

Data Integration and Analysis 13 Distributed ML Systems

Matthias Boehm

Last update: Jan 31, 2019

Graz University of Technology, Austria
Computer Science and Biomedical Engineering
Institute of Interactive Systems and Data Science
BMVIT endowed chair for Data Management

Announcements/Org

#1 Video Recording

Link in TeachCenter & TUbe (lectures will be public)

#2 DIA Projects

- 13 Projects selected (various topics)
- 3 Exercises selected (distributed data deduplication)
- → grace period: end of Feb

If problems, please ask for help

#3 Exam

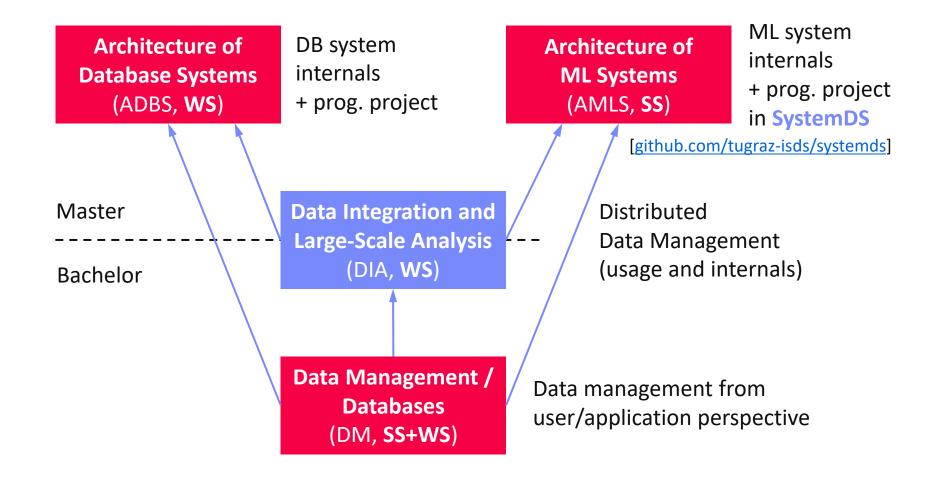
- Feb 3, 1pm Feb 5, 2pm, remote exam possible
- Oral exam, **45min slots**, first-come, first-serve
- https://doodle.com/poll/ikzsffek2vhd85q4

#4 Course Evaluation

■ Evaluation time frame: Jan 14 – Feb 14 → feedback

2/21

#5 Data Management Courses

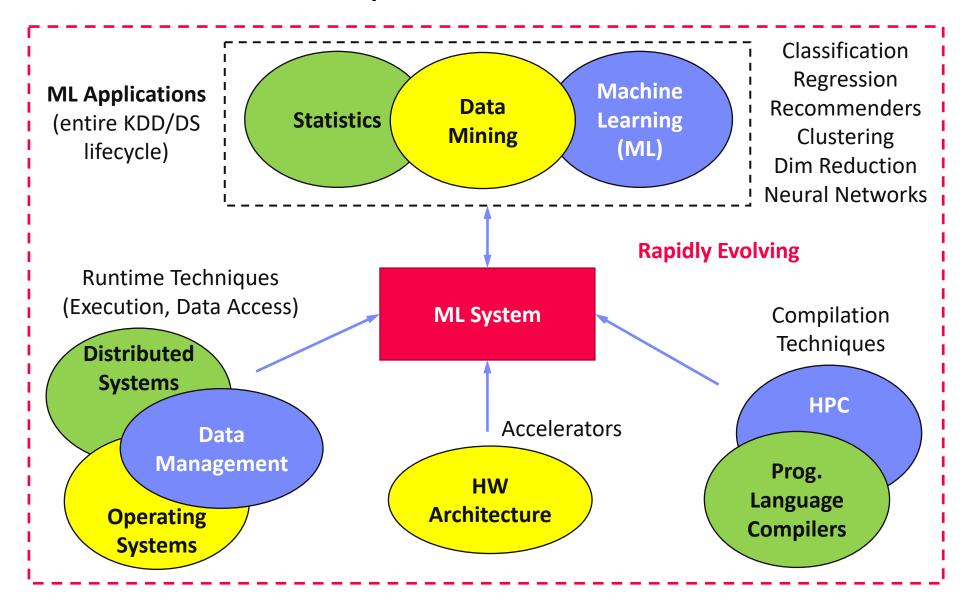


Agenda

- Landscape of ML Systems
- Distributed Linear Algebra
- Distributed Parameter Servers

Landscape of ML Systems

What is an ML System?



