TU

Grazm

SCIENCE
PASSION
TECHNOLOGY

Data Integration and Analysis
13 Distributed ML Systems

Matthias Boehm

Graz University of Technology, Austria

Computer Science and Biomedical Engineering
Institute of Interactive Systems and Data Science
BMVIT endowed chair for Data Management

Last update: Jan 31, 2019 “ISDS

TU

Grazm

Announcements/Org

= #1 Video Recording
= Link in TeachCenter & TUbe (lectures will be public)

= #2 DIA Projects
= 13 Projects selected (various topics)
= 3 Exercises selected (distributed data deduplication)
= — grace period: end of Feb

= #3 Exam
= Feb 3, 1pm - Feb 5, 2pm, remote exam possible

= QOral exam, 45min slots, first-come, first-serve
= https://doodle.com/poll/ikzsffek2vhd85g4

= #4 Course Evaluation
= Evaluation time frame: Jan 14 — Feb 14 - feedback

& TUbe

If problemes,
please ask for
help

2/21

706.520 Data Integration and Large-Scale Analysis — 13 Distributed Machine Learning Systems .ISDS

Matthias Boehm, Graz University of Technology, WS 2019/20

TU

Grazm

#5 Data Management Courses

ML system
Architecture of DB system Architecture of . y
) internals
DEIEEA G U internals ML Systems .
. + prog. project
(ADBS, WS) + prog. project (AMLS, SS)

in SystemDS
[github.com/tugraz-isds/systemds]

Master Data Integration and Distributed
——————————— Large-Scale Analysis Data Management
Bachelor (DIA, WS) (usage and internals)

Data Management /

Data management from
Databases

user/application perspective

(DM, SS+WS)

706.520 Data Integration and Large-Scale Analysis — 13 Distributed Machine Learning Systems
Matthias Boehm, Graz University of Technology, WS 2019/20

"ISDS

TU

Grazm

Agenda

= Landscape of ML Systems
= Distributed Linear Algebra
= Distributed Parameter Servers

706.520 Data Integration and Large-Scale Analysis — 13 Distributed Machine Learning Systems
Matthias Boehm, Graz University of Technology, WS 2019/20

"ISDS

TU

Grazm

Landscape of ML Systems

706.520 Data Integration and Large-Scale Analysis — 13 Distributed Machine Learning Systems
Matthias Boehm, Graz University of Technology, WS 2019/20

"ISDS

TU

Landscape of ML Systems Graza

ﬂ What is an ML System?

Classification

ML Applications Machine Relzsfnr re:;:wodners
(entire KDD/DS Learning .
Clustering

lifecycle) (ML)

Dim Reduction
Neural Networks

Rapidly Evolving
Runtime Techniques
(Execution, Data Access)

Techniques

Data Accelerators

Management

HW
Architecture

Operating

I
I
|
I
I
|
I
I
|
I
I
|
I
I

Compilation :

I

|

I

I

|

I

I

|

I

I

Systems :
I

Landscape of ML Systems -I(;rlagl

The Data Science Lifecycle Data-centric View:

Application perspective
(a ka KDD PrOCQSS) | Workload perspective

Data System perspective
Scientist

Data Integration Model Selection Validate & Debug
Data Cleaning Training Deployment
Data Preparation Hyper-parameters Scoring & Feedback

Exploratory Process
(experimentation, refinements, ML pipelines)

Data/SW DevOps
Engineer Engineer
706.520 Data Integration and Large-Scale Analysis — 13 Distributed Machine Learning Systems .ISDS

Matthias Boehm, Graz University of Technology, WS 2019/20

TU

Landscape of ML Systems Graze

Driving Factors for ML

[Credit: Andrew Ng’14]
= Improved

New Al methods
(deep learning)

= Success across data and application domains
(e.g., health care, finance, transport, production)

[}
(&)
=
]
E
S
(5]
=
[0
o

= More complex models which leverage large data

Amount of data

= Availability of Collections Feedback Loop
= |ncreasing automation and monitoring =2 data Data
(simplified by cloud computing & services) /

