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Announcements/Org

= #1 Video Recording
= Link in TeachCenter & TUbe (lectures will be public)
= QOptional attendance (independent of COVID)

= #2 COVID-19 Restrictions (HS i5)
= Corona Traffic Light: Orange + Lockdown
= Max 25% room capacity (TC registrations)
= Temporarily webex lectures and recording
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Agenda

= Motivation and Terminology

= Compression Techniques

= Compressed Query Processing
= Time Series Compression
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Motivation and Terminology
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Motivation and Terminology Graza

Recap: Access Methods and Physical Design

= Performance Tuning via Physical Design
= Select physical data structures for relational schema and query workload
= #1: User-level, manual physical design by DBA (database administrator)
= #2: User/system-level automatic physical design via advisor tools

= Example
Base
SELECT * FROM R, S, T Tables
WHERE R.c = S.d AND S.e = T.f
AND R.b BETWEEN 12 AND 73
| Mat
Views
M. |
- \ Y *
Parti- I
X __, T tioning L]
10 \S
O12<R.b<7 .
1000000 | <R.b<73 Physical B*-Tree BitMap Hash
R Access Paths Compression
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Motivation and Terminology Graza

Motivation Storage Hierarchy

" # Capacity Caches
Caches
= Limited capacity of fast storage Memory
= Keep larger datasets higher in storage hierarchy

= Avoid unnecessary |I/O

= #2 Bandwidth DR I

= Memory Wall: increasing gap . DRAM
CPU vs Memory latency/bandwidth

= Reduce bandwidth requirements n

100

Speed (MHz)

83 85 87 89
Year

[Stefan Manegold, Peter A. Boncz, Martin L. Kersten:
Optimizing database architecture for the new
bottleneck: memory access. VLDB J. 9(3) 2000]
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Excursus: Roofline Analysis

= Setup: 2x6 E5-2440 @2.4GHz-2.9GHz, DDR3 RAM @1.3GHz (ECC)
= Max mem bandwidth (local): 2 sock x 3 chan x 8B x 1.3G trans/s = 2 x 32GB/s
= Max mem bandwidth (QPI, full duplex) > 2 x 12.8GB/s
= Max floating point ops: 12 cores x 2*4dFP-units x 2.4GHz = 2 x 115.2GFlops/s

= Roofline 256
Analysis 128
= Off-chip é 64
memory = 32
traffic 2 9B
" Peak S ]

'3
compute 2y
2

—_—

[S. Williams, A. Waterman, D. A.

Patterson: Roofline: An Insightful Visual

Performance Model for Multicore

Architectures. Commun. ACM 2009]

I . I L L L

SystemVIL O
BLAS

f’l’ .
Anpression Vvt (o768

SystemML
a Mt(Mv)
SystemML .
Mv bandwidth compute-
bound bound
I I | I | I | I |
1/4 1/2 1 2 4 8 16 32 64

(Experiments

Operational Intensity (Flops/Byte) ; 2017)
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Motivation and Terminology

- Motivation Data Characteristics

= Skew —
= Highly skewed Chipa 1.4 E_
(frequencies of distinct values) Lns‘i"ao.l;; 5
= Small number of distinct items Germany 0.08 E::.:
Austria 0.009 =
= Correlation
= Correlation between tuple attributes OrderDate < ReceiptDate
(usually 2-3 days)

= Co-occurrences of attribute values

= Lack of Tuple Order
= Relations are multi-sets of tuples (no ordering requirements)

= Flexibility for internal reorganization

[Vijayshankar Raman, Garret Swart: How to Wring a
Table Dry: Entropy Compression of Relations and
Querying of Compressed Relations. VLDB 2006]
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Compression Overview

= Compression Codec Encoding

= Decoder Data

= Lossless vs Lossy

Decoding

= Lossless: guaranteed recovery of uncompressed data
= Lossy: moderate degradation / approximation
- Images, video, audio; ML training/scoring

= Compression Ratio
= CR =Size-Uncompressed / Size-compressed
= |neffective compression: CR< 1

= Metrics

g Comp.
Data

= Compression ratio vs encode/decode time vs encode/decode space

= Block-wise vs random access, operation performance, etc
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Classification of Compression Techniques

= Lossless Compression Schemes

4/‘\>

General-Purpose DB-Centric
Techniques Techniques
A/.\
Heavy- Light-
Weight Weight

cor o I i Lo

Huffman + Lempel-Ziv
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Excursus: General-purpose Compression

