Architecture of DB Systems
05 Compression Techniques

Matthias Boehm

Graz University of Technology, Austria

Computer Science and Biomedical Engineering
Institute of Interactive Systems and Data Science
BMK endowed chair for Data Management

Last update: Nov 04, 2020

TU

Grazm

SCIENCE
PASSION
TECHNOLOGY

"ISDS

TU

Grazm

Announcements/Org

= #1 Video Recording
= Link in TeachCenter & TUbe (lectures will be public)
= QOptional attendance (independent of COVID)

= #2 COVID-19 Restrictions (HS i5)
= Corona Traffic Light: Orange + Lockdown
= Max 25% room capacity (TC registrations)
= Temporarily webex lectures and recording

706.543 Architecture of Database Systems — 05 Compression Techniques
Matthias Boehm, Graz University of Technology, WS 2020/21

&3 TUbe

max 18/74

bl
cisco \Vebex

"ISDS

TU

Grazm

Agenda

= Motivation and Terminology

= Compression Techniques

= Compressed Query Processing
= Time Series Compression

706.543 Architecture of Database Systems — 05 Compression Techniques
Matthias Boehm, Graz University of Technology, WS 2020/21

"ISDS

TU

Grazm

Motivation and Terminology

706.543 Architecture of Database Systems — 05 Compression Techniques
Matthias Boehm, Graz University of Technology, WS 2020/21

"ISDS

TU

Motivation and Terminology Graza

Recap: Access Methods and Physical Design

= Performance Tuning via Physical Design
= Select physical data structures for relational schema and query workload
= #1: User-level, manual physical design by DBA (database administrator)
= #2: User/system-level automatic physical design via advisor tools

= Example
Base
SELECT * FROM R, S, T Tables
WHERE R.c = S.d AND S.e = T.f
AND R.b BETWEEN 12 AND 73
| Mat
Views
M. |
- \ Y *
Parti- I
X __, T tioning L]
10 \S
O12<R.b<7 .
1000000 | <R.b<73 Physical B*-Tree BitMap Hash
R Access Paths Compression

TU

Motivation and Terminology Graza

Motivation Storage Hierarchy

" # Capacity Caches
Caches
= Limited capacity of fast storage Memory
= Keep larger datasets higher in storage hierarchy

= Avoid unnecessary |I/O

= #2 Bandwidth DR I

= Memory Wall: increasing gap . DRAM
CPU vs Memory latency/bandwidth

= Reduce bandwidth requirements n

100

Speed (MHz)

83 85 87 89
Year

[Stefan Manegold, Peter A. Boncz, Martin L. Kersten:
Optimizing database architecture for the new
bottleneck: memory access. VLDB J. 9(3) 2000]

706.543 Architecture of Database Systems — 05 Compression Techniques .ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

Motivation and Terminology

TU

Grazm

Excursus: Roofline Analysis

= Setup: 2x6 E5-2440 @2.4GHz-2.9GHz, DDR3 RAM @1.3GHz (ECC)
= Max mem bandwidth (local): 2 sock x 3 chan x 8B x 1.3G trans/s = 2 x 32GB/s
= Max mem bandwidth (QPI, full duplex) > 2 x 12.8GB/s
= Max floating point ops: 12 cores x 2*4dFP-units x 2.4GHz = 2 x 115.2GFlops/s

= Roofline 256
Analysis 128
= Off-chip é 64
memory = 32
traffic 2 9B
" Peak S]

'3
compute 2y
2

—_—

[S. Williams, A. Waterman, D. A.

Patterson: Roofline: An Insightful Visual

Performance Model for Multicore

Architectures. Commun. ACM 2009]

I . I L L L

SystemVIL O
BLAS

f’l’ .
Anpression Vvt (o768

SystemML
a Mt(Mv)
SystemML .
Mv bandwidth compute-
bound bound
I I | I | I | I |
1/4 1/2 1 2 4 8 16 32 64

(Experiments

Operational Intensity (Flops/Byte) ; 2017)
rom

TU

Grazm

Motivation and Terminology

- Motivation Data Characteristics

= Skew —
= Highly skewed Chipa 1.4 E_
(frequencies of distinct values) Lns‘i"ao.l;; 5
= Small number of distinct items Germany 0.08 E::.:
Austria 0.009 =
= Correlation
= Correlation between tuple attributes OrderDate < ReceiptDate
(usually 2-3 days)

