TU

Grazm

SCIENCE
PASSION
TECHNOLOGY

Architecture of DB Systems
04 Index Structures and Partitioning

Matthias Boehm

Graz University of Technology, Austria

Computer Science and Biomedical Engineering
Institute of Interactive Systems and Data Science
BMK endowed chair for Data Management

Last update: Oct 28, 2020 “ISDS

TU

Grazm

Announcements/Org

= #1 Video Recording

= Link in TeachCenter & TUbe (lectures will be public) ﬂ TU be
= QOptional attendance (independent of COVID)

= #2 COVID-19 Restrictions (HS i5)

= Corona Traffic Light: Orange max 18/74
= Max 25% room capacity (TC registrations)

= #3 Programming Projects
= Updated Project Setup.zip, news group will be set up
= Requirements
= Test suite must pass, no test cheating and gaming
* Min performance target: T(SUT) < 4 * T(ref_impl)
tested on 32 indexes/threads, different benchmarks and sizes
= Deadline: ThuJan 21 11.59pm

706.543 Architecture of Database Systems — 04 Index Structures and Partitioning B ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

TU

Grazm

Agenda

= Overview Access Methods

" Index Structures

= Partitioning and Pruning

= Adaptive and Learned Access Methods

706.543 Architecture of Database Systems — 04 Index Structures and Partitioning
Matthias Boehm, Graz University of Technology, WS 2020/21

"ISDS

TU

Grazm

Overview Access Methods

706.543 Architecture of Database Systems — 04 Index Structures and Partitioning
Matthias Boehm, Graz University of Technology, WS 2020/21

"ISDS

Overview Access Methods -I(;rE!l

DBMS Architecture, Cont. ettt

Qi Techniken der Implementierung, 2001]
___________ Set-Oriented Interface ______} ~__ SELECT*
r ' FROMR
I Data System !
: (Nonprocedural access) I
I Bata Record-Oriented Interface ‘ FIND NEXT
! System record
. (Data) Access System
: (Navigational access)
Internal Record Interface _I_ B-Tree
1 e | getNext
! Access (Record) Storage System |' A ‘
: System (Access path mgmt) : e —
A e e - ACCESS oo
____________ ystem bufter Intertace | ________. page]
| |
! Buffer Management ! [] []
: ctorase (Propagation control) : - -
: 8 File Interface ! ! READ
1 System] 1 block k
; Operating System !
: (File Mgmt) I
|

"""""""" Device Interface ¥

TU

Overview Access Methods Graza

Access Methods and Physical Design

= Performance Tuning via Physical Design
= Select physical data structures for relational schema and query workload
= #1: User-level, manual physical design by DBA (database administrator)
= #2: User/system-level automatic physical design via advisor tools

= Example
Base
SELECT * FROM R, S, T Tables T
WHERE R.c = S.d AND S.e = T.f
AND R.b BETWEEN 12 AND 73 ‘\ ;" 7
Mat
| - ﬁ MV,
Views
Ne=1c

I

~_ Y Y
Parti-]
/N c=d_ T tioning =

10 o~

O12<R.bs7 S .
1000000 | <R.b<73 Physical B*-Tree BitMap Hash

R Access Paths Compression

Overview Access Methods

TU

Grazm

Overview Index Structures

= Table Scan vs Index Scan

= For highly selective predicates, index scan
asymptotically much better than table scan

= |ndex scan higher overhead (~5% break even)
= |XScan = TID-Sort = TID-Fetch

= Multi-column predicates: TID-list intersection

= Use Cases for Indexes

Lookups / Unique Index Nested
Range Scans Constraints Loop Joins

o

table data

lcontalns

key 107? i

706.543 Architecture of Database Systems — 04 Index Structures and Partitioning
Matthias Boehm, Graz University of Technology, WS 2020/21

Table Scan Index Scan
I I
e e
— y M—

sorted
\/
Aggregates

(count, min/max)

'

size=
7100
D

"ISDS

Overview Access Methods -ErLa!.