. Compression/ Compress and Decompress (MB/s)
Decompression 4000 snappy L74 B Compress

Il Decompr
= CRzstd: 5.24
= CR snappy: 3.65
= CRLZ4: 3.89 2000

3000

zstd

[https://web.archive.org/web/20200229
161007 /https://www.percona.com/blog/

1000

2016/04/13/evaluating-database-

compression-methods-update/] 0

Compression Method

= Example Apache Spark RDD Compression
= org.apache.spark.io.LZ4CompressionCodec (defaultin 2.x, 3.x)
= org.apache.spark.io.SnappyCompressionCodec (defaultin 1.x)
"= org.apache.spark.io.LZFCompressionCodec (defaultin 0.x)
= org.apache.spark.io.ZStdCompressionCodec
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Classification of Compression Techniques, cont.

= Lossless Compression Schemes

4/‘\»

General-Purpose DB-Centric
Techniques Techniques
-— T
Heavy- Light-
Weight Weight

Huffman 52 + Lempel-Ziv 77 PDICT m PFOR-

DELTA

(all heavy-weight from a
DB perspective)
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Compression Techniques

706.543 Architecture of Database Systems — 05 Compression Techniques
Matthias Boehm, Graz University of Technology, WS 2020/21

"ISDS



Compression Techniques

TU

Grazm

Null Suppression (NS)

[Benjamin Schlegel, Rainer Gemulla,
Wolfgang Lehner: Fast integer compression

using SIMD instructions. DaMoN 2010]

Overview

42

= Compress integers by omitting

00000000 |00000000

00000000|00101010

via variable-length codes
= Universal compression scheme w/o need for upper bound

Byte-Aligned
= Store mask of two bits to indicate leading zero bytes
= 2 bits + [1,4] bytes 2 max CR (INT32) =3.2

Bit-Aligned (Elias Gamma Encoding)
= Store N = |log, x| zero bits followed by effective bits
= 2 *[1,32] -1 bits > max CR (INT32) = 32

Word-Aligned (Simple-8b)
= Pack a variable number of integers (max 2%°) into 64bit

42

42

11|00101010

11|00000111

00000101010

090|111

= 60 data bits, 4 selector bits (16 classes: 60x1b, 30x2b, 20x3b, 15x4b, 12x5b, ...)
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Null Suppression (NS), cont.

= Varint (Variable-Length Integers)

(continuation bits)

(2 bit #bytes)

= Examples:

[Jeff Dean: Challenges in Building
Large-Scale Information Retrieval
Systems, Keynote WSDM 2009]

oloeeeeei| [1[1111111][efeeeee11] [1]1111111][1]1111111][c]e0ee111
1 511 131071
ooleeeee1| [1]111111|eeeee111] [16[111111|[11111111][0000111
1 511 131071
oo[o1]10]00][eeeeeee1]|[11111111][e0e00001
11111111([11111111 [eeeeeee1 | eeeeee11
131071

= Google Protobuf messages, SQLite custom varint

= Zig-Zag Encoding

= Map signed integers to unsigned integers to have small varint byte length
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Compression Techniques TU

Run-Length Encoding (RLE)

= Overview

= Compress sequences of equal values via of (value[,start],run-length)
= Redundant ‘start’ allows parallelization / unordered storage
= Applicable to (defined equals())

= Example

= Uncompressed

c ¢ ¢ ¢ ¢ A A A A F F F F F B B B

= Compressed

c 5 A 4 F 5 B 3

= Different physical encodings for values and lengths:
= E.g., split runs w/ length > 226 to fit into fixed 2 byte
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Dictionary Encoding (DICT)

= Overview
= Build dictionary of distinct items and encode values as dictionary positions
= Applicable to - integer codes

= Example

= Uncompressed

A C B B A C b A A D C B A B B C D

= Compressed

122013031296 2213
A

C = Explicit or implicit (position) codes
B = Fixed bit width: log, | Dict|
D = Different ordering of dictionary (alphanumeric, frequency)

WNEO
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Compression Techniques

Dictionary Encoding (DICT), cont.