= Co-occurrences of attribute values

= Lack of Tuple Order
= Relations are multi-sets of tuples (no ordering requirements)

= Flexibility for internal reorganization

[Vijayshankar Raman, Garret Swart: How to Wring a
Table Dry: Entropy Compression of Relations and
Querying of Compressed Relations. VLDB 2006]

706.543 Architecture of Database Systems — 05 Compression Techniques B ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

Motivation and Terminology

TU

Grazm

Compression Overview

= Compression Codec Encoding

= Decoder Data

= Lossless vs Lossy

Decoding

= Lossless: guaranteed recovery of uncompressed data
= Lossy: moderate degradation / approximation
- Images, video, audio; ML training/scoring

= Compression Ratio
= CR =Size-Uncompressed / Size-compressed
= |neffective compression: CR< 1

= Metrics

g Comp.
Data

= Compression ratio vs encode/decode time vs encode/decode space

= Block-wise vs random access, operation performance, etc

706.543 Architecture of Database Systems — 05 Compression Techniques
Matthias Boehm, Graz University of Technology, WS 2020/21

"ISDS

Motivation and Terminology -I(;rE!l

Classification of Compression Techniques

= Lossless Compression Schemes

4/‘\>

General-Purpose DB-Centric
Techniques Techniques
A/.\
Heavy- Light-
Weight Weight

cor o I i Lo

Huffman + Lempel-Ziv

706.543 Architecture of Database Systems — 05 Compression Techniques .ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

TU

Motivation and Terminology Graza

Excursus: General-purpose Compression

. Compression/ Compress and Decompress (MB/s)
Decompression 4000 snappy L74 B Compress

Il Decompr
= CRzstd: 5.24
= CR snappy: 3.65
= CRLZ4: 3.89 2000

3000

zstd

[https://web.archive.org/web/20200229
161007 /https://www.percona.com/blog/

1000

2016/04/13/evaluating-database-

compression-methods-update/] 0

Compression Method

= Example Apache Spark RDD Compression
= org.apache.spark.io.LZ4CompressionCodec (defaultin 2.x, 3.x)
= org.apache.spark.io.SnappyCompressionCodec (defaultin 1.x)
"= org.apache.spark.io.LZFCompressionCodec (defaultin 0.x)
= org.apache.spark.io.ZStdCompressionCodec

706.543 Architecture of Database Systems — 05 Compression Techniques B ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

Motivation and Terminology -I(;rlagl

Classification of Compression Techniques, cont.

= Lossless Compression Schemes

4/‘\»

General-Purpose DB-Centric
Techniques Techniques
-— T
Heavy- Light-
Weight Weight

Huffman 52 + Lempel-Ziv 77 PDICT m PFOR-

DELTA

(all heavy-weight from a
DB perspective)

706.543 Architecture of Database Systems — 05 Compression Techniques .ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21 -

TU

Grazm

Compression Techniques

706.543 Architecture of Database Systems — 05 Compression Techniques
Matthias Boehm, Graz University of Technology, WS 2020/21

"ISDS

Compression Techniques

TU

Grazm

Null Suppression (NS)

[Benjamin Schlegel, Rainer Gemulla,
Wolfgang Lehner: Fast integer compression

using SIMD instructions. DaMoN 2010]

Overview

42

= Compress integers by omitting

00000000 |00000000

00000000|00101010

via variable-length codes
= Universal compression scheme w/o need for upper bound

Byte-Aligned
= Store mask of two bits to indicate leading zero bytes
= 2 bits + [1,4] bytes 2 max CR (INT32) =3.2

Bit-Aligned (Elias Gamma Encoding)
= Store N = |log, x| zero bits followed by effective bits
= 2 *[1,32] -1 bits > max CR (INT32) = 32

Word-Aligned (Simple-8b)
= Pack a variable number of integers (max 2%°) into 64bit

42

42

11|00101010

11|00000111

00000101010

090|111

= 60 data bits, 4 selector bits (16 classes: 60x1b, 30x2b, 20x3b, 15x4b, 12x5b, ...)

706.543 Architecture of Database Systems — 05 Compression Techniques
Matthias Boehm, Graz University of Technology, WS 2020/21

"ISDS

Compression Techniques

TU

Grazm

Null Suppression (NS), cont.