Additional Terminology

= Create Index CREATE INDEX ixStudLname
= Create a secondary (nonclustered) ON Students USING btree
index on a set of attributes (Lname ASC NULLS FIRST);

= Clustered: tuples sorted by index

= Non-clustered: sorted attribute with tuple references
= Can specify uniqueness, order, and indexing method

= PostgreSQL methods: btree, hash, gist, and gin table data

= Binary Search

" pos = binarySearch(data, key=23) 10 13 14 17 18 19 23 25 27 29
= Given sorted data, find key position R
(insert position if non-existing) f_*

= k-ary search for SIMD data-parallelism

= Interpolation search: probe expected pos in key range
(e.g., search([1:10000], 9700))

706.543 Architecture of Database Systems — 04 Index Structures and Partitioning B ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

TU

Grazm

Index Structures

706.543 Architecture of Database Systems — 04 Index Structures and Partitioning B ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

TU

Index Structures Graza

Classification of Index Structures

[Theo Harder, Erhard Rahm: |
* 1D Access Methods Datenbanksysteme: Konzepte und |© =

Techniken der Implementierung, 2001]

1D Access Methods

Key Comparison Key Transformation

Sequential Sort-Based Hash-Based
Sequential Lists Binary Search Trees Static
Linked Lists Multiway Trees (B-Tree) Dynamic

Prefix Trees (Tries)

= ND Access Methods
= Linearization of ND key space + 1D indexing (Z order, Gray code, Hilbert curve)
= Multi-dimensional trees and hashing (e.g., UB tree, k-d tree, gridfile)
= Spatial index structures (e.g., R tree)

706.543 Architecture of Database Systems — 04 Index Structures and Partitioning .ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

Index Structures -I(;rE!l

B_Tree Ove rViEW [Rudolf Bayer, Edward M. McCreight:

Organization and Maintenance of Large
Ordered Indices. Acta Inf. (1) 1972]

= History B-Tree
= Bayer and McCreight 1972, Block-based, Balanced, Boeing Labs
= Multiway tree (node size = page size); designed for DBMS
= Extensions: B+-Tree/B*-Tree (data only in leafs, double-linked leaf nodes)

= Definition B-Tree (k, h) -
|_10g2k+1 (n + 1)—‘ < h < |710gk+1 (;j—‘ + 1

= All paths from root to leafs have equal length h 2
= All nodes (except root) have [k, 2k] key entries All nodes adhere
= All nodes (except root, leafs) have [k+1, 2k+1] successors to max constraints

= Data is a record or a reference to the record (RID) k=2

m Key K, 'Data D; il Key K, '‘Data D, gi#y Key K, 'Data D; i Key K, [Data D,

Subtree w/ Subtree w/
keys < K; K, < keys < K,
706.543 Architecture of Database Systems — 04 Index Structures and Partitioning .ISDS

Matthias Boehm, Graz University of Technology, WS 2020/21

Index Structures -ErLa!.

B-Tree Search .

= Example B-Tree k=2
= Get 38 2 D38
= Get 20 = D20

= Lookup Q within a node
= Scan / binary search keys for Q,, if K=Q,, return D,
= |f node does not contain key
= |f leaf node, abort search w/ NULL (not found), otherwise
= Decent into subtree Pi with K. < Q, < Ki,,

= Range Scan Q..
= Lookup Q, and call next K while K<Q, (keep current position and node stack)

706.543 Architecture of Database Systems — 04 Index Structures and Partitioning B ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

Index Structures -ErLa!.

B-Tree Insert

= Basic Insertion Approach
= Always insert into leaf nodes!
® Find position similar to lookup, insert and maintain sorted order
= |f node overflows (exceeds 2k entries) = node splitting

= Node Splitting Approach

0R40
= Split the 2k+1 entries into two leaf nodes 2k+1
= Left node: first k entries I41I42I45I46I
= Right node: last k entries ‘ overflow
= (k+1)th entry inserted into parent node
=>» can cause recursive splitting
: : OR40R4
= Special case: root split (h++)
1
. . /| /|
= B-Tree is self-balancing _
first k last k
706.543 Architecture of Database Systems — 04 Index Structures and Partitioning B ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

Index Structures -ErLa!.

