TU

Grazm

SCIENCE
PASSION
TECHNOLOGY

Architecture of DB Systems
09 Adaptive Query Processing

Matthias Boehm

Graz University of Technology, Austria

Computer Science and Biomedical Engineering
Institute of Interactive Systems and Data Science
BMK endowed chair for Data Management

Last update: Dec 16, 2020 “ISDS

TU

Grazm

Announcements/Org

= #1 Video Recording
= Link in TeachCenter & TUbe (lectures will be public)
= QOptional attendance (independent of COVID)

= #2 COVID-19 Restrictions (HS i5)
= Corona Traffic Light: RED > Orange
= Temporarily webex lectures and recording

706.543 Architecture of Database Systems — 08 Query Optimization
Matthias Boehm, Graz University of Technology, WS 2020/21

&3 TUbe

NIr
cisco \Webex

"ISDS

TU

Overview Query Processing Graza

Recap: Overview Query Processing
| Name | Count_

SELECT * FROM TopScorer
WHERE Count>=4

I
|
|

; James Rodriguez 6

l : Thomas Miiller 5

Parsing : Robin van Persie 4
|

I N 4

AST/IR | eymar
|
Semantic Analysis :
I
IR :
|
. I .
Query Rewrites I Plan Execution

|
IR I I
1

Plan Optimization @—> Plan Caching

Compile Time ! Runtime

706.543 Architecture of Database Systems — 08 Query Optimization .ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

TU

Grazm

Agenda

= Backlog: Join Enumeration / Ordering
= AQP Fundamentals
= Learned Cardinalities Query +

Chooses best plan

Intra-Query Adaptivity { Optimizer: J

requests statistics
for costing plans

chosen plan

. ! ..
with extra P Original +
twack statistics ‘ observed | CHTEH
E e / s isti statistics
and trigger ; re—optimize statistics

re—optimization
if required

’
s
,
-
-
-

— —.— .— —— J = - - - e ™
Executor: J’ Statistics on - Statistics Tracker: runstats

Runs chosen plan query Creates/updates statistics | —a——
subexpressions and system conditions

[Shivnath Babu, Pedro Bizarro: Adaptive Query
Processing in the Looking Glass. CIDR 2005]

[Amol Deshpande, Zachary G. Ives, Vijayshankar
Raman: Adaptive Query Processing.
Found. Trends Databases 1(1) 2007]

706.543 Architecture of Database Systems — 08 Query Optimization & ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

TU

Grazm

Join Enumeration / Ordering

706.543 Architecture of Database Systems — 08 Query Optimization
Matthias Boehm, Graz University of Technology, WS 2020/21

"ISDS

Join Enumeration / Ordering -I(;rla'!l

- Plan Optimization Overview

= Plan Generation Overview
= Selection of
= Selection of of plan operators (, group-by)
= |nput: logical query plan = Output: optimal physical query plan
= Costs of query optimization should not exceed yielded improvements

" Interesting Properties [lhab F. llyas, Jun Rao, Guy M

= |nteresting orders (sorted vs unsorted), Lohman, Dengfeng Gao, Eileen Tien
partitioning (e.g., join column), pipelining Lin: Estimating Compilation Time of

))) a Query Optimizer. SIGMOD 2003]
= Avoid unnecessary sorting operations

= Simple Cost Functions [Guido Moerkotte, Building
Query Compilers, 2020]

= Join-specific cost functions (Cnlj, Chj, Csm)j)
= Cardinalities

0 if T" is a single relation
Cout Cout(T) — {

’T| 3 C()ut(Tl) + Cout(TQ) it T = Tl X TZ

706.543 Architecture of Database Systems — 08 Query Optimization B ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

Join Enumeration / Ordering TU

Grazm

Que ry d nd Pla N Types [Guido Moerkotte, Building

Query Compilers, 2020]

= Query Types

= Nodes: Tables A N L
= Edges: Join conditions Chains 1 .._/.\:' ~
° ™ [@ —e
= Determine hardness Stars RN \.\Bl
of query optimization (w/o cross products) Cliques
= Join Tree Types / Plan Types
= Data flow graph of tables and joins (logical/physical query trees)
= Edges: data dependencies (fixed execution order: bottom-up)
Left-Deep Tree Right-Deep Tree Zig-Zag Tree Bushy Tree
X X X X
N/\ /\N [><]/\ PN
p p p X X
N/\]]/\M 1/\N P P
PN AN PN p Is a
S a S a S a

