TU

Grazm

SCIENCE
PASSION
TECHNOLOGY

Architecture of DB Systems
11 Modern Concurrency Control

Matthias Boehm

Graz University of Technology, Austria

Computer Science and Biomedical Engineering
Institute of Interactive Systems and Data Science
BMK endowed chair for Data Management

Last update: Jan 20, 2021 “ISDS

TU

Grazm

Announcements/Org

= #1 Video Recording
= Link in TeachCenter & TUbe (lectures will be public)
= QOptional attendance (independent of COVID)

= #2 COVID-19 Restrictions (HS i5)
= Corona Traffic Light: RED
= Temporarily webex lectures until end of semester

= #3 Course Evaluation and Exam
= Evaluation period: Dec 15 - Jan 31
= Exam date: Feb 19 (virtual webex oral exams, 45min each)

706.543 Architecture of Database Systems — 11 Modern Concurrency Control
Matthias Boehm, Graz University of Technology, WS 2020/21

&3 TUbe

stlvatfn
cisco \\Vebex

"ISDS

TU

Grazm

Agenda

= TX Processing Background

= Pessimistic and Optimistic Concurrency Control
= Multi-Version Concurrency Control

= Excursus: Coordination Avoidance

706.543 Architecture of Database Systems — 11 Modern Concurrency Control
Matthias Boehm, Graz University of Technology, WS 2020/21

"ISDS

TU

Grazm

TX Processing Background

706.543 Architecture of Database Systems — 11 Modern Concurrency Control
Matthias Boehm, Graz University of Technology, WS 2020/21

"ISDS

TX Processing Background -I(;rE!l

Transaction (TX) Processing

User 2
User 1 User 3

#1 Multiple users
=» Correctness?

read/write TXs

#2 Various failures Deadlocks
(TX, system, media) Constraint

=>» Reliability? violations
DBs
Network

- Crash/power

. . failure
Disk failure failure
= Goal: Transaction Processing
= #1 Locking and concurrency control to ensure #1 correctness
= #2 Logging and recovery to ensure #2 reliability
706.543 Architecture of Database Systems — 11 Modern Concurrency Control .ISDS

Matthias Boehm, Graz University of Technology, WS 2020/21

TX Processing Background -ErLa!.

Terminology of Transactions

= Database Transaction

= A transaction (TX) is a series of steps that brings a database from
a consistent state into another (not necessarily different) consistent state

= ACID properties (atomicity, consistency, isolation, durability)

#1 Isolation level (defined

= Terminology #2 Start/begin of TX (BOT/BT) by addressed anomalies)

by Example |
START TRANSACTION ISOLATION LEVEL SERIALIZABLE;
UPDATE Account SET Balance=Balance-100
#3 Reads and writes of WHERE AID = 107;
data objects =~ ———— UPDATE Account SET Balance=Balance+100
WHERE AID = 999;

#6 Savepoints

SELECT Balance INTO lbalance (checkpoint for
FROM Account WHERE AID=107; artial rollback
#4 Abort/rollback TX IF lbalance < © THEN P)
(unsuccessful end of ROLLBACK TRANSACTION;
transaction, EOT/ET) END IF #5 Commit TX
COMMIT TRANSACTION; (successful end of

transaction, EOT/ET)

TX Processing Background TU

Grazm

Database (Transaction) Log

= Database Architecture

= Write-Ahead Logging (WAL)

User 2

Page-oriented storage on disk and
in memory (DB buffer) DBMS

Dedicated eviction algorithms

DB Buffer Log

Modified in-memory pages marked as
dirty, flushed by cleaner thread P7 P3

Log: append-only TX changes

Buffer

Data/log often placed on different devices
and periodically archived (backup + truncate) P18 p7 B P3 ‘

Data Log

The log records representing changes to some (dirty)
data page must be on stable storage before the data page (UNDO - atomicity)

Force-log on commit or full buffer (REDO - durability)

Recovery: forward (REDO) and [C. Mohan, Donald J. Haderle, Bruce G. Lindsay,
backward (UNDO) processing Hamid Pirahesh, Peter M. Schwarz: ARIES: A
Transaction Recovery Method Supporting Fine-
Granularity Locking and Partial Rollbacks Using

Write-Ahead Logging. TODS 1992]

Log sequence number (LSN)

TU

TX Processing Background Graza

ﬂ Isolation Levels

= Different Isolation Levels SET TRANSACTION
ISOLATION LEVEL

READ COMMITTED

» Tradeoff Isolation vs performance per session/TX
= SQL standard requires guarantee against lost updates for all