= Feedback loops, data programming/augmentation Usage Model

m Advancements

= Higher performance of hardware and infrastructure (cloud)
= QOpen-source large-scale computation frameworks,

ML systems, and vendor-provides libraries

706.520 Data Integration and Large-Scale Analysis — 13 Distributed Machine Learning Systems .ISDS
Matthias Boehm, Graz University of Technology, WS 2019/20

TU

Landscape of ML Systems Graza

ﬂ Stack of ML Systems Deployment &

Validation & Scoring
Debugging

Training
Hyper-parameter

Tuning Supervised, unsupervised, RL

linear algebra, libs, AutoML

ML Apps & Algorithms

Model and Feature

Selection Eager interpretation, lazy

Language Abstractions evaluation, prog. compilation

Approximation, lineage,
checkpointing, checksums, ECC

Data Programming &
Augmentation

Fault Tolerance

Local, distributed, cloud

Execution Strategies (data, task, parameter server)

Data Preparation

(e.g., one-hot, binning) Dense & sparse tensor/matrix;

Data Representations compress, partition, cache

Data Integration & Data CPUs, NUMA, GPUs, FPGAs,
Cleaning HW & Infrastructure ASICs, RDMA, SSD/NVM

Improve accuracy vs. performance vs. resource requirements
=» Specialization & Heterogeneity

Landscape of ML Systems

Accelerators (GPUs, FPGAs, ASICs) Apps

Lang

| Apps _
| Lang |
= Memory- vs Compute-intensive 4 =
= CPU: dense/sparse, large mem, high
mem-bandwidth, moderate compute Ops Roofline

= GPU: dense, small mem, slow PClI, Analysis

very high mem-bandwidth / compute

[
»

Operational Intensity

Graphics Processing Units (GPUs)
= Extensively used for deep learning training and scoring
= NVIDIA Volta: “tensor cores” for 4x4 mm —> 64 2B FMA instruction

Field-Programmable Gate Arrays (FPGAS)
= Customizable HW accelerators for prefiltering, compression, DL

= Examples: Microsoft Catapult/Brainwave Neural Processing Units (NPUs)

Application-Specific Integrated Circuits (ASIC)
= Spectrum of chips: DL accelerators to computer vision
= Examples: Google TPUs (64K 1B FMA), NVIDIA DLA, Intel NNP

706.520 Data Integration and Large-Scale Analysis — 13 Distributed Machine Learning Systems .ISDS
Matthias Boehm, Graz University of Technology, WS 2019/20

Landscape of ML Systems TU

Grazm

Data Representation fpps
ang

Faults
Exec
Data

= ML- vs DL-centric Systems

= [VIL: dense and sparse matrices or tensors, different sparse
formats (CSR, CSC, COO0), frames (heterogeneous)

" DL: mostly dense tensors, vec(Berlin) - vec(Germany)
embeddings for NLP, graphs + vec(France) = vec(Paris)

| Apps_|
| lang |
| Faults |
_Exec
| Data |

= Data-Parallel Operations for ML

= Distributed matrices: RDD<MatrixIndexes,MatrixBlock> Nodel Node2
= Data properties: distributed caching, LI LI
partitioning, compression - -
= Lossy Compression =» Acc/Perf-Tradeoff ~ [Credit: Song Han"16]
= Sparsification (reduce non-zero values)
= Quantization (reduce value domain), learned J L
= New data types: Intel Flexpoint (mantissa, exp) m

706.520 Data Integration and Large-Scale Analysis — 13 Distributed Machine Learning Systems .ISDS
Matthias Boehm, Graz University of Technology, WS 2019/20

Landscape of ML Systems -ErLa!.

Execution Strategies

B

. Faults

= Batch Algorithms: Data and Task Parallel | Faults |
= Data-parallel operations PArK.