706.543 Architecture of Database Systems — 08 Query Optimization & ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

Join Enumeration / Ordering TU

Grazm

ﬂ Join Ordering Problem (Guido Moerkotte, Bulding

Query Compilers, 2020]

= Join Ordering
= Given a join query graph, find the optimal join ordering

= |n general, NP-hard; but polynomial algorithms exist for special cases

= Search Space
= Dependent on query and plan types

= Note: if we allow cross products similar to cliques (fully connected)

- Chain (no CP) Star (no CP) Clique / CP (cross product)

left- zig-zag bushy left- zig-zag/ left- zig-zag bushy
deep deep bushy deep
n 2n-1 223 271C(n-1) 2(n-1)! 2"Y(n-1)! n! 2"2nl n!C(n-1)
5 16 128 224 48 384 120 960 1,680

10 512 ~131K ~2.4M ~726K ~186M ~3.6M ~929M ~17.6G

C(n) ... Catalan Numbers

706.543 Architecture of Database Systems — 08 Query Optimization & ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

Join Enumeration / Ordering -I(;rE!l

Join Order Search Strategies

Actual

Tradeoff: Optimal (or good) plan vs compilation time

Explored

#1 Naive Full Enumeration

= |nfeasible for reasonably large queries (long tail up to 1000s of joins)

#2 Exact Dynamic Programming / Memoization
= Guarantees optimal plan, often too expensive (beyond 20 relations)
= Bottom-up vs top-down approaches 100000

—t—LSe|

#3 Greedy / Heuristic Algorithms . “ | // DPEnum B

1000

—p=—BSel+

#4 Approximate Algorithms

g =—=L5T

L5T+

B Size

= E.g., Genetic algorithms, simulated
annealing, mixed-integer linear prog. 1

Elapsed time (milliseconds)
[
8

Heuristics

== BSizePP+
LIKKBZ

LIKKBZ+

o 10 20 30 40 50 60 e

Example POStgreSQL Number of tables/joins BE

" Exact optimization (DPSIZe) if <12 [Nicolas Bruno, César A. Galindo-Legaria,

relations (geqo_threshold) Milind Joshi: Polynomial heuristics for
guery optimization. ICDE 2010]

= Genetic algorithm for larger queries
= Join methods: NLJ, SMJ, HJ

Join Enumeration / Ordering TU

Greedy Join Ordering Star Schema

Benchmark

il

o] [

fiisii

= Example

= Part X Lineorder < Supplier & o(Customer) > o(Date), left-deep plans

H-_ H-_

Lineorder < Part ((Lineorder x o(Date)) 120M

D
Lineorder > Supplier 20M SHEEETIE) BN

: ((Lineorder x o(Date)) 105M
Lineorder x o(Customer) 90K o(Customer)) i Supplier

. Lineorder x4 o(Date) m

- - N/A (((Lineorder x o(Date)) x 135M
o(Customer)) < Supplier) 4 Part

2 (Lineorder » o(Date)) b4 Part 150K Note: Simple O(n?) algorithm
for left-deep trees;

O(n3) algorithms for bushy trees
(Lineorder > o(Date)) 4 o(Customer) existing (e.g., GOO)

(Lineorder > o(Date)) > Supplier 100K

706.543 Architecture of Database Systems — 08 Query Optimization .ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21 -

Join Enumeration / Ordering -ErLa!.

G reedy JOln Orderlng’ CO nt. [Guido Moerkotte, Building

Query Compilers, 2020]

= Basic Algorithms
= GreedyJO-1: sort by relation weights (e.g., card)

= GreedyJO-2: greedy selection of next best relation } Previous example as

= GreedyJO-3: Greedy-JO-2 w/ start from each relation a hybrid w/ O(n?)

