



# Architecture of DB Systems 08 Query Optimization

#### **Matthias Boehm**

Graz University of Technology, Austria Computer Science and Biomedical Engineering Institute of Interactive Systems and Data Science BMK endowed chair for Data Management



Last update: Dec 09, 2020





### Announcements/Org

#### #1 Video Recording





Optional attendance (independent of COVID)

#### #2 COVID-19 Restrictions (HS i5)

■ Corona Traffic Light: RED → Orange









### Recap: Overview Query Processing





### Agenda

- Query Rewriting and Unnesting
- Cardinality and Cost Estimation
- Join Enumeration / Ordering



# Query Rewriting and Unnesting





### **Query Rewrites**

- Query Rewriting
  - Rewrite query into semantically equivalent form that may be processed more efficiently or give the optimizer more freedom
  - #1 Same query can be expressed differently, avoid hand-tuning
  - #2 Complex queries may have redundancy
- A Simple Example
  - Catalog meta data: custkey is unique

**SELECT DISTINCT** custkey, name **FROM** TPCH.Customer



rewrite

**SELECT** custkey, name **FROM** TPCH.Customer

20+ years of experience on query rewriting

[Hamid Pirahesh, T. Y. Cliff Leung, Waqar Hasan: A Rule Engine for Query Transformation in Starburst and IBM DB2 C/S DBMS. ICDE 1997]







### Standardization and Simplification

#### Normal Forms of Boolean Expressions

- Conjunctive normal form (P<sub>11</sub> OR ... OR P<sub>1n</sub>) AND ... AND (P<sub>m1</sub> OR ... OR P<sub>mp</sub>)
- Disjunctive normal form (P<sub>11</sub> AND ... AND P<sub>1q</sub>) OR ... OR (P<sub>r1</sub> AND ... AND P<sub>rs</sub>)

#### Transformation Rules for Boolean Expressions

| Rule Name             | Examples                                                                     |  |
|-----------------------|------------------------------------------------------------------------------|--|
| Commutativity rules   | $A OR B \Leftrightarrow B OR A$                                              |  |
|                       | A AND B $\Leftrightarrow$ B AND A                                            |  |
| Associativity rules   | (A OR B) OR C $\Leftrightarrow$ A OR (B OR C)                                |  |
|                       | (A AND B) AND C $\Leftrightarrow$ A AND (B AND C)                            |  |
| Distributivity rules  | A OR (B AND C) $\Leftrightarrow$ (A OR B) AND (A OR C)                       |  |
|                       | A AND (B OR C) $\Leftrightarrow$ (A AND B) OR (A AND C)                      |  |
| De Morgan's rules     | NOT (A AND B) $\Leftrightarrow$ NOT (A) OR NOT (B)                           |  |
|                       | NOT (A OR B) $\Leftrightarrow$ NOT (A) AND NOT (B)                           |  |
| Double-negation rules | $NOT(NOT(A)) \Leftrightarrow A$                                              |  |
| Idempotence rules     | $A 	ext{ OR } A \Leftrightarrow A 	ext{ } A 	ext{ AND } A \Leftrightarrow A$ |  |
|                       | A OR NOT(A) $\Leftrightarrow$ TRUE A AND NOT (A) $\Leftrightarrow$ FALSE     |  |
|                       | A AND (A OR B) $\Leftrightarrow$ A A OR (A AND B) $\Leftrightarrow$ A        |  |
|                       | A OR FALSE $\Leftrightarrow$ A A OR TRUE $\Leftrightarrow$ TRUE              |  |
|                       | A AND FALSE ⇔ FALSE                                                          |  |



### Standardization and Simplification, cont.

- Elimination of Common Subexpressions
  - $(A_1=a_{11} \text{ OR } A_1=a_{12}) \text{ AND } (A_1=a_{12} \text{ OR } A_1=a_{11}) \rightarrow A_1=a_{11} \text{ OR } A_1=a_{12}$
- Propagation of Constants

■ A ≥ B AND B = 
$$7 \rightarrow$$
 A ≥  $7 \rightarrow$  AND B =  $7 \rightarrow$   $(\sigma_{a>0}(R)) \bowtie_{a=b}(\sigma_{b>0}(S))$ 

$$R\bowtie_{a=b}(\sigma_{b>0}(S)) \rightarrow (\sigma_{a>0}(R))\bowtie_{a=b}(\sigma_{b>0}(S))$$