= Order-preserving Dictionaries [Carsten Binnig, Stefan Hildenbrand, Franz

s C d dicti h Farber: Dictionary-based order-preserving
reate sorte ICtionary where string compression for main memory

order(codes) = order(values) column stores. SIGMOD 2009]
= Support for updates via sparse code assignment (e.g., 10, 20, 30)
= CS-Array-Trie / CS-Prefix-Tree as encode/decode index w/ shared leafs

= Mostly Order-preserving Dictionaries [Chunwei Liu et al:

Mostly Order Preserving

. . . .
Ordered and disordered dictionary sections Dictionaries. ICDE 2019]

Sample Dict init 1st batch MOP update 2nd batch MOP update 3rd batch MOP update
value | code value | code value |code value [code
value code
0 0 apple 0 ZONEMAP apple 0
e | 0 1 i 1 S i
banana 1 OF mar=musho
banana 2 banana 2 banana 2 o banana | 2
il & banana 3 Y bean 3 / bean 3 bean 3
oo 4 grape 4 T / cherry 4 ’l cherry 4 chemry <
hery 2 \ bean [/ apple | / fig 3 .
fig 5 o o : | cherry BisE 5 carrot grge = leek Qf\ape o < O rd e re d
\ |a °
grape 6 e = ° melon - mushroom g lichee \' i £ g
! 7 7 N lichee | 7 S H
\ ©
leek 7 q - ] e Ct I O n
lemon 8 lemon 8 lemon 8 lemoh 8 D
1 B
lemon 8 9 3 ) ) o
lichee | 9 10 10 \ 10 10
mango 10 { mango | 11 \ mango | 11 \[ mango! [ 11 mango| [ 11
\ \ |
melon 1 12 { melon | 12 \| melon| [ 12 melon ‘ 12
mustsoon | 12 13 13 mushroofm| 13 mushroom 13
camot * | 14 carrot || 14 ®c .
ZONEMAP 55 D d d
Order Preserving Ef%ﬂ g +| 15 || 5 Isoraere
Dictionary a

e Section
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Frame of Reference Encoding (FOR)

= Overview

= Compress values by storing delta (difference) to reference value
= Mostly integer types = smaller integer domain

= Example

= Uncompressed

701 698 702 700 699 698 700 /01 701 700 /03 702

= Compressed
700
1 -2 2 © -1 -2 © 1 1 © 3 2

Cannot handle trends very well
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Delta Encoding (DELTA)

= Overview
= Compress values by storing previous
= Mostly integer types (good when sorted) = smaller integer domain
= Dedicated techniques for differences of file contents (diff/git)

= Example

= Uncompressed

5 5 6 6 7 7 7 9 9 12 13 14 15 16 17 17 18

= Compressed

5 6 1 6 1 ©© 6 2 © 3 1 1 1 1 1 o 1

Can create
" Delta opportunities
= Double Delta (differences of differences) for linear trend
706.543 Architecture of Database Systems — 05 Compression Techniques B ISDS
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Patched Compression Methods (PFOR)

= Patched Frame of Reference (PFOR) [Marcin Zukowski, Sdndor Héman, Niels
o Nes, Peter A. Boncz: Super-Scalar RAM-
= Store positive offsets to reference value CPU Cache Compression. ICDE 2006]

= Exceptions in uncompressed form
(accessible via entry points and offsets to next exception)

" Branchless two-pass decoding

= Example
= Uncompressed Outliers would destroy fixed-width codes

22 982 21 20 23 20 24 850 21 22 867 21

= Compressed

7170 | Base

2Bl ¢ 3 ¢ s EF: 2
{57/ Exceptions

706.543 Architecture of Database Systems — 05 Compression Techniques .ISDS
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Patched Compression Methods (Others)

= PFOR-DELTA [Marcin Zukowski, Sdndor Héman, Niels
Nes, Peter A. Boncz: Super-Scalar RAM-
= Apply cascade of DELTA — PFOR CPU Cache Compression. ICDE 2006]

(PFOR on differences)
= Handling of exceptions to handle large differences of subsequent values

= Patched Dictionary Compression (PDICT)
= Dictionary encoding, where only frequent values are encoded
= Exceptions for infrequent values, previous/new dictionary per block

= Reduces

dictionary size o
Y Removes long tail of infrequent

distinct items from dictionary
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Excursus: SIMD Implementation and Evaluation

= Experimental Survey [Patrick Damme, Dirk Habich, Juliana

Hildebrandt, Wolfgang Lehner: Lightweight Data
Compression Algorithms: An Experimental Survey
= Compression methods: (Experiments and Analyses). EDBT 2017]

DELTA, RLE, FOR, RLE, DICT,
SIMD-BP128, SIMD-FastPFOR,
4-Wise NS, 4-Gamme, Masked VByte,
Simple-8b, SIMD-GroupSimple “[..] there is
. The compression rates and

= Cascades of compression methods performances of all algorithms differ significantly,

depending on the data characteristics and the
employed SIMD extension.”