= Different physical operators @ bl Apache

physical op

= Mini-Batch Algorithms: Parameter Server

Parameter Servers

= Data-parallel and model-parallel PS i i
= Update strategies (e.g., PYTORCH W‘ _T _________ l _T _________ i _TJ
async, sync, backup) m Ll AW
= Data partitioning strategies Ten‘;ﬁ_ Bt (wi [we] | | [wa][{wz] | | [w1][w2]
= Federated ML (trend 2018) CNTK (ws) (wa] | | (] (wa) | | () [l
= Lots of PS Decisions = Acc/Perf-Tradeoff Workers

= Configurations (#workers, batch size/param schedules, update type/freq)

= Transfer optimizations: lossy compression, sparsification, residual accumulation,
gradient clipping, and momentum corrections

706.520 Data Integration and Large-Scale Analysis — 13 Distributed Machine Learning Systems .ISDS
Matthias Boehm, Graz University of Technology, WS 2019/20

Landscape of ML Systems

TU

Grazm

Fault Tolerance & Resilience

= Resilience Problem Lo

—a— P(err)=0.01
—e— P(err)=0.001

= |ncreasing error rates at scale % J-=— Prem-0.0001
(soft/hard mem/disk/net errors)

P(Job Failure)

= Robustness for preemption 02 -

= Need cost-effective resilience 00 14 I 1 . 1

1 10 100 1000 10000
Tasks

= Fault Tolerance in Large-Scale Computation
= Block replication (min=1, max=3) in distributed file systems
= ECC; checksums for blocks, broadcast, shuffle
= Checkpointing (MapReduce: all task outputs; Spark/DL: on request)
= Lineage-based recomputation for recovery in Spark

= [VIL-specific Schemes (exploit app characteristics)
= Estimate contribution from lost partition to avoid strugglers
= Example: user-defined “compensation” functions

706.520 Data Integration and Large-Scale Analysis — 13 Distributed Machine Learning Systems
Matthias Boehm, Graz University of Technology, WS 2019/20

Apps
Lang
Faults
Exec
Data

| Apps_|
_lang |
| Faults |
| Exec
| Data |

"ISDS

Landscape of ML Systems -ErLa!.

Language Abstractions
ang
it - e
= Optimization Scope ¥ y R
- Xec
= #1 Eager Interpretation (debugging, no opt) PYTORCH -
" #2 Lazy expression eval.ua-tiop + @ MAHOUT
(some opt, avoid materialization) TensorFlov
Apach
= #3 Program compilation (full opt, difficult) — S,'f:tinfw

= Optimization Objective
= Most common: min time s.t. memory constraints
= Multi-objective: min cost s.t. time, min time s.t. acc, max acc s.t. time

= Trend: Fusion and Code Generation
Sparsity-Exploiting Operator

= Custom fused operations sum
= Examples: SystemML, -
Weld, Taco, Julia, - © sum + eps
TF XLA,TVM, TensorRT o
706.520 Data Integration and Large-Scale Analysis — 13 Distributed Machine Learning Systems .ISDS
Matthias Boehm, Graz University of Technology, WS 2019/20

Landscape of ML Systems -ErLa!.

ML Applications

ML Algorithms (cost/benefit — time vs acc)
= Unsupervised/supervised; batch/mini-batch; first/second-order ML
= Mini-batch DL: variety of NN architectures and SGD optimizers

Specialized Apps: Video Analytics
in NoScope (time vs acc)

= Difference detectors / specialized by N y
models for “short-circuit evaluation” [Credit: Daniel Kang17]

= AutoML (time vs acc)
» Not algorithms but tasks (e.g., doClassify (X, y) + search space)
= Examples: MLBase, Auto-WEKA, TuPAQ, Auto-sklearn, Auto-WEKA 2.0
= AutoML services at Microsoft Azure, Amazon AWS, Google Cloud

Data Programming and Augmentation (acc?) Credit
redit:

