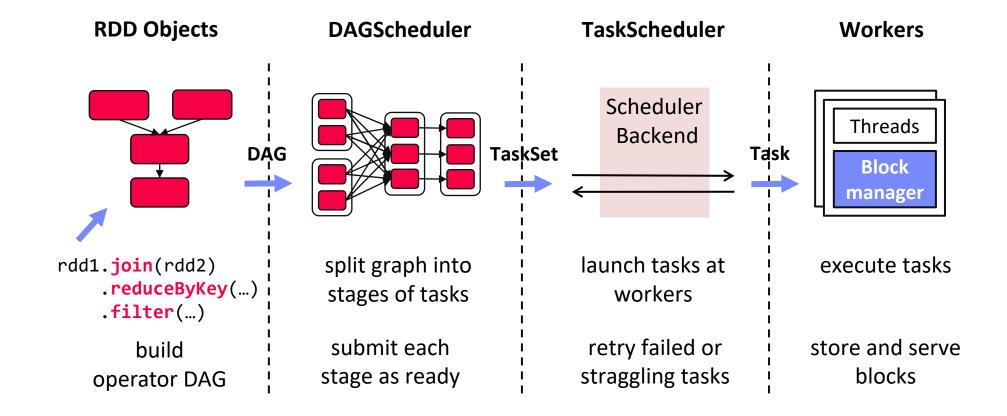
 All operations that are guaranteed to keep keys unchanged (e.g. mapValues(), mapPartitions() w/ preservesPart flag)

Partitioning-Exploiting

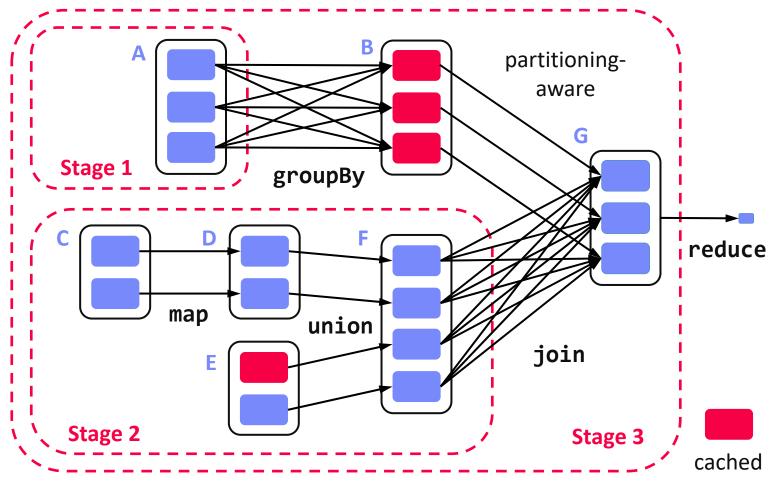
- Join: R3 = R1.join(R2)
- Lookups: v = C.lookup(k)

Spark Scheduling Process





Spark Lazy Evaluation, Caching, and Lineage



[Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauly, Michael J. Franklin, Scott Shenker, Ion Stoica: Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing. **NSDI 2012**]

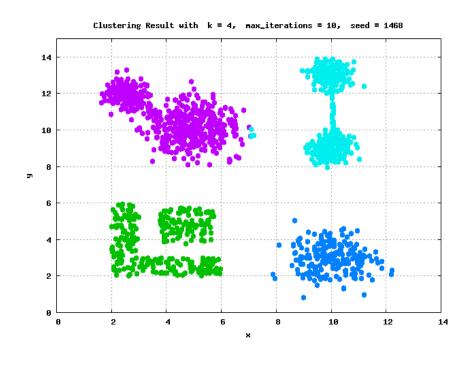
Example: k-Means Clustering

k-Means Algorithm

- Given dataset D and number of clusters k, find cluster centroids ("mean" of assigned points) that minimize within-cluster variance
- Euclidean distance: sqrt(sum((a-b)^2))

Pseudo Code

```
function Kmeans(D, k, maxiter) {
   C' = randCentroids(D, k);
   C = {};
   i = 0; //until convergence
   while( C' != C & i<=maxiter ) {
        C = C';
        i = i + 1;
        A = getAssignments(D, C);
        C' = getCentroids(D, A, k);
   }
   return C'
}</pre>
```



Example: K-Means Clustering in Spark

```
// create spark context (allocate configured executors)
JavaSparkContext sc = new JavaSparkContext();
// read and cache data, initialize centroids
JavaRDD<Row> D = sc.textFile("hdfs:/user/mboehm/data/D.csv")
  .map(new ParseRow()).cache(); // cache data in spark executors
Map<Integer, Mean> C = asCentroidMap(D.takeSample(false, k));
// until convergence
while( !equals(C, C2) & i<=maxiter ) {</pre>
  C2 = C; i++;
  // assign points to closest centroid, recompute centroid
  Broadcast<Map<Integer,Row>> bC = sc.broadcast(C)
  C = D.mapToPair(new NearestAssignment(bC))
       .foldByKey(new Mean(0), new IncComputeCentroids())
       .collectAsMap();
                                            Note: Existing library algorithm
                                     [https://github.com/apache/spark/blob/master/mllib/src/
return C:
                                    main/scala/org/apache/spark/mllib/clustering/KMeans.scalal
```