» Different data characteristics

= Towards a Cost-based Selection [Patrick Damme, Annett Ungethim, Juliana !
. . Hildebrandt, Dirk Habich, Wolfgang Lehner:
= Logical and physical level From a Comprehensive Experimental Survey to

a Cost-based Selection Strategy for Lightweight
Integer Compression Algorithms.
ACM Trans. Database Syst. 44(3) 2019]

= Cost estimation functions

706.543 Architecture of Database Systems — 05 Compression Techniques B ISDS
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Selecting Compression Methods
[Doesoolumnappearintmsort keﬂj ]

d

[A_re number of unique J
values < ~50000 [Peter Boncz: Column-
Oriented Database
yes Systems, adapted from

] VLDB’09 tutorial]

[ Does this column appear frequently
in selection predicates?

no

and exhibit good locality?

[ Is the data numerical ] b

OR
. Inspired by [Daniel J Abadi, Samyel Madden, I\/!igugl Ferreira: |
. Integrating compression and execution in column-
C-Store Compression Paper oriented database systems. SIGMOD 2006]
706.543 Architecture of Database Systems — 05 Compression Techniques .ISDS
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Compressed Query Processing Graza

Selection Predicates

= Equivalence Predicates o, ../(R)

= DICT:

codelookup © A D—=>3
1 C ©1220©130031202213
2 B
3 D position vector Hn
= RLE:

return RLE runs c 5 A 4 nﬂ F 3

= Range Predicates o,_,_, (R)
= #1 sort the dictionary by value (insert tradeoff)
= #2 expand small integer domains + dictionary lookup (e.g., 0,4y a=5 v a=6 (R))
= #3 decompress otherwise
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Selection Predictions, cont.

= Order Preserving Dictionaries
= Direct support for range predicates on encoded data
= Support for LIKE predicates (suffix)

[Carsten Binnig, Stefan Hildenbrand, Franz
Farber: Dictionary-based order-preserving
string compression for main memory

String-dictionary Froduct column column stores. SIGMOD 2009]
(order preserving) (encoded)
value code d p_name Query (original):
1 32000 Select SUM(o_total), p_name
Whole Milk - Gallon 32000 - From Sales, Products
Whole Milk - Quart 32100 499 | 32100 Where p_name='Whole Milk*'

Group by p_name

Query (rewritten):

L= Select SUM(o_total), p_name

From Sales, Products
Whole Milk — Gallon 32000 ‘ 499 | 32100 Where p_name 2 32000
Whole Milk - Half Gallon | 32050 500 | 32000 And p_name < 32100
Whole Milk — Quart 32100 Grevp: by B
999 [ 32050
706.543 Architecture of Database Systems — 05 Compression Techniques .ISDS
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Grouping and Aggregations

= Basic Hash Aggregates

= Grouping directly with 9 A
rouping directly wi T Hash Table
compressed codes 0 Agg A

2 B
DICT, FOR, RLE, etc 3 D 3 Agg D
1 Agg C
©1220130031202213 2 Agg B

= Encoding-Specific Aggregation
= RLE sum = agg += run-length*run-value
= RLE min = agg = min(agg, run-value)
= FOR sum -2 for all codes: agg += code; agg += |codes| * base-value

706.543 Architecture of Database Systems — 05 Compression Techniques B ISDS
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Joins

= Overview Compressed Joins

= (Equi-)Joins directly over compressed data nm

= Beware: binary operation 9
— encodings need to match (global code)

1

= Recoding of one of the inputs if necessary
(e.g., DB2 BLU recode inner) 7
inner

recode inner
(smaller)
= Encoding-Specific Aggregation
= One input RLE: decompress other
and output RLE encoded data

= One input bitvector: decompress other
and output RLE encoded data (obtained from bitvector)

706.543 Architecture of Database Systems — 05 Compression Techniques
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Abstractions for Simpler Code

= Motivation

= Code complexity for combinations of encoding schemes

= Affects all operators = maintenance operators/compression schemes

= Compressed Block Properties
= isOneValue(): block contains just

[Daniel J. Abadi, Samuel Madden, Miguel Ferreira:
Integrating compression and execution in column-

one value and many positions for that value

» isValueSorted(): all values of the block are sorted

= isPosContig(): block contains consecutive subset of column

= |terator Access:
getNext(), asArray()

= Block Information:
getSize(), getStartValue(),
getEndPosition()

oriented database systems. SIGMOD 2006]

706.543 Architecture of Database Systems — 05 Compression Techniques
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Encoding Type [Sorted?|1 value?|Pos. contig.?
RLE ves yes yes
Bit-string yes yes no

Null Supp. no/yes no yes
Lempel-Ziv no/ves no yes
Dictionary no/yes no yes
Uncompressed no/yes no no/yes
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Compressed Query Processing Graza

Abstractions for Simpler Code, cont.

