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Announcements/Org

= #1 Video Recording
= Link in TeachCenter & TUbe (lectures will be public)

= #2 DIA Projects
= 13 Projects selected (various topics)
= 3 Exercises selected (distributed data deduplication)
= — grace period: end of Feb

= #3 Exam
= Feb 3, 1pm - Feb 5, 2pm, remote exam possible

= QOral exam, 45min slots, first-come, first-serve
= https://doodle.com/poll/ikzsffek2vhd85g4

= #4 Course Evaluation
= Evaluation time frame: Jan 14 — Feb 14 - feedback

& TUbe

If problemes,
please ask for
help

2/21
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#5 Data Management Courses

ML system
Architecture of DB system Architecture of . y
) internals
DEIEEA G U internals ML Systems .
. + prog. project
(ADBS, WS) + prog. project (AMLS, SS)

in SystemDS
[github.com/tugraz-isds/systemds]

Master Data Integration and Distributed
——————————— Large-Scale Analysis Data Management
Bachelor (DIA, WS) (usage and internals)

Data Management /

Data management from
Databases

user/application perspective

(DM, SS+WS)
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Agenda

= Landscape of ML Systems
= Distributed Linear Algebra
= Distributed Parameter Servers
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Landscape of ML Systems
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Landscape of ML Systems Graza

ﬂ What is an ML System?

Classification

ML Applications Machine Relzsfnr re:;:wodners
(entire KDD/DS Learning .
Clustering

lifecycle) (ML)

Dim Reduction
Neural Networks

Rapidly Evolving
Runtime Techniques
(Execution, Data Access)

Techniques

Data Accelerators

Management

HW
Architecture

Operating

I
I
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Landscape of ML Systems -I(;rlagl

The Data Science Lifecycle Data-centric View:

Application perspective
(a ka KDD PrOCQSS) | Workload perspective

Data System perspective
Scientist

Data Integration Model Selection Validate & Debug
Data Cleaning Training Deployment
Data Preparation Hyper-parameters Scoring & Feedback

Exploratory Process
(experimentation, refinements, ML pipelines)

Data/SW DevOps
Engineer Engineer
706.520 Data Integration and Large-Scale Analysis — 13 Distributed Machine Learning Systems .ISDS
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Driving Factors for ML

[Credit: Andrew Ng’14]
= Improved

New Al methods
(deep learning)

= Success across data and application domains
(e.g., health care, finance, transport, production)

[}
(&)
=
]
E
S
(5]
=
[0
o

= More complex models which leverage large data

Amount of data

= Availability of Collections Feedback Loop
= |ncreasing automation and monitoring =2 data Data
(simplified by cloud computing & services) /

= Feedback loops, data programming/augmentation Usage Model

m Advancements

= Higher performance of hardware and infrastructure (cloud)
= QOpen-source large-scale computation frameworks,

ML systems, and vendor-provides libraries

706.520 Data Integration and Large-Scale Analysis — 13 Distributed Machine Learning Systems .ISDS
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ﬂ Stack of ML Systems Deployment &

Validation & Scoring
Debugging

Training
Hyper-parameter

Tuning Supervised, unsupervised, RL

linear algebra, libs, AutoML

ML Apps & Algorithms

Model and Feature

Selection Eager interpretation, lazy

Language Abstractions evaluation, prog. compilation

Approximation, lineage,
checkpointing, checksums, ECC

Data Programming &
Augmentation

Fault Tolerance

Local, distributed, cloud

Execution Strategies (data, task, parameter server)

Data Preparation

(e.g., one-hot, binning) Dense & sparse tensor/matrix;

Data Representations compress, partition, cache

Data Integration & Data CPUs, NUMA, GPUs, FPGAs,
Cleaning HW & Infrastructure ASICs, RDMA, SSD/NVM

Improve accuracy vs. performance vs. resource requirements
=» Specialization & Heterogeneity



Landscape of ML Systems

Accelerators (GPUs, FPGAs, ASICs) Apps

Lang

| Apps _
| Lang |
= Memory- vs Compute-intensive 4 =
= CPU: dense/sparse, large mem, high
mem-bandwidth, moderate compute Ops Roofline