The Data Science Lifecycle (aka KDD Process)

Data-centric View:

Application perspective
Workload perspective
System perspective

Data Scientist

Data Integration
Data Cleaning
Data Preparation

Model Selection
Training
Hyper-parameters

Validate & Debug
Deployment
Scoring & Feedback

Exploratory Process

(experimentation, refinements, ML pipelines)

Driving Factors for ML

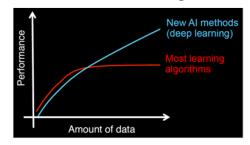
Improved Algorithms and Models

- Success across data and application domains
 (e.g., health care, finance, transport, production)
- More complex models which leverage large data

Availability of Large Data Collections

- Increasing automation and monitoring → data (simplified by cloud computing & services)
- Feedback loops, data programming/augmentation

[Credit: Andrew Ng'14]



Feedback Loop

HW & SW Advancements

- Higher performance of hardware and infrastructure (cloud)
- Open-source large-scale computation frameworks,
 ML systems, and vendor-provides libraries

Stack of ML Systems

Validation & Debugging

Deployment & Scoring

Hyper-parameter

Tuning

ML Apps & Algorithms

Training

Supervised, unsupervised, RL linear algebra, libs, AutoML

Model and Feature Selection

Language Abstractions

Eager interpretation, lazy evaluation, prog. compilation

Data Programming &Augmentation

Fault Tolerance

Approximation, lineage, checkpointing, checksums, ECC

Data Preparation

(e.g., one-hot, binning)

Execution Strategies

Local, distributed, cloud (data, task, parameter server)

Data Representations

Dense & sparse tensor/matrix; compress, partition, cache

Data Integration & Data Cleaning

HW & Infrastructure

CPUs, NUMA, GPUs, FPGAs, ASICs, RDMA, SSD/NVM

Improve accuracy vs. performance vs. resource requirements

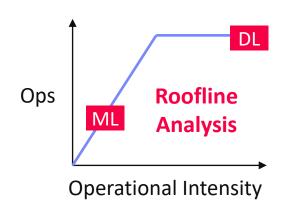
→ Specialization & Heterogeneity

Apps

Accelerators (GPUs, FPGAs, ASICs)

Memory- vs Compute-intensive

- CPU: dense/sparse, large mem, high mem-bandwidth, moderate compute
- GPU: dense, small mem, slow PCI, very high mem-bandwidth / compute



Graphics Processing Units (GPUs)

- Extensively used for deep learning training and scoring
- NVIDIA Volta: "tensor cores" for 4x4 mm → 64 2B FMA instruction

Field-Programmable Gate Arrays (FPGAs)

- Customizable HW accelerators for prefiltering, compression, DL
- Examples: Microsoft Catapult/Brainwave Neural Processing Units (NPUs)

Application-Specific Integrated Circuits (ASIC)

- Spectrum of chips: DL accelerators to computer vision
- Examples: Google TPUs (64K 1B FMA), NVIDIA DLA, Intel NNP

Data Representation

ML- vs DL-centric Systems

- ML: dense and sparse matrices or tensors, different sparse formats (CSR, CSC, COO), frames (heterogeneous)
- DL: mostly dense tensors, vec(Berlin) vec(Germany)
 embeddings for NLP, graphs + vec(France) ≈ vec(Paris)

Apps Lang Faults Exec Data

HW

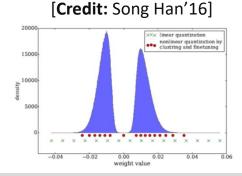
Data-Parallel Operations for ML

- Distributed matrices: RDD<MatrixIndexes,MatrixBlock>
- Data properties: distributed caching, partitioning, compression