= Generate noisy labels for pre-training Jonathan Z=X
Tremblay‘18] ==

= Exploit expert rules, simulation models,
rotations/shifting, and labeling IDEs (Software 2.0)

706.520 Data Integration and Large-Scale Analysis — 13 Distributed Machine Learning Systems .ISDS
Matthias Boehm, Graz University of Technology, WS 2019/20

Landscape of ML Systems

TU

Grazm

Landscape of ML Systems

#1 Language Abstraction

@.MAHOUT
julia
PYTORCH UF

TensorFlow

: NumPy Tensors

Linear Algebra
Programs

Computation Graphs
< Algorithm Libraries

Operator Libraries

Spqﬁ’(\z Collections
Graphs

Apache
SystemML™

#2 Execution Strategies

— e o o o o . . rMIcmsnft

|Parameter Serverl _,F CNTK
| (Modell- Parallel) | rncorrion ((xnet

‘ MATLAB R

Task-Parallel
Constructs

Data-Parallel

Operations

Local (single node)

AAAAAA <’\z

Matrices

Frames

#4 Data Types

Distributed SPor

#3 Distribution

TU

Grazm

Distributed Linear Algebra

706.520 Data Integration and Large-Scale Analysis — 13 Distributed Machine Learning Systems
Matthias Boehm, Graz University of Technology, WS 2019/20

"ISDS

Distributed Linear Algebra

TU

Grazm

Linear Algebra Systems

= Comparison Query Optimization
= Rule- and cost-based rewrites and operator ordering
= Physical operator selection and query compilation

» Linear algebra / other ML operators, DAGs,
control flow, sparse/dense formats

= #1 Interpretation (operation at-a-time)

DB
PL l HPC

N v S

Compilers for
Large-scale ML

Optimization Scope

= Examples: R, PyTorch, Morpheus [PVLDB’17]

= #2 Lazy Expression Compilation (DAG at-a-time)

= Examples: RIOT [CIDR’09],
Mahout Samsara [MLSystems’16]

ONOOUVhA,WNLER

= Examples w/ control structures: Weld [CIDR’17], 11,
OptiML [ICML'11], Emma [SIGMOD’15] o

14:

= #3 Program Compilation (entire program) 1s:
= Examples: SystemVIL [PVLDB’16], Julia o
Cumulon [SIGMOD’13], Tupleware [PVLDB’15] o,

1

: X = read($1); # n x m matrix
: y =read($2); # n x 1 vector

maxi = 50; lambda = 0.001;
intercept = $3;

r = fto0 %% v);

norm_r2 = sum(r * r); p = -r;
w = matrix(@, ncol(X), 1); i = 0;
while(i<maxi & norm_r2>norm_r2_trgt)

q = (t(X) %*% X %*% p)+lambda*p;
alpha = norm_r2 / sum(p * q);

w = w + alpha * p;

old_norm_r2 = norm_r2;

r =r + alpha * q;

norm_r2 = sum(r * r);

beta = norm_r2 / old_norm_r2;
p=-r+beta*p; 1i=1+1;

}

: write(w, $4, format="text");

Distributed Linear Algebra -ErLa!.

Linear Algebra Systems, cont. Note: TF 2.0

[Dan Moldovan et al.: AutoGraph:
Imperative-style Coding with Graph-
based Performance. SysML 2019.]

= Some Examples ...

Apache ™
el SystemML™ ¥ (1.x)
Tensor
X = read("./X"); var X = drmFromHDFS("./X") # read via queues
y = read("./y"); val y = drmFromHDFS("./y") sess = tf.Session()
p = t(X) %*% y; var p = (X.t %*% y).collect # ...
w = matrix(0,ncol(X),1); var w = dense(...) w = tf.Variable(tf.zeros(...,
X = X.par(256).checkpoint() dtype=tf.float64))
while(...) { while(...) { while ...:
g = t(X) %*% X %*% p; q = (X.t %*% X %*% p) vl = tf.matrix_transpose(X)
e .collect v2 = tf.matmult(X, p)
} cen v3 = tf.matmult(vl, v2)
} g = sess.run(v3)
Custom DSL : .
(, (Embedded DSL in Scala; (Embedded DSL in Python;
w/ R-like syntax; : .
o lazy evaluation) lazy [and eager] evaluation)
program compilation)
706.520 Data Integration and Large-Scale Analysis — 13 Distributed Machine Learning Systems .ISDS