= GPU: dense, small mem, slow PClI, Analysis

very high mem-bandwidth / compute

[
»

Operational Intensity

Graphics Processing Units (GPUs)
= Extensively used for deep learning training and scoring
= NVIDIA Volta: “tensor cores” for 4x4 mm —> 64 2B FMA instruction

Field-Programmable Gate Arrays (FPGAS)
= Customizable HW accelerators for prefiltering, compression, DL

= Examples: Microsoft Catapult/Brainwave Neural Processing Units (NPUs)

Application-Specific Integrated Circuits (ASIC)
= Spectrum of chips: DL accelerators to computer vision
= Examples: Google TPUs (64K 1B FMA), NVIDIA DLA, Intel NNP

706.520 Data Integration and Large-Scale Analysis — 13 Distributed Machine Learning Systems .ISDS
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Data Representation fpps
ang

Faults
Exec
Data

= ML- vs DL-centric Systems

= [VIL: dense and sparse matrices or tensors, different sparse
formats (CSR, CSC, COO0), frames (heterogeneous)

" DL: mostly dense tensors, vec(Berlin) - vec(Germany)
embeddings for NLP, graphs + vec(France) = vec(Paris)

| Apps_|
| lang |
| Faults |
_Exec
| Data |

= Data-Parallel Operations for ML

= Distributed matrices: RDD<MatrixIndexes,MatrixBlock> Nodel Node2
= Data properties: distributed caching, LI LI
partitioning, compression - -
= Lossy Compression =» Acc/Perf-Tradeoff ~ [Credit: Song Han"16]
= Sparsification (reduce non-zero values)
= Quantization (reduce value domain), learned J L
= New data types: Intel Flexpoint (mantissa, exp) m

706.520 Data Integration and Large-Scale Analysis — 13 Distributed Machine Learning Systems .ISDS
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Landscape of ML Systems -ErLa!.

Execution Strategies

B

. Faults

= Batch Algorithms: Data and Task Parallel | Faults |
= Data-parallel operations PArK.

= Different physical operators @ bl Apache

physical op

= Mini-Batch Algorithms: Parameter Server

Parameter Servers

__________________________

= Data-parallel and model-parallel PS i i
= Update strategies (e.g., PYTORCH W‘ _T _________ l _T _________ i _TJ
async, sync, backup) m Ll AW
= Data partitioning strategies Ten‘;ﬁ_ Bt (wi [we] | | [wa][{wz] | | [w1][w2]
= Federated ML (trend 2018) CNTK (ws) (wa] | | (] (wa) | | () [l
= Lots of PS Decisions = Acc/Perf-Tradeoff Workers

= Configurations (#workers, batch size/param schedules, update type/freq)

= Transfer optimizations: lossy compression, sparsification, residual accumulation,
gradient clipping, and momentum corrections

706.520 Data Integration and Large-Scale Analysis — 13 Distributed Machine Learning Systems .ISDS
Matthias Boehm, Graz University of Technology, WS 2019/20




Landscape of ML Systems

TU

Grazm

Fault Tolerance & Resilience

= Resilience Problem Lo

—a—  P(err)=0.01
—e— P(err)=0.001

= |ncreasing error rates at scale % J-=— Prem-0.0001
(soft/hard mem/disk/net errors)

P(Job Failure)

= Robustness for preemption 02 -

= Need cost-effective resilience 00 14 I 1 . 1

1 10 100 1000 10000
# Tasks

= Fault Tolerance in Large-Scale Computation
= Block replication (min=1, max=3) in distributed file systems
= ECC; checksums for blocks, broadcast, shuffle
= Checkpointing (MapReduce: all task outputs; Spark/DL: on request)
= Lineage-based recomputation for recovery in Spark

= [VIL-specific Schemes (exploit app characteristics)
= Estimate contribution from lost partition to avoid strugglers
= Example: user-defined “compensation” functions

706.520 Data Integration and Large-Scale Analysis — 13 Distributed Machine Learning Systems
Matthias Boehm, Graz University of Technology, WS 2019/20
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Landscape of ML Systems -ErLa!.

