

Architecture of DB Systems 08 Query Optimization

Matthias Boehm

Graz University of Technology, Austria Computer Science and Biomedical Engineering Institute of Interactive Systems and Data Science BMK endowed chair for Data Management

Last update: Dec 09, 2020

Announcements/Org

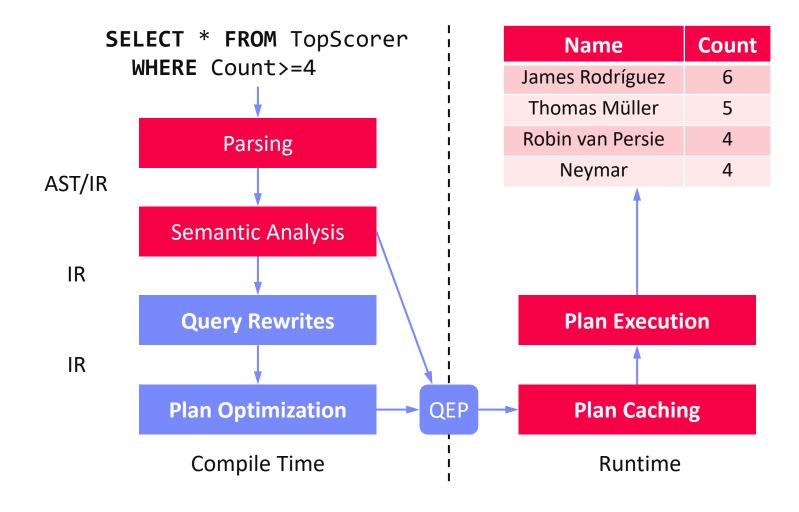
#1 Video Recording

Optional attendance (independent of COVID)

#2 COVID-19 Restrictions (HS i5)

■ Corona Traffic Light: RED → Orange

Recap: Overview Query Processing



Agenda

- Query Rewriting and Unnesting
- Cardinality and Cost Estimation
- Join Enumeration / Ordering

Query Rewriting and Unnesting

Query Rewrites

- Query Rewriting
 - Rewrite query into semantically equivalent form that may be processed more efficiently or give the optimizer more freedom
 - #1 Same query can be expressed differently, avoid hand-tuning
 - #2 Complex queries may have redundancy
- A Simple Example
 - Catalog meta data: custkey is unique

SELECT DISTINCT custkey, name **FROM** TPCH.Customer

rewrite

SELECT custkey, name **FROM** TPCH.Customer

20+ years of experience on query rewriting

[Hamid Pirahesh, T. Y. Cliff Leung, Waqar Hasan: A Rule Engine for Query Transformation in Starburst and IBM DB2 C/S DBMS. ICDE 1997]

Standardization and Simplification

Normal Forms of Boolean Expressions

- Conjunctive normal form (P₁₁ OR ... OR P_{1n}) AND ... AND (P_{m1} OR ... OR P_{mp})
- Disjunctive normal form (P₁₁ AND ... AND P_{1q}) OR ... OR (P_{r1} AND ... AND P_{rs})

Transformation Rules for Boolean Expressions

Rule Name	Examples	
Commutativity rules	$A OR B \Leftrightarrow B OR A$	
	A AND B \Leftrightarrow B AND A	
Associativity rules	(A OR B) OR C \Leftrightarrow A OR (B OR C)	
	(A AND B) AND C \Leftrightarrow A AND (B AND C)	
Distributivity rules	A OR (B AND C) \Leftrightarrow (A OR B) AND (A OR C)	
	A AND (B OR C) \Leftrightarrow (A AND B) OR (A AND C)	
De Morgan's rules	NOT (A AND B) \Leftrightarrow NOT (A) OR NOT (B)	
	NOT (A OR B) \Leftrightarrow NOT (A) AND NOT (B)	
Double-negation rules	$NOT(NOT(A)) \Leftrightarrow A$	
Idempotence rules	$A ext{ OR } A \Leftrightarrow A ext{ } A ext{ AND } A \Leftrightarrow A$	
	A OR NOT(A) \Leftrightarrow TRUE A AND NOT (A) \Leftrightarrow FALSE	
	A AND (A OR B) \Leftrightarrow A A OR (A AND B) \Leftrightarrow A	
	A OR FALSE \Leftrightarrow A A OR TRUE \Leftrightarrow TRUE	
	A AND FALSE ⇔ FALSE	

Standardization and Simplification, cont.

