TU

Grazm

SCIENCE
PASSION
TECHNOLOGY

Architecture of DB Systems
03 Data Layouts and Bufferpools

Matthias Boehm

Graz University of Technology, Austria

Computer Science and Biomedical Engineering
Institute of Interactive Systems and Data Science
BMK endowed chair for Data Management

Last update: Oct 20, 2020 “ISDS



TU

Grazm

Announcements/Org

#1 Video Recording

= Linkin & (lectures will be public) ﬂ TUbe

= QOptional attendance (independent of COVID)

#2 COVID-19 Restrictions (HS i5)

= Max 25% room capacity (TC registrations)

max 18/74

#3 Open Position

= Student research assistant in ExDRa project eXdra
= 10/20h per week

= #4 Programming Projects
= |nijtial test suite, benchmark, and make file

= Reference implementation released
(you need to implement ./server.h)

706.543 Architecture of Database Systems — 01 Introduction and Overview B ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21



TU

Grazm

Caching — An Old and Fundamental CS Concept

4.0. The iemory Organ

4.1. Ideally one would desire an indefinitely large memory
capacity such that any particular 40 binary digit numbcr or word would be
immediately - i.e., in the order of 1 to 100 8 = available and that

words could be replaced with new words at about the same rate, It does not

seem possible physically to achieve such a capacity. | We are therefore

forced to recognize the possibility of constructing a hierarchy of memories,
each of which has greater capacity than the preceding but which is less

quickly accessible,

[Arthur W. Burks, Herman H. Goldstine, John von Neumann: Preliminary
Discussion of the Logical Design of an Electronic Computing Instrument,
Part |, Vol. |, Report prepared for U.S. Army Ord. Dept., 28 June 1946]

[Credit: Nimrod Megiddo and Dharmendra S. Modha (ARC paper)]

706.543 Architecture of Database Systems — 01 Introduction and Overview .ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21



Classification of DB Architectures

TU

Grazm

DBMS Architecture, cont.

Set-Oriented Interface

Data System

(Nonprocedural access)

[Theo Harder, Erhard Rahm:
Datenbanksysteme: Konzepte und |= =
Qi Techniken der Implementierung, 2001]

| |
1 |
1 |
! :
: Data Record-Oriented Interface : '
| System ;
. (Data) Access System !
: (Navigational access) I
e e et tpteteetttt MM ————_——_— L |
Internal Record Interface I
|
! Access (Record) Storage System
! System (Access path mgmt)
"""""" System buffer Interfface |

1 —
! Buffer Management
: (Propagation control)
1 Storage Fil I

~-SyITem e Interface .
; Operating System !
: (File Mgmt) I

|

Device Interface

SELECT *
FROM R

FIND NEXT
record

B-Tree

getNext '
|| - - A
ACCESS

I I | N | ||
page |

READ
block k




TU

Grazm

Agenda

= Page Layouts and Record Management
= Buffer Pool Management

= Page Replacement Strategies

= In-Memory DBMS Eviction

706.543 Architecture of Database Systems — 01 Introduction and Overview B ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21



TU

Grazm

Page Layout and
Record Management

706.543 Architecture of Database Systems — 01 Introduction and Overview B ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21



Page Layout and Record Management -I(;rE!l

Segments, Pages, and Blocks

= Segment

Segment / Tablespace

= Storage unit of DB objects like
relations (heap), and indexes

= Allocate/iterate pages, drop all
= Often separate file

= Page
= Smallest unit in DB buffer pool
= Page: fixed-sized memory region

* Frame: meta data on data page

= Block (and/or disk sector)

= Smallest addressable unit on disk ﬂﬂ ﬂ

(e.g., POSIX block devices)

706.543 Architecture of Database Systems — 01 Introduction and Overview .ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21



Page Layout and Record Management

TU

Grazm

Recap: Page Layout of Row Stores

= Background: Storage System

= Buffer and storage management
(incl. 1/0) at granularity of pages

= PostgreSQL default: 8KB
= Different table/page layouts

= Row Storage
= NSM (nary storage model)