Data-Parallel DataFrame Operations

Origins of DataFrames

- Recap: Data Preparation Problem
 - 80% Argument: 80-90% time for finding, integrating, cleaning data
 - Data scientists prefer scripting languages and in-memory libraries

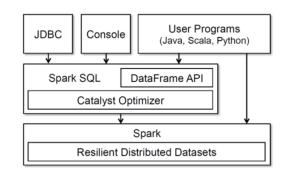
R and Python DataFrames

- R data.frame/dplyr and Python pandas DataFrame for seamless data manipulations (most popular packages/features)
- DataFrame: table with a schema
- Descriptive stats and basic math, reorganization, joins, grouping, windowing
- Limitation: Only in-memory, single-node operations

Spark DataFrames and DataSets

Overview Spark DataFrame

- DataFrame is distributed collection of rows with named/typed columns
- Relational operations (e.g., projection, selection, joins, grouping, aggregation)



- DataSources (e.g., json, jdbc, parquet, hdfs, s3, avro, hbase, csv, cassandra)
- DataFrame and Dataset APIs
 DataFrame = Dataset[Row]
 - DataFrame was introduced as basis for Spark SQL
 - DataSets allow more customization and compile-time analysis errors (Spark 2)
- ExampleDataFrame

```
logs = spark.read.format("json").open("s3://logs")
logs.groupBy(logs.user_id).agg(sum(logs.time))
.write.format("jdbc").save("jdbc:mysql//...")
```


[Michael Armbrust: Structuring Apache Spark – SQL, DataFrames, Datasets, and Streaming, **Spark Summit 2016**]

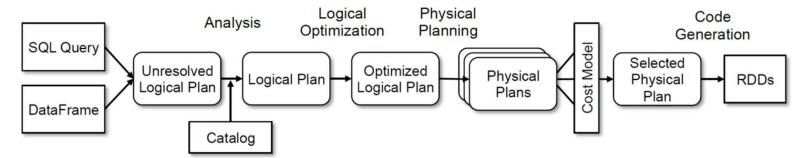
→ PySpark

SparkSQL and DataFrame/Dataset

Overview SparkSQL

- Shark (~2013): academic prototype for SQL on Spark
- SparkSQL (~2015): reimplementation from scratch
- Common IR and compilation of SQL and DataFrame operations

Catalyst: Query Planning



Performance features

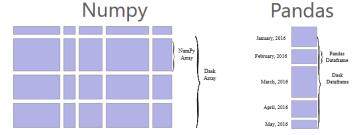
- #1 Whole-stage code generation via Janino
- #2 Off-heap memory (sun.misc.Unsafe) for caching and certain operations
- #3 Pushdown of selection, projection, joins into data sources (+ join ordering)

Dask PDASK

[Matthew Rocklin: Dask: Parallel Computation with Blocked algorithms and Task Scheduling, **Python in Science 2015**]
[Dask Development Team: Dask: Library for dynamic task scheduling, 2016, https://dask.org]

Overview Dask

- Multi-threaded and distributed operations for arrays, bags, and dataframes
- dask.array: list of numpy n-dim arrays
- dask.dataframe: list of pandas data frames



- dask.bag:unordered list of tuples (second order functions)
- Local and distributed schedulers:
 threads, processes, YARN, Kubernetes, containers, HPC, and cloud, GPUs

Execution

- Lazy evaluation
- Limitation: requires static size inference
- Triggered via compute()

Data-Parallel Operations in SystemDS

[Matthias Boehm et al.: **SystemDS**: A Declarative Machine Learning System for the End-to-End Data Science Lifecycle. **CIDR 2020**]

[Matthias Boehm et al.: SystemML: Declarative Machine Learning on Spark. PVLDB 9(13) 2016]

[Amol Ghoting et al.: SystemML: Declarative Machine Learning on MapReduce. ICDE 2011]

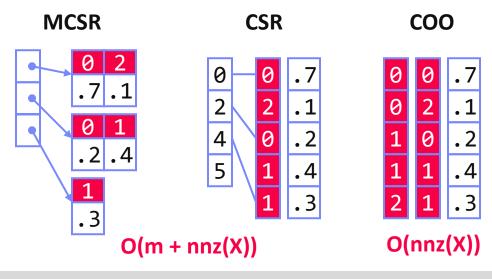
Background: Matrix Formats

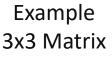
- Matrix Block (m x n)
 - A.k.a. tiles/chunks, most operations defined here
 - Local matrix: single block, different representations
- Common Block Representations
 - Dense (linearized arrays)
 - MCSR (modified CSR)
 - CSR (compressed sparse rows), CSC
 - COO (Coordinate matrix)