- Elimination of Common Subexpressions
 - $(A_1=a_{11} \text{ OR } A_1=a_{12}) \text{ AND } (A_1=a_{12} \text{ OR } A_1=a_{11}) \rightarrow A_1=a_{11} \text{ OR } A_1=a_{12}$
- Propagation of Constants

■ A ≥ B AND B =
$$7 \rightarrow$$
 A ≥ $7 \rightarrow$ AND B = $7 \rightarrow$ $(\sigma_{a>0}(R)) \bowtie_{a=b}(\sigma_{b>0}(S))$

$$R\bowtie_{a=b}(\sigma_{b>0}(S)) \rightarrow (\sigma_{a>0}(R))\bowtie_{a=b}(\sigma_{b>0}(S))$$

- Detection of Contradictions
 - $A \ge B$ AND B > C AND $C \ge A \rightarrow A > A \rightarrow FALSE$
- Use of Constraints
 - A is primary key/unique: $\pi_A \rightarrow$ no duplicate elimination necessary
 - Rule MAR_STATUS = 'married' → TAX_CLASS ≥ 3: (MAR_STATUS = 'married' AND TAX_CLASS = 1) → FALSE
- Elimination of Redundancy (set semantics)
 - $R\bowtie R \rightarrow R$, $R\cup R \rightarrow R$, $R-R \rightarrow \emptyset$
 - $R\bowtie(\sigma_pR)$ $\rightarrow \sigma_pR$, $R\cup(\sigma_pR)$ $\rightarrow R$, $R-(\sigma_pR)$ $\rightarrow \sigma_{-p}R$
 - $(\sigma_{p1}R)\bowtie(\sigma_{p2}R) \rightarrow \sigma_{p1\wedge p2}R$, $(\sigma_{p1}R)\cup(\sigma_{p2}R) \rightarrow \sigma_{p1\vee p2}R$

Query Unnesting

[Won Kim: On Optimizing an SQL-like Nested Query. **ACM Trans. Database Syst. 1982**]

- Case 1: Type-A Nesting
 - Inner block is not correlated and computes an aggregate
 - Solution: Compute the aggregate once and insert into outer query

```
SELECT OrderNo FROM Order
WHERE ProdNo =
   (SELECT MAX(ProdNo)
    FROM Product WHERE Price<100)</pre>
```

```
$X = SELECT MAX(ProdNo)
FROM Product WHERE Price<100

SELECT OrderNo FROM Order
WHERE ProdNo = $X</pre>
```

- Case 2: Type-N Nesting
 - Inner block is not correlated and returns a set of tuples
 - Solution: Transform into a symmetric form (via join)

```
SELECT OrderNo FROM Order
WHERE ProdNo IN
(SELECT ProdNo
FROM Product WHERE Price<100)
```

SELECT OrderNo
FROM Order O, Product P
WHERE O.ProdNo = P.ProdNo
AND P.Price < 100

Query Unnesting, cont.

[Won Kim: On Optimizing an SQL-like Nested Query. **ACM Trans. Database Syst. 1982**]

- Case 3: Type-J Nesting
 - Un-nesting of correlated sub-queries w/o aggregation

```
SELECT OrderNo FROM Order 0
WHERE ProdNo IN
  (SELECT ProdNo FROM Project P
  WHERE P.ProjNo = 0.OrderNo
  AND P.Budget > 100,000)
```


FROM Order O, Project P
WHERE O.ProdNo = P.ProdNo
AND P.ProjNo = O.OrderNo
AND P.Budget > 100,000

- Case 4: Type-JA Nesting
 - Un-nesting of correlated sub-queries w/ aggregation

```
SELECT OrderNo FROM Order 0
WHERE ProdNo IN
  (SELECT MAX(ProdNo)
   FROM Project P
  WHERE P.ProjNo = 0.0rderNo
   AND P.Budget > 100,000)
```


Further un-nesting via case 3 and 2

SELECT OrderNo FROM Order 0
WHERE ProdNo IN
 (SELECT ProdNo FROM
 (SELECT ProjNo, MAX(ProdNo)
 FROM Project
 WHERE Budget > 100.000
 GROUP BY ProjNo) P
WHERE P.ProjNo = 0.0rderNo)

Unnesting Arbitrary Queries

[Thomas Neumann, Alfons Kemper: Unnesting Arbitrary Queries. **BTW 2015**]

Overview

- General transformation for elimination of dependent joins
- Guaranteed lower or equal cost / reuse of subsequent rewrites

#1 Simple Unnesting

- Move dependent predicates up as far as possible
- Transforms dependent into regular join if adjacent

#2 General Unnesting

$$T_1 \bowtie_p T_2 \equiv T_1 \bowtie_{p \wedge T_1 =_{\mathcal{A}(D)} D} (D \bowtie T_2)$$

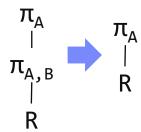
 $D := \Pi_{\mathcal{F}(T_2) \cap \mathcal{A}(T_1)}(T_1).$

- Translate dependent join into regular and deduplicated dependent join
- Push down dependent join,
 turn dependent join over base relation into regular join
- Specific optimizations (e.g., sideways information passing), other rewrites