B-Tree Insert, cont. (Example w/ k=1)

Insert 1 111 " Insert 4 : g g :

Insert 5 BN 1 |

Insert 2
(split)

= |nsert 3
Insert 6 : ﬁ ! (2x split)
Insert 7
(split)

706.543 Architecture of Database Systems — 04 Index Structures and Partitioning B ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

= |nsert 8

Index Structures -ErLa!.

B-Tree Delete

= Basic Deletion Approach
= Lookup deletion key, abort if non-existing
= Case inner node: move entry from fullest successor node into position
= Case leaf node: if underflows (<k entries) =» merge w/ sibling

= Example

= Case
inner

= Case
leaf

0

underflow

706.543 Architecture of Database Systems — 04 Index Structures and Partitioning .ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

Index Structures -I(;rE!l

B-Tree Insert and Delete w/ k=2

= |nsert/Delete Examples 10 20
= QOriginal 3 5 11 18 25 28 30 31
" |nsert 16 10 20
3 5 1116 18 25 28 30 31
" |nsert 26 10 2028 I
3 5 7 11 16 18 30 31
= Delete 20

= Delete 16
1118 25 26 30 31
706.543 Architecture of Database Systems — 04 Index Structures and Partitioning .ISDS

Matthias Boehm, Graz University of Technology, WS 2020/21

Index Structures -I(;rla'!l

B-t ree — Ad van Ced ASDECtS [Goetz Graefe: Modern B-Tree

Techniques. Found. Trends
Databases 3(4): 203-402, 2011]

= Variable-Length Fields
* |n-page slot-array to variable length fields = direct lookup
= With fixed page size, no guarantees on min/max entries
= Various approaches: overflow pages, pick separators during bulk loading

= Concurrent Access
= DB locks: only leaf nodes for B+ tree in practice at
= Concurrent threads require page latching (parent-child)

= Duplicate Keys
= #1 use for compression = store common prefix once)
= #2 for unique lockups w/ O(log N)
= Duplicate records as replicates or once w/ counter

706.543 Architecture of Database Systems — 04 Index Structures and Partitioning B ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

Index Structures

TU

Grazm

Other In-Memory Trees

= Balanced Binary Trees [G. M. Adel'son-Vel'skii and E. M. Landis: An
algorithm for the organization of information,

= Red-Black Tree, AVL Tree Soviet Mathematics Doklady, 3, 1962]
(left/right height diff 1) [Tobin J. Lehman, Michael J. Carey: A

Study of Index Structures for Main
Memory Database Management
of AVLand B trees) left right Systems. VLDB 1986]

» T tree (combines pros

[| +
CSB*-Tree [Jun Rao, Kenneth A. Ross:
= Align node size to cache line (64B) - - _<---_- : Making B+-Trees Cache

. . I 1 Conscious in Main Memory.
= Reduce pointers via node groups =4 Ll ; SIGMOD 2000]

= More keys, higher fan-out, at cost of slower insert

- Skip Lists Search path _ Insert 17 /updcuc[i]—Um'n'm'cf[il -
. . . . ! 1 P
= Linked list with multiple levels [= a e i

= Fraction p w/ level i pointers

[William Pugh: Skip Lists: A Probabilistic

Alternative to Balanced Trees. CACM 1990]

706.543 Architecture of Database Systems — 04 Index Structures and Partitioning B ISDS

Matthias Boehm, Graz University of Technology, WS 2020/21

TU

Index Structures Graza

Hashing Overview

= Static vs Dynamic Hashing
= Hash table of buckets B, compute h=hash(key), find bucket B[h mod |B|]