- Detection of Contradictions
  - $A \ge B$  AND B > C AND  $C \ge A \rightarrow A > A \rightarrow FALSE$
- Use of Constraints
  - A is primary key/unique:  $\pi_A \rightarrow$  no duplicate elimination necessary
  - Rule MAR\_STATUS = 'married' → TAX\_CLASS ≥ 3: (MAR\_STATUS = 'married' AND TAX\_CLASS = 1) → FALSE
- Elimination of Redundancy (set semantics)
  - $R\bowtie R \rightarrow R$ ,  $R\cup R \rightarrow R$ ,  $R-R \rightarrow \emptyset$
  - $R\bowtie(\sigma_pR)$   $\rightarrow \sigma_pR$ ,  $R\cup(\sigma_pR)$   $\rightarrow R$ ,  $R-(\sigma_pR)$   $\rightarrow \sigma_{-p}R$
  - $(\sigma_{p1}R)\bowtie(\sigma_{p2}R) \rightarrow \sigma_{p1\wedge p2}R$ ,  $(\sigma_{p1}R)\cup(\sigma_{p2}R) \rightarrow \sigma_{p1\vee p2}R$



### **Query Unnesting**

[Won Kim: On Optimizing an SQL-like Nested Query. **ACM Trans. Database Syst. 1982**]



- Case 1: Type-A Nesting
  - Inner block is not correlated and computes an aggregate
  - Solution: Compute the aggregate once and insert into outer query

```
SELECT OrderNo FROM Order
WHERE ProdNo =
   (SELECT MAX(ProdNo)
    FROM Product WHERE Price<100)</pre>
```

```
$X = SELECT MAX(ProdNo)
FROM Product WHERE Price<100

SELECT OrderNo FROM Order
WHERE ProdNo = $X</pre>
```

- Case 2: Type-N Nesting
  - Inner block is not correlated and returns a set of tuples
  - Solution: Transform into a symmetric form (via join)

```
SELECT OrderNo FROM Order
WHERE ProdNo IN
(SELECT ProdNo
FROM Product WHERE Price<100)
```

SELECT OrderNo
FROM Order O, Product P
WHERE O.ProdNo = P.ProdNo
AND P.Price < 100





### Query Unnesting, cont.

[Won Kim: On Optimizing an SQL-like Nested Query. **ACM Trans. Database Syst. 1982**]



- Case 3: Type-J Nesting
  - Un-nesting of correlated sub-queries w/o aggregation

```
SELECT OrderNo FROM Order 0
WHERE ProdNo IN
  (SELECT ProdNo FROM Project P
  WHERE P.ProjNo = 0.OrderNo
  AND P.Budget > 100,000)
```



FROM Order O, Project P
WHERE O.ProdNo = P.ProdNo
AND P.ProjNo = O.OrderNo
AND P.Budget > 100,000

- Case 4: Type-JA Nesting
  - Un-nesting of correlated sub-queries w/ aggregation

```
SELECT OrderNo FROM Order 0
WHERE ProdNo IN
  (SELECT MAX(ProdNo)
   FROM Project P
  WHERE P.ProjNo = 0.0rderNo
   AND P.Budget > 100,000)
```



Further un-nesting via case 3 and 2

SELECT OrderNo FROM Order 0
WHERE ProdNo IN
 (SELECT ProdNo FROM
 (SELECT ProjNo, MAX(ProdNo)
 FROM Project
 WHERE Budget > 100.000
 GROUP BY ProjNo) P
WHERE P.ProjNo = 0.0rderNo)





### **Unnesting Arbitrary Queries**

[Thomas Neumann, Alfons Kemper: Unnesting Arbitrary Queries. **BTW 2015**]



#### Overview

- General transformation for elimination of dependent joins
- Guaranteed lower or equal cost / reuse of subsequent rewrites

#### #1 Simple Unnesting

- Move dependent predicates up as far as possible
- Transforms dependent into regular join if adjacent

#### #2 General Unnesting

$$T_1 \bowtie_p T_2 \equiv T_1 \bowtie_{p \wedge T_1 =_{\mathcal{A}(D)} D} (D \bowtie T_2)$$