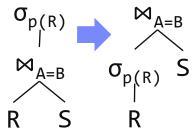
Selections and Projections

Example Transformation Rules

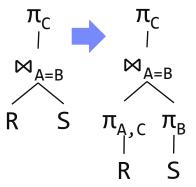
- 1) Grouping of Selections
- $\begin{array}{ccc}
 \sigma_{x>y} & \sigma_{x>y \wedge p=q} \\
 \sigma_{p=q} & R
 \end{array}$
- 2) Grouping of Projections



3) Pushdown of Selections



4) Pushdown of Projections



Restructuring Algorithm

- #1 Split n-ary joins into binary joins
- #2 Split multi-term selections
- **#3** Push-down selections as far as possible
- #4 Group adjacent selections again
- #5 Push-down projections as far as possible

Input: Standardized, simplified, and un-nested query graph

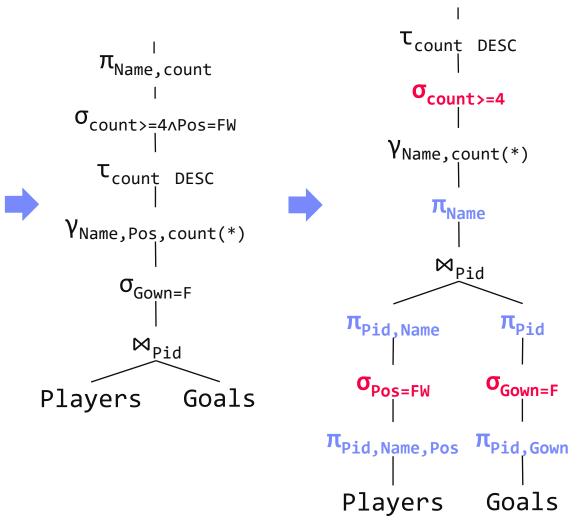
Output: Restructured query graph

Example Query Restructuring

SELECT Name, count FROM TopScorer WHERE count>=4 AND Pos='FW'

CREATE VIEW TopScorer AS **SELECT** P.Name, P.Pos, count(*) FROM Players P, Goals G WHERE P.Pid=G.Pid AND G.GOwn=FALSE **GROUP BY** P.Name, P.Pos ORDER BY count(*) DESC

Additional metadata: P.Name is unique



Cardinality and Cost Estimation

Overview Cost Models

[Guido Moerkotte, Building Query Compilers (Under Construction), **2020**, http://pi3.informatik.uni-mannheim.de/

 $C = C_{I/O} + C_{CPU}$

 $C = \max(C_{I/O}, C_{CPII})$

~moer/querycompiler.pdf]

Overall Cost Models

- I/O costs (number of read pages, tuples)
- Computation costs (CPU costs, tuples)
- Others: Memory, Energy
- Aggregate operator costs (specific vs general) w/ awareness of parallelism

Cost Model Inputs

- Base relations: number of pages, number of tuples, avg tuple length
- Intermediates: number of tuples → Cardinality estimation

Common Assumptions

- No Skew: uniform value distributions of attributes
- Independence: no correlation among attributes
 - → underestimation → poor plans



Cardinality and Selectivity

[Guido Moerkotte, Building Query Compilers, 2020]

- Cardinality |R|
 - Size of intermediates in number of tuples (sometimes distinct items)
 - Examples: $|\sigma_p R|$, $|R \bowtie S|$
- Selectivity s(p)
 - Fraction of tuples that pass operator, bounded by [0,1]
 - "Highly-selective" operator \rightarrow low selectivity s(p)
 - Example Selection

$$s(p) = \frac{|\sigma_p R|}{|R|} \qquad |\sigma_p R| = s(p) \cdot |R|$$

$$\left|\sigma_p R\right| = s(p) \cdot |R|$$

Example Join

$$s(p) = \frac{\left| R \bowtie_{p} S \right|}{\left| R \times S \right|} = \frac{\left| R \bowtie_{p} S \right|}{\left| R \right| \cdot \left| S \right|}$$

$$|R \bowtie_p S| = s(p) \cdot |R| \cdot |S|$$

Cardinality Propagation

[Guido Moerkotte, Building Query Compilers, **2020**]

Operator-level Propagation

• Selection:
$$|\sigma_p R| = s(p) \cdot |R|$$

■ Join:
$$|R \bowtie_p S| = s(p) \cdot |R| \cdot |S|$$

• Sorting:
$$|\tau_A(R)| = |R|$$

• Group-by:
$$\left|\gamma_{G;f}(R)\right| = \prod_{g \in G} d_g(R)$$

• Cross product:
$$|R \times S| = |R| \cdot |S|$$

• Projection:
$$|\pi(R)| = |R|$$

• Union All:
$$|R \cup S| = |R| + |S|$$

Recursive propagation over query tree

Error Propagation

 Cardinality estimation errors propagate exponentially through joins (max error)

[Yannis E. Ioannidis, Stavros Christodoulakis: On the Propagation of Errors in the Size of Join Results. **SIGMOD 1991**]