= GOO GOO({Ry,..., R,}) [/ Greedy Operator Ordering
Algorithm Input: a set of relations to be joined
Output: join tree
Trees := {Ry,..., Byt
while (|Trees| != 1) {
find T;,7; € Trees such that i # j, |1; X7T};| is minimal
among all pairs of trees in Trees

Trees — = T;;

Trees — = Tj}; [Leonidas Fegaras: A New

Trees + = T X T . Heuristic for OptImIZIng
! J? Large Queries. DEXA 1998]

}

return the tree contained in Trees;

706.543 Architecture of Database Systems — 08 Query Optimization & ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

Join Enumeration / Ordering -I(;rla'!l

Dynamic Programming Join Ordering

= Exact Enumeration via Dynamic Programming
= #1: (Bellman’s Principle of Optimality)
= H2: allow for memorization

= Bottom-Up (Dynamic Programming)

= Split in independent sub-problems (optimal plan per set of quantifiers

and interesting properties), solve sub-problems, combine solutions
= Algorithms: DPsize, DPsub, DPcpp [Guido Moerkotte, Thomas Neumann:
Analysis of Two Existing and One New

Dynamic Programming Algorithm for the

] . Generation of Optimal Bushy Join Trees
- Top-Down (Mem0|zat|on) without Cross Products. VLDB 2006]

= Recursive generation of join trees
. d) [Goetz Graefe: The Cascades
w/ memorization and pruning Framework for Query Optimization.

= Algorithms: Cascades, MinCutLazy, IEEE Data Eng. Bull. 18(3) 1995]

MinCutAGat, MinCutBranch [Pit Fender: Algorithms for Efficient Top-
Down Join Enumeration. PhD Thesis,
University of Mannheim 2014]

706.543 Architecture of Database Systems — 08 Query Optimization B ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

Join Enumeration / Ordering TU

Grazm

Dynamic Programming Join Ordering, cont.

= DPSize Algorithm [Patricia G. Selinger et al.: Access Path
: : Selection in a Relational Database
= Pioneered by Pat Selinger et al. Management System. SIGMOD 1979]

= Implemented in IBM DB2, Postgres, etc

Algorithm 1 Serial DPEnum

Input: a connected query graph with quantifiers q1,--- ,qn
Output: an optimal bushy join tree

l: fori —1to N
2. Memo[{qi}] — CreateTableAccessPlans(q;);
Pr Plans(Mem i H); .
i. forl gnfe_ 2“;:_)(Nﬂno[{q) [Wook-Shin Han, Wooseong
5: for smallSZ — 1 to | S/2] Kwak, Jinsoo Lee, Guy M. Lohman,
6 largeSZ — S — smallSZ; Volker Markl: Parallelizing query
7 for each smallQS of size smallSZ optimization. PVLDB 1(1) 2008]
8 for each largeQS of size largeSZ
9 if small@QS Nlarge@S # @ then « e e
10k continue; /*discarded by the disjoint filter*/ dISJOInt
11: if not(small@S connected to largeQS) then
12: continue: /*discarded by the connectivity filter*®/ connected
13: ResultingPlans «— CreateJoinPlans(
Memo[smallQS], MemollargeQS]);
14: PrunePlans(Memo[smallQS U largeQS], Resulting Plans);
15: return Memo[{q1,--- ,qn}];
706.543 Architecture of Database Systems — 08 Query Optimization .ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

Join Enumeration / Ordering ﬂ!g.

Dynamic Programming Join Ordering, cont.

= DPSize Example
= Simplified: no interesting properties
1 3’ 2 2) 3 1
Q1+Q2, Q2+Q1 Q1+Q3, Q2+Q2, Q3+Q
m‘“*‘“ e N
C,D,LP ’
mm m {C,D,L} (LxC)xD, Bad{kec), { b HEREHDINE

P>a((LxaC)xD)
{CL} LG, exek
IV Dok . {C,D,L,S}
{D} b4, IX ooty B {CLP} {paciee, Pra(LbaC),
; " {LP} &R P (Poak)aC, Coafpoet)y GLPS
B s mes sl (CLS) {D,LPS)
P s na DLP) Q1+Q4, Q2+Q3,
—— {D.LS} Q3+Q2, Q4+Q1
(LPs) Q5 | Pan
{CIDILIPIS} see
706.543 Architecture of Database Systems — 08 Query Optimization .ISDS