Matthias Boehm, Graz University of Technology, WS 2019/20

Distributed Linear Algebra

TU

Grazm

ML Libraries

= Fixed algorithm implementations

= Often on top of existing linear algebra or UDF abstractions

O learn
ﬁ NumPy

Single-node Example (Python)

from numpy import genfromtxt
from sklearn.linear_model \
import LinearRegression

X
y

genfromtxt('X.csv')
genfromtxt('y.csv')

reg = LinearRegression()
Fit(X, y)
out = reg.score(X, y)

SparkML/

MLIib Spoﬁg

Distributed Example (Spark Scala)

import org.apache.spark.ml
.regression.LinearRegression

val X = sc.read.csv('X.csv")
val y = sc.read.csv('y.csv")
val Xy = prepare(X, y).cache()

val reg = new LinearRegression()
Fit(Xy)
val out reg.transform(Xy)

706.520 Data Integration and Large-Scale Analysis — 13 Distributed Machine Learning Systems .ISDS
Matthias Boehm, Graz University of Technology, WS 2019/20

Distributed Linear Algebra -ErLa!.

DL Frameworks

= High-level DNN Frameworks

" Language abstraction for DNN construction and model fitting 2 Caffe?

= Examples: Caffe, Keras ¥ Keras
model = Sequential() opt = keras.optimizers.rmsprop(
model.add(Conv2D(32, (3, 3), 1r=0.0001, decay=1e-6)

padding="same',
Let's train the model using RMSprop

input_shape=x_train.shape[1:])) model.compile(loss="'cat.. crossentropy’,

model.add(Activation('relu')) optimizer=opt,

model.add(Conv2D(32, (3, 3))) metrics=["accuracy'])

model.add(Activation('relu'))

model.add(model.fit(x_train, y train,
MaxPooling2D(pool size=(2, 2))) batch_size=batch_size,

model.add (Dropout(0.25)) epochs=epochs,

validation data=(x_test, y test),
shuffle=True)

@ne

l:’ Microsoft

= Low-level DNN Frameworks ¢
= Examples: TensorFlow, MXNet, PyTorch, CNTK PYTORCH Tensor CNTK

w

706.520 Data Integration and Large-Scale Analysis — 13 Distributed Machine Learning Systems .ISDS
Matthias Boehm, Graz University of Technology, WS 2019/20

Data-Parallel Execution TU

Distributed Matrix Operations

Elementwise Multiplication T . Matrix
(Hadamard Product) ransposition Multiplication
C=A*B C = t(X) C =X %*% W

S T e — ™ | e . 2 W

Ay || Ane By || Bua N N Xay || X2 // (1.1)
T e T T/ | e

Apy) ||Apa B || Bpa
— G l— === __ |l _

A[S 1) A[32| B[S 1) B[SM

Note: also with
row/column vector rhs

Note: 1:N join

706.520 Data Integration and Large-Scale Analysis — 13 Distributed Machine Learning Systems .ISDS
Matthias Boehm, Graz University of Technology, WS 2019/20

Distributed Linear Algebra -ErLa!.