Q-Error

 Multiplicative error, produced plans at most q⁴ worse than optimum [Guido Moerkotte, Thomas Neumann, Gabriele Steidl: Preventing Bad Plans by Bounding the Impact of Cardinality Estimation Errors. **PVLDB 2(1) 2009**]

Cardinality Propagation

[Patricia G. Selinger et al.: Access Path Selection in a Relational Database Management System. **SIGMOD 1979**]

Equality Predicates

Based on histograms and #distinct item estimators, otherwise default 1/10

• Constant predicate: $s(A = c) = \frac{1}{dA}$

//assumes uniformity

■ Binary predicate:
$$s(A = B) = \frac{1}{\max(d_A, d_B)}$$

//assumes matching domains

Range Predicates

One-sided:

$$s(A > c) = \frac{\max_{A} - c}{\max_{A} - \min_{A}}$$

Two-sided:

$$s(c_1 \le A \le c_2) = \frac{c_2 - c_1}{\max_A - \min_A}$$

Composite Predicates (→ sparsity in ML systems)

■ Negation (NOT): $s(\neg p) = 1 - s(p)$

//assumes independence • Conjunction (AND): $s(p_1 \land p_2) = s(p_1) \cdot s(p_2)$

■ Disjunction (OR): $s(p_1 \lor p_2) = s(p_1) + s(p_2) - s(p_1) \cdot s(p_2)$

Cardinality Estimation

[Guido Moerkotte, Building Query Compilers, **2020**]

Overview

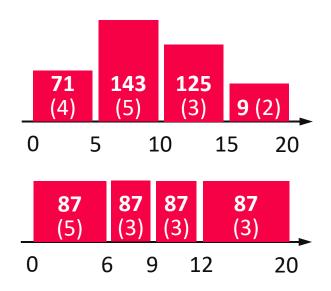
- Min, Max, #distinct items d crucial for cardinality estimation
- Exact frequency distribution $(v_1, f_1), (v_2, f_2), \dots, (v_d, f_d)$ too detailed

Equi-width Histogram

- Divide min-max range into B buckets
- Store sum frequency, #distinct

Equi-height Histogram

- Divide range into variable buckets with constant frequency
- E.g., via quantiles + duplicate handling



Other Histograms

 Homogeneous/heterogeneous histograms w/ bounded error [Carl-Christian Kanne, Guido Moerkotte: Histograms reloaded: the merits of bucket diversity. **SIGMOD 2010**]

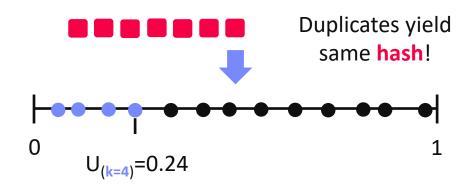
Number of Distinct Items

Problem

- Estimate # distinct items in a dataset / data stream w/ limited memory
- Support for set operations (union, intersect, difference)

K-Minimum Values (KMV)

- Hash values d_i to $h_i \in [0, M]$
- Domain $M = O(D^2)$ to avoid collisions $\rightarrow O(k \log D)$ space
- Store k minimum hash values (e.g., via priority queue) in normalized form $h_i \in [0,1]$
- Basic estimator:
- Unbiased estimator:



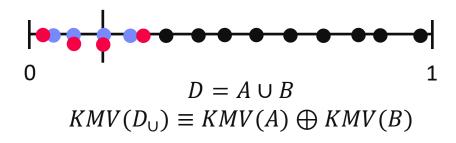
$$\widehat{D}_k^{BE}=k/U_{(k)}$$
 Example: $\widehat{D}_k^{UB}=(k-1)/U_{(k)}$ 16.67 vs 12.5

[Kevin S. Beyer, Peter J. Haas, Berthold Reinwald, Yannis Sismanis, Rainer Gemulla: On synopses for distinct-value estimation under multiset operations. **SIGMOD 2007**]

Number of Distinct Items, cont.

KMV Set Operations

- Union and intersection directly on partition synopses
- Difference via Augmented KMV (AKMV) that include counters of multiplicities of k-minimum values



HyperLogLog

- Hash values and maintain maximum # of leading zeros p $\rightarrow \widehat{D} = 2^p$
- Stochastic averaging over M streams (p maintained in M registers)
- HyperLogLog++
- Updatable HyperLogLog, with sampling for multi-column estimates

[P. Flajolet, Éric Fusy, O. Gandouet, and F. Meunier: Hyperloglog: The analysis of a near-optimal cardinality estimation algorithm. **AOFA 2007**]

[Stefan Heule, Marc Nunkesser, Alexander Hall: HyperLogLog in practice: algorithmic engineering of a state of the art cardinality estimation algorithm. **EDBT 2013**]

[Michael J. Freitag, Thomas Neumann: Every Row Counts: Combining Sketches and Sampling for Accurate Group-By Result Estimates. **CIDR 2019**]