Language Abstractions
ang
it - e
= Optimization Scope ¥ y R
- Xec
= #1 Eager Interpretation (debugging, no opt) PYTORCH -
" #2 Lazy expression eval.ua-tiop + @ MAHOUT
(some opt, avoid materialization) TensorFlov
Apach
= #3 Program compilation (full opt, difficult) — S,'f:tinfw

= Optimization Objective
= Most common: min time s.t. memory constraints
= Multi-objective: min cost s.t. time, min time s.t. acc, max acc s.t. time

= Trend: Fusion and Code Generation
Sparsity-Exploiting Operator

= Custom fused operations sum
= Examples: SystemML, -
Weld, Taco, Julia, - © sum + eps
TF XLA,TVM, TensorRT o
706.520 Data Integration and Large-Scale Analysis — 13 Distributed Machine Learning Systems .ISDS
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Landscape of ML Systems -ErLa!.

ML Applications

ML Algorithms (cost/benefit — time vs acc)
= Unsupervised/supervised; batch/mini-batch; first/second-order ML
= Mini-batch DL: variety of NN architectures and SGD optimizers

Specialized Apps: Video Analytics
in NoScope (time vs acc)

= Difference detectors / specialized by N y
models for “short-circuit evaluation” [Credit: Daniel Kang17]

= AutoML (time vs acc)
» Not algorithms but tasks (e.g., doClassify (X, y) + search space)
= Examples: MLBase, Auto-WEKA, TuPAQ, Auto-sklearn, Auto-WEKA 2.0
= AutoML services at Microsoft Azure, Amazon AWS, Google Cloud

Data Programming and Augmentation (acc?) Credit
redit:

= Generate noisy labels for pre-training Jonathan Z=X
Tremblay‘18] ==

= Exploit expert rules, simulation models,
rotations/shifting, and labeling IDEs (Software 2.0)

706.520 Data Integration and Large-Scale Analysis — 13 Distributed Machine Learning Systems .ISDS
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Landscape of ML Systems

#1 Language Abstraction

@.MAHOUT
julia
PYTORCH UF

TensorFlow

: NumPy Tensors

Linear Algebra
Programs

Computation Graphs
< Algorithm Libraries

Operator Libraries

Spqﬁ’(\z Collections
Graphs

Apache
SystemML™

#2 Execution Strategies

— e o o o o . . rMIcmsnft

|Parameter Serverl _,F CNTK
| (Modell- Parallel) | rncorrion ((xnet

‘ MATLAB R

Task-Parallel
Constructs

Data-Parallel

Operations

Local (single node)

AAAAAA <’\z

Matrices

Frames

#4 Data Types

Distributed SPor

#3 Distribution
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Distributed Linear Algebra
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Linear Algebra Systems

= Comparison Query Optimization
= Rule- and cost-based rewrites and operator ordering
= Physical operator selection and query compilation

» Linear algebra / other ML operators, DAGs,
control flow, sparse/dense formats

= #1 Interpretation (operation at-a-time)

DB
PL l HPC

N v S

Compilers for
Large-scale ML

Optimization Scope

= Examples: R, PyTorch, Morpheus [PVLDB’17]

= #2 Lazy Expression Compilation (DAG at-a-time)

= Examples: RIOT [CIDR’09],
Mahout Samsara [MLSystems’16]

ONOOUVhA,WNLER

= Examples w/ control structures: Weld [CIDR’17], 11,
OptiML [ICML'11], Emma [SIGMOD’15] o

14:

= #3 Program Compilation (entire program) 1s:
= Examples: SystemVIL [PVLDB’16], Julia o
Cumulon [SIGMOD’13], Tupleware [PVLDB’15] o,