= Varint (Variable-Length Integers)

(continuation bits)

(2 bit #bytes)

= Examples:

[Jeff Dean: Challenges in Building
Large-Scale Information Retrieval
Systems, Keynote WSDM 2009]

oloeeeeei| [1[1111111][efeeeee11] [1]1111111][1]1111111][c]e0ee111
1 511 131071
ooleeeee1| [1]111111|eeeee111] [16[111111|[11111111][0000111
1 511 131071
oo[o1]10]00][eeeeeee1]|[11111111][e0e00001
11111111([11111111 [eeeeeee1 | eeeeee11
131071

= Google Protobuf messages, SQLite custom varint

= Zig-Zag Encoding

= Map signed integers to unsigned integers to have small varint byte length

706.543 Architecture of Database Systems — 05 Compression Techniques
Matthias Boehm, Graz University of Technology, WS 2020/21

"ISDS

Compression Techniques TU

Run-Length Encoding (RLE)

= Overview

= Compress sequences of equal values via of (value[,start],run-length)
= Redundant ‘start’ allows parallelization / unordered storage
= Applicable to (defined equals())

= Example

= Uncompressed

c ¢ ¢ ¢ ¢ A A A A F F F F F B B B

= Compressed

c 5 A 4 F 5 B 3

= Different physical encodings for values and lengths:
= E.g., split runs w/ length > 226 to fit into fixed 2 byte

706.543 Architecture of Database Systems — 05 Compression Techniques B ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

TU

Compression Techniques Graza

Dictionary Encoding (DICT)

= Overview
= Build dictionary of distinct items and encode values as dictionary positions
= Applicable to - integer codes

= Example

= Uncompressed

A C B B A C b A A D C B A B B C D

= Compressed

122013031296 2213
A

C = Explicit or implicit (position) codes
B = Fixed bit width: log, | Dict|
D = Different ordering of dictionary (alphanumeric, frequency)

WNEO

706.543 Architecture of Database Systems — 05 Compression Techniques B ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

Compression Techniques

Dictionary Encoding (DICT), cont.

= Order-preserving Dictionaries [Carsten Binnig, Stefan Hildenbrand, Franz

s C d dicti h Farber: Dictionary-based order-preserving
reate sorte ICtionary where string compression for main memory

order(codes) = order(values) column stores. SIGMOD 2009]
= Support for updates via sparse code assignment (e.g., 10, 20, 30)
= CS-Array-Trie / CS-Prefix-Tree as encode/decode index w/ shared leafs

= Mostly Order-preserving Dictionaries [Chunwei Liu et al:

Mostly Order Preserving

. . . .
Ordered and disordered dictionary sections Dictionaries. ICDE 2019]

Sample Dict init 1st batch MOP update 2nd batch MOP update 3rd batch MOP update
value | code value | code value |code value [code
value code
0 0 apple 0 ZONEMAP apple 0
e | 0 1 i 1 S i
banana 1 OF mar=musho
banana 2 banana 2 banana 2 o banana | 2
il & banana 3 Y bean 3 / bean 3 bean 3
oo 4 grape 4 T / cherry 4 ’l cherry 4 chemry <
hery 2 \ bean [/ apple | / fig 3 .
fig 5 o o : | cherry BisE 5 carrot grge = leek Qf\ape o < O rd e re d
\ |a °
grape 6 e = ° melon - mushroom g lichee \' i £ g
! 7 7 N lichee | 7 S H
\ ©
leek 7 q -] e Ct I O n
lemon 8 lemon 8 lemon 8 lemoh 8 D
1 B
lemon 8 9 3)) o
lichee | 9 10 10 \ 10 10
mango 10 { mango | 11 \ mango | 11 \[mango! [11 mango| [11
\ \ |
melon 1 12 { melon | 12 \| melon| [12 melon ‘ 12
mustsoon | 12 13 13 mushroofm| 13 mushroom 13
camot * | 14 carrot || 14 ®c .
ZONEMAP 55 D d d
Order Preserving Ef%ﬂ g +| 15 || 5 Isoraere
Dictionary a

e Section

Compression Techniques TU

Grazm

Frame of Reference Encoding (FOR)

= Overview

= Compress values by storing delta (difference) to reference value
= Mostly integer types = smaller integer domain

= Example

= Uncompressed

701 698 702 700 699 698 700 /01 701 700 /03 702

= Compressed
700
1 -2 2 © -1 -2 © 1 1 © 3 2

Cannot handle trends very well

706.543 Architecture of Database Systems — 05 Compression Techniques B ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