Physical Operator Selection

= Common Selection Criteria
= Data and cluster characteristics (e.g., data size/shape, memory, parallelism)
= Matrix/operation properties (e.g., diagonal/symmetric, sparse-safe ops)
= Data flow properties (e.g., co-partitioning, co-location, data locality)

= #0 Local Operators t(X) %*% (X%*%v)
= SystemML mm, tsmm, mmchain; Samsara/Mllib local 1t
pass
|]

#1 Special Operators (special patterns/sparsity)

2nd
pass
= SystemML tsmm, mapmmchain; Samsara AtA “T n

#2 Broadcast-Based Operators (aka broadcast join) —
= SystemML mapmm, mapmmchain

#3 Co-Partitioning-Based Operators (aka improved repartition join)
= SystemML zipmm; Emma, Samsara OpAtB

#4 Shuffle-Based Operators (aka repartition join)
= SystemML cpmm, rmm; Samsara OpAB

Distributed Linear Algebra TU

Grazm

Physical Operator Selection, cont.

= Examples Distributed MM Operators

Y
Broadcast-based [Shuffle-based Yo || Yoo
MM (mapmm) MM (cpmm)
Y o Y
21 2,1 2,2

X4,1 X4,2 ‘. X2,1 X2,2 X2,3 X2,4

706.520 Data Integration and Large-Scale Analysis — 13 Distributed Machine Learning Systems .ISDS
Matthias Boehm, Graz University of Technology, WS 2019/20

Distributed Linear Algebra

TU

Grazm

Sparsity-Exploiting Operators

= Goal: Avoid dense intermediates and unnecessary computation

= #1 Fused Physical Operators

sum(W * (X - U %*% t(V))"2)

= E.g., SystemML [PVLDB’16] . -2
wsloss, wcemm, wdivmm
= Selective computation sum B w - uvT
over non-zeros of |
“sparse driver” - _]
= #2 Masked Physical Operators 0 / (C %*% E %*% t(B))
= E.g., Cumulon MaskMult [SIGMOD’13]
« . ” T
= Create mask of “sparse driver mm
= Pass mask to single masked AN
matrix multiply operator mm
o — M E t(B)
706.520 Data Integration and Large-Scale Analysis — 13 Distributed Machine Learning Systems .ISDS

Matthias Boehm, Graz University of Technology, WS 2019/20

Motivation, Background, and Overview -I(;rE!l

Overview Data Access Methods

Nodel Node2

= #1 (Distributed) Caching
= Keep read only feature matrix in (distributed) memory

#2 Buffer Pool Management

= Graceful eviction of intermediates, out-of-core ops

#3 Scan Sharing (and operator fusion)
= Reduce the number of scans as well as read/writes

#4 NUMA-Aware Partitioning and Replication Socketl - Socket2
= Matrix partitioning / replication = data locality M

#5 Index Structures
= Qut-of-core data, I/O-aware ops, updates

#6 Compression

= Fit larger datasets into available memory

706.520 Data Integration and Large-Scale Analysis — 13 Distributed Machine Learning Systems .ISDS
Matthias Boehm, Graz University of Technology, WS 2019/20

TU

Grazm

Distributed Parameter Servers

706.520 Data Integration and Large-Scale Analysis — 13 Distributed Machine Learning Systems
Matthias Boehm, Graz University of Technology, WS 2019/20

"ISDS

Distributed Parameter Servers -ErLa!.

Background: Mini-batch ML Algorithms
- - W

— LB — W

= Mini-batch ML Algorithms

= |terative ML algorithms, where each iteration
only uses a batch of rows to make the

next model update (in epochs over the data)

= For large and highly redundant training sets Epoch

= Applies to almost all iterative, model-based
ML algorithms (LDA, reg., class., factor., DNN)

= Statistical vs Hardware Efficiency (batch size)

= Statistical efficiency: number of accessed data points to
achieve certain accuracy

= Hardware efficiency: number of independent computations to
achieve high hardware utilization (parallelization at different levels)

= Beware higher variance / class skew for too small batches!