1

: X = read($1); # n x m matrix
: y =read($2); # n x 1 vector

maxi = 50; lambda = 0.001;
intercept = $3;

r = fto0 %% v);

norm_r2 = sum(r * r); p = -r;
w = matrix(@, ncol(X), 1); i = 0;
while(i<maxi & norm_r2>norm_r2_trgt)

q = (t(X) %*% X %*% p)+lambda*p;
alpha = norm_r2 / sum(p * q);

w = w + alpha * p;

old_norm_r2 = norm_r2;

r =r + alpha * q;

norm_r2 = sum(r * r);

beta = norm_r2 / old_norm_r2;
p=-r+beta*p; 1i=1+1;

}

: write(w, $4, format="text");




Distributed Linear Algebra -ErLa!.

Linear Algebra Systems, cont. Note: TF 2.0

[Dan Moldovan et al.: AutoGraph:
Imperative-style Coding with Graph-
based Performance. SysML 2019.]

= Some Examples ...

Apache ™
el SystemML™ ¥ (1.x)
Tensor
X = read("./X"); var X = drmFromHDFS("./X") # read via queues
y = read("./y"); val y = drmFromHDFS("./y") sess = tf.Session()
p = t(X) %*% y; var p = (X.t %*% y).collect # ...
w = matrix(0,ncol(X),1); var w = dense(...) w = tf.Variable(tf.zeros(...,
X = X.par(256).checkpoint() dtype=tf.float64))
while(...) { while(...) { while ...:
g = t(X) %*% X %*% p; q = (X.t %*% X %*% p) vl = tf.matrix_transpose(X)
e .collect v2 = tf.matmult(X, p)
} cen v3 = tf.matmult(vl, v2)
} g = sess.run(v3)
Custom DSL : .
( , (Embedded DSL in Scala; (Embedded DSL in Python;
w/ R-like syntax; : .
o lazy evaluation) lazy [and eager] evaluation)
program compilation)
706.520 Data Integration and Large-Scale Analysis — 13 Distributed Machine Learning Systems .ISDS
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ML Libraries

= Fixed algorithm implementations

= Often on top of existing linear algebra or UDF abstractions

O learn
ﬁ NumPy

Single-node Example (Python)

from numpy import genfromtxt
from sklearn.linear_model \
import LinearRegression

X
y

genfromtxt('X.csv')
genfromtxt('y.csv')

reg = LinearRegression()
Fit(X, y)
out = reg.score(X, y)

SparkML/

MLIib Spoﬁg

Distributed Example (Spark Scala)

import org.apache.spark.ml
.regression.LinearRegression

val X = sc.read.csv('X.csv")
val y = sc.read.csv('y.csv")
val Xy = prepare(X, y).cache()

val reg = new LinearRegression()
Fit(Xy)
val out reg.transform(Xy)

706.520 Data Integration and Large-Scale Analysis — 13 Distributed Machine Learning Systems .ISDS
Matthias Boehm, Graz University of Technology, WS 2019/20



Distributed Linear Algebra -ErLa!.

DL Frameworks

= High-level DNN Frameworks

" Language abstraction for DNN construction and model fitting 2 Caffe?

= Examples: Caffe, Keras ¥ Keras
model = Sequential() opt = keras.optimizers.rmsprop(
model.add(Conv2D(32, (3, 3), 1r=0.0001, decay=1e-6)

padding="same',
# Let's train the model using RMSprop

input_shape=x_train.shape[1:])) model.compile(loss="'cat.. crossentropy’,

model.add(Activation('relu')) optimizer=opt,

model.add(Conv2D(32, (3, 3))) metrics=["accuracy'])

model.add(Activation('relu'))

model.add( model.fit(x_train, y train,
MaxPooling2D(pool size=(2, 2)))  batch_size=batch_size,

model.add (Dropout(0.25)) epochs=epochs,

validation data=(x_test, y test),
shuffle=True)

@ne

l:’ Microsoft

= Low-level DNN Frameworks ¢
= Examples: TensorFlow, MXNet, PyTorch, CNTK PYTORCH Tensor CNTK

w

706.520 Data Integration and Large-Scale Analysis — 13 Distributed Machine Learning Systems .ISDS
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Data-Parallel Execution TU