 $D := \Pi_{\mathcal{F}(T_2) \cap \mathcal{A}(T_1)}(T_1).$ 

- Translate dependent join into regular and deduplicated dependent join
- Push down dependent join,
   turn dependent join over base relation into regular join
- Specific optimizations (e.g., sideways information passing), other rewrites





### Selections and Projections

#### Example Transformation Rules

- 1) Grouping of Selections
- $\begin{array}{ccc}
  \sigma_{x>y} & \sigma_{x>y \wedge p=q} \\
  \sigma_{p=q} & R
  \end{array}$
- 2) Grouping of Projections



3) Pushdown of Selections



4) Pushdown of Projections



#### Restructuring Algorithm

- #1 Split n-ary joins into binary joins
- #2 Split multi-term selections
- **#3** Push-down selections as far as possible
- #4 Group adjacent selections again
- #5 Push-down projections as far as possible

Input: Standardized, simplified, and un-nested query graph

Output: Restructured query graph





### **Example Query Restructuring**

**SELECT** Name, count FROM TopScorer WHERE count>=4 AND Pos='FW'

CREATE VIEW TopScorer AS **SELECT** P.Name, P.Pos, count(\*) FROM Players P, Goals G WHERE P.Pid=G.Pid AND G.GOwn=FALSE **GROUP BY** P.Name, P.Pos ORDER BY count(\*) DESC

Additional metadata: P.Name is unique









# Cardinality and Cost Estimation





#### **Overview Cost Models**

[Guido Moerkotte, Building Query Compilers (Under Construction), **2020**, <a href="http://pi3.informatik.uni-mannheim.de/">http://pi3.informatik.uni-mannheim.de/</a>

 $C = C_{I/O} + C_{CPU}$ 

 $C = \max(C_{I/O}, C_{CPII})$ 

~moer/querycompiler.pdf]



#### Overall Cost Models

- I/O costs (number of read pages, tuples)
- Computation costs (CPU costs, tuples)
- Others: Memory, Energy
- Aggregate operator costs (specific vs general) w/ awareness of parallelism

#### Cost Model Inputs

- Base relations: number of pages, number of tuples, avg tuple length
- Intermediates: number of tuples → Cardinality estimation

#### Common Assumptions

- No Skew: uniform value distributions of attributes
- Independence: no correlation among attributes
  - → underestimation → poor plans







### Cardinality and Selectivity

[Guido Moerkotte, Building Query Compilers, 2020]



- Cardinality |R|
  - Size of intermediates in number of tuples (sometimes distinct items)
  - Examples:  $|\sigma_p R|$ ,  $|R \bowtie S|$
- Selectivity s(p)
  - Fraction of tuples that pass operator, bounded by [0,1]
  - "Highly-selective" operator  $\rightarrow$  low selectivity s(p)
  - Example Selection

$$s(p) = \frac{|\sigma_p R|}{|R|} \qquad |\sigma_p R| = s(p) \cdot |R|$$



$$\left|\sigma_p R\right| = s(p) \cdot |R|$$

Example Join

$$s(p) = \frac{\left| R \bowtie_{p} S \right|}{\left| R \times S \right|} = \frac{\left| R \bowtie_{p} S \right|}{\left| R \right| \cdot \left| S \right|}$$



$$|R \bowtie_p S| = s(p) \cdot |R| \cdot |S|$$





### **Cardinality Propagation**

[Guido Moerkotte, Building Query Compilers, **2020**]



#### Operator-level Propagation

• Selection: 
$$|\sigma_p R| = s(p) \cdot |R|$$

■ Join: 
$$|R \bowtie_p S| = s(p) \cdot |R| \cdot |S|$$

• Sorting: 
$$|\tau_A(R)| = |R|$$

• Group-by: 
$$\left|\gamma_{G;f}(R)\right| = \prod_{g \in G} d_g(R)$$

• Cross product: 
$$|R \times S| = |R| \cdot |S|$$

• Projection: 
$$|\pi(R)| = |R|$$

• Union All: 
$$|R \cup S| = |R| + |S|$$



Recursive propagation over query tree

#### Error Propagation

 Cardinality estimation errors propagate exponentially through joins (max error)

#### [Yannis E. Ioannidis, Stavros Christodoulakis: On the Propagation of Errors in the Size of Join Results. **SIGMOD 1991**]