Sample-based Cardinality Estimation

- **Overview and Problems**
 - Sample subset S with $|S| \ll N$ of tuples and estimate #distinct items d
 - Naïve estimators: $d_S \rightarrow$ underestimate, or $d_S \cdot N/|S| \rightarrow$ overestimate
- #1 Sample-based Estimators
 - "Generalized jackknife" estimator

squared coefficient simple estimator

of variation
$$\hat{d}_{\mathrm{uj}1} = \left(1 - (1 - q)(h_1/|\mathcal{S}|)\right)^{-1} d_{\mathcal{S}}$$

mator
$$\hat{d}_{hybrid} = \begin{cases} \hat{d}_{uj2}, & 0 < \hat{\gamma}^2(\hat{d}_{uj1}) < \alpha_1 \\ \hat{d}_{uj2a}, & \alpha_1 \leq \hat{\gamma}^2(\hat{d}_{uj1}) < \alpha_2 \\ \hat{d}_{Sh3}, & otherwise \end{cases}$$
 [P. J. Haas and L. Stokes: Estimating the

$$0 < \hat{\gamma}^2(\hat{d}_{uj1}) < \alpha_1$$

$$\alpha_1 \le \hat{\gamma}^2(\hat{d}_{uj1}) < \alpha_2$$
otherwise

$$\hat{d} = d_S + K \cdot f_1 / N$$

J. Amer. Statist. Assoc., 93(444), 1998]

Number of Classes in a Finite Population,

- Guaranteed error estimator (GEE)
 - Basic and adaptive estimators

[Moses Charikar, Surajit Chaudhuri, Rajeev Motwani, Vivek R. Narasayya: Towards Estimation Error Guarantees for Distinct Values. PODS 2000]

$$\hat{d} = \sqrt{\frac{N}{|S|}} f_1 + \sum_{i=2}^{|S|} f_i$$

Sample-based Cardinality Estimation, cont.

Sample Views

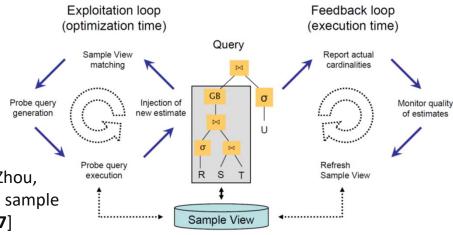
- Random sampling + materialized views w/ statistical guarantees
- Query feedback (actual card)

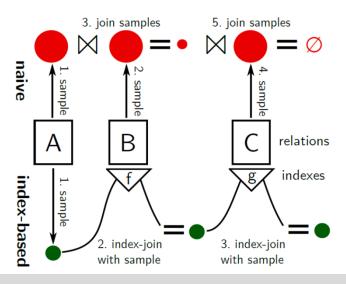
[Per-Åke Larson, Wolfgang Lehner, Jingren Zhou, Peter Zabback: Cardinality estimation using sample views with quality assurance. **SIGMOD 2007**]

Index-based Join Sampling

- Joins on samples might result in Ø
- Use existing indexes to explore intermediate results bottom-up

[Viktor Leis, Bernhard Radke, Andrey Gubichev, Alfons Kemper, Thomas Neumann: Cardinality Estimation Done Right: Index-Based Join Sampling. **CIDR 2017**]

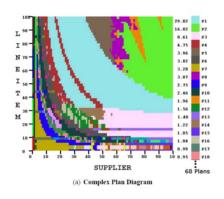


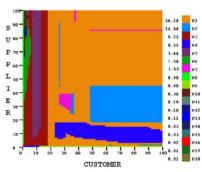


Excursus: Robust Query Optimization

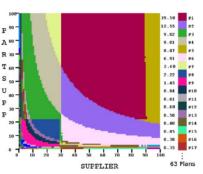
Overview Picasso Project

- Plan diagram: plan choice over selectivity ranges
- Cost diagram: estimated plan execution costs over ranges

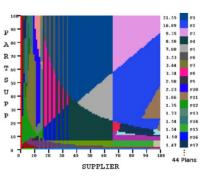




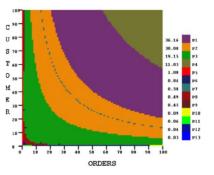
Plan Switch Points



Venetian Blinds

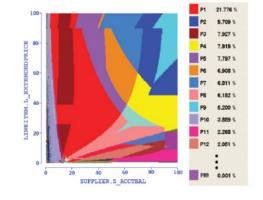


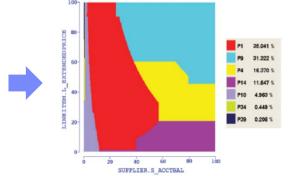
Footprint Pattern



Towards Robust Optimization

[Naveen Reddy, Jayant R. Haritsa: Analyzing Plan Diagrams of Database Query Optimizers. **VLDB 2005**]





Excursus: Robust Query Optimization, cont.