Compression Techniques TU

Delta Encoding (DELTA)

= Overview
= Compress values by storing previous
= Mostly integer types (good when sorted) = smaller integer domain
= Dedicated techniques for differences of file contents (diff/git)

= Example

= Uncompressed

5 5 6 6 7 7 7 9 9 12 13 14 15 16 17 17 18

= Compressed

5 6 1 6 1 ©© 6 2 © 3 1 1 1 1 1 o 1

Can create
" Delta opportunities
= Double Delta (differences of differences) for linear trend
706.543 Architecture of Database Systems — 05 Compression Techniques B ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

Compression Techniques TU

Patched Compression Methods (PFOR)

= Patched Frame of Reference (PFOR) [Marcin Zukowski, Sdndor Héman, Niels
o Nes, Peter A. Boncz: Super-Scalar RAM-
= Store positive offsets to reference value CPU Cache Compression. ICDE 2006]

= Exceptions in uncompressed form
(accessible via entry points and offsets to next exception)

" Branchless two-pass decoding

= Example
= Uncompressed Outliers would destroy fixed-width codes

22 982 21 20 23 20 24 850 21 22 867 21

= Compressed

7170 | Base

2Bl ¢ 3 ¢ s EF: 2
{57/ Exceptions

706.543 Architecture of Database Systems — 05 Compression Techniques .ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

Compression Techniques -I(;rla'!l

Patched Compression Methods (Others)

= PFOR-DELTA [Marcin Zukowski, Sdndor Héman, Niels
Nes, Peter A. Boncz: Super-Scalar RAM-
= Apply cascade of DELTA — PFOR CPU Cache Compression. ICDE 2006]

(PFOR on differences)
= Handling of exceptions to handle large differences of subsequent values

= Patched Dictionary Compression (PDICT)
= Dictionary encoding, where only frequent values are encoded
= Exceptions for infrequent values, previous/new dictionary per block

= Reduces

dictionary size o
Y Removes long tail of infrequent

distinct items from dictionary

706.543 Architecture of Database Systems — 05 Compression Techniques B ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

TU

Compression Techniques Graza

Excursus: SIMD Implementation and Evaluation

= Experimental Survey [Patrick Damme, Dirk Habich, Juliana

Hildebrandt, Wolfgang Lehner: Lightweight Data
Compression Algorithms: An Experimental Survey
= Compression methods: (Experiments and Analyses). EDBT 2017]

DELTA, RLE, FOR, RLE, DICT,
SIMD-BP128, SIMD-FastPFOR,
4-Wise NS, 4-Gamme, Masked VByte,
Simple-8b, SIMD-GroupSimple “[..] there is
. The compression rates and

= Cascades of compression methods performances of all algorithms differ significantly,

depending on the data characteristics and the
employed SIMD extension.”

» Different data characteristics

= Towards a Cost-based Selection [Patrick Damme, Annett Ungethim, Juliana !
. . Hildebrandt, Dirk Habich, Wolfgang Lehner:
= Logical and physical level From a Comprehensive Experimental Survey to

a Cost-based Selection Strategy for Lightweight
Integer Compression Algorithms.
ACM Trans. Database Syst. 44(3) 2019]

= Cost estimation functions

706.543 Architecture of Database Systems — 05 Compression Techniques B ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

TU

Compression Techniques Graza
Selecting Compression Methods
[Doesoolumnappearintmsort keﬂj]

d

[A_re number of unique J
values < ~50000 [Peter Boncz: Column-
Oriented Database
yes Systems, adapted from

] VLDB’09 tutorial]

[Does this column appear frequently
in selection predicates?

no

and exhibit good locality?

[Is the data numerical] b

OR
. Inspired by [Daniel J Abadi, Samyel Madden, I\/!igugl Ferreira: |
. Integrating compression and execution in column-
C-Store Compression Paper oriented database systems. SIGMOD 2006]
706.543 Architecture of Database Systems — 05 Compression Techniques .ISDS

Matthias Boehm, Graz University of Technology, WS 2020/21

Compressed Query Processing

706.543 Architecture of Database Systems — 05 Compression Techniques
Matthias Boehm, Graz University of Technology, WS 2020/21

"ISDS

TU

Compressed Query Processing Graza

Selection Predicates

= Equivalence Predicates o, ../(R)

= DICT:

codelookup © A D—=>3
1 C ©1220©130031202213
2 B
3 D position vector Hn
= RLE:

return RLE runs c 5 A 4 nﬂ F 3

= Range Predicates o,_,_, (R)
= #1 sort the dictionary by value (insert tradeoff)
= #2 expand small integer domains + dictionary lookup (e.g., 0,4y a=5 v a=6 (R))
= #3 decompress otherwise

706.543 Architecture of Database Systems — 05 Compression Techniques B ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

Compressed Query Processing -I(;rE!l

Selection Predictions, cont.