#### Q-Error

 Multiplicative error, produced plans at most q<sup>4</sup> worse than optimum [Guido Moerkotte, Thomas Neumann, Gabriele Steidl: Preventing Bad Plans by Bounding the Impact of Cardinality Estimation Errors. **PVLDB 2(1) 2009**]







### **Cardinality Propagation**

[Patricia G. Selinger et al.: Access Path Selection in a Relational Database Management System. **SIGMOD 1979**]



#### Equality Predicates

Based on histograms and #distinct item estimators, otherwise default 1/10

• Constant predicate:  $s(A = c) = \frac{1}{dA}$ 

//assumes uniformity

■ Binary predicate: 
$$s(A = B) = \frac{1}{\max(d_A, d_B)}$$

//assumes matching domains

#### **Range Predicates**

One-sided:

$$s(A > c) = \frac{\max_{A} - c}{\max_{A} - \min_{A}}$$

Two-sided:

$$s(c_1 \le A \le c_2) = \frac{c_2 - c_1}{\max_A - \min_A}$$

Composite Predicates (→ sparsity in ML systems)

■ Negation (NOT):  $s(\neg p) = 1 - s(p)$ 

//assumes independence • Conjunction (AND):  $s(p_1 \land p_2) = s(p_1) \cdot s(p_2)$ 

■ Disjunction (OR):  $s(p_1 \lor p_2) = s(p_1) + s(p_2) - s(p_1) \cdot s(p_2)$ 





### **Cardinality Estimation**

[Guido Moerkotte, Building Query Compilers, **2020**]



#### Overview

- Min, Max, #distinct items d crucial for cardinality estimation
- Exact frequency distribution  $(v_1, f_1), (v_2, f_2), \dots, (v_d, f_d)$  too detailed

#### Equi-width Histogram

- Divide min-max range into B buckets
- Store sum frequency, #distinct

#### Equi-height Histogram

- Divide range into variable buckets with constant frequency
- E.g., via quantiles + duplicate handling



#### Other Histograms

 Homogeneous/heterogeneous histograms w/ bounded error [Carl-Christian Kanne, Guido Moerkotte: Histograms reloaded: the merits of bucket diversity. **SIGMOD 2010**]







#### Number of Distinct Items

#### Problem

- Estimate # distinct items in a dataset / data stream w/ limited memory
- Support for set operations (union, intersect, difference)

#### K-Minimum Values (KMV)

- Hash values  $d_i$  to  $h_i \in [0, M]$
- Domain  $M = O(D^2)$  to avoid collisions  $\rightarrow O(k \log D)$  space
- Store k minimum hash values (e.g., via priority queue) in normalized form  $h_i \in [0,1]$
- Basic estimator:
- Unbiased estimator:



$$\widehat{D}_k^{BE}=k/U_{(k)}$$
 Example:  $\widehat{D}_k^{UB}=(k-1)/U_{(k)}$  16.67 vs 12.5



[Kevin S. Beyer, Peter J. Haas, Berthold Reinwald, Yannis Sismanis, Rainer Gemulla: On synopses for distinct-value estimation under multiset operations. **SIGMOD 2007**]





### Number of Distinct Items, cont.

#### KMV Set Operations

- Union and intersection directly on partition synopses
- Difference via Augmented KMV (AKMV) that include counters of multiplicities of k-minimum values



#### HyperLogLog

- Hash values and maintain maximum # of leading zeros p  $\rightarrow \widehat{D} = 2^p$
- Stochastic averaging over M streams (p maintained in M registers)
- HyperLogLog++
- Updatable HyperLogLog, with sampling for multi-column estimates

[P. Flajolet, Éric Fusy, O. Gandouet, and F. Meunier: Hyperloglog: The analysis of a near-optimal cardinality estimation algorithm. **AOFA 2007**]



[Stefan Heule, Marc Nunkesser, Alexander Hall: HyperLogLog in practice: algorithmic engineering of a state of the art cardinality estimation algorithm. **EDBT 2013**]



[Michael J. Freitag, Thomas Neumann: Every Row Counts: Combining Sketches and Sampling for Accurate Group-By Result Estimates. **CIDR 2019**]