[Harish Doraiswamy, Pooja N. Darera, Jayant R. Haritsa: On the Production of Anorexic Plan Diagrams. **VLDB 2007**]

[Harish Doraiswamy, Pooja N. Darera, Jayant R. Haritsa: Identifying robust plans through plan diagram reduction. **PVLDB 1(1) 2008**]

[M. Abhirama, Sourjya Bhaumik, Atreyee Dey, Harsh Shrimal, Jayant R. Haritsa: On the Stability of Plan Costs and the Costs of Plan Stability. **PVLDB 3(1) 2010**]

[Goetz Graefe, Wey Guy, Harumi A. Kuno, Glenn N. Paulley: Robust Query Processing (Dagstuhl Seminar 12321). **Dagstuhl Reports 2(8) 2012**]

[Anshuman Dutt, Jayant R. Haritsa: Plan bouquets: query processing without selectivity estimation. **SIGMOD 2014**]

[Jayant R. Haritsa: Robust Query Processing: Mission Possible. PVLDB 13(12) 2020]

09 Adaptive Query Processing

(learned cardinalities, re-optimization)

Join Enumeration / Ordering

Plan Optimization Overview

Plan Generation Overview

- Selection of physical access path and plan operators
- Selection of execution order of plan operators (joins, group-by)
- Input: logical query plan → Output: optimal physical query plan
- Costs of guery optimization should not exceed yielded improvements

Interesting Properties

- Interesting orders (sorted vs unsorted), partitioning (e.g., join column), pipelining
- Avoid unnecessary sorting operations

[lhab F. Ilyas, Jun Rao, Guy M. Lohman, Dengfeng Gao, Eileen Tien Lin: Estimating Compilation Time of a Query Optimizer. SIGMOD 2003]

Simple Cost Functions

- Join-specific cost functions (Cnlj, Chj, Csmj)
- Cardinalities Cout

$$C_{\text{out}}(T) = \begin{cases} 0 & \text{if } T \text{ is a single relation} \\ |T| + C_{\text{out}}(T_1) + C_{\text{out}}(T_2) & \text{if } T = T_1 \bowtie T_2 \end{cases}$$

[Guido Moerkotte, Building Query Compilers, 2020]

Query and Plan Types

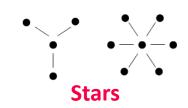
[Guido Moerkotte, Building Query Compilers, **2020**]

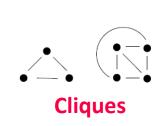
Query Types

Nodes: Tables

Edges: Join conditions

 Determine hardness of query optimization (w/o cross products)





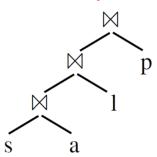
Join Tree Types / Plan Types

Data flow graph of tables and joins (logical/physical query trees)

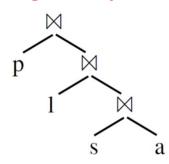
Chains

Edges: data dependencies (fixed execution order: bottom-up)

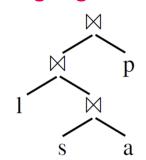
Left-Deep Tree



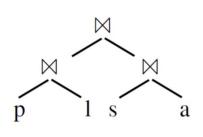
Right-Deep Tree



Zig-Zag Tree



Bushy Tree



Join Ordering Problem

[Guido Moerkotte, Building Query Compilers, **2020**]

Join Ordering

- Given a join query graph, find the optimal join ordering
- In general, NP-hard; but polynomial algorithms exist for special cases

Search Space

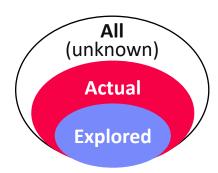
- Dependent on query and plan types
- Note: if we allow cross products similar to cliques (fully connected)

	Chain (no CP)		Star (no CP)		Clique / CP (cross product)			
	left- deep	zig-zag	bushy	left- deep	zig-zag/ bushy	left- deep	zig-zag	bushy
n	2 ⁿ⁻¹	2 ²ⁿ⁻³	2 ⁿ⁻¹ C(n-1)	2(n-1)!	2 ⁿ⁻¹ (n-1)!	n!	2 ⁿ⁻² n!	n! C(n-1)
5	16	128	224	48	384	120	960	1,680
10	512	~131K	~2.4M	~726K	~186M	~3.6M	~929M	~17.6G

C(n) ... Catalan Numbers

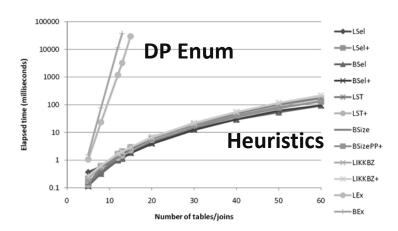
Join Order Search Strategies

Tradeoff: Optimal (or good) plan vs compilation time



- #1 Naïve Full Enumeration
 - Infeasible for reasonably large queries (long tail up to 1000s of joins)
- #2 Exact Dynamic Programming / Memoization
 - Guarantees optimal plan, often too expensive (beyond 20 relations)
 - Bottom-up vs top-down approaches
- #3 Greedy / Heuristic Algorithms
- #4 Approximate Algorithms
 - E.g., Genetic algorithms, simulated annealing, MIL programming