= Static: pre-allocation of buckets, over- and under-provisioning
(open addressing: linear probe, robin hood, cuckoo)

= Dynamic: extend as needed (chained bucket, extendible, linear hashing)

= Chained Bucket Hashing

= Handle hash collisions via
overflow list of linked buckets

hashing

= Reorganization if fill factor reached
= On disk: buckets are pages

= Common Hash Functions
= MurmurHash 2, MurmurHash 3, Jenkins, CRC
[Andy Palvo: Database

" Google CityHash, Google FarmHash, Facebook s ctems — Hash Tables,
XXHash3 (http://cyan4973.github.io/xxHash/) CMU Lecture, 2019]

706.543 Architecture of Database Systems — 04 Index Structures and Partitioning
Matthias Boehm, Graz University of Technology, WS 2020/21

Index Structures

TU

Grazm

Extendible Hashing

= Overview

[Ronald Fagin, Jurg Nievergelt, Nicholas Pippenger, H.
Raymond Strong: Extendible Hashing - A Fast Access
Method for Dynamic Files. TODS 4(3), 1979]

= Dynamic resizing on demand, w/o rehashing/reassigning tuples to pages

= h=hash(key), use d bits and directory of 2¢ entries
(with max table size, then bucket chaining)

= Directory entries point to buckets, multiple refs to one bucket possible

= Exampled=1

= Exampled =2

[Thomas Neumann: n

Datenbanksysteme und
moderne CPU-Architekturen —
Access Paths, TU Munich, 2019]

0
1

=

A f B

0
1

— I

8] C

00

01

10

11

[——

=

706.543 Architecture of Database Systems — 04 Index Structures and Partitioning
Matthias Boehm, Graz University of Technology, WS 2020/21

"ISDS

TU

Grazm

Index Structures

Li n ea r H a S h | ng [Theo Harder, Erhard Rahm: e

Datenbanksysteme: Konzepte und
Techniken der Implementierung, 2001]

= Overview
= |mproved Extensible Hashing scheme, w/o exponential directory growth
= First start chaining, then incrementally split individual buckets (in order)

hi

o
e
-y
o

hO

0 hO hO

413
pLE

Before

o O (W=
RUIIERIOWOIO
o|un (o

hl

oI
=0
oo
L=
1o)==
Gn|Cn

After
Split

O
oAl
©n\Cn

Index Structures -Erla'!l

Overview Prefix Trees (Tries)

= Overview
® From information retrieval, mostly for string indexing

= Trie: “A tree for storing strings in which there is one node for every
common prefix. The strings are stored in extra leaf nodes.” (NIST DADS)

= PATRICIA Trie STGKDD
= Extended binary (character-level) SIGMETRICS
trie, with compressed substrings SIGMOD
SIGPLAN |:|
[Donald R. Morrison: PATRICIA - Practical PLAN
Algorithm To Retrieve Information Coded in
Alphanumeric. J. ACM 15(4) 1968] .

B
0D
]

= Variants

= Radix Tree, key alteration radix tree (Kart),
digital search trees

706.543 Architecture of Database Systems — 04 Index Structures and Partitioning B ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

Index Structures -Erla'!l
Generallzed Prefix Tree [Matthias Boehm et al: Efficient In-
Memory Indexing with Generalized
. BTW 2011]
= Generalized Prefix Tree (IXByte)
. INSERT key=107, payload="“value3*
|]
Arbitrary data types (byte sequences) ey = 107 [oo0aTaoool[orialiom
= Variable prefix length k’ 00} 6|11
= Node size: s = 2¥ references
= Fixed maximum height h = k/k’ Leve.zf Node size (k'=4): 1 |gpom
, G2 e 5 128B - 64B
= Secondary index structure e
e
. . Level=3 Level=3
= Characteristics o[1]2] +e 15 of1]2] wan E
= Partitioned data structure Level=2/ Level=2/ Leve|\=2
= Deterministic paths 912 @E 012 == o2 "
" Order-preser\/ing Level=1/ }el; Leﬁ? Level=1
n Update-friendly 0/1]2 E 012-- 012-@- 0/1]2 E
K/ Ki K'/ K¥ Ki K\ .
" Trie key partition —E' """ fy '"”i 1€ giey 1({%/ 61451 65409 } Liltems
. payloads i [P “value4" | | [P “value8" | [P “value3" | [P “value2" | | P “value9" | | P “value7" | L2lte
Expansion (ofdupicates) || [Fvaiez | ms
& Bypass