Distributed Matrix Operations

Elementwise Multiplication T . Matrix
(Hadamard Product) ransposition Multiplication
C=A*B C = t(X) C =X %*% W

S T e — ™ | e . 2 W

Ay || Ane By || Bua N N Xay || X2 // (1.1)
T e T T/ | e

Apy) ||Apa B || Bpa
— G l— === __ |l _

A[S 1) A[32| B[S 1) B[SM

Note: also with
row/column vector rhs

Note: 1:N join

706.520 Data Integration and Large-Scale Analysis — 13 Distributed Machine Learning Systems .ISDS
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Distributed Linear Algebra -ErLa!.

Physical Operator Selection

= Common Selection Criteria
= Data and cluster characteristics (e.g., data size/shape, memory, parallelism)
= Matrix/operation properties (e.g., diagonal/symmetric, sparse-safe ops)
= Data flow properties (e.g., co-partitioning, co-location, data locality)

= #0 Local Operators t(X) %*% (X%*%v)
= SystemML mm, tsmm, mmchain; Samsara/Mllib local 1t
pass
| ]

#1 Special Operators (special patterns/sparsity)

2nd
pass
= SystemML tsmm, mapmmchain; Samsara AtA “T n

#2 Broadcast-Based Operators (aka broadcast join) —
= SystemML mapmm, mapmmchain

#3 Co-Partitioning-Based Operators (aka improved repartition join)
= SystemML zipmm; Emma, Samsara OpAtB

#4 Shuffle-Based Operators (aka repartition join)
= SystemML cpmm, rmm; Samsara OpAB
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Physical Operator Selection, cont.

= Examples Distributed MM Operators

Y
Broadcast-based [ Shuffle-based Yo || Yoo
MM (mapmm) MM (cpmm)
Y o Y
21 2,1 2,2

X4,1 X4,2 ‘. X2,1 X2,2 X2,3 X2,4

706.520 Data Integration and Large-Scale Analysis — 13 Distributed Machine Learning Systems .ISDS
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Sparsity-Exploiting Operators

= Goal: Avoid dense intermediates and unnecessary computation

= #1 Fused Physical Operators

sum(W * (X - U %*% t(V))"2)

= E.g., SystemML [PVLDB’16] . -2
wsloss, wcemm, wdivmm
= Selective computation sum B w - uvT
over non-zeros of |
“sparse driver” - _]
= #2 Masked Physical Operators 0 / (C %*% E %*% t(B))
= E.g., Cumulon MaskMult [SIGMOD’13]
« . ” T
= Create mask of “sparse driver mm
= Pass mask to single masked AN
matrix multiply operator mm
o — M E t(B)
706.520 Data Integration and Large-Scale Analysis — 13 Distributed Machine Learning Systems .ISDS
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Motivation, Background, and Overview -I(;rE!l

Overview Data Access Methods

Nodel Node2

= #1 (Distributed) Caching
= Keep read only feature matrix in (distributed) memory

#2 Buffer Pool Management

= Graceful eviction of intermediates, out-of-core ops

#3 Scan Sharing (and operator fusion)
= Reduce the number of scans as well as read/writes

#4 NUMA-Aware Partitioning and Replication Socketl - Socket2
= Matrix partitioning / replication = data locality M

#5 Index Structures
= Qut-of-core data, I/O-aware ops, updates

#6 Compression

= Fit larger datasets into available memory

706.520 Data Integration and Large-Scale Analysis — 13 Distributed Machine Learning Systems .ISDS
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Distributed Parameter Servers
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Distributed Parameter Servers -ErLa!.

Background: Mini-batch ML Algorithms
- - W

— LB — W

= Mini-batch ML Algorithms

= |terative ML algorithms, where each iteration
only uses a batch of rows to make the

next model update (in epochs over the data)

= For large and highly redundant training sets Epoch

= Applies to almost all iterative, model-based
ML algorithms (LDA, reg., class., factor., DNN)

= Statistical vs Hardware Efficiency (batch size)

= Statistical efficiency: number of accessed data points to
achieve certain accuracy

= Hardware efficiency: number of independent computations to
achieve high hardware utilization (parallelization at different levels)

= Beware higher variance / class skew for too small batches!