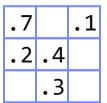
Dense (row-major)

.7 0 .1 .2 .4 0 0 .3 0

O(mn)



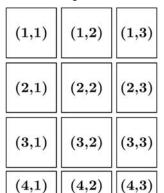




Distributed Matrix Representations

- Collection of "Matrix Blocks" (and keys)
 - Bag semantics (duplicates, unordered)
 - Logical (Fixed-Size) Blocking
 - + join processing / independence
 - (sparsity skew)
 - E.g., SystemML/SystemDS on Spark: JavaPairRDD<MatrixIndexes,MatrixBlock>
 - Blocks encoded independently (dense/sparse)

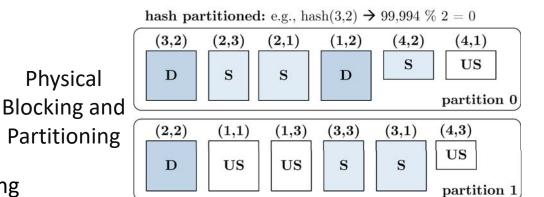
Logical Blocking 3,400x2,700 Matrix (w/ B_c=1,000)



Partitioning

- Logical Partitioning (e.g., row-/column-wise)
- Physical Partitioning (e.g., hash / grid)

PartitionPruning for Indexing

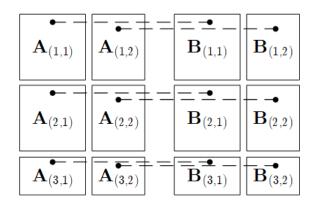


Distributed Matrix Operations

Elementwise Multiplication

(Hadamard Product)

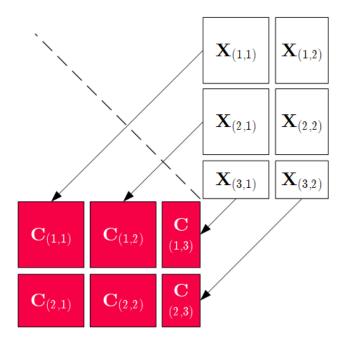
$$C = A * B$$



Note: also with row/column vector rhs

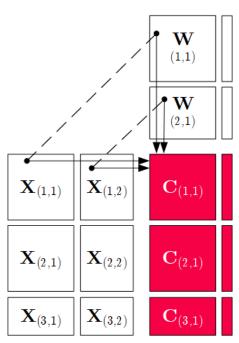
Transposition

$$C = t(X)$$



Matrix Multiplication

$$C = X %*% W$$



Note: 1:N join

Partitioning-Preserving Operations

- Shuffle is major bottleneck for ML on Spark
- Preserve Partitioning
 - Op is partitioning-preserving if keys unchanged (guaranteed)
 - Implicit: Use restrictive APIs (mapValues() vs mapToPair())
 - Explicit: Partition computation w/ declaration of partitioning-preserving
- Exploit Partitioning
 - Implicit: Operations based on join, cogroup, etc
 - Explicit: Custom operators (e.g., zipmm)

Example: Multiclass SVM

- Vectors fit neither into driver nor broadcast
- $ncol(X) \le B_c$

```
repart, chkpt X MEM_DISK
parfor(iter_class in 1:num_classes) {
    Y_local = 2 * (Y == iter_class) - 1
    g_old = t(X) %*% Y_local
    ...
    while( continue ) {
        Xd = X %*% s
        ... inner while loop (compute step_sz)
        Xw = Xw + step_sz * Xd;
        out = 1 - Y_local * Xw;
        out = (out > 0) * out;
        g new = t(X) %*% (out * Y_local) ... Zipmm
```


SystemDS Data Model: Heterogeneous Tensors

Basic Tensor Block

- BasicTensorBlock: homogeneous tensors (FP32, FP64, INT32, INT64, BOOL, STRING/JSON)
- DataTensorBlock: composed from basic TBs
- Represents local tensor (CPU/GPU)

Distributed Tensor Representation

- Collection of fix-sized tensor blocks
- Squared blocking schemes in n-dim space (e.g., 1024^2, 128^3, 32^4, 16^5, 8^6, 8^7)
- PairRDD<TensorIndex,TensorBlock>

4,3,1

Features
(e.g., sensor readings, flags, categories)

Federated Tensor Representation

- Collection of meta data handles to TensorObjects, each of which might refer to data on a different worker instance (local or distributed)
- Generalizes to federated tensors of CPU and GPU data objects

Summary and Q&A

- Motivation and Terminology
- Data-Parallel Collection Processing
- Data-Parallel DataFrame Operations
- Data-Parallel Computation in SystemDS
- Projects and Exercises
 - 13 projects + 3 exercises
 - In case of problem: ask for help + problem scaling possible
- Next Lectures
 - 12 Distributed Stream Processing [Jan 24]
 - 13 Distributed Machine Learning Systems [Jan 31]