### Sample-based Cardinality Estimation

- **Overview and Problems** 
  - Sample subset S with  $|S| \ll N$  of tuples and estimate #distinct items d
  - Naïve estimators:  $d_S \rightarrow$  underestimate, or  $d_S \cdot N/|S| \rightarrow$  overestimate
- #1 Sample-based Estimators
  - "Generalized jackknife" estimator

squared coefficient simple estimator

of variation 
$$\hat{d}_{\mathrm{uj}1} = \left(1 - (1 - q)(h_1/|\mathcal{S}|)\right)^{-1} d_{\mathcal{S}}$$

mator 
$$\hat{d}_{hybrid} = \begin{cases} \hat{d}_{uj2}, & 0 < \hat{\gamma}^2(\hat{d}_{uj1}) < \alpha_1 \\ \hat{d}_{uj2a}, & \alpha_1 \leq \hat{\gamma}^2(\hat{d}_{uj1}) < \alpha_2 \\ \hat{d}_{Sh3}, & otherwise \end{cases}$$
 [P. J. Haas and L. Stokes: Estimating the

$$0 < \hat{\gamma}^2(\hat{d}_{uj1}) < \alpha_1$$

$$\alpha_1 \le \hat{\gamma}^2(\hat{d}_{uj1}) < \alpha_2$$
otherwise

$$\hat{d} = d_S + K \cdot f_1 / N$$



J. Amer. Statist. Assoc., 93(444), 1998]

Number of Classes in a Finite Population,

- Guaranteed error estimator (GEE)
  - Basic and adaptive estimators



[Moses Charikar, Surajit Chaudhuri, Rajeev Motwani, Vivek R. Narasayya: Towards Estimation Error Guarantees for Distinct Values. PODS 2000]

$$\hat{d} = \sqrt{\frac{N}{|S|}} f_1 + \sum_{i=2}^{|S|} f_i$$





### Sample-based Cardinality Estimation, cont.

#### Sample Views

- Random sampling + materialized views w/ statistical guarantees
- Query feedback (actual card)



[Per-Åke Larson, Wolfgang Lehner, Jingren Zhou, Peter Zabback: Cardinality estimation using sample views with quality assurance. **SIGMOD 2007**]

#### Index-based Join Sampling

- Joins on samples might result in Ø
- Use existing indexes to explore intermediate results bottom-up



[Viktor Leis, Bernhard Radke, Andrey Gubichev, Alfons Kemper, Thomas Neumann: Cardinality Estimation Done Right: Index-Based Join Sampling. **CIDR 2017**]









### **Excursus: Robust Query Optimization**

#### Overview Picasso Project

- Plan diagram: plan choice over selectivity ranges
- Cost diagram: estimated plan execution costs over ranges







#### Plan Switch Points



#### Venetian Blinds



#### **Footprint Pattern**



#### Towards Robust Optimization



[Naveen Reddy, Jayant R. Haritsa: Analyzing Plan Diagrams of Database Query Optimizers. **VLDB 2005**]







### Excursus: Robust Query Optimization, cont.



[Harish Doraiswamy, Pooja N. Darera, Jayant R. Haritsa: On the Production of Anorexic Plan Diagrams. **VLDB 2007**]



[Harish Doraiswamy, Pooja N. Darera, Jayant R. Haritsa: Identifying robust plans through plan diagram reduction. **PVLDB 1(1) 2008**]



[M. Abhirama, Sourjya Bhaumik, Atreyee Dey, Harsh Shrimal, Jayant R. Haritsa: On the Stability of Plan Costs and the Costs of Plan Stability. **PVLDB 3(1) 2010**]



[Goetz Graefe, Wey Guy, Harumi A. Kuno, Glenn N. Paulley: Robust Query Processing (Dagstuhl Seminar 12321). **Dagstuhl Reports 2(8) 2012**]



[Anshuman Dutt, Jayant R. Haritsa: Plan bouquets: query processing without selectivity estimation. **SIGMOD 2014**]



[Jayant R. Haritsa: Robust Query Processing: Mission Possible. PVLDB 13(12) 2020]



**09 Adaptive Query Processing** 

(learned cardinalities, re-optimization)





## Join Enumeration / Ordering





### Plan Optimization Overview

#### **Plan Generation Overview**

- Selection of physical access path and plan operators
- Selection of execution order of plan operators (joins, group-by)
- Input: logical query plan → Output: optimal physical query plan
- Costs of guery optimization should not exceed yielded improvements

#### **Interesting Properties**

- Interesting orders (sorted vs unsorted), partitioning (e.g., join column), pipelining
- Avoid unnecessary sorting operations