. . [Patrick Damme, Annett Ungethiim, Johannes
= Motivation Pietrzyk, Alexander Krause, Dirk Habich, Wolfgang

» |mprove auerv berformance b Lehner: MorphStore: Analytical Query Engine with
P 9 yp Y a Holistic Compression-Enabled Processing Model.

(re)compressing intermediates PVLDB 13(11) 2020]

= Change from one compressed format to another

our core contribution novel enhanced operators

state-of-the-art operators

specialized onthe-ﬂy morphig

uncompressed &) (B][€)[B)[E][F )| compressed formats (de)compression  [BfA] direct morphing
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Data Layout — Compression Granularity

«<

Aousiolyg uonelussaiday

Coding Coding Diff Alg | Base
Machine Implicit Append
: Fixed |Length
Domain Byte ||| ength Explicit||_Prefix Block
Domain Bit Length || Delta | Stride
Huffman Adjacent

= Column Coding
= Select encoding for individual attributes (column values) — tradeoffs

= Tuple Coding
= Combine column codes into tuple codes (fixed, variable)
= Block Coding
= Compress a sequence of tuples into a compressed block (concat, diff)

706.543 Architecture of Database Systems — 05 Compression Techniques
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>

[Allison L. Holloway, Vijayshankar
Raman, Garret Swart, David J. DeWitt:
How to barter bits for chronons:
compression and bandwidth trade offs
for database scans. SIGMOD 2007]

“All the results have shown that the Huffman coded and
delta coded formats compress better but normally take
more CPU time. [...] When I/O and memory subsystem
times are also included in the decision, the format to
choose becomes less clear-cut. If a physical format
optimizer or system administrator had this information
and a fast scan generator, they could make a more
informed choice as to the best way to store the data.”
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Data Layout — Example Block Layouts

= DB2 BLU Page page-specific  [Vijayshankar Ramanetal: [ ——
e g — ~
Header - Compression  DB2 with BLU Acceleration:
Dicti .
- - ' ctionaries So Much More than Just a
r| %\ i Column Store.
. —’ -
Region " 7 Data Banks PVLDB 6(11) 2013]
\(]
Tuple N
Map ‘ﬁ[ 10100111001110010010.. Variable-
|t width Data
Bank
[ Data Blocks tuple count sma offset, dict offset, data offset, [Harald Lang: Data Blocks: Hybnd —
compression, string offset, sma offset;  dict offsety OLTP and OLAP on Compressed A
data offset; compression, string offset, Storage using both Vectorization
sma offset, dict offset, data offset, and Comp”ation. S|GMOD 2016]
03 BUffer POOI compression,, string offsetnl ming | maxo
Management lookup table,
04 Index Structures and Positional SMA index for attribute 0
L. . domain size, dictionary,
Partitioning
. o compressed datag
07 Query Compilation g e
and Parallelization i o
706.543 Architecture of Database Systems — 05 Compression Techniques .ISDS
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Time Series Compression
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Motivation and Terminology

= Ubiquitous Time Series

= Domains: Internet-of-Things (loT), sensor networks, smart production/planet,
telemetry, stock trading, server/application metrics, event/log streams

= Applications: monitoring, anomaly detection, time series forecasting
= Dedicated storage and analysis techniques = Specialized systems

= Terminology

regular
= Time series X is a sequence of data 00000
points x; for a specific measurement 1s 1s
identity (e.g., sensor) and time granularity
= Regular (equidistant) time series (x,) ——00 @ e >
vs irregular time series (t;, x.) irregular

706.543 Architecture of Database Systems — 05 Compression Techniques
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Time Series Compression TU

LOg-StrU CtU red M e rge Trees [Patrick E. O'Neil, Edward Cheng,

Dieter Gawlick, Elizabeth J. O'Neil:
The Log-Structured Merge-Tree

= LSM Overview (LSM-Tree). Acta Inf. 1996]