= Order Preserving Dictionaries
= Direct support for range predicates on encoded data
= Support for LIKE predicates (suffix)

[Carsten Binnig, Stefan Hildenbrand, Franz
Farber: Dictionary-based order-preserving
string compression for main memory

String-dictionary Froduct column column stores. SIGMOD 2009]
(order preserving) (encoded)
value code d p_name Query (original):
1 32000 Select SUM(o_total), p_name
Whole Milk - Gallon 32000 - From Sales, Products
Whole Milk - Quart 32100 499 | 32100 Where p_name='Whole Milk*'

Group by p_name

Query (rewritten):

L= Select SUM(o_total), p_name

From Sales, Products
Whole Milk — Gallon 32000 ‘ 499 | 32100 Where p_name 2 32000
Whole Milk - Half Gallon | 32050 500 | 32000 And p_name < 32100
Whole Milk — Quart 32100 Grevp: by B
999 [32050
706.543 Architecture of Database Systems — 05 Compression Techniques .ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

Compressed Query Processing -Erla'!l

Grouping and Aggregations

= Basic Hash Aggregates

= Grouping directly with 9 A
rouping directly wi T Hash Table
compressed codes 0 Agg A

2 B
DICT, FOR, RLE, etc 3 D 3 Agg D
1 Agg C
©1220130031202213 2 Agg B

= Encoding-Specific Aggregation
= RLE sum = agg += run-length*run-value
= RLE min = agg = min(agg, run-value)
= FOR sum -2 for all codes: agg += code; agg += |codes| * base-value

706.543 Architecture of Database Systems — 05 Compression Techniques B ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

Compressed Query Processing

TU

Grazm

Joins

= Overview Compressed Joins

= (Equi-)Joins directly over compressed data nm

= Beware: binary operation 9
— encodings need to match (global code)

1

= Recoding of one of the inputs if necessary
(e.g., DB2 BLU recode inner) 7
inner

recode inner
(smaller)
= Encoding-Specific Aggregation
= One input RLE: decompress other
and output RLE encoded data

= One input bitvector: decompress other
and output RLE encoded data (obtained from bitvector)

706.543 Architecture of Database Systems — 05 Compression Techniques
Matthias Boehm, Graz University of Technology, WS 2020/21

RID=SID

N O 2 W

outer

"ISDS

Compressed Query Processing

TU

Grazm

Abstractions for Simpler Code

= Motivation

= Code complexity for combinations of encoding schemes

= Affects all operators = maintenance operators/compression schemes

= Compressed Block Properties
= isOneValue(): block contains just

[Daniel J. Abadi, Samuel Madden, Miguel Ferreira:
Integrating compression and execution in column-

one value and many positions for that value

» isValueSorted(): all values of the block are sorted

= isPosContig(): block contains consecutive subset of column

= |terator Access:
getNext(), asArray()

= Block Information:
getSize(), getStartValue(),
getEndPosition()

oriented database systems. SIGMOD 2006]

706.543 Architecture of Database Systems — 05 Compression Techniques
Matthias Boehm, Graz University of Technology, WS 2020/21

Encoding Type [Sorted?|1 value?|Pos. contig.?
RLE ves yes yes
Bit-string yes yes no

Null Supp. no/yes no yes
Lempel-Ziv no/ves no yes
Dictionary no/yes no yes
Uncompressed no/yes no no/yes

"ISDS

TU

Compressed Query Processing Graza

Abstractions for Simpler Code, cont.

. . [Patrick Damme, Annett Ungethiim, Johannes
= Motivation Pietrzyk, Alexander Krause, Dirk Habich, Wolfgang

» |mprove auerv berformance b Lehner: MorphStore: Analytical Query Engine with
P 9 yp Y a Holistic Compression-Enabled Processing Model.