[lhab F. Ilyas, Jun Rao, Guy M. Lohman, Dengfeng Gao, Eileen Tien Lin: Estimating Compilation Time of a Query Optimizer. SIGMOD 2003]



#### Simple Cost Functions

- Join-specific cost functions (Cnlj, Chj, Csmj)
- Cardinalities Cout

$$C_{\text{out}}(T) = \begin{cases} 0 & \text{if } T \text{ is a single relation} \\ |T| + C_{\text{out}}(T_1) + C_{\text{out}}(T_2) & \text{if } T = T_1 \bowtie T_2 \end{cases}$$

[Guido Moerkotte, Building Query Compilers, 2020]







### Query and Plan Types

[Guido Moerkotte, Building Query Compilers, **2020**]



#### Query Types

Nodes: Tables

Edges: Join conditions

 Determine hardness of query optimization (w/o cross products)





#### Join Tree Types / Plan Types

Data flow graph of tables and joins (logical/physical query trees)

Chains

Edges: data dependencies (fixed execution order: bottom-up)

**Left-Deep Tree** 



**Right-Deep Tree** 



**Zig-Zag Tree** 



**Bushy Tree** 







### Join Ordering Problem

[Guido Moerkotte, Building Query Compilers, **2020**]



#### Join Ordering

- Given a join query graph, find the optimal join ordering
- In general, NP-hard; but polynomial algorithms exist for special cases

#### Search Space

- Dependent on query and plan types
- Note: if we allow cross products similar to cliques (fully connected)

|    | Chain (no CP)    |                   | Star (no CP)            |               | Clique / CP (cross product) |               |                     |           |
|----|------------------|-------------------|-------------------------|---------------|-----------------------------|---------------|---------------------|-----------|
|    | left-<br>deep    | zig-zag           | bushy                   | left-<br>deep | zig-zag/<br>bushy           | left-<br>deep | zig-zag             | bushy     |
| n  | 2 <sup>n-1</sup> | 2 <sup>2n-3</sup> | 2 <sup>n-1</sup> C(n-1) | 2(n-1)!       | 2 <sup>n-1</sup> (n-1)!     | n!            | 2 <sup>n-2</sup> n! | n! C(n-1) |
| 5  | 16               | 128               | 224                     | 48            | 384                         | 120           | 960                 | 1,680     |
| 10 | 512              | ~131K             | ~2.4M                   | ~726K         | ~186M                       | ~3.6M         | ~929M               | ~17.6G    |

C(n) ... Catalan Numbers





### Join Order Search Strategies

Tradeoff: Optimal (or good) plan vs compilation time



- #1 Naïve Full Enumeration
  - Infeasible for reasonably large queries (long tail up to 1000s of joins)
- #2 Exact Dynamic Programming / Memoization
  - Guarantees optimal plan, often too expensive (beyond 20 relations)
  - Bottom-up vs top-down approaches
- #3 Greedy / Heuristic Algorithms
- #4 Approximate Algorithms
  - E.g., Genetic algorithms, simulated annealing, MIL programming



- Exact optimization (DPSize) if < 12 relations (gego threshold)
- Genetic algorithm for larger queries
- Join methods: NLJ, SMJ, HJ



[Nicolas Bruno, César A. Galindo-Legaria, Milind Joshi: Polynomial heuristics for query optimization. **ICDE 2010**]





### **Greedy Join Ordering**

#### Star Schema Benchmark



#### Example

■ Part  $\bowtie$  Lineorder  $\bowtie$  Supplier  $\bowtie$   $\sigma$ (Customer)  $\bowtie$   $\sigma$ (Date), left-deep plans

| # | Plan                    | Costs |
|---|-------------------------|-------|
| 1 | Lineorder ⋈ Part        | 30M   |
|   | Lineorder ⋈ Supplier    | 20M   |
|   | Lineorder ⋈ σ(Customer) | 90K   |
|   | Lineorder ⋈ σ(Date)     | 40K   |
|   | Part ⋈ Customer         | N/A   |
|   |                         | •••   |

| # | Plan                                                                             | Costs |
|---|----------------------------------------------------------------------------------|-------|
| 3 | ((Lineorder $\bowtie \sigma(Date)$ ) $\bowtie \sigma(Customer)$ ) $\bowtie Part$ | 120M  |
|   | ((Lineorder ⋈ σ(Date)) ⋈<br>σ(Customer)) ⋈ Supplier                              | 105M  |
|   |                                                                                  |       |
| 4 | (((Lineorder ⋈ σ(Date)) ⋈<br>σ(Customer)) ⋈ Supplier) ⋈ Part                     | 135M  |