= Many KV-stores rely on LSM-trees as their storage engine
(e.g., BigTable, DynamoDB, LevelDB, Riak, RocksDB, Cassandra, HBase)

= Approach: Buffers writes in memory, flushes data as sorted runs to storage,
merges runs into larger runs of next level (compaction)

= System Architecture
= Writes in CO

= Reads against
CO and C1 (w/
buffer for C1)

= Compaction
(rolling merge):
sort, merge,
including
deduplication

in-memory
buffer (CO)
max capacity T

on-disk
storage (C1)

706.543 Architecture of Database Systems — 05 Compression Techniques .ISDS
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Example InfluxDB @ influxdb

Measurement

[Paul Dix: InfluxDB
Storage Engine Internals,
CMU Seminar, 09/2017]

= Input Data cpu,region=west, host=A — Tags
user=85,sys=2,idle=10 1443782126

™~ Fields (values) N Time

= System Architecture
= Written in Go, originally key-value store, now dedicated storage engine
= Time Structured Merge Tree (TSM), similar to LSM
= QOrganized in shards, TSM indexes and inverted index for reads

append-only Index per TSM file:

w‘ Header | Blocks | Index |Foote\r

KeyLen | Key | Type | Min T | Max T| Off | ...

Write

periodic -
flushes compactlo.n &
compression periodic drop of shards
TSM A (files) according to
Indexes AA AA retention policy
706.543 Architecture of Database Systems — 05 Compression Techniques .ISDS
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Example InfluxDB, cont.

= Compression (of blocks)

= (Type | Len | Timestamps | Values)
= Timestamps: Delta + Run-length encoding for regular time series;
Simple8B or uncompressed for irregular

= Values: double delta for FP64, bits for Bool, double delta + zig zag for INT64,
Snappy for strings

= Query Processing SELECT percentile(90, user)
= SQL-like and functional APIs for FROM cpu WHERE time>now()-12h

g 4 , AND “region”=‘west’
iltering (e.g., range) and aggregation GROUP BY time(16m), host
" |nverted indexes

Posting lists:
Measurement to fields: cpu —2 [1,2,3,4,5,6]
cpu =2 [user,sys,idle] host=A 2 [1,2,3]
host 2 [A, B] host=B = [4,5,6]
Region = [west, east] region=west =2 [1,2,3]

706.543 Architecture of Database Systems — 05 Compression Techniques B ISDS
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Time Series Compression -I(;rE!l

Lossless, Predictive Time Series Compression

= Motivation
= Sampled sensor data with lots of compression potential
= Small blocksize (end devices), fast decompression, lossless

- Sprintz [Davis W. Blalock, Samuel Madden, John V. Guttag: Sprintz: )
8) Previous Vaises Time Series Compression for the Internet of Things.
= Forecasting .. Interact. Mob. Wearable Ubiquitous Technol. 2(3) 2018]
. Ri .
Bit packing Y 2z | dX dy dz dX dv dz

= RLE zeros Time

Count
- nnn nn Significant 00010000 | 00000000 | 00000000
Delta Bn. Zlgzag 10

001010 | 00000000 | 00000001
= Entropy sapiay
. 15| 2 |102 00001010 | 0000V000 | V000001
coding
20 | 2 (101 00001010 | 00000000 | V6000001
— H
Prepend Header | 5b 0b 1b
(=101 =000 = 001 |
b)
Case 1: Header Align Byte-Aligned Column-Major Payload Bit Pack
Low-Dimensional ElrxRE 35 1000001010 01010 (01010 |0 |1 1|1 Data
Case 2: Header Align Byte-Aligned Row-Major Payload
SIFLEINIENETRE 101 | 000|001 152 /"] 10000 o [ 01010) 1 | 01010 1 |7 01010]1 [7)
—
1 Byte
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TU

Grazm

Summary and Q&A

Motivation and Terminology
Compression Techniques
Compressed Query Processing
Time Series Compression

Next Lectures (Part B)

Nov 11: no lecture, work on your programming projects

06 Query Processing (operators, execution models) [Nov 18]

07 Query Compilation and Parallelization [Nov 25]

08 Query Optimization | (nhormalization, rewrites, unnesting) [Dec 02]
09 Query Optimization Il (cost models, join ordering) [Dec 09]

10 Adaptive Query Processing [Dec 16]
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