706.543 Architecture of Database Systems — 04 Index Structures and Partitioning
Matthias Boehm, Graz University of Technology, WS 2020/21

"ISDS

Index Structures TU

Grazm

Ad a ptive Ra d |X Trees [Viktor Leis, Alfons Kemper, Thomas Neumann:

The adaptive radix tree: ARTful Indexing for
Main-Memory Databases. ICDE 2013]

= Motivation and Overview

s=1
. . . 2= @
= Small trie height/high fan-out, but 5
. -%24-
with low space overhead = .
.C S=
. . 16= @
= Prefix k’=8 = 256 children g ¢ GPT (s-
.) 8 =) LRT (s=6)
= Adaptive nodes 4, 16, 48, 256 entries P ®es-s g-12s=14 =16
1= ART ® 8s-3C
= Lazy expansion and path compression 32MB 128MB 512MB 2GB 8GB 32GB
space consumption (log scale)
" Node Types Linear/binary 256 element arrays of
search for keys indexes / child pointers
Node4d key child pointer Noded8 cnidindex child pointer
- 1 2 Mg 1 2 0.1 2 -3 P '25:3::',.--‘73 1 ' --------- il
Lof2fsbsy 1 [4 [| ENBE N EE RN NN
A A A A R ITT T LT T A A A A
Nodelé6 key child pointer Node256 child pointer
0 1 4 5 6 255

' !

33 3 S D O O Y B
AAA A A AA A

706.543 Architecture of Database Systems — 04 Index Structures and Partitioning .ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

TU

Index Structures Graza

Hybrid Prefix Trees
I 7 Y T T T T

Prefix Hash Tree '70
Prefix B-Tree '77 X
Ternary Search Tree '97 X
Partial Keys ‘01
Burst-Trie ‘02 X X X
HAT-Trie ‘07
J*-Tree '09 X X
CS-Prefix Tree ‘09 X
SuRF ’18 X

X X X X X X X X

706.543 Architecture of Database Systems — 04 Index Structures and Partitioning .ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

Partitioning and Pruning

Coarse-grained Table Partitioning
Fine-grained Physical Partitioning and Sketching

706.543 Architecture of Database Systems — 04 Index Structures and Partitioning
Matthias Boehm, Graz University of Technology, WS 2020/21

"ISDS

TU

Partitioning and Pruning Graza

Overview Partitioning Strategies

= Horizontal Partitioning
= Relation partitioning into disjoint subsets

Vertical Partitioning

= Partitioning of attributes with
similar access pattern

Hybrid Partitioning

= Combination of horizontal and vertical
fragmentation (hierarchical partitioning)

Derived Horizontal
Partitioning

X

Physical Partitioning Schemes
= Hash Partitioning, Round-Robin, Radix Partitioning, etc

Partitioning and Pruning

TU

Grazm

Correctness Properties

= #1 Completeness

= R 2R, R, .., R, (Relation R is partitioned into n fragments)
= Each item from R must be included in at least one fragment

= #2 Reconstruction

= R 2R, R, .., R, (Relation R is partitioned into n fragments)
= Exact reconstruction of fragments must be possible

= #3 Disjointness
= R 2R, R, .., R, (Relation R is partitioned into n fragments)
" RiNRj =0 (A<ij<ni#))

706.543 Architecture of Database Systems — 04 Index Structures and Partitioning
Matthias Boehm, Graz University of Technology, WS 2020/21