| 2 | (Lineorder ⋈ σ(Date)) ⋈ Part                                | 150K |
|---|-------------------------------------------------------------|------|
|   | (Lineorder $\bowtie \sigma(Date)$ ) $\bowtie$ Supplier      | 100K |
|   | (Lineorder $\bowtie \sigma(Date)) \bowtie \sigma(Customer)$ | 75K  |

Note: Simple O(n²) algorithm for left-deep trees; O(n³) algorithms for bushy trees existing (e.g., GOO)





### Greedy Join Ordering, cont.

[Guido Moerkotte, Building Query Compilers, **2020**]



- Basic Algorithms
  - GreedyJO-1: sort by relation weights (e.g., card)
  - GreedyJO-2: greedy selection of next best relation
  - GreedyJO-3: Greedy-JO-2 w/ start from each relation

Previous example as a hybrid w/ O(n²)

GOOAlgorithm

```
GOO(\{R_1,\ldots,R_n\}) // Greedy Operator Ordering
Input: a set of relations to be joined
Output: join tree
Trees := \{R_1,\ldots,R_n\}
while (|\text{Trees}| != 1) \{
find T_i,T_j \in \text{Trees} such that i \neq j, |T_i \bowtie T_j| is minimal among all pairs of trees in Trees
Trees -=T_i;
Trees -=T_j;
Trees +=T_i \bowtie T_j;
= \text{Leonidas Fegaras: A New}
Heuristic for Optimizing Large Queries. DEXA 1998]
```



return the tree contained in Trees;





### Dynamic Programming Join Ordering

- Exact Enumeration via Dynamic Programming
  - #1: Optimal substructure (Bellman's Principle of Optimality)
  - #2: Overlapping subproblems allow for memorization
- Bottom-Up (Dynamic Programming)
  - Split in independent sub-problems (optimal plan per set of quantifiers and interesting properties), solve sub-problems, combine solutions
  - Algorithms: DPsize, DPsub, DPcpp
- Top-Down (Memoization)
  - Recursive generation of join trees
     w/ memorization and pruning
  - Algorithms: Cascades, MinCutLazy, MinCutAGat, MinCutBranch

[Guido Moerkotte, Thomas Neumann: Analysis of Two Existing and One New Dynamic Programming Algorithm for the Generation of Optimal Bushy Join Trees without Cross Products. **VLDB 2006**]



[Goetz Graefe: The Cascades Framework for Query Optimization. IEEE Data Eng. Bull. 18(3) 1995]



[Pit Fender: Algorithms for Efficient Top-Down Join Enumeration. **PhD Thesis, University of Mannheim 2014**]







### Dynamic Programming Join Ordering, cont.

#### DPSize Algorithm

- Pioneered by Pat Selinger et al.
- Implemented in IBM DB2, Postgres, etc

15: return  $Memo[\{q_1, \cdots, q_N\}]$ ;

[Patricia G. Selinger et al.: Access Path Selection in a Relational Database Management System. **SIGMOD 1979**]



```
Algorithm 1 SerialDPEnum
Input: a connected query graph with quantifiers q_1, \dots, q_N
Output: an optimal bushy join tree
 1: for i \leftarrow 1 to N
     Memo[\{q_i\}] \leftarrow CreateTableAccessPlans(q_i);
     PrunePlans(Memo[\{q_i\}]);
                                                            [Wook-Shin Han, Wooseong
 4: for S \leftarrow 2 to N
                                                      Kwak, Jinsoo Lee, Guy M. Lohman,
     for smallSZ \leftarrow 1 to |S/2|
                                                        Volker Markl: Parallelizing query
 6:
       largeSZ \leftarrow S - smallSZ:
       for each smallQS of size smallSZ
                                                        optimization. PVLDB 1(1) 2008]
 8:
        for each largeQS of size largeSZ
 9:
         if smallQS \cap largeQS \neq \emptyset then
                                                                    disjoint
10:
           continue: /*discarded by the disjoint filter*,
11:
          if not(smallQS connected to largeQS) then
                                                                  connected
12:
           continue: /*discarded by the connectivity filter*
13:
          ResultingPlans \leftarrow CreateJoinPlans(
               Memo[smallQS], Memo[largeQS]);
14:
          PrunePlans(Memo[smallQS \cup largeQS], ResultingPlans);
```