= Store tuple attributes in
contiguous form

= Fast get/insert/delete
= Slow column aggregates

= Other: DSM, PAX

115
-

81 (136

Header

tuple offsets

Header
1234 Jane Smith
1237 John Smith
1242 [ John |
Doe

706.543 Architecture of Database Systems — 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, WS 2020/21

"ISDS



Page Layout and Record Management -I(;rla'!l

Motivation Fixed-size Pages

#1 Alignment with Disk Blocks
= Typically 512B to 4KB (AF) blocks as minimum storage unit
= Asingle DB page should map to 1..N physical disk blocks/sectors

#2 Sequential Reads/Writes
= Recap: HDD seek times vs sequential read/write
= Similar: SSD sequential read/write w/ higher bandwidth

#3 Simplified Buffer Manager
= Fixed-size pages removes need for reasoning about sizes for eviction
= Fixed-size pages avoid main memory fragmentation

[Thomas Neumann, Michael J. Freitag:
Umbra: A Disk-Based System with In-

= Large objects (strings, dictionaries) across Memory Performance. CIDR 2020]
pages complicates/slows down DBMS components

Recent Perspective: Variable-Size Pages

706.543 Architecture of Database Systems — 01 Introduction and Overview B ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21



Page Layout and Record Management -Erla!.

Classification of Record Addressing Schemes

Addressing

Schemes

Direct Indirect
Addressing Addressing

Logical Offset Tuple Mapping

in Segment Identifier Table

[Dirk Habich: Advanced Query Processing in Database Systems —
Record Management, TU Dresden, WS 2019]

706.543 Architecture of Database Systems — 01 Introduction and Overview .ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21



Page Layout and Record Management TU

TID (Tuple Identifier) Concept

= Problem: Internal TID should be stable, even if records reorganized

= TID Concept (p, s) (7, 3)—>
TID := (page number, slot index)

/1234?\\ Jane Smith

Page slot directory holds tuple

N\
offsets (byte position) within page / 1237 | John
= Variable number of slots 74"“‘
= Single page access for internal row r 1242 orm -

= Reorganization

= Compact free space between records
via page-local record movements
=>» Updates of page-local directory sufficient

[ 1242 | John | Doe

I 1234 Jane | Smith
" |nserts: use free slot or add new slot - I
1237 John Smith
1301 Md Li
706.543 Architecture of Database Systems — 01 Introduction and Overview B ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21



Page Layout and Record Management

TU

Grazm
12 . .
. TID (Tuple Identifier) Concept, cont.
= Example PostgreSQL
= Recap: Papers(PKey, Title, Pages, CKey, JKey)
= Hidden CTID system column (not shown on *, but usable)
SELECT CTID, PKey, g By iz | pages
Title. Pages Al td integer character varying (512) character v:
1 ) g 5681 (78,21) 731118 MV-IDX: Multi-Version Index in Action 671-674
FROM Papers
5682 (78,22) 731121 Hochperformante Analyse von Graph-Dat... | 311-330
5683 (78,23) 731122 SPARQling Pig - Processing Linked Data wi...  279-298
5684 (78,24) 731123 RelaX: A Webbased Execution and Learnin... 503-506
(78,25) 731129 Efficient In-Memory Indexing with General... 227-246
5686 | (78,26) 731130 Datensicherheit in mandantenfahigen Clo...  477-489
5687 (78,27) 731131 In-Database Machine Learning: Gradient ... | 247-266
5688 (78,28) 731133 FlexY: Flexible; datengetriebene Prozessm...  503-506
= Other Hidden 5689 | (78,29) 731134 Extending the MPSM Join 57-71
System Columns 5690 (78,30) 731137  Orthogonal key-value locking 237-256

= 0id, tableoid

= xmin, cmin (insert), xmax, cmax (delete)

706.543 Architecture of Database Systems — 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, WS 2020/21

"ISDS



Page Layout and Record Management TU

TID (Tuple Identifier) Concept, cont.