Matthias Boehm, Graz University of Technology, WS 2020/21

Join Enumeration / Ordering

Graceful Degradation

= Problem Bottom-Up

= Until end of optimization no valid full QEP created (no anytime algorithm)
= Fallback: resort to heuristic if ran out of memory / time budget

= #1 Query Simplification [Thomas Neumann: Query

- Simplify query with heuristics until simplification: graceful degradation for
. . . join-order optimization. SIGMOD 2009]
solvable via dynamic programming

n (restrictions), not to join

= #2 Search Space Linearization

= Small queries: count connected
subgraphs, optimized exactly

= Medium queries (<100): restrict O(n3)
algorithm to consider connected sub-chains of linear relation ordering
= Large queries: greedy algorithm, then Medium on sub-trees of size K

[Thomas Neumann, Bernhard Radke:
Adaptive Optimization of Very Large
DP Join Queries. SIGMOD 2018]

706.543 Architecture of Database Systems — 08 Query Optimization B ISDS

Matthias Boehm, Graz University of Technology, WS 2020/21

Join Enumeration / Ordering TU

Join Order Benchmark (JOB)

= Data: Internet Movie Data Bases (IMDB)
= Workload: 33 query templates, 2-6 variants / 3-16 joins per query

PostgreSQL DBMS A DBMS B DBMS C HyPer
. 1 [0 . 1 i L)] . . H H

5 1e4=

1e2 : i

« underestimation [log scale] overestimation —
-
1L
= L

' 5 1
1e2- ! ‘
: . [
: L 1
i i 4 : : e
1e4 = T ; i
T 1 ‘ |
b tile | : i :
1e6 = 75th percentile ! $
median :
o i underestimate |
198 L] L] L] T L] L L] T L] L] 1] L] L] L] T L] T L I |] L | T T _; 1 L] L] L] T L] L])
0 1 2 3 4 5 6 0 1 2 3 4 5 B 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6

number of joins

[Viktor Leis, Andrey Gubichev, Atanas Mircheyv, Peter A. Boncz, Alfons Kemper, Thomas Neumann:
How Good Are Query Optimizers, Really? PVLDB 9(3) 2015]

706.543 Architecture of Database Systems — 08 Query Optimization & ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

TU

Grazm

AQP Fundamentals

706.543 Architecture of Database Systems — 08 Query Optimization
Matthias Boehm, Graz University of Technology, WS 2020/21

"ISDS

AQP Fundamentals -ErLa!.

IVI OtlvatIO N [Zachary G. lves, Amol Deshpande,

Vijayshankar Raman: Adaptive query
processing: Why, How, When, and

= Recap: Success of SQL/Relational Model What Next? VLDB 2007,
. http://www.cs.umd.edu/~amol/
= Declarative: what not how talks/VLDBO7-AQP-Tutorial.pdf]

= Flexibility: closure property = composition
= Automatic optimization
= Physical data independence

= Problems [Guy Lohman: Query Optimization: | oo
Are We There Yet?, BTW 2017] =

= Unknown statistics (e.g., unreliable
cost model assumptions uniformity, independence)

= Changing data / environment characteristics Aapp Aenv
(e.g., data integration, streams) At K AL

= Adaptivity
= Query optimization/processing adapts implementation to runtime conditions
=» Adaptive query processing for fine-grained adaptivity

706.543 Architecture of Database Systems — 08 Query Optimization & ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

TU

AQP Fundamentals Graza

AQP CO nt rOI LOOp [IBM: An architectural blueprint for autonomic

computing, Technical Report, 2005]

— =

" MAPE (Measu re/Monitor, [Zachary G. Ives, Amol Deshpande, Vijayshankar

Analyze’ Pla n, Execute/Actuate) Raman: Adaptive query processing: Why, How,
When, and What Next? VLDB 2007]

Measure Actuate
Analyze

Measure what? - — TR Actuation: How to
Measure when? Analyze / plan what? switch plans / routing?
Measurement overhead? Analyze / plan when? Actuation overhead?

Plan how far ahead?
Planning overhead?