"ISDS

Partitioning and Pruning

TU

Grazm

Horizontal Partitioning

= Row Partitioning into n Fragments R,
= Complete, disjoint, reconstructable

= Schema of fragments is equivalent
to schema of base relation

= Partitioning
= Split table by n selection predicates P,
(partitioning predicate) on attributes of R

= Beware of attribute domain and skew

ﬂ-x
]

op,(R)
i <n)

IA

(1

= Reconstruction U
= Union of all fragments T R = U R;
= Bag semantics, but no U R3 1<i<n
duplicates across partitions T~
R1 R2
706.543 Architecture of Database Systems — 04 Index Structures and Partitioning .ISDS

Matthias Boehm, Graz University of Technology, WS 2020/21

Partitioning and Pruning -I(;rE!l

Vertical Fragmentation

= Column Partitioning into n Fragments Ri

= Complete, reconstructable, but not disjoint
(primary key for reconstruction via join)

= Completeness: each attribute must
be included in at least one fragment

A1
—
I
= Partitioning R
. = T (R) I
= Partitioning via projection { < <PK’A‘ A—
= Redundancy of primary key (=1l= Tl) __PK__| A2
I
= Reconstruction R =R{XR;xR, —

= Natural join over primary key (1 << n)

R = leRiNRn W/ Ri =U Rl]

= Hybrid horizontal/vertical partitioning

706.543 Architecture of Database Systems — 04 Index Structures and Partitioning .ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

Partitioning and Pruning TU

Grazm

Derived Horizontal Fragmentation

= Row Partitioning R into n fragements BN N S R

R., with partitioning predicate on S W P — —
= Potentially complete (not guaranteed), Austria 1
restructable, disjoint

= Foreign key / primary key relationship determines correctness

= Partitioning R R S b <
= Selection on independent relation S i = KX5; = RiX O-Pi()

= Semi-join with dependent relation R = Tp, (RNO'p_ (S))
to select partition R, i

= Reconstruction
= Equivalent to horizontal partitioning R = l | Ri
= Union of all fragments 1<i<n

706.543 Architecture of Database Systems — 04 Index Structures and Partitioning .ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

Partitioning and Pruning

TU

Grazm

Exploiting Table Partitioning

= Partitioning and query rewriting
= #1 Manual partitioning and rewriting
= #2 Automatic rewriting (spec. partitioning)
= #3 Automatic partitioning and rewriting

= Example PostgreSQL (#2)

CREATE TABLE Squad(
JNum INT PRIMARY KEY,
Pos CHAR(2) NOT NULL,
Name VARCHAR(256)

) PARTITION BY RANGE (JINum);

CREATE TABLE Squad1® PARTITION OF Squad
FOR VALUES FROM (1) TO (10);

CREATE TABLE Squad2@ PARTITION OF Squad
FOR VALUES FROM (10) TO (20);

CREATE TABLE Squad24 PARTITION OF Squad
FOR VALUES FROM (20) TO (24);

J# |Pos| Name
1 GK Manuel Neuer
12 GK Ron-Robert Zieler
22 GK Roman Weidenfeller
2 DF Kevin Grol3kreutz
4 DF Benedikt Howedes
5 DF Mats Hummels
15 DF Erik Durm
16 DF Philipp Lahm
17 DF Per Mertesacker
20 DF Jérébme Boateng
3 MF Matthias Ginter
6 MF Sami Khedira
7 MF Bastian Schweinsteiger
8 MF Mesut Ozil
9 MF André Schurrle
13 MF Thomas Muller
14 MF Julian Draxler
18 MF Toni Kroos
19 MF Mario Gotze
21 MF Marco Reus
23 MF Christoph Kramer
10 FW Lukas Podolski
11 FW Miroslav Klose

Partitioning and Pruning

TU

Grazm

Exploiting Table Partitioning, cont.