- Exact optimization (DPSize) if < 12 relations (gego threshold)
- Genetic algorithm for larger queries
- Join methods: NLJ, SMJ, HJ



[Nicolas Bruno, César A. Galindo-Legaria, Milind Joshi: Polynomial heuristics for query optimization. **ICDE 2010**]

Greedy Join Ordering

Star Schema Benchmark

Example

■ Part \bowtie Lineorder \bowtie Supplier \bowtie σ (Customer) \bowtie σ (Date), left-deep plans

#	Plan	Costs
1	Lineorder ⋈ Part	30M
	Lineorder ⋈ Supplier	20M
	Lineorder ⋈ σ(Customer)	90K
	Lineorder ⋈ σ(Date)	40K
	Part ⋈ Customer	N/A
		•••

#	Plan	Costs
3	((Lineorder $\bowtie \sigma(Date)$) $\bowtie \sigma(Customer)$) $\bowtie Part$	120M
	((Lineorder ⋈ σ(Date)) ⋈ σ(Customer)) ⋈ Supplier	105M
4	(((Lineorder ⋈ σ(Date)) ⋈ σ(Customer)) ⋈ Supplier) ⋈ Part	135M

2	(Lineorder ⋈ σ(Date)) ⋈ Part	150K
	(Lineorder $\bowtie \sigma(Date)$) \bowtie Supplier	100K
	(Lineorder $\bowtie \sigma(Date)) \bowtie \sigma(Customer)$	75K

Note: Simple O(n²) algorithm for left-deep trees; O(n³) algorithms for bushy trees existing (e.g., GOO)

Greedy Join Ordering, cont.

[Guido Moerkotte, Building Query Compilers, **2020**]

- Basic Algorithms
 - GreedyJO-1: sort by relation weights (e.g., card)
 - GreedyJO-2: greedy selection of next best relation
 - GreedyJO-3: Greedy-JO-2 w/ start from each relation

Previous example as a hybrid w/ O(n²)

GOOAlgorithm

```
GOO(\{R_1,\ldots,R_n\}) // Greedy Operator Ordering
Input: a set of relations to be joined
Output: join tree
Trees := \{R_1,\ldots,R_n\}
while (|\text{Trees}| != 1) \{
find T_i,T_j \in \text{Trees} such that i \neq j, |T_i \bowtie T_j| is minimal among all pairs of trees in Trees
Trees -=T_i;
Trees -=T_j;
Trees +=T_i \bowtie T_j;
= \text{Leonidas Fegaras: A New}
Heuristic for Optimizing Large Queries. DEXA 1998]
```


return the tree contained in Trees;

Dynamic Programming Join Ordering

- Exact Enumeration via Dynamic Programming
 - #1: Optimal substructure (Bellman's Principle of Optimality)
 - #2: Overlapping subproblems allow for memorization
- Bottom-Up (Dynamic Programming)
 - Split in independent sub-problems (optimal plan per set of quantifiers and interesting properties), solve sub-problems, combine solutions
 - Algorithms: DPsize, DPsub, DPcpp
- Top-Down (Memoization)
 - Recursive generation of join trees
 w/ memorization and pruning
 - Algorithms: Cascades, MinCutLazy, MinCutAGat, MinCutBranch

[Guido Moerkotte, Thomas Neumann: Analysis of Two Existing and One New Dynamic Programming Algorithm for the Generation of Optimal Bushy Join Trees without Cross Products. **VLDB 2006**]

[Goetz Graefe: The Cascades Framework for Query Optimization. IEEE Data Eng. Bull. 18(3) 1995]

[Pit Fender: Algorithms for Efficient Top-Down Join Enumeration. **PhD Thesis, University of Mannheim 2014**]

Dynamic Programming Join Ordering, cont.

DPSize Algorithm

- Pioneered by Pat Selinger et al.
- Implemented in IBM DB2, Postgres, etc

15: return $Memo[\{q_1, \cdots, q_N\}]$;