706.543 Architecture of Database Systems — 08 Query Optimization .ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

AQP Fundamentals TU

Classification of AQP Techniques

- Spectrum of Adaptivity) [Amol Deshpande, J?Seph M. HeIIerst.ein,
Vijayshankar Raman: Adaptive query processing:

= Temporal classification why, how, when, what next. SIGMOD 2006]

static late inter- intra- per
plans binding operator operator tuple
traditional Dynamic QEP Query Scrambling XJoin, DPHJ, Eddies
DBMS Parametric Mid-query Reopt, Convergent QP
Competitive Progressive Opt
Proactive Opt
= #1 Inter-Query Optimization [Patricia G. Selinger, Morton M. Astrahan,

. . Donald D. Chamberlin, Raymond A. Lorie,
= As established in SyStem R Thomas G. Price: Access Path Selection in

= Update statistics (ANALZE, RUNSTATS) a Relational Database Management
(cardinalities, histograms, index low/high keys) System. SIGMOD 1979]

= Rewrites, join ordering, pruning, etc

706.543 Architecture of Database Systems — 08 Query Optimization B ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

AQP Fundamentals TU

Recap: ANALYZE and EXPLAIN

= Step 1: EXPLAIN SELECT * FROM Participant AS R, Locale AS S
WHERE R.LID=S.LID;
Hash Join (.. rows=70 width=1592)

Hash Cond:(s.lid = r.1lid)

-> Seq Scan on locale s (.. rows=140 width=520)
-> Hash (.. rows=70 width=1072) build

-> Seq Scan on participant r (.. rows=70 width=1072) side
= Step 2: ANALYZE Participant, Locale;

= Step 3: EXPLAIN SELECT * FROM Participant AS R, Locale AS S
WHERE R.LID=S.LID;

Hash Join (.. rows=17 width=47)
Hash Cond:(r.lid = s.1lid)
-> Seq Scan on participant r (.. rows=17 width=30)
> Hash (.. rows=11 width=17) WHY?
-> Seq Scan on locale s (.. rows=11 width=17)

706.543 Architecture of Database Systems — 08 Query Optimization & ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

AQP Fundamentals -Erla'!l

#1 Inter-Query Optimization

runstats runstats
P B I
{ 'BEEEE '
SELECT * Update Statistics SELECT *
FROM R, S, T, U FROM R, S, T, U
WHERE R.a=S.a RUNSTATS ON TABLE R WHERE R.a=S.a
AND R.a=T.a RUNSTATS ON TABLE S AND R.a=T.a
AND R.a=U.a RUNSTATS ON TABLE T AND R.a=U.a
RUNSTATS ON TABLE U
I I
X X
N/ \U Plan cache invalidation N/ \S
/ \ and full optimization / N\
X T after statistics update > U
/ N\ / \
R S R T
706.543 Architecture of Database Systems — 08 Query Optimization 5 ISDS

Matthias Boehm, Graz University of Technology, WS 2020/21

AQP Fundamentals -ErLa!.

#2 Late Binding (Staged Execution)

= Basic ldea
= Use natural blocking/materialization points (sort, group-by)

within a plan for reoptimization and plan change Y,
l
X
v N/ \
T
SELECT * l VN
FROM R, S, T, U X tmp U
WHERE R.a=S.a [><]/ Y
e o
GROUP BY R.a qu & SUbp \lf
\ X4
/ \
R S / N\
DA tmp
/ \
U T
706.543 Architecture of Database Systems — 08 Query Optimization & ISDS

Matthias Boehm, Graz University of Technology, WS 2020/21

AQP Fundamentals -I(;rla'!l

#2 Late Binding (Parameters)

a ag e a ae e

A _.__,_..f;ef A ,i:ef
P—epr N\ B | e O\ E
| \ AN
Problem R S P R R
= Unknown predicates at query compile-time e [J
(e.g., prepared statements) SR S - e,

= Similar to unknown or misestimated statistics
= Re-optimization for each query (Optimize-Always) causes unnecessary overhead

= Basic Idea:
= Proactively optimize a query into a set of candidate plans
= Each candidate is optimal for some region of the parameter space
= Pick appropriate plan during query execution when parameters known

- Approaches [Pedro Bizarro, Nicolas Bruno, David J. DeWitt:
Progressive Parametric Query Optimization.