= Overflow Handling Page 7
= On updates, tuple might need additional

space (more than available on page)

1242 | John | Doe
[ 1234 I Jane | Smith
1237 | John | Smith

= Example: Rename “Smith” to “Smith-EvenLonger”

= Reference new page, to preserve original TID -
(chains longer than 1 can be internally avoided)

1301 [ Md Li
(7,2)
Page 7 / (5,4)
Page 5
(5,4) 1237 | John
Smith-EvenLonger
706.543 Architecture of Database Systems — 01 Introduction and Overview & S
Matthias Boehm, Graz University of Technology, WS 2020/21 I DS



TU

Page Layout and Record Management Graze

Example Page Layouts

= PostgreSQL 13.5 / (LSN, checksum, flags, region offsets, sizes)
V4

= Uses TID concept

PageHeaderData Itemld Itemld [-------- >

[https://www.postgresal
.org/docs/13/ ¢
storage-page-layout.html]

4----- Item Item Special |

(access-method data)

= |IBM DB2 11.5 Page # slot #
--{ 4713 | o |mD
= Uses TID (aka RID) concept

[https://www.ibm.com/support/ Page 473
knowledgecenter/SSEPGG_11.5.0/ - »| Page Header s:,ggort%d,(g‘_‘ge ——
com.ibm.db2.luw.admin.perf.doc/ Froo 3800| -1 | 3400| 1SSKB. 32KB
Space . et on table space creation,
doc/c0005424.html] (usable without page ‘\ ,— Each table s;:ce must be
reorganization *) "\ assigned a buffer pool with
. Record 2 a matching page size.
Embedded free space ——» | "~ -» Record 1
(usable after online
page reorganization*)

* Exception: Any space reserved by an uncommitted
DELETE is not usable.

706.543 Architecture of Database Systems — 01 Introduction and Overview .ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21



Page Layout and Record Management

TU

Grazm

Common Record Layouts

= #1 Fixed-Size Fields F1 F2
= Concatenated fields, directly accessible

= #2 Offsets i1 vz
= Prefix with relative offsets of all fields —
= #3 Embedded Length Fields - v
= Length fields only for variable-size fields
= Cannot access a specific field w/o record scan
= #4 Partitioned F1 F3

= Partition 1: Fixed-sized fields
= Partition 2: Offsets and variable-sized fields

706.543 Architecture of Database Systems — 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, WS 2020/21

Other: Sometimes bitmap field (#cols/8 bytes) for NULL indicator, etc

F3 F4

F3 V4

F3 V4

v2 | va
"ISDS



TU

Grazm

Buffer Pool Management

706.543 Architecture of Database Systems — 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, WS 2020/21

"ISDS



Buffer Pool Management

TU

Grazm

Buffer Pool Overview

= Buffer Pool

= Holds fraction of DB pages in memory
® Find pages via addressing scheme

= Allocate memory (local, global)

= Page replacement (exact, approximate)

= Example Configuration (PostgreSQL)

DBMS
DB Buffer Log

p7 | p3’ Buffer

Data Log

= block size: size of disk block, i.e., page (default 8KB)
» shared buffers: size of cross-session buffer pool (default 128MB)

- Recommended tuning: 25% of available memory

= temp buffers: size of session-local memory for tmp tables (default 8IVIB)

= work_mem: size of operation-local memory for sort/hash tables (default 4MB)

[https://www.postgresgl.org/docs/13/runtime-config.html]

706.543 Architecture of Database Systems — 01 Introduction and Overview .ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21



Buffer Pool Management -I(;rla'!l

DB Buffer Pool vs Operating System

= #1 Why not Memory-Mapped Files (mmap)
= ACID Atomicity and Durability (flush TX log before dirty pages)
= ACID Isolation (locking of pages)
= Context knowledge of query processing / access paths; portability

= #2 Why no Swapping
= No durability of changes after restart

= With DB buffer pool danger of double page faults
(requested page not in DB buffer - load, victim page swapped — load, replace)

= #3 Why no OS File Cache

= #1 via direct I/O (O_DIRECT) to avoid redundant caching
= #2 via small buffer pool and otherwise OS file cache (see Postgres)
706.543 Architecture of Database Systems — 01 Introduction and Overview B ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21



Buffer Pool Management -I(;rla'!l

B uffe r POOI I nte rfa ce [Thomas Neumann: Datenbanksysteme

und moderne CPU-Architekturen -
Storage, TU Munich, 2019]

= Pin/Fix
» fix(pageID, exclusive)
* Pins page for read/write access, guards against replacement
= |f page not in buffer, read and replace victim page in buffer pool