Node1 Node2

■ Lossy Compression → Acc/Perf-Tradeoff

- Sparsification (reduce non-zero values)
- Quantization (reduce value domain), learned
- New data types: Intel Flexpoint (mantissa, exp)



Apps

Lang

Execution Strategies

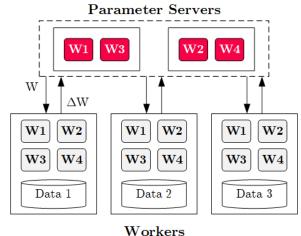
Batch Algorithms: Data and Task Parallel

- Data-parallel operations
- Different physical operators

Faults Exec Data HW

Mini-Batch Algorithms: Parameter Server

- Data-parallel and model-parallel PS
- Update strategies (e.g., async, sync, backup)
- Data partitioning strategies
- Federated ML (trend 2018)



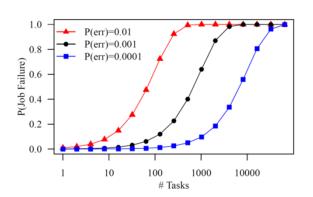
■ Lots of PS Decisions → Acc/Perf-Tradeoff

- Configurations (#workers, batch size/param schedules, update type/freq)
- Transfer optimizations: lossy compression, sparsification, residual accumulation, gradient clipping, and momentum corrections

Fault Tolerance & Resilience

Resilience Problem

- Increasing error rates at scale (soft/hard mem/disk/net errors)
- Robustness for preemption
- Need cost-effective resilience



Fault Tolerance in Large-Scale Computation

- Block replication (min=1, max=3) in distributed file systems
- ECC; checksums for blocks, broadcast, shuffle
- Checkpointing (MapReduce: all task outputs; Spark/DL: on request)
- Lineage-based recomputation for recovery in Spark
- ML-specific Schemes (exploit app characteristics)
 - Estimate contribution from lost partition to avoid strugglers
 - Example: user-defined "compensation" functions

Language Abstractions

Optimization Scope

- #1 Eager Interpretation (debugging, no opt)
- #2 Lazy expression evaluation (some opt, avoid materialization)
- #3 Program compilation (full opt, difficult)

Faults Exec

Data

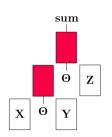
HW

Optimization Objective

- Most common: min time s.t. memory constraints
- Multi-objective: min cost s.t. time, min time s.t. acc, max acc s.t. time

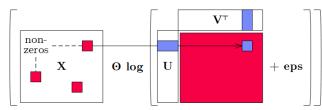
Trend: Fusion and Code Generation

- Custom fused operations
- Examples: SystemML,
 Weld, Taco, Julia,
 TF XLA,TVM, TensorRT



sum

Sparsity-Exploiting Operator



Apps

Lang

Faults

Exec

Data

HW

ML Applications

ML Algorithms (cost/benefit – time vs acc)

- Unsupervised/supervised; batch/mini-batch; first/second-order ML
- Mini-batch DL: variety of NN architectures and SGD optimizers
- Specialized Apps: Video Analytics in NoScope (time vs acc)
 - Difference detectors / specialized models for "short-circuit evaluation"

[Credit: Daniel Kang'17]

AutoML (time vs acc)

- Not algorithms but tasks (e.g., doClassify(X, y) + search space)
- Examples: MLBase, Auto-WEKA, TuPAQ, Auto-sklearn, Auto-WEKA 2.0
- AutoML services at Microsoft Azure, Amazon AWS, Google Cloud

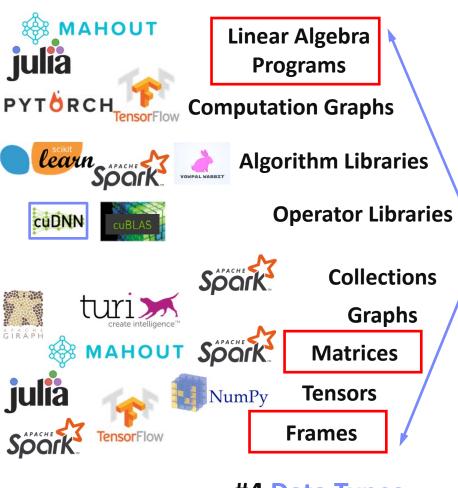
Data Programming and Augmentation (acc?)