" Progressive PQO (pay-as-you-go) IEEE Trans. Knowl. Data Eng. 21(4) 2009]

= PQO for linear cost functions
= AniPQO for non-linear cost functions

706.543 Architecture of Database Systems — 08 Query Optimization B ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

TU

Grazm

Learned Cardinalities

706.543 Architecture of Database Systems — 08 Query Optimization
Matthias Boehm, Graz University of Technology, WS 2020/21

"ISDS

Learned Cardinalities TU

Grazm

Cardinality Estimation Problems

= Motivation

= Assumptions: uniformity of value distributions, and independence
= Multi-dimensional histograms: too expensive, unclear bucket boundaries

= Sources of Estimation Errors [Guy Lohman: Query |
Optimization: Are We o e T e

= Correlated attributes (predicates, joins) There Yet?, BTW 2017] |

= Redundant predicates

g |
= Plan Sensitivity 100 D4 50000 e
QEF1 {HLJ} —&—
= Recap: Plan Diagrams /N s GEP2 (SnJ) —B—
A=x 48008 |
= Example | IRI = 1,000
R = — 151 = 1,008
QEP1 (NLJ) E
C(NLI) = [o(R) [+ [o(R)["[S] % 20000 %’H/
QEP2 (SM3J) rongg e o
C(SMJ) = |o(R)]|*1log,|o(R) | r"‘/@
+ |S|*log,|S|+ |o(R)|+]|S] o e
1 18 1488 1888 18888

Input Data Size IsignaiR}I

TU

Learned Cardinalities Graza

Monitoring Actual Cardinalities

= LEO: DB2 Learning Optimizer

= Monitor and compare estimated .
and true cardinalites 3. Feedback

= Consistently adjust statistics h

(e.g., for correlations) 2. Analyze

Statistics

SQL Compilation

4. Exploit

Plan
[Michael Stillger, Guy M. Lohman, Execution Estimated

Volker Markl, Mokhtar Kandil: LEO - — Rl
DB2's LEarning Optimizer. VLDB 2001]

1. Monitor Actual

Cardinalities

= ASE: Adaptive Selectivity Estimation [Chung-Min Chen, Nick

. . S . Roussopoulos: Adaptive
= Approximate real attribute value distribution Selectivity Estimation Using

by curve-fitting function on query feedback Query Feedback. SIGMOD 1994]

. : < ae E .
SIT: Statistics on Query Xpressions [Nicolas Bruno, Surajit Chaudhuri: | =

= Exploit statistics for intermediates in Exploiting statistics on query expressions
order to avoid the propagation of errors for optimization. SIGMOD 2002]

706.543 Architecture of Database Systems — 08 Query Optimization & ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

Learned Cardinalities -ErLa!.

Sparse Monitored Information

. Danger W/ Actuals [Guy Lohman: Query Optimization:
= “Fleeing from Knowledge to Ignorance” Are We There Yet?, BTW 2017]

= Statistics of correlated attributes usually
adjusted to larger cardinalities

= Plan selection favors small, non-adjusted estimates (independence)

= Example
= Plan1: (((R™>S) > U) @ T)
= Plan 2: ((R @ U) x (T = S))
= Plan3: (((R™XT) > U)xS)

= Relation to Search Space
* |ntermediates (not concrete plan) relevant for cardinalities
= Example: ((R™>S) = T)and (R o (S > T)) produce the same results
= Still exponential (power set)

706.543 Architecture of Database Systems — 08 Query Optimization & ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

TU

Learned Cardinalities Graza

ML For Cardinality Estimation

= Common Approach
= Featurization of attributes, tables, and joins
= Concatenation/aggregation of sub-models
= Augmentation by samples for training and/or corrections

= Examples

[Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter A.
Boncz, Alfons Kemper: Learned Cardinalities: Estimating Correlated
Joins with Deep Learning. CIDR 2019]

[Anshuman Dutt, Chi Wang, Azade Nazi, Srikanth Kandula, Vivek R.
Narasayya, Surajit Chaudhuri: Selectivity Estimation for Range
Predicates using Lightweight Models. PVLDB 12(9) 2019]

[Zongheng Yang, Eric Liang, Amog Kamsetty, Chenggang Wu, Yan Duan,
Peter Chen, Pieter Abbeel, Joseph M. Hellerstein, Sanjay Krishnan, lon
Stoica: Deep Unsupervised Cardinality Estimation. PVLDB 13(3) 2019]