=» Training Mini-batch ML Algorithms sequentially is hard to scale

706.520 Data Integration and Large-Scale Analysis — 13 Distributed Machine Learning Systems .ISDS
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Distributed Parameter Servers -I(;rE!l

Background: Mini-batch DNN Training (LeNet)

# Initialize W1-W4, bl-ba [Yann LeCun, Leon Bottou, Yoshua
# Initialize SGD w/ Nesterov momentum optimizer Bengio, and Patrick Haffner: Gradient-
iters = ceil(N / batch_size) Based Learning Applied to Document

Recognition, Proc of the IEEE 1998]

for( e in 1:epochs ) {

for( i in 1:iters ) {
X _batch = X[((i-1) * batch_size) %% N + 1:min(N, beg + batch_size - 1),]
y batch = Y[((i-1) * batch_size) %% N + 1:min(N, beg + batch_size - 1),]
## layer 1: convl -> relul -> pooll i
## layer 2: conv2 -> relu2 -> pool2
## layer 3: affine3 -> relu3 -> dropout NN Forward
## layer 4: affined4 -> softmax Pass
outad = affine::forward(outd3, W4, b4)
probs = softmax::forward(outad)

## layer 4: affined4 <- softmax
doutad = softmax::backward(dprobs, outa4) NN Backward
[doutd3, dw4, db4] = affine::backward(doutad4, outr3, W4, b4) P
## layer 3: affine3 <- relu3 <- dropout i ass

## layer 2: conv2 <- relu2 <- pool2 - Gradients
## layer 1: convl <- relul <- pooll

# Optimize with SGD w/ Nesterov momentum W1-W4, bl-b4 7 Model
[W4, vW4] = sgd_nesterov::update(W4, dwW4, 1r, mu, vW4) L
[b4, vb4] = sgd_nesterov::update(b4, db4, 1lr, mu, vb4) Updates
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Distributed Parameter Servers Graza

Overview Data-Parallel Parameter Servers

= System M Parameter Servers
Architecture
= M Parameter
Servers W .. Model
= N Workers AW .. Gradient
= Optional
Coordinator
= Key Techniques N Workers
= Data partitioning D = workers Di (e.g., disjoint, reshuffling)
= Updated strategies (e.g., synchronous, asynchronous)
= Batch size strategies (small/large batches, hybrid methods)
706.520 Data Integration and Large-Scale Analysis — 13 Distributed Machine Learning Systems .ISDS
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History of Parameter Servers

= 15t Gen: Key/Value

= Distributed key-value store for
parameter exchange and synchronization

= Relatively high overhead

= 2"d Gen: Classic Parameter Servers
= Parameters as dense/sparse matrices
= Different update/consistency strategies
= Flexible configuration and fault tolerance

= 3rd Gen: Parameter Servers w/
improved data communication

= Prefetching and range-based pull/push

= Lossy or lossless compression w/ compensations

= Examples
= TensorFlow, MXNet, PyTorch, CNTK, Petuum

Accelerating Distributed Machine

[Alexander J. Smola, Shravan
M. Narayanamurthy: An
Architecture for Parallel Topic
Models. PVLDB 2010]

[Jeffrey Dean et al.: Large Scale
Distributed Deep Networks.
NIPS 2012]

[Mu Li et al: Scaling Distributed
Machine Learning with the
Parameter Server. OSDI 2014]

[Jiawei Jiang, Bin Cui, Ce Zhang,
Lele Yu: Heterogeneity-aware
Distributed Parameter Servers.
SIGMOD 2017]

[Jiawei Jiang et al: SketchML:

Learning with Data Sketches.
SIGMOD 2018]




Distributed Parameter Servers -ErLa!.