- Generate noisy labels for pre-training
- Exploit expert rules, simulation models, rotations/shifting, and labeling IDEs (Software 2.0)

[**Credit:** Jonathan Tremblay'18]

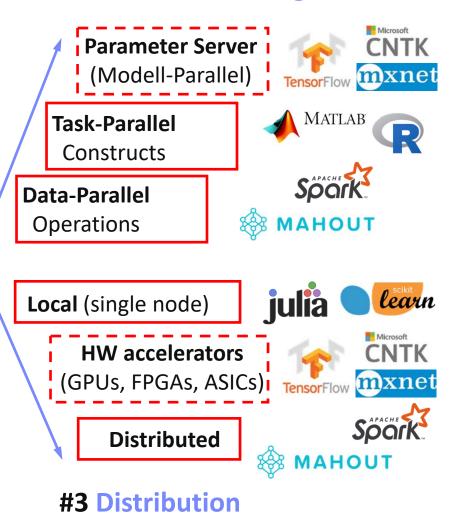
Landscape of ML Systems

#1 Language Abstraction



#4 Data Types

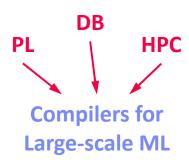
#2 Execution Strategies



Distributed Linear Algebra

Linear Algebra Systems

- Comparison Query Optimization
 - Rule- and cost-based rewrites and operator ordering
 - Physical operator selection and query compilation
 - Linear algebra / other ML operators, DAGs, control flow, sparse/dense formats
- #1 Interpretation (operation at-a-time)
 - Examples: R, PyTorch, Morpheus [PVLDB'17]
- #2 Lazy Expression Compilation (DAG at-a-time)
 - Examples: RIOT [CIDR'09],Mahout Samsara [MLSystems'16]
 - Examples w/ control structures: Weld [CIDR'17],
 OptiML [ICML'11], Emma [SIGMOD'15]
- #3 Program Compilation (entire program)
 - Examples: SystemML [PVLDB'16], Julia
 Cumulon [SIGMOD'13], Tupleware [PVLDB'15]



Optimization Scope

```
1: X = read($1); # n x m matrix
2: y = read(\$2); # n x 1 vector
3: maxi = 50; lambda = 0.001;
   intercept = $3:
   norm r2 = sum(r * r); p = -r;
   w = matrix(0, ncol(X), 1); i = 0;
   while(i<maxi & norm r2>norm r2 trgt)
10: {
11:
      q = (t(X) %*% X %*% p)+lambda*p;
12:
      alpha = norm_r2 / sum(p * q);
13:
      w = w + alpha * p;
14:
       old norm r2 = norm r2;
15:
       r = r + alpha * q;
16:
       norm r2 = sum(r * r);
17:
       beta = norm r2 / old norm r2;
       p = -r + beta * p; i = i + 1;
18:
19: }
20: write(w, $4, format="text");
```


Linear Algebra Systems, cont.

Note: TF 2.0

Some Examples ...