706.543 Architecture of Database Systems — 08 Query Optimization & ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

TU

Grazm

Intra-Query Adaptivity

706.543 Architecture of Database Systems — 08 Query Optimization
Matthias Boehm, Graz University of Technology, WS 2020/21

"ISDS

Intra-Query Adaptivity TU

Grazm

#3 Inter-Operator Re-optimization

[Navin Kabra, David J. DeWitt: Efficient [—=—
= Basic ldea Mid-ngry Re-Optimizatic?n of Sub-
. o] Optimal Query Execution Plans.
= |nsert artificial materialization points for SIGMOD 1998]

reoptimization at arbitrary points between plan operators

SELECT * Optimal remaining sub-plans
FROM R,S,T,U and resource allocation
WHERE R.a=S.a) qu
AND R.a=T.a I /N
AND R.a=U.a X §]

Re-Optimization ,

w e | EE

X U X
N/ _I_ Re-Optimization ,
/ N\ cardinalities, m >
R S selectivities, #distinct
(single pass) R

706.543 Architecture of Database Systems — 08 Query Optimization & ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

Intra-Query Adaptivity

TU

Grazm

#3 Inter-Operator Re-optimization, cont.

= Problem

= Expensive checkpointing / wasted intermediates
= Trigger re-optimization only if violated validity ranges

Reactive Reoptimization

™

[

1) Compute Validity

Z P -'/
Range (BLACK BOX) ~ |eeste =
Cost(Pq,,): N E
i ln:put Cardinality=
2) Place Checkpoint X
/ N\
operators B T
N\
3) Re-optimization 4 S
on CHECK error m
R

[Volker Markl, V. Raman, D. E. Simmen, G. M.
Lohman, H. Pirahesh: Robust Query Processing

through Progressive Optimization. SIGMOD 2004]

1) Bounding box

SQL Compilation Statistics

WIth CHECK
Re-optimize

If CHECK Error
with CHECK

Proactive Reoptimization

T{S\ (in MB)

Potential

Max -
1 192 Bounding box
around estimates rum o #
Potential 144 [o(R)|
Min f (in MB)
® »
75 150 300

Potential Min Estimated Potential Max

2) Use bounding boxes to compute a

switchable plan . B
i {wbb}alm Switch ()plmlcx.\'l_. Index Seek on T (P10a)
fo r (IO’ eSt’ h I) \ Buffer HashJoin2, Scan T (PL0b)
HM;:;” T Op@/ Hashloin3, Scan T (P10¢)
VRN 7\1_‘—&_

Sean R Scan 5

[Shivnhath Babu, Pedro Bizarro, David J. DeWitt:
Proactive Re-optimization. SIGMOD 2005]

Intra-Query Adaptivity

TU

Grazm

#4 Intra-Operator Adaptivity

= Basic Idea (Corrective Query Processing)

[Zachary G. lves, Alon Y. Halevy,
Daniel S. Weld: Adapting to Source
Properties in Processing Data
Integration Queries. SIGMOD 2004]

= Use different plans for different partitions of the data

= Combine the results of subplans in stich-up-phases

(a) aggregation/join query as

(b) Complementary Join Pair

combined results of two plans (Generalized of Pipelined Hash Join)
Shared Group- \ \
by Operator e e
W et :;' ';:'.
Gl‘Dup[ﬁd,erm] max{num}) ¢ ,-...:_-- A
P Q Q
.l. '.--T..J
U |
P N GINZIES h(R)] [R h(S)
;f" \\\\ E‘ﬁtch-up Hash Merge
/ Pi
an Q Q Q Q Q Q
F C’ R | |S
R S
T ¢ F T Pipelined Hash Complementary
Join Join Pair
Plan 0 Plan 1
706.543 Architecture of Database Systems — 08 Query Optimization & ISDS

Matthias Boehm, Graz University of Technology, WS 2020/21

Intra-Query Adaptivity -ErLa!.

#4 Intra-Operator Adaptivity, cont.