(re)compressing intermediates PVLDB 13(11) 2020]

= Change from one compressed format to another

our core contribution novel enhanced operators

state-of-the-art operators

specialized onthe-ﬂy morphig

uncompressed &) (B][€)[B)[E][F)| compressed formats (de)compression [BfA] direct morphing

706.543 Architecture of Database Systems — 05 Compression Techniques .ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

Compressed Query Processing

TU

Grazm

Data Layout — Compression Granularity

«<

Aousiolyg uonelussaiday

Coding Coding Diff Alg | Base
Machine Implicit Append
: Fixed |Length
Domain Byte ||| ength Explicit||_Prefix Block
Domain Bit Length || Delta | Stride
Huffman Adjacent

= Column Coding
= Select encoding for individual attributes (column values) — tradeoffs

= Tuple Coding
= Combine column codes into tuple codes (fixed, variable)
= Block Coding
= Compress a sequence of tuples into a compressed block (concat, diff)

706.543 Architecture of Database Systems — 05 Compression Techniques
Matthias Boehm, Graz University of Technology, WS 2020/21

Aouaioiyg Buissasoiyd

>

[Allison L. Holloway, Vijayshankar
Raman, Garret Swart, David J. DeWitt:
How to barter bits for chronons:
compression and bandwidth trade offs
for database scans. SIGMOD 2007]

“All the results have shown that the Huffman coded and
delta coded formats compress better but normally take
more CPU time. [...] When I/O and memory subsystem
times are also included in the decision, the format to
choose becomes less clear-cut. If a physical format
optimizer or system administrator had this information
and a fast scan generator, they could make a more
informed choice as to the best way to store the data.”

"ISDS

Compressed Query Processing -I(;rE!l

Data Layout — Example Block Layouts

= DB2 BLU Page page-specific [Vijayshankar Ramanetal: [——
e g — ~
Header - Compression DB2 with BLU Acceleration:
Dicti .
- - ' ctionaries So Much More than Just a
r| %\ i Column Store.
. —’ -
Region " 7 Data Banks PVLDB 6(11) 2013]
\(]
Tuple N
Map ‘ﬁ[10100111001110010010.. Variable-
|t width Data
Bank
[Data Blocks tuple count sma offset, dict offset, data offset, [Harald Lang: Data Blocks: Hybnd —
compression, string offset, sma offset; dict offsety OLTP and OLAP on Compressed A
data offset; compression, string offset, Storage using both Vectorization
sma offset, dict offset, data offset, and Comp”ation. S|GMOD 2016]
03 BUffer POOI compression,, string offsetnl ming | maxo
Management lookup table,
04 Index Structures and Positional SMA index for attribute 0
L. . domain size, dictionary,
Partitioning
. o compressed datag
07 Query Compilation g e
and Parallelization i o
706.543 Architecture of Database Systems — 05 Compression Techniques .ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

TU

Grazm

Time Series Compression

706.543 Architecture of Database Systems — 05 Compression Techniques
Matthias Boehm, Graz University of Technology, WS 2020/21

"ISDS

Time Series Compression TU

Grazm

Motivation and Terminology

= Ubiquitous Time Series

= Domains: Internet-of-Things (loT), sensor networks, smart production/planet,
telemetry, stock trading, server/application metrics, event/log streams

= Applications: monitoring, anomaly detection, time series forecasting
= Dedicated storage and analysis techniques = Specialized systems

= Terminology

regular
= Time series X is a sequence of data 00000
points x; for a specific measurement 1s 1s
identity (e.g., sensor) and time granularity
= Regular (equidistant) time series (x,) ——00 @ e >
vs irregular time series (t;, x.) irregular

706.543 Architecture of Database Systems — 05 Compression Techniques
Matthias Boehm, Graz University of Technology, WS 2020/21

Time Series Compression TU

LOg-StrU CtU red M e rge Trees [Patrick E. O'Neil, Edward Cheng,

Dieter Gawlick, Elizabeth J. O'Neil:
The Log-Structured Merge-Tree

= LSM Overview (LSM-Tree). Acta Inf. 1996]

= Many KV-stores rely on LSM-trees as their storage engine
(e.g., BigTable, DynamoDB, LevelDB, Riak, RocksDB, Cassandra, HBase)

= Approach: Buffers writes in memory, flushes data as sorted runs to storage,
merges runs into larger runs of next level (compaction)