[Dan Moldovan et al.: AutoGraph: Imperative-style Coding with Graph-based Performance. **SysML 2019**.]


```
X = read("./X");
y = read("./y");
p = t(X) %*% y;
w = matrix(0,ncol(X),1);

while(...) {
   q = t(X) %*% X %*% p;
   ...
}
```

```
# read via queues
sess = tf.Session()
# ...
w = tf.Variable(tf.zeros(...,
    dtype=tf.float64))

while ...:
    v1 = tf.matrix_transpose(X)
    v2 = tf.matmult(X, p)
    v3 = tf.matmult(v1, v2)
    q = sess.run(v3)
```

(Custom DSL w/ R-like syntax; program compilation)

(Embedded DSL in Scala; lazy evaluation)

(Embedded DSL in Python; lazy [and eager] evaluation)

ML Libraries

Fixed algorithm implementations

Often on top of existing linear algebra or UDF abstractions

Single-node Example (Python)

from numpy import genfromtxt
from sklearn.linear_model \
 import LinearRegression

```
X = genfromtxt('X.csv')
y = genfromtxt('y.csv')
reg = LinearRegression()
```


Distributed Example (Spark Scala)

import org.apache.spark.ml
.regression.LinearRegression

```
val X = sc.read.csv('X.csv')
val y = sc.read.csv('y.csv')
val Xy = prepare(X, y).cache()

val reg = new LinearRegression()
   .fit(Xy)
```

val out reg.transform(Xy)

DL Frameworks

High-level DNN Frameworks

Language abstraction for DNN construction and model fitting

K Keras

```
Examples: Caffe, Keras
```

```
model = Sequential()
model.add(Conv2D(32, (3, 3),
padding='same',

input_shape=x_train.shape[1:]))
model.add(Activation('relu'))
model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(
    MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
```

```
opt = keras.optimizers.rmsprop(
    lr=0.0001, decay=1e-6)

# Let's train the model using RMSprop
model.compile(loss='cat..._crossentropy',
    optimizer=opt,
    metrics=['accuracy'])

model.fit(x_train, y_train,
    batch_size=batch_size,
    epochs=epochs,
    validation_data=(x_test, y_test),
    shuffle=True)
```

Low-level DNN Frameworks

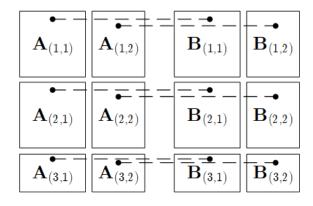
Examples: TensorFlow, MXNet, PyTorch, CNTK

Distributed Matrix Operations

Elementwise Multiplication

(Hadamard Product)

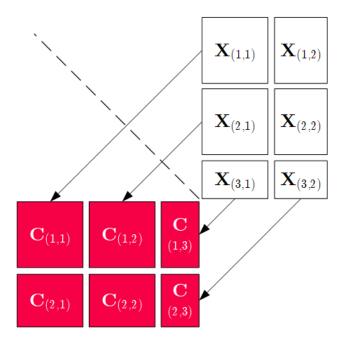
$$C = A * B$$



Note: also with row/column vector rhs

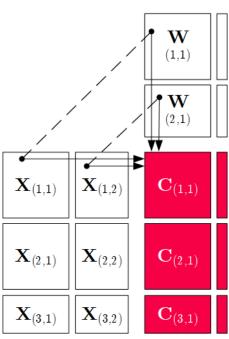
Transposition

$$C = t(X)$$



Matrix Multiplication

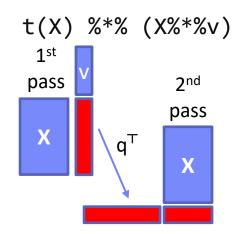
$$C = X %*% W$$



Note: 1:N join

Physical Operator Selection

- Common Selection Criteria
 - Data and cluster characteristics (e.g., data size/shape, memory, parallelism)
 - Matrix/operation properties (e.g., diagonal/symmetric, sparse-safe ops)
 - Data flow properties (e.g., co-partitioning, co-location, data locality)
- #0 Local Operators
 - SystemML mm, tsmm, mmchain; Samsara/Mllib local
- #1 Special Operators (special patterns/sparsity)
 - SystemML tsmm, mapmmchain; Samsara AtA
- #2 Broadcast-Based Operators (aka broadcast join)
 - SystemML mapmm, mapmmchain
- #3 Co-Partitioning-Based Operators (aka improved repartition join)
 - SystemML zipmm; Emma, Samsara OpAtB
- #4 Shuffle-Based Operators (aka repartition join)
 - SystemML cpmm, rmm; Samsara OpAB



Physical Operator Selection, cont.