### Dynamic Programming Join Ordering, cont.

#### **DPSize Example**

Simplified: no interesting properties

| Į | 1 | + | Q | (1 |
|---|---|---|---|----|
|   |   |   |   |    |

|      |                     | Q2               | Plan                   |
|------|---------------------|------------------|------------------------|
| Q1   | Plan                |                  |                        |
| {C}  | Tbl, <del>IX</del>  | {C,L}            | L⋈C, <del>C⋈L</del>    |
|      |                     | {D,L}            | L⋈D, <del>D⋈L</del>    |
| {D}  | <del>Tbl</del> , IX | ( ) ,            | ŕ                      |
| (1.) |                     | {L,P}            | <del>L⋈P</del> , P⋈L   |
| {L}  | •••                 | {L,S}            | <del>L⋈S</del> , S⋈L   |
| {P}  |                     | (L,J)            | <del>2743</del> , 374L |
|      |                     | <del>{C,D}</del> | <del>N/A</del>         |
| {S}  | •••                 |                  |                        |
|      |                     | • • •            | •••                    |

Q1+Q2, Q2+Q1

| Q3      | Plan                                                                                                                           |
|---------|--------------------------------------------------------------------------------------------------------------------------------|
| {C,D,L} | $(L\bowtie C)\bowtie D$ , $\frac{D\bowtie (L\bowtie C)}{(L\bowtie D)\bowtie C}$ , $\frac{C\bowtie (L\bowtie D)}{(L\bowtie D)}$ |
| {C,L,P} | $\frac{(L\bowtie C)\bowtie P}{P}$ , $P\bowtie (L\bowtie C)$ , $\frac{(P\bowtie L)\bowtie C}{P}$                                |
| {C,L,S} |                                                                                                                                |
| {D,L,P} | •••                                                                                                                            |
| {D,L,S} | •••                                                                                                                            |
| {L,P,S} | •••                                                                                                                            |

Q1+Q3, Q2+Q2, Q3+Q1

| Q4        | Plan                                   |
|-----------|----------------------------------------|
| {C,D,L,P} | <del>((L⋈C)⋈D)⋈P,</del><br>P⋈((L⋈C)⋈D) |
| {C,D,L,S} |                                        |
| {C,L,P,S} |                                        |
| {D,L,P,S} |                                        |

Q1+Q4, Q2+Q3, Q3+Q2, Q4+Q1

| Q5          | Plan |
|-------------|------|
| {C,D,L,P,S} |      |





### **Graceful Degradation**

#### Problem Bottom-Up

- Until end of optimization no valid full QEP created (no anytime algorithm)
- Fallback: resort to heuristic if ran out of memory / time budget

#### #1 Query Simplification

- Simplify query with heuristics until solvable via dynamic programming
- Choose plans to avoid, not join

[Thomas Neumann: Query simplification: graceful degradation for join-order optimization. **SIGMOD 2009**]



#### #2 Search Space Linearization

 Small queries: count connected subgraphs, optimized exactly

DP

[Thomas Neumann, Bernhard Radke: Adaptive Optimization of Very Large Join Queries. **SIGMOD 2018**]



- Medium queries (<100): restrict O(n³)</li>
   algorithm to consider connected sub-chains of linear relation ordering
- Large queries: greedy algorithm, then Medium on sub-trees of size K





### Join Order Benchmark (JOB)

- Data: Internet Movie Data Bases (IMDB)
- Workload: 33 query templates, 2-6 variants / 3-16 joins per query





[Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz, Alfons Kemper, Thomas Neumann: How Good Are Query Optimizers, Really? PVLDB 9(3) 2015]





### Summary and Q&A

- Query Rewriting and Unnesting
- Cardinality and Cost Estimation
- Join Enumeration / Ordering
- Next Lectures (Part B)
  - 09 Adaptive Query Processing [Dec 16]
- Next Lectures (Part C)
  - 10 Cloud Database Systems [Jan 13]
  - 11 Modern Concurrency Control [Jan 20]
  - 12 Modern Storage and HW Accelerators [Jan 27]