=» Training Mini-batch ML Algorithms sequentially is hard to scale

706.520 Data Integration and Large-Scale Analysis — 13 Distributed Machine Learning Systems .ISDS
Matthias Boehm, Graz University of Technology, WS 2019/20

Distributed Parameter Servers -I(;rE!l

Background: Mini-batch DNN Training (LeNet)

Initialize W1-W4, bl-ba [Yann LeCun, Leon Bottou, Yoshua
Initialize SGD w/ Nesterov momentum optimizer Bengio, and Patrick Haffner: Gradient-
iters = ceil(N / batch_size) Based Learning Applied to Document

Recognition, Proc of the IEEE 1998]

for(e in 1:epochs) {

for(i in 1:iters) {
X _batch = X[((i-1) * batch_size) %% N + 1:min(N, beg + batch_size - 1),]
y batch = Y[((i-1) * batch_size) %% N + 1:min(N, beg + batch_size - 1),]
layer 1: convl -> relul -> pooll i
layer 2: conv2 -> relu2 -> pool2
layer 3: affine3 -> relu3 -> dropout NN Forward
layer 4: affined4 -> softmax Pass
outad = affine::forward(outd3, W4, b4)
probs = softmax::forward(outad)

layer 4: affined4 <- softmax
doutad = softmax::backward(dprobs, outa4) NN Backward
[doutd3, dw4, db4] = affine::backward(doutad4, outr3, W4, b4) P
layer 3: affine3 <- relu3 <- dropout i ass

layer 2: conv2 <- relu2 <- pool2 - Gradients
layer 1: convl <- relul <- pooll

Optimize with SGD w/ Nesterov momentum W1-W4, bl-b4 7 Model
[W4, vW4] = sgd_nesterov::update(W4, dwW4, 1r, mu, vW4) L
[b4, vb4] = sgd_nesterov::update(b4, db4, 1lr, mu, vb4) Updates

TU

Distributed Parameter Servers Graza

Overview Data-Parallel Parameter Servers

= System M Parameter Servers
Architecture
= M Parameter
Servers W .. Model
= N Workers AW .. Gradient
= Optional
Coordinator
= Key Techniques N Workers
= Data partitioning D = workers Di (e.g., disjoint, reshuffling)
= Updated strategies (e.g., synchronous, asynchronous)
= Batch size strategies (small/large batches, hybrid methods)
706.520 Data Integration and Large-Scale Analysis — 13 Distributed Machine Learning Systems .ISDS

Matthias Boehm, Graz University of Technology, WS 2019/20

Distributed Parameter Servers

TU

Grazm

History of Parameter Servers

= 15t Gen: Key/Value

= Distributed key-value store for
parameter exchange and synchronization

= Relatively high overhead

= 2"d Gen: Classic Parameter Servers
= Parameters as dense/sparse matrices
= Different update/consistency strategies
= Flexible configuration and fault tolerance

= 3rd Gen: Parameter Servers w/
improved data communication

= Prefetching and range-based pull/push

= Lossy or lossless compression w/ compensations

= Examples
= TensorFlow, MXNet, PyTorch, CNTK, Petuum

Accelerating Distributed Machine

[Alexander J. Smola, Shravan
M. Narayanamurthy: An
Architecture for Parallel Topic
Models. PVLDB 2010]

[Jeffrey Dean et al.: Large Scale
Distributed Deep Networks.
NIPS 2012]

[Mu Li et al: Scaling Distributed
Machine Learning with the
Parameter Server. OSDI 2014]

[Jiawei Jiang, Bin Cui, Ce Zhang,
Lele Yu: Heterogeneity-aware
Distributed Parameter Servers.
SIGMOD 2017]

[Jiawei Jiang et al: SketchML:

Learning with Data Sketches.
SIGMOD 2018]

Distributed Parameter Servers -ErLa!.

Basic Worker Algorithm (batch)

for(i in 1:epochs) {
for(j in 1l:iterations) {
params pullModel(); # W1-W4, bl-b4 1lr, mu
batch = getNextMiniBatch(data, j);
gradient = computeGradient(batch, params);
pushGradients(gradient);

[Jeffrey Dean et al.: Large Scale
Distributed Deep Networks.
NIPS 2012]

706.520 Data Integration and Large-Scale Analysis — 13 Distributed Machine Learning Systems .ISDS
Matthias Boehm, Graz University of Technology, WS 2019/20

Distributed Parameter Servers -ErLa!.