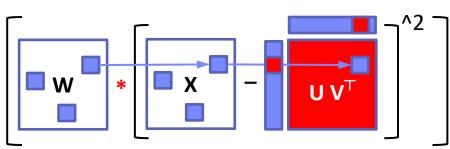
Examples Distributed MM Operators

Sparsity-Exploiting Operators

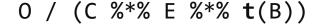
Goal: Avoid dense intermediates and unnecessary computation

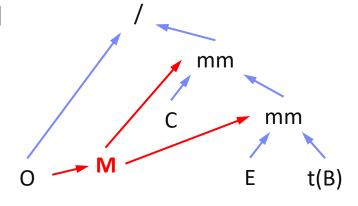
sum

- #1 Fused Physical Operators
 - E.g., SystemML [PVLDB'16] wsloss, wcemm, wdivmm
 - Selective computation over non-zeros of "sparse driver"



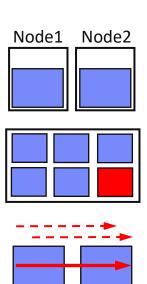
- #2 Masked Physical Operators
 - E.g., Cumulon MaskMult [SIGMOD'13]
 - Create mask of "sparse driver"
 - Pass mask to single masked matrix multiply operator

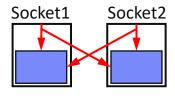




Overview Data Access Methods

- #1 (Distributed) Caching
 - Keep read only feature matrix in (distributed) memory
- #2 Buffer Pool Management
 - Graceful eviction of intermediates, out-of-core ops
- #3 Scan Sharing (and operator fusion)
 - Reduce the number of scans as well as read/writes
- #4 NUMA-Aware Partitioning and Replication
 - Matrix partitioning / replication → data locality
- #5 Index Structures
 - Out-of-core data, I/O-aware ops, updates
- #6 Compression
 - Fit larger datasets into available memory



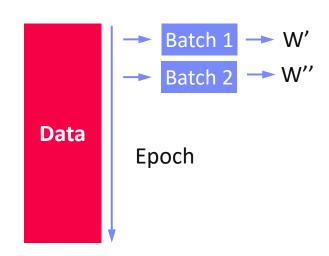


Distributed Parameter Servers

Background: Mini-batch ML Algorithms

Mini-batch ML Algorithms

- Iterative ML algorithms, where each iteration only uses a batch of rows to make the next model update (in epochs over the data)
- For large and highly redundant training sets
- Applies to almost all iterative, model-based
 ML algorithms (LDA, reg., class., factor., DNN)



Statistical vs Hardware Efficiency (batch size)

- Statistical efficiency: number of accessed data points to achieve certain accuracy
- Hardware efficiency: number of independent computations to achieve high hardware utilization (parallelization at different levels)
- Beware higher variance / class skew for too small batches!