= Unpin/Unfix
» unfix(pagelD, dirty)
= Unpins page to release guard against replacement
= Dirty flag indicates if page has been modified = async write to disk

= Others Aspects
= Additional operations: Get via fix(pageNo, false), Mark dirty, Flush

= (pagelD, buffer frame), load/replace via put/remove
706.543 Architecture of Database Systems — 01 Introduction and Overview B ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21



TU

Buffer Pool Management Graza

Buffer Frame Allocation

= Global and Local Memory Allocation
= Global: shared buffer pool used by all transactions, sessions, and users
= Local: transaction/session-local buffers for temporary tables and operations

= PostgreSQL Buffer Frame (Buffer Descriptor) [https://github.com/postgres/
postgres/blob/master/src/

include/storage/buf internals.h]

= Access to data page via buf_id (hash table lookup)

// Extracted as of Oct 18, 2020
typedef struct BufferDesc {

BufferTag tag; /* ID of page contained in buffer */

int buf_id; /* buffer's index number (from 0) */

pg _atomic_uint32 state; /* tag state, flags, ref/usage counts */
int wait_backend pid; /* backend PID of pin-count waiter */
int freeNext; /* link in freelist chain */

LWLock content_lock; /* to lock access to buffer contents */

} BufferDesc;

706.543 Architecture of Database Systems — 01 Introduction and Overview B ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21



TU

Buffer Pool Management Graza

Pre-Fetching, Cleaning, and Scan Sharing

+ |

" Pre-Fetching (Async) Conar
= QOverlay computation w/ speculative sequential Y :i.z;fcﬁc’mm
read of multiple pages ¢ B i s
= Based on physical data structures, and query plan __! - e
___‘i Prefeichers
= Cleaning (Async) m'i'éu‘?;i?”'
= Asynchronous sequential write of changed (dirty) “h ‘
pages = moved of TX processing 5__m":‘:gem A

write requests

= Scan Sharing
[Phillip M. Fernandez: Red Brick

= Multiple queries can piggyback on Warehouse: A Read-Mostly RDBMS for
existing table scan, w/ compensations Open SMP Platforms. SIGMOD 1994]
= Red Brick: coordinated table scan [Philipp Unterbrunner, Georgios Giannikis,

Gustavo Alonso, Dietmar Fauser, Donald

u continuous scan
Kossmann: Predictable Performance for
Unpredictable Workloads. PVLDB 2(1) 2009]
706.543 Architecture of Database Systems — 01 Introduction and Overview B ISDS

Matthias Boehm, Graz University of Technology, WS 2020/21



TU

Buffer Pool Management Graza

Excursus: Automatic Buffer Pool Tuning

BM DB
IBM [Adam J. Storm, Christian Garcia-Arellano, Sam

= Self-tuning memory manager Lightstone, Yixin Diao, Maheswaran Surendra:

Adaptive Self-tuning Memory in DB2. VLDB 2006
= Caches, ops, buffer pool P 8 Y ]

Oracle

. . [Benoit Dageville, Mohamed Zait: SQL Memory
| |
Automatic tuning of SGA/PGA Management in Oracle9i. VLDB 2002]
(System/Process Global Memory)

Microsoft [Vivek R. Narasayya, Ishai Menache, Mohit Singh, Feng
= Multi-tenant page Li, Manoj S_yamala., Surajit Chauc.:lhun: Sharing Buffer
Pool Memory in Multi-Tenant Relational Database-as-a-

replacement (MR-LRU) Service. PVLDB 8(7), 2015]

OtterTune [Dana Van Aken, Andrew Pavlo, Geoffrey J. Gordon, Bohan
= ML-based tuning of Zhang: Automatic Database Management System Tuning

DB configurations Through Large-scale Machine Learning. SIGMOD 2017]

706.543 Architecture of Database Systems — 01 Introduction and Overview B ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21



TU

Grazm

Page Replacement Strategies

706.543 Architecture of Database Systems — 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, WS 2020/21

"ISDS



Page Replacement Strategies -Erla!.