Extended Worker Algorithm (nfetch batches)

gradientAcc = matrix(9,...); nfetch batches require
for(i in 1:epochs) { local gradient accrual and
for(j in 1:iterations) { local model update
if(step mod nfetch = 0)
params = pullModel();
batch = getNextMiniBatch(data, j);
gradient = computeGradient(batch, params);
gradientAcc += gradient;
params = updateModel(params, gradients);
if(step mod nfetch = 0) {

pushGradients(gradientAcc); step = 0;
gradientAcc = matrix(0, ...);

} [Jeffrey Dean et al.: Large Scale ———
step++; Distributed Deep Networks.
} } NIPS 2012]
706.520 Data Integration and Large-Scale Analysis — 13 Distributed Machine Learning Systems .ISDS

Matthias Boehm, Graz University of Technology, WS 2019/20

Distributed Parameter Servers -Erla!l

Update Strategies

= Bulk Synchronous
Parallel (BSP)
" Update model w/
accrued gradients

= Barrier for N workers

" Asynchronous but, stale
Parallel (ASP) model
" Update model updates

for each gradient

= No barrier

" Synchronous w/
Backup Workers

" Update model w/

scerued gradients =

= Barrier for N of

N+b workers [Martin Abadi et al: TensorFlow: A System for

Large-Scale Machine Learning. OSDI 2016]

Distributed Parameter Servers -ErLa!.

Overview Model-Parallel Execution

A
= System |
: Oy Oy B Oyg B Oy B Oy5
Architecture W4 41 142 43 14 45
A A A A A
= Nodes act as
workers and
parameter servers Os1 % O3 k’ Oss [# O34 *{ Oss

A A A A A

= Data Transfer for
boundary-crossing

data dependencies W#g | Oz [Oz [O23 | Oy [O35
A A A A A
s D: .
Plpelln(? Oy; 9 O1 9 Oy3 (| Oy Oy5
Parallelism i
I
Workers w/ disjoint
network/model partitions
706.520 Data Integration and Large-Scale Analysis — 13 Distributed Machine Learning Systems .ISDS

Matthias Boehm, Graz University of Technology, WS 2019/20

Distributed Parameter Servers -ErLa!.

Fed e ratEd M L [Keith Bonawitz et al.: Towards

Federated Learning at Scale:
System Design. SysML 2019]

= Motivation Federated ML
= Learn model w/o central data consolidation
= Privacy + data/power caps vs personalization and sharing '

= Data Ownership =» Federated ML in the enterprise
(machine vendor — middle-person — customer equipment)

= Federated ML Architecture CP1* CP2
= Multiple control programs w/ single master W < “
= Federated tensors (metadata handles) \ CP 3
= Federated instructions and parameter server E

= ExDRa Project (Exploratory Data Science over Raw Data) SIEMENS
= Basic approach: Federated ML + ML over raw data § .m
= System infra, integration, data org & reuse, Exp DB, geo-dist. \

"= Bundesministerium Gefordert im Programm "IKT der Zukunft"

erkehr, Innovation

\V-’ r,o \ T h sche E
ind Technologle FFG vom Bundesministerium fir Verkehr, ﬂ 1Y \ “ I
Forschung wirkt.

Innovation, und Technologie (BMVIT) \

TU

Grazm

Summary and Q&A

Landscape of ML Systems T h a n kS

Distributed Linear Algebra

Distributed Parameter Servers (please, participate in the
course evaluation)

Projects and Exercises
= 13 projects + 3 exercises > grace period: end of Feb
= |n case of problem: ask for help + problem scaling possible

Oral Exams [Feb 3 - Feb 5] (11 participants?)

706.520 Data Integration and Large-Scale Analysis — 13 Distributed Machine Learning Systems .ISDS
Matthias Boehm, Graz University of Technology, WS 2019/20