Training Mini-batch ML Algorithms sequentially is hard to scale

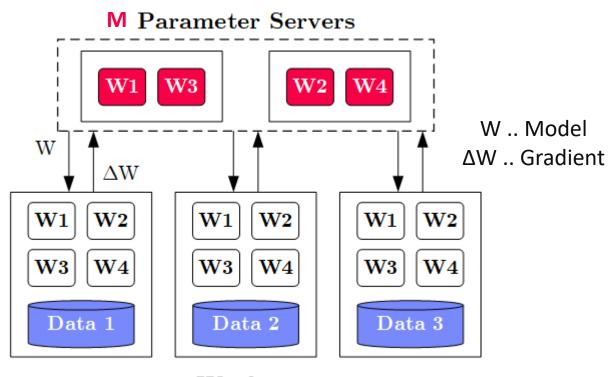
Background: Mini-batch DNN Training (LeNet)

```
[Yann LeCun, Leon Bottou, Yoshua
# Initialize W1-W4, b1-b4
                                                       Bengio, and Patrick Haffner: Gradient-
# Initialize SGD w/ Nesterov momentum optimizer
iters = ceil(N / batch size)
                                                         Based Learning Applied to Document
                                                          Recognition, Proc of the IEEE 1998]
for( e in 1:epochs ) {
   for( i in 1:iters ) {
     X batch = X[((i-1) * batch size) %% N + 1:min(N, beg + batch size - 1),]
     y batch = Y[((i-1) * batch size) %% N + 1:min(N, beg + batch size - 1),]
     ## layer 1: conv1 -> relu1 -> pool1
     ## layer 2: conv2 -> relu2 -> pool2
      ## layer 3: affine3 -> relu3 -> dropout
      ## layer 4: affine4 -> softmax
                                                                                  Pass
      outa4 = affine::forward(outd3, W4, b4)
      probs = softmax::forward(outa4)
      ## layer 4: affine4 <- softmax
                                                                             NN Backward
      douta4 = softmax::backward(dprobs, outa4)
      [doutd3, dW4, db4] = affine::backward(douta4, outr3, W4, b4)
                                                                                  Pass
     ## layer 3: affine3 <- relu3 <- dropout
                                                                              → Gradients
      ## layer 2: conv2 <- relu2 <- pool2
      ## layer 1: conv1 <- relu1 <- pool1</pre>
      # Optimize with SGD w/ Nesterov momentum W1-W4, b1-b4
                                                                                 Model
      [W4, vW4] = sgd nesterov::update(W4, dW4, lr, mu, vW4)
                                                                                Updates
      [b4, vb4] = sgd nesterov::update(b4, db4, lr, mu, vb4)
```


Overview Data-Parallel Parameter Servers

SystemArchitecture

- M Parameter Servers
- N Workers
- Optional Coordinator



Key Techniques

- N Workers
- Data partitioning D → workers Di (e.g., disjoint, reshuffling)
- Updated strategies (e.g., synchronous, asynchronous)
- Batch size strategies (small/large batches, hybrid methods)

History of Parameter Servers

- 1st Gen: Key/Value
 - Distributed key-value store for parameter exchange and synchronization
 - Relatively high overhead
- 2nd Gen: Classic Parameter Servers
 - Parameters as dense/sparse matrices
 - Different update/consistency strategies
 - Flexible configuration and fault tolerance
- 3rd Gen: Parameter Servers w/ improved data communication
 - Prefetching and range-based pull/push
 - Lossy or lossless compression w/ compensations
- Examples
 - TensorFlow, MXNet, PyTorch, CNTK, Petuum

[Alexander J. Smola, Shravan M. Narayanamurthy: An Architecture for Parallel Topic Models. **PVLDB 2010**]

[Jeffrey Dean et al.: Large Scale Distributed Deep Networks. NIPS 2012]

[Mu Li et al: Scaling Distributed Machine Learning with the Parameter Server. **OSDI 2014**]

[Jiawei Jiang, Bin Cui, Ce Zhang, Lele Yu: Heterogeneity-aware Distributed Parameter Servers.

SIGMOD 2017]

[Jiawei Jiang et al: SketchML: Accelerating Distributed Machine Learning with Data Sketches. SIGMOD 2018]

Basic Worker Algorithm (batch)

```
for( i in 1:epochs ) {
    for( j in 1:iterations ) {
        params = pullModel(); # W1-W4, b1-b4 lr, mu
        batch = getNextMiniBatch(data, j);
        gradient = computeGradient(batch, params);
        pushGradients(gradient);
    }
}
```

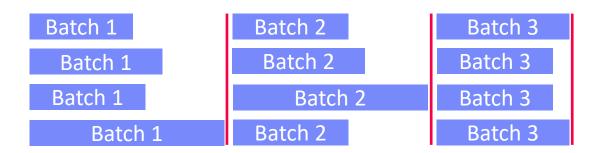
[Jeffrey Dean et al.: Large Scale Distributed Deep Networks. NIPS 2012]