[Patricia G. Selinger et al.: Access Path Selection in a Relational Database Management System. **SIGMOD 1979**]


```
Algorithm 1 SerialDPEnum
Input: a connected query graph with quantifiers q_1, \dots, q_N
Output: an optimal bushy join tree
 1: for i \leftarrow 1 to N
     Memo[\{q_i\}] \leftarrow CreateTableAccessPlans(q_i);
     PrunePlans(Memo[\{q_i\}]);
                                                            [Wook-Shin Han, Wooseong
 4: for S \leftarrow 2 to N
                                                      Kwak, Jinsoo Lee, Guy M. Lohman,
     for smallSZ \leftarrow 1 to |S/2|
                                                        Volker Markl: Parallelizing query
 6:
       largeSZ \leftarrow S - smallSZ:
       for each smallQS of size smallSZ
                                                        optimization. PVLDB 1(1) 2008]
 8:
        for each largeQS of size largeSZ
 9:
         if smallQS \cap largeQS \neq \emptyset then
                                                                    disjoint
10:
           continue: /*discarded by the disjoint filter*,
11:
          if not(smallQS connected to largeQS) then
                                                                  connected
12:
           continue: /*discarded by the connectivity filter*
13:
          ResultingPlans \leftarrow CreateJoinPlans(
               Memo[smallQS], Memo[largeQS]);
14:
          PrunePlans(Memo[smallQS \cup largeQS], ResultingPlans);
```


Dynamic Programming Join Ordering, cont.

DPSize Example

Simplified: no interesting properties

Į	1	+	Q	(1

		Q2	Plan
Q1	Plan		
{C}	Tbl, IX	{C,L}	L⋈C, C⋈L
		{D,L}	L⋈D, D⋈L
{D}	Tbl , IX	() ,	ŕ
(1.)		{L,P}	L⋈P , P⋈L
{L}	•••	{L,S}	L⋈S , S⋈L
{P}		(L,J)	2743 , 374L
		{C,D}	N/A
{S}	•••		
		• • •	•••

Q1+Q2, Q2+Q1

Q3	Plan
{C,D,L}	$(L\bowtie C)\bowtie D$, $\frac{D\bowtie (L\bowtie C)}{(L\bowtie D)\bowtie C}$, $\frac{C\bowtie (L\bowtie D)}{(L\bowtie D)}$
{C,L,P}	$\frac{(L\bowtie C)\bowtie P}{P}$, $P\bowtie (L\bowtie C)$, $\frac{(P\bowtie L)\bowtie C}{P}$
{C,L,S}	
{D,L,P}	•••
{D,L,S}	•••
{L,P,S}	•••

Q1+Q3, Q2+Q2, Q3+Q1

Q4	Plan
{C,D,L,P}	((L⋈C)⋈D)⋈P, P⋈((L⋈C)⋈D)
{C,D,L,S}	
{C,L,P,S}	
{D,L,P,S}	

Q1+Q4, Q2+Q3, Q3+Q2, Q4+Q1

Q5	Plan
{C,D,L,P,S}	

Graceful Degradation

Problem Bottom-Up

- Until end of optimization no valid full QEP created (no anytime algorithm)
- Fallback: resort to heuristic if ran out of memory / time budget

#1 Query Simplification

- Simplify query with heuristics until solvable via dynamic programming
- Choose plans to avoid, not join

[Thomas Neumann: Query simplification: graceful degradation for join-order optimization. **SIGMOD 2009**]

#2 Search Space Linearization

 Small queries: count connected subgraphs, optimized exactly

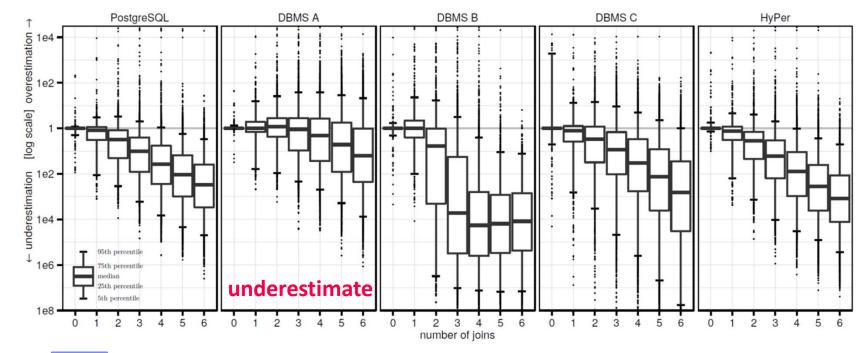
DP

[Thomas Neumann, Bernhard Radke: Adaptive Optimization of Very Large Join Queries. **SIGMOD 2018**]

- Medium queries (<100): restrict O(n³)
 algorithm to consider connected sub-chains of linear relation ordering
- Large queries: greedy algorithm, then Medium on sub-trees of size K

Join Order Benchmark (JOB)

- Data: Internet Movie Data Bases (IMDB)
- Workload: 33 query templates, 2-6 variants / 3-16 joins per query



[Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz, Alfons Kemper, Thomas Neumann: How Good Are Query Optimizers, Really? PVLDB 9(3) 2015]

Summary and Q&A

- Query Rewriting and Unnesting
- Cardinality and Cost Estimation
- Join Enumeration / Ordering
- Next Lectures (Part B)
 - 09 Adaptive Query Processing [Dec 16]
- Next Lectures (Part C)
 - 10 Cloud Database Systems [Jan 13]
 - 11 Modern Concurrency Control [Jan 20]
 - 12 Modern Storage and HW Accelerators [Jan 27]