Basic Worker Algorithm (batch)

for( i in 1:epochs ) {
for( j in 1l:iterations ) {
params pullModel(); # W1-W4, bl-b4 1lr, mu
batch = getNextMiniBatch(data, j);
gradient = computeGradient(batch, params);
pushGradients(gradient);

[Jeffrey Dean et al.: Large Scale
Distributed Deep Networks.
NIPS 2012]

706.520 Data Integration and Large-Scale Analysis — 13 Distributed Machine Learning Systems .ISDS
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Distributed Parameter Servers -ErLa!.

Extended Worker Algorithm (nfetch batches)

gradientAcc = matrix(9,...); nfetch batches require
for( i in 1:epochs ) { local gradient accrual and
for( j in 1:iterations ) { local model update
if( step mod nfetch = 0 )
params = pullModel();
batch = getNextMiniBatch(data, j);
gradient = computeGradient(batch, params);
gradientAcc += gradient;
params = updateModel(params, gradients);
if( step mod nfetch = 0 ) {

pushGradients(gradientAcc); step = 0;
gradientAcc = matrix(0, ...);

} [Jeffrey Dean et al.: Large Scale ———
step++; Distributed Deep Networks.
} } NIPS 2012]
706.520 Data Integration and Large-Scale Analysis — 13 Distributed Machine Learning Systems .ISDS
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Distributed Parameter Servers -Erla!l

Update Strategies

= Bulk Synchronous
Parallel (BSP)
" Update model w/
accrued gradients

= Barrier for N workers

" Asynchronous but, stale
Parallel (ASP) model
" Update model updates

for each gradient

= No barrier

" Synchronous w/
Backup Workers

" Update model w/

scerued gradients =

= Barrier for N of

N+b workers [Martin Abadi et al: TensorFlow: A System for

Large-Scale Machine Learning. OSDI 2016]




Distributed Parameter Servers -ErLa!.

Overview Model-Parallel Execution

A
= System |
: Oy Oy B Oyg B Oy B Oy5
Architecture W4 41 142 43 14 45
A A A A A
= Nodes act as
workers and
parameter servers Os1 % O3 k’ Oss [# O34 *{ Oss

A A A A A

= Data Transfer for
boundary-crossing

data dependencies W#g | Oz [ Oz [ O23 | Oy [ O35
A A A A A
s D: .
Plpelln(? Oy; 9 O1 9 Oy3 (| Oy Oy5
Parallelism i
I
Workers w/ disjoint
network/model partitions
706.520 Data Integration and Large-Scale Analysis — 13 Distributed Machine Learning Systems .ISDS
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Distributed Parameter Servers -ErLa!.

Fed e ratEd M L [Keith Bonawitz et al.: Towards

Federated Learning at Scale:
System Design. SysML 2019]

= Motivation Federated ML
= Learn model w/o central data consolidation
= Privacy + data/power caps vs personalization and sharing '

= Data Ownership =» Federated ML in the enterprise
(machine vendor — middle-person — customer equipment)

= Federated ML Architecture CP1* CP2
= Multiple control programs w/ single master W < “
= Federated tensors (metadata handles) \ CP 3
= Federated instructions and parameter server E

= ExDRa Project (Exploratory Data Science over Raw Data) SIEMENS
= Basic approach: Federated ML + ML over raw data § .m
= System infra, integration, data org & reuse, Exp DB, geo-dist. \

"= Bundesministerium Gefordert im Programm "IKT der Zukunft"

erkehr, Innovation

\V-’ r, . . . .o \ T h sche E
ind Technologle FFG vom Bundesministerium fir Verkehr, ﬂ 1Y \ “ I
Forschung wirkt.

Innovation, und Technologie (BMVIT) \



TU

Grazm

Summary and Q&A

Landscape of ML Systems T h a n kS

Distributed Linear Algebra

Distributed Parameter Servers (please, participate in the
course evaluation)

Projects and Exercises
= 13 projects + 3 exercises > grace period: end of Feb
= |n case of problem: ask for help + problem scaling possible

Oral Exams [Feb 3 - Feb 5] (11 participants?)
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