Classification of Replacement Strategies

Replacement

Strategy
Exact Approximate
Methods Methods
— T
Age Usage

LFU

CART

others: # refs latest refs
FBR, LRFU

[Dirk Habich: Advanced Query Processing in Database Systems — “:::: -
Storage Management and System Buffer, TU Dresden, WS 2019]

706.543 Architecture of Database Systems — 01 Introduction and Overview .lSDS
Matthias Boehm, Graz University of Technology, WS 2020/21



Page Replacement Strategies -I(;rE!l

FIFO (First-in, first-out)

add evict
= Strategy new pages old pages
= Evict oldest page (time in buffer) from pool - -

= |mplementation as basic ring buffer of size ¢ (capacity)
= |gnores frequent and recent page references

Empty Add Evict & Add

evict 4, add 10, 10
move clockwise

706.543 Architecture of Database Systems — 01 Introduction and Overview .ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21



TU

Page Replacement Strategies Graza
CLOCK (Second Chance)
= Strategy

= Each page has a reference bit R, indicating if it was referenced in the last cycle
= Evict oldest page (time in buffer) with R=0 from pool

= FIFO extension with coarse-grained accounting of page references

= Variant: GCLOCK (Generalized CLOCK) w/ ref counter (PostgreSQL clock sweep)

Before Eviction After Eviction

reference
bits reset

10 added to
first valid slot

706.543 Architecture of Database Systems — 01 Introduction and Overview .ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21



Page Replacement Strategies TU

LRU (Least Recently Used)

= Strategy

= Evict least recently used page (last page reference)
* |mplementation as basic list/queue (head: new pages, tail: LRU page)
= Equivalent to FIFO for sequential scans (might evict hot data pages)

head (————1 —{ tail capacity

I & E2 B B C
wires [ 10 IEH EEH I AR
reference page 17 n
add page 33 n

- evict page 7

706.543 Architecture of Database Systems — 01 Introduction and Overview .ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21



Page Replacement Strategies

TU

Grazm

LRU-K (Least Recently Used K)

= Strategy

= Evict page with max backward K-distance (kth-last reference, oo if <k refs)

= LRU-1 equivalent to LRU, in practice: often LRU-2

= Variants: timestamp as of page reference, or of page UNFIX operation

head (————1 —{ tail
n----

K last 3, 4, (14, (15, (10, (5)
references 17) 15) 12) 9) 7)

K=2 Distance 8 10 13 16 18 oo
at T=25

706.543 Architecture of Database Systems — 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, WS 2020/21

capacity
C

"ISDS



Page Replacement Strategies -I(;rE!l

LFU (Least Frequently Used)

= Strategy
= Evict page with min reference count since brought in buffer pool
= Draws resolved with secondary strategy (e.g., FIFO)
= Implement as list with swaps of neighbors on access

head E—1—00—F) ) tail capacity
c
T LLlLL

add page 33 n Difficult to remove
pages that have been

- evict page 7
frequently accessed
in the past

706.543 Architecture of Database Systems — 01 Introduction and Overview .ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21



Page Replacement Strategies -I(;rE!l

ARC (Adaptive Replacement Cache)

[Nimrod Megiddo, Dharmendra S. Modha:
= Strategy ARC: A Self-Tuning, Low Overhead

= Maintain two LRU lists of pages: L1 and L2 Replacement Cache. FAST 2003]

Keep cache directory of length c (cache size) for both lists

Keep c pages in cache, p in L1 and (c-p) L2
Replacement: evict LRU L1 if [L1|>p, evict LRU L2 if |L1]|<p
Adaptively tune p based on hits and size of L1/L2 lists w/o pages

I
—B—0—0—0-—0—0  Receny
1
P

——0——0—0—0— Frequency
I
|

> 1 1 1

= Note: Linux page cache w/ ‘active’ and ‘inactive’ LRU page lists + migration

706.543 Architecture of Database Systems — 01 Introduction and Overview .ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21



TU

Grazm

In-Memory DBMS Eviction

706.543 Architecture of Database Systems — 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, WS 2020/21

"ISDS



In-Memory DBMS Eviction

TU

Grazm

Motivation In-Memory DBMS

= Common Misconception: So an in-memory database system is just a
regular database system with unlimited buffer pool capacity?