= Example, cont. SELECT * FROM Squad
WHERE JNum > 11 AND JNum < 20

OjNum>11 A INum<20 U
U 0.JNum>11
/\ » /\ A INum<20 »

U 524 Ojnums11 Ognums11 l
T~ A INum<20 A INum<20 S24
S10 S20 | ' INum in

s1e 20 [504)

JNumin JNumin
[1,10) [10,20)

706.543 Architecture of Database Systems — 04 Index Structures and Partitioning
Matthias Boehm, Graz University of Technology, WS 2020/21

o.IlNum>11

$S20

"ISDS

TU

Partitioning and Pruning Graza

ZO n e IVI a pS [Guido Moerkotte: Small Materialized

Aggregates: A Light Weight Index Structure
for Data Warehousing. VLDB 1998]

= Small Materialized Aggregates (SMA)
= Data stored in zones (pages, blocks, or partitions)
= Maintain SMA (e.g., min, max, count, sum) as summary per zone
= Global vs local storage, eager vs lazy maintenance on updates

Zone Map /
SMA 811|136/ Header 115|175| Header

Min 3
Max 7
Count 203

Min 6
Max 71
Count 144

Table Scan for og5_,,(R)

= Query Processing
= Partition pruning for selection predicates
= Precomputed partial aggregates (see materialized views)

706.543 Architecture of Database Systems — 04 Index Structures and Partitioning .ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

Partitioning and Pruning

TU

Grazm

Column Imprints

= Column Imprints
= Zone = cache line (64 Byte) column

= Column imprint = union of one-hot vectors

. cacheline

= Sampled histogram = bins (max 64 bins)

. cacheline

imprint vectors

8
4
6
7
1
. Ld

Compression Column Imprints Py, o
C . . clnnprlﬂ‘\"q'u” : 0000001 10000011 : :'-:._J_’ 7

[; 111100001110000 §
L D|Ct|0nary 1 000111000000110 1 - - 3
o & s I 010000110000011 ' 2

‘acheline Dictionan : I 2
(next X CLS, Caciesne Lieronary | 000111010101010 = 5
counter | repeat \ 000000000000011 = ~

repeatflag) ——m—1~ - < 8
7 0 [\ 2 6

\ 0001 11000000000 J .-
- /' _________ 2

13 1 i "
, 010000011100110 ! £ >

0 == 000001101100000 2

2
I 010000001000000 | 3 1

N 7

= Query Processing

= Cacheline pruning for selection predicates (point, range)

00

(=]

o

o

1:0:

c © © - © OO © O © o O

BitMap

e o - ©© © 9O e o o o

o o <

0:0:0:0"

:()5 .
t 107
.
‘ol o

10:0:0:0:0:
0:1:0:0:0!
10:0: 150!
0%0!

R h0ken
1020312030
0:0:0:1:0:
C000.0%0;
0:0:0:0:0"
10:0:0:0:

[Lefteris Sidirourgos, Martin L. Kersten:
Column imprints: a secondary index
structure. SIGMOD 2013]

Column Imprint

10010001

11000001

» imprint & predicate (predicate w/ potentially many bits for ranges)

706.543 Architecture of Database Systems — 04 Index Structures and Partitioning
Matthias Boehm, Graz University of Technology, WS 2020/21

"ISDS

TU

Grazm

Adaptive and Learned
Access Methods

706.543 Architecture of Database Systems — 04 Index Structures and Partitioning
Matthias Boehm, Graz University of Technology, WS 2020/21

"ISDS

Adaptive and Learned Access Methods

TU

Grazm

Database Cracking

= Core Idea: Queries trigger physical

reorganization (partitioning and indexing)

17

12
13

15

Q) 1O pusnact0

copy

#1 Automatic
Partitioning

ACRK

3

4
2
8
6

12
15
17
13

[Pedro Holanda et al: Progressive
Indexes: Indexing for Interactive
Data Analysis. PVLDB 2019]

[Stratos Idreos, Martin L.