= System Architecture
= Writes in CO

= Reads against
CO and C1 (w/
buffer for C1)

= Compaction
(rolling merge):
sort, merge,
including
deduplication

in-memory
buffer (CO)
max capacity T

on-disk
storage (C1)

706.543 Architecture of Database Systems — 05 Compression Techniques .ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

Time Series Compression -I(;rE!l

Example InfluxDB @ influxdb

Measurement

[Paul Dix: InfluxDB
Storage Engine Internals,
CMU Seminar, 09/2017]

= Input Data cpu,region=west, host=A — Tags
user=85,sys=2,idle=10 1443782126

™~ Fields (values) N Time

= System Architecture
= Written in Go, originally key-value store, now dedicated storage engine
= Time Structured Merge Tree (TSM), similar to LSM
= QOrganized in shards, TSM indexes and inverted index for reads

append-only Index per TSM file:

w‘ Header | Blocks | Index |Foote\r

KeyLen | Key | Type | Min T | Max T| Off | ...

Write

periodic -
flushes compactlo.n &
compression periodic drop of shards
TSM A (files) according to
Indexes AA AA retention policy
706.543 Architecture of Database Systems — 05 Compression Techniques .ISDS

Matthias Boehm, Graz University of Technology, WS 2020/21

Time Series Compression TJ

Example InfluxDB, cont.

= Compression (of blocks)

= (Type | Len | Timestamps | Values)
= Timestamps: Delta + Run-length encoding for regular time series;
Simple8B or uncompressed for irregular

= Values: double delta for FP64, bits for Bool, double delta + zig zag for INT64,
Snappy for strings

= Query Processing SELECT percentile(90, user)
= SQL-like and functional APIs for FROM cpu WHERE time>now()-12h

g 4 , AND “region”=‘west’
iltering (e.g., range) and aggregation GROUP BY time(16m), host
" |nverted indexes

Posting lists:
Measurement to fields: cpu —2 [1,2,3,4,5,6]
cpu =2 [user,sys,idle] host=A 2 [1,2,3]
host 2 [A, B] host=B = [4,5,6]
Region = [west, east] region=west =2 [1,2,3]

706.543 Architecture of Database Systems — 05 Compression Techniques B ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

Time Series Compression -I(;rE!l

Lossless, Predictive Time Series Compression

= Motivation
= Sampled sensor data with lots of compression potential
= Small blocksize (end devices), fast decompression, lossless

- Sprintz [Davis W. Blalock, Samuel Madden, John V. Guttag: Sprintz:)
8) Previous Vaises Time Series Compression for the Internet of Things.
= Forecasting .. Interact. Mob. Wearable Ubiquitous Technol. 2(3) 2018]
. Ri .
Bit packing Y 2z | dX dy dz dX dv dz

= RLE zeros Time

Count
- nnn nn Significant 00010000 | 00000000 | 00000000
Delta Bn. Zlgzag 10

001010 | 00000000 | 00000001
= Entropy sapiay
. 15| 2 |102 00001010 | 0000V000 | V000001
coding
20 | 2 (101 00001010 | 00000000 | V6000001
— H
Prepend Header | 5b 0b 1b
(=101 =000 = 001 |
b)
Case 1: Header Align Byte-Aligned Column-Major Payload Bit Pack
Low-Dimensional ElrxRE 35 1000001010 01010 (01010 |0 |1 1|1 Data
Case 2: Header Align Byte-Aligned Row-Major Payload
SIFLEINIENETRE 101 | 000|001 152 /"] 10000 o [01010) 1 | 01010 1 |7 01010]1 [7)
—
1 Byte
706.543 Architecture of Database Systems — 05 Compression Techniques .ISDS

Matthias Boehm, Graz University of Technology, WS 2020/21

TU

Grazm

Summary and Q&A

Motivation and Terminology
Compression Techniques
Compressed Query Processing
Time Series Compression

Next Lectures (Part B)

Nov 11: no lecture, work on your programming projects

06 Query Processing (operators, execution models) [Nov 18]

07 Query Compilation and Parallelization [Nov 25]

08 Query Optimization | (nhormalization, rewrites, unnesting) [Dec 02]
09 Query Optimization Il (cost models, join ordering) [Dec 09]

10 Adaptive Query Processing [Dec 16]

706.543 Architecture of Database Systems — 05 Compression Techniques B ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