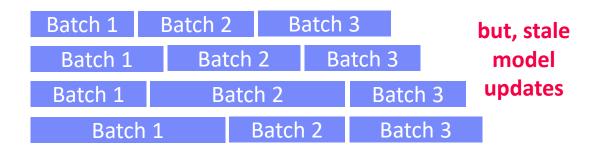
Extended Worker Algorithm (nfetch batches)

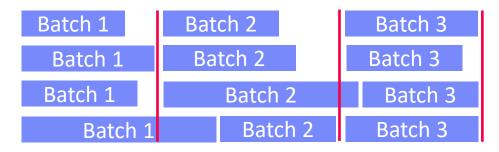
```
gradientAcc = matrix(0,...);
                                                nfetch batches require
                                               local gradient accrual and
for( i in 1:epochs ) {
                                                  local model update
   for( j in 1:iterations ) {
      if( step mod nfetch = 0 )
          params = pullModel();
      batch = getNextMiniBatch(data, j);
      gradient = computeGradient(batch, params);
      gradientAcc += gradient;
      params = updateModel(params, gradients);
      if( step mod nfetch = 0 ) {
          pushGradients(gradientAcc); step = 0;
          gradientAcc = matrix(0, ...);
       }
                                              [Jeffrey Dean et al.: Large Scale
                                                 Distributed Deep Networks.
      step++;
                                                           NIPS 2012
```


Update Strategies

- Bulk Synchronous Parallel (BSP)
 - Update model w/ accrued gradients
 - Barrier for N workers
- Asynchronous Parallel (ASP)
 - Update model for each gradient
 - No barrier
- Synchronous w/ Backup Workers
 - Update model w/ accrued gradients
 - Barrier for N of N+b workers



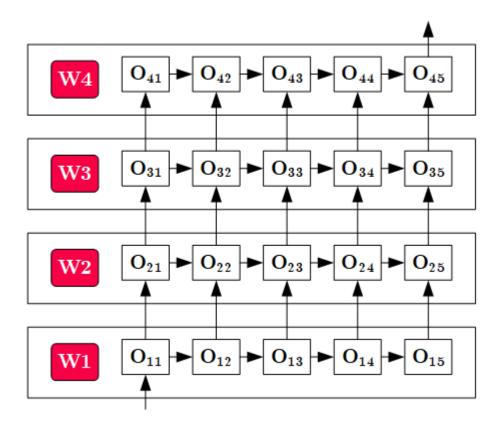




[Martín Abadi et al: TensorFlow: A System for Large-Scale Machine Learning. **OSDI 2016**]

Overview Model-Parallel Execution

- SystemArchitecture
 - Nodes act as workers and parameter servers
 - Data Transfer for boundary-crossing data dependencies
- PipelineParallelism



Workers w/ disjoint network/model partitions

ΔW

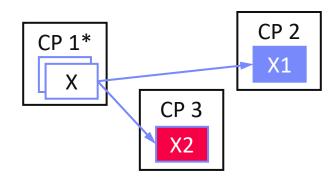
W

W

Federated ML

[Keith Bonawitz et al.: Towards Federated Learning at Scale: System Design. SysML 2019]

- Motivation Federated ML
 - Learn model w/o central data consolidation
 - Privacy + data/power caps vs personalization and sharing
- Data Ownership → Federated ML in the enterprise (machine vendor – middle-person – customer equipment)
- Federated ML Architecture
 - Multiple control programs w/ single master
 - Federated tensors (metadata handles)
 - Federated instructions and parameter server



- ExDRa Project (Exploratory Data Science over Raw Data)
 - Basic approach: Federated ML + ML over raw data
 - System infra, integration, data org & reuse, Exp DB, geo-dist.

Gefördert im Programm "IKT der Zukunft" vom Bundesministerium für Verkehr, Innovation, und Technologie (BMVIT)

Summary and Q&A

- Landscape of ML Systems
- Distributed Linear Algebra
- Distributed Parameter Servers

(please, participate in the course evaluation)

- Projects and Exercises
 - 13 projects + 3 exercises → grace period: end of Feb
 - In case of problem: ask for help + problem scaling possible
- Oral Exams [Feb 3 Feb 5] (11 participants?)