= Algebraic Key Property
= Distribute relational UNION through PSJ operations

= Joins Ri M. .X R, = U (R{* M ... X Ry

= Example

" If R=R;UR,, (horizontal partitioning)
S=S,US,

= then: RS

(RLUR,) X (S, US,)
(RyxS;)U (RyxS,)U(R,xS;)U (R, ™S,)

G =

706.543 Architecture of Database Systems — 08 Query Optimization .ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

Intra-Query Adaptivity -I(;rE!l

I nt ra_Qu e ry Lea rn | ng [lmmanuel Trummer, Junxiong Wang, Deepak Maram,

Samuel Moseley, Saehan Jo, Joseph Antonakakis:
SkinnerDB: Regret-Bounded Query Evaluation via

= Basic ldea Reinforcement Learning. SIGMOD 2019]

= Micro-episodes (time slices), run plans with different join orders,
evaluate reward, stitch-up partial results (no cost model, good for UDFs)

= Exploitation vs exploration via reinforcement learning

= UCT for Join Ordering

= Build tree of join orders gradually
from root to bottom

Quality Bounds I

» Store statistics in nodes of tree

= Pick next best order via UCT algorithm
(w/ guarantees on cumulative regret)

= Multi-way Joins
= Evaluate entire join order in given time slices
= Reuse previous state (e.g., hash tables)

706.543 Architecture of Database Systems — 08 Query Optimization .ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

Intra-Query Adaptivity -ErLa!.

#5 Tuple Routing (Eddies)

[Ron Avnur, Joseph M. Hellerstein:
= Basic ldea Eddies: Continuously Adaptive Query
Processing, SIGMOD 2000]

= No plan (no fixed execution order)
= Tuples routed to relevant operators using routing policies

= Query Execution via Tuple Routing

= Eddy operator routes tuples
to applicable operators

= Read/done bit vectors

R
L a | b | c | . |ready]done]

15 10 ABC .. 111 000

= Encapsulates all aspects of adaptivity
in a “standard” dataflow operator

[Amol Deshpande: An initial study of overheads
of eddies. SIGMOD Rec. 33(1) 2004]

706.543 Architecture of Database Systems — 08 Query Optimization .ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

Intra-Query Adaptivity

#5 Tuple Routing (Eddies) — Routing Policies

= Deterministic [Remzi H. Arpaci-Dusseau: Run-time

= Monitor Continuously adaptation in River. ACM Trans.
Comput. Syst. TOCS 2003]

= Re-optimize periodically using rank ordering
(or A-Greedy for correlated predicates)

= Lottery Scheduling [Ron Avnur, Joseph M. Hellerstein:

Eddies: Continuously Adaptive

. . L
Operators run in threads with input queue Query Processing, SIGMOD 2000]

= Tickets assigned according to input/output

= Route tuple to next eligible operator with
room in queue,

= Content-based Routing [Pedro Bizarro, Shivnath Babu, David J. DeWitt,
Jennifer Widom: Content-Based Routing:

Different Plans for Different Data. VLDB 2005]
= Based on attribute values (i.e., correlation)

706.543 Architecture of Database Systems — 08 Query Optimization B ISDS

Matthias Boehm, Graz University of Technology, WS 2020/21

TU

Grazm

Summary and Q&A

Backlog: Join Enumeration / Ordering
AQP Fundamentals
Learned Cardinalities

Intra-Query Adaptivity

[Surajit Chaudhuri: Query optimizers: time
to rethink the contract? SIGMOD 2009]
(constraints, directives, anytime algorithms,
adaptivity, new environments)

= Next Lectures (Part C)
= 10 Cloud Database Systems [Jan 13]

= 11 Modern Concurrency Control [Jan 20]

[Marianne Winslett: Pat Selinger Speaks Out.
SIGMOD Rec. 32(4) 2003 https://sigmod.org/

publications/interview/pat-selinger/]

“Query optimizers have been 25 years in
development, with enhancements of the cost-
based query model and the optimization that
goes with it, and a richer and richer variety of

execution techniques that the optimizer chooses
from. We just have to keep working on this. It’s a
never-ending quest for an increasingly better
model and repertoire of optimization and
execution techniques. So the more the model can
predict what’s really happening in the data and
how the data is really organized, the closer and
closer we will come [to the ideal system]”

Happy
Holidays

= 12 Modern Storage and HW Accelerators [Jan 27]

706.543 Architecture of Database Systems — 08 Query Optimization & ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