Kersten, Stefan Manegold:

Database Cracking. CIDR 2007]

the more we crack,
the more we learn

- <5

- > 5

Q, 10 asrncs

in-place

#2 AVL/B-tree
over Partitions

ACRK

2

4
3
3
6
12

13

17
15

].

> 2

>3

TU

Adaptive and Learned Access Methods Graze

Learned Index Structures

[Tim Kraska, Alex Beutel, Ed H.
= A Case For Learned Index Structures Chi, Jeffrey Dean, Neoklis

= Sorted data array, predict position of key .nzcilfiitr'j;;hreefassémfazron&? -

= Hierarchy of simple models (stages models)
= Tries to approximate the CDF similar to interpolation search (uniform data)

Model Systems for ML,
Blree » (e.g., NN) ML for Systems

pos -0 pos + pagezise pos - min_err pos + max_er
n Follow-up Work | [Tim Kraska, Mohammad Alizadeh, Alex Beutel, Ed H. Chi, Ani
Kristo, Guillaume Leclerc, Samuel Madden, Hongzi Mao, Vikram
on SageDBMS Nathan: SageDB: A Learned Database System. CIDR 2019]

706.543 Architecture of Database Systems — 04 Index Structures and Partitioning B ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

Adaptive and Learned Access Methods

TU

Grazm

Learned Index Structures, cont.

= FITing-Tree

= Adapt to underlying
data and patterns

= Piecewise linear functions
= Maximum pos error guarantees
= Segment pages w/ free space

= PGM-index

= Piecewise geometric model index
= Recursive, compressed segment tree

= RadixSpline

= Lookup table to spline points,

selected w/ max error guarantee

706.543 Architecture of Database Systems — 04 Index Structures and Partitioning
Matthias Boehm, Graz University of Technology, WS 2020/21

[Alex Galakatos, Michael Markovitch, Carsten
Binnig, Rodrigo Fonseca, Tim Kraska: FITing-Tree:
A Data-aware Index Structure. SIGMOD 2019]

9198
3 — Actual il S
il | - Approx
25
S 4
a3 . Weekend
2 o _
1 e Night
00 5000 10000 15000 20000
Timestamp

[Paolo Ferragina, Giorgio Vinciguerra: The
PGM-index: a fully-dynamic compressed
learned index with provable worst-case
bounds. PVLDB 13(8) 2020]

[Andreas Kipf, Ryan Marcus, Alexander van Renen,
Mihail Stoian, Alfons Kemper, Tim Kraska, Thomas

Neumann: RadixSpline: a single-pass learned
index. aiDM@SIGMOD 2020]

"ISDS

TU

Adaptive and Learned Access Methods Graza
40 . e .
. Learned Partitioning Schemes
= Query-Data Routing Tree (qd-Tree) [Zongheng Yang el al: Qd-tree:
= Binary decision tree, with data Learning Eg;?yt?g::gf&;?;gzgga

blocks at leaf nodes (min size constraint)

= Gjven dataset, and workload,
find tree that minimized number of accessed tuples

= Deep reinforcement learning

" Query Processing Queries <------- - Query Router

A Y
learned \\BIOC[(IDs

= Get list of blocks that T,
tree RN
need to be evaluated - cuts S
anine Qd-tree Constructor
Greedy / Deep RL DBMS
online
sample
Data Blocks
Data | Data Router
706.543 Architecture of Database Systems — 04 Index Structures and Partitioning .ISDS

Matthias Boehm, Graz University of Technology, WS 2020/21

TU

Grazm

Summary and Q&A

Overview Access Methods

Index Structures

Partitioning and Pruning

Adaptive and Learned Access Methods

= Programming Projects
= |nitial test suite, benchmark, make file, and reference implementation
= Start your own implementation in next weeks

Next Lectures (Part A)

= 05 Compression Techniques [Nov 04]

706.543 Architecture of Database Systems — 04 Index Structures and Partitioning
Matthias Boehm, Graz University of Technology, WS 2020/21

"ISDS