* Disk-based DBMS Overhead 13
= QLTP workloads bottlenecked on 1.4M 1
buffer pool, latching, locking, logging 1.2M

1.0M -

= Evaluated on Shore-MT research prototype &

6M

Instructions

[Stavros Harizopoulos, Daniel J. Abadi,

16.2% hand-coded

optimizations

11.9%

logging

16.3%

locking

14.2%

latching

34.6%

buffer manager

34.6%

Samuel Madden, Michael Stonebraker: M -
OLTP through the looking glass, and what oM 4
we found there. SIGMOD 2008] | _ [F3%

________ -

- - -useful work

= In-Memory DBMS

= Eliminates one of the main bottlenecks (disk I/0, and buffer pool)

= Requires improvements for modern hardware, locking/latching, etc

= However, storage cost-perf trade-off (DRAM vs SSD/HDD)
=» How to enable graceful evictions, without reintroducing overhead?

706.543 Architecture of Database Systems — 01 Introduction and Overview

Matthias Boehm, Graz University of Technology, WS 2020/21

"ISDS



In-Memory DBMS Eviction -Erla'!l

Anti Caching (Andy Pavlo et al.)

= Fine-grained Eviction [Justin DeBrabant, Andrew Pavlo,

Stephen Tu, Michael Stonebraker,
Stanley B. Zdonik: Anti-Caching: A New
= Threshold of ~80% triggers anti-caching Approach to Database Management
System Architecture. PVLDB 6(14) 2013]

= Online identification of cold tuples

= Abort TX on “page fault”, retrieve,
and restart TX (no blocking of other TXs)

= Pre-pass to identify all page faults of TX

Evicted Table Block Table

= Anti-Cache Blockid  Tupleld <blockld> |
. ) ) ] 999 |[<offset> <creation-timestamp> =

= Construct fixed-size blocks via LRU chain 999 |<offsets i:ﬁﬂg%i:b:?%ﬁ“’

997 |<offset> <string-data>

= Evicted Table: in-mem map of evicted tuples 997 |<offset> —tuple Lengths

ity of indivi offsers| ||

(granularity of individual data accesses) gg; <0:se; tring-dat

= Block Table: on-disk map of evicted blocks — "

= Excursus: SystemDS Buffer Pool
= Similarly, eviction of live variables under memory pressure
= DIA projects: #44

706.543 Architecture of Database Systems — 01 Introduction and Overview B ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21



TU

In-Memory DBMS Eviction Graza

LeanStore (Viktor Leis et al.)

= Coarse-Grained Eviction [Viktor Leis, Michael Haubenschild, Alfons

Kemper, Thomas Neumann: LeanStore:

Motivation: avoid buffer pool overhead In-Memory Data Management beyond

Pointer swizzling (direct page references) Main Memory. ICDE 2018]
Avoid LRU overhead per page access by @

tracking infrequently access pages ) et
Speculative unswizzling w/o eviction

lin
CLOCK eviction unswizzled pages @@ (RAM)
unswizzle

= Experimental Results 60K
S 40K 1 =
= TPC-C 10 WH (initially 10GB) 3
20K 4 8
" 30K 48K 62K 67K
W
o 60K+ 600K 4 R
= -
£ okl _— High Impact w/ s
&) . . 5
S 20k — multi-threading 8
E o I—— _ : : . 18K 23K 109K 597K
BerkeleyDB WiredTiger LeanStore in-memory baseline +swizzling +lean evict +opt. latch
(traditional) (LeanStore)
706.543 Architecture of Database Systems — 01 Introduction and Overview B ISDS

Matthias Boehm, Graz University of Technology, WS 2020/21



TU

Grazm

Summary and Q&A

Page Layouts and Record Management

Buffer Pool Management

Page Replacement Strategies

In-Memory DBMS Eviction

= Programming Projects
= |nitial test suite, benchmark, make file, and reference implementation
= Try compiling it, and start your own implementation in next weeks

Next Lectures (Part A)
= 04 Index Structures and Partitioning [Oct 28]
= 05 Compression Techniques [Nov 04]

706.543 Architecture of Database Systems — 01 Introduction and Overview
Matthias Boehm, Graz University of Technology, WS 2020/21

"ISDS