= SQL Standard Isolation Levels

Isolation Level Lost Dirty Unrepeatable | Phantom
Update Read (P1) Read (P2) Read (P3)

READ UNCOMMITTED

READ COMMITTED No* No Yes Yes
REPEATABLE READ No* No No Yes
[SERIALIZABLE] No* No No No

* Lost update potentially w/

" Serializable w/ highest guarantees different semantics in standard

(pseudo-serial execution)
= How can we enforce these isolation levels?
= User: set default/transaction isolation level (mixed TX workloads possible)
= System: dedicated concurrency control strategies + scheduler

TU

TX Processing Background Graza
' Excursus: A Critique of SQL Isolation Levels
n Summary [Hal Berenson, Philip A. Bernstein,

o . _ Jim Gray, Jim Melton, Elizabeth J.
= Criticism: SQL standard isolation levels are O'Neil, Patrick E. O'Neil: A Critique

ambiguous (strict/broad interpretations) of ANSI SQL Isolation Levels.

. : : . SIGMOD 1995]
= Additional anomalies: dirty write, cursor lost update,

fuzzy read, read skew, write skew
= Additional isolation levels: cursor stability and snapshot isolation

= Snapshot Isolation (< Serializable)
= Type of optimistic concurrency control via multi-version concurrency control
= TXs reads data from a snapshot of committed data when TX started
= TXs never blocked on reads, other TXs data invisible

= TX T1 only commits if no other TX wrote the same data items

in the time interval of T1

5 [http://dbmsmusings.blogspot.com/2019/05/
= Current Status: introduction-to-transaction-isolation.html]

= “SQL standard that fails to accurately define database isolation levels and
database vendors that attach liberal and non-standard semantics”

706.543 Architecture of Database Systems — 11 Modern Concurrency Control B ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

TX Processing Background

TU

Grazm

= Default and Maximum
Isolation Levels for “ACID”
and “NewSQL” DBs
[as of 2013]

= 3/18 SERIALIZABLE
by default

= 8/18 did not provide
SERIALIZABLE at all

[Peter Bailis, Alan Fekete, Ali Ghodsi,
Joseph M. Hellerstein, lon Stoica: HAT,
Not CAP: Towards Highly Available

Transactions. HotOS 2013]

Beware of defaults, even though
the SQL standard says
SERIALIZABLE is the default

Excursus: Isolation Levels in Practice

Database Default Maximum
Actian Ingres 10.0/10S [1] S S
Aerospike [2] RC RC
Akiban Persistit [3] SI SI
Clustrix CLX 4100 [4] RR RR
Greenplum 4.1 [8] RC S
IBM DB2 10 for z/OS [5] CS S
IBM Informix 11.50 [9] Depends S
MySQL 5.6 [12] RR S
MemSQL 1b [10] RC RC
MS SQL Server 2012 [11] RC S
NuoDB [13] CR CR
Oracle 11g [14] RC SI
Oracle Berkeley DB [7] S S
Oracle Berkeley DB JE [6] RR S
Postgres 9.2.2 [15] RC S
SAP HANA [16] RC SI
ScaleDB 1.02 [17] RC RC
VoltDB [18] S S

RC: read committed, RR: repeatable read, SI: snapshot isola-
tion, S: serializability, CS: cursor stability, CR: consistent read

706.543 Architecture of Database Systems — 11 Modern Concurrency Control
Matthias Boehm, Graz University of Technology, WS 2020/21

"ISDS

TX Processing Background TU

Grazm

Serializability Theory

= Operations of Transaction T,
" Read and write operations of A by T;: r;(A) w;(A)
= Abort of transaction T;: a; (unsuccessful termination of T))

= Commit of transaction T;: ¢; (successful termination of T))

= Schedule S
= Qperations of a transaction T, are executed in order T T,

= Multiple transactions may be executed concurrently \ /
. . . S
=» Schedule describes the total ordering of operations

= Equivalence of Schedules S1 and S2
= Read-write, write-read, and write-write dependencies on data object A
executed in same order: ri(A) <o wi(A) & ri(A) < w;(A)
wi(4) <51 75(4) © wi(A) <sz 75(A)
w;i(4) <s; w;(4) © w;i(4) <g2 w;j(4)

706.543 Architecture of Database Systems — 11 Modern Concurrency Control B ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

TU

TX Processing Background Graza

Serializability Theory, cont.

= Example Serializable Schedules
" Input TXs T1l: BOT r;(A) w;(A) ry(B) w(B) ¢
T2: BOT r(C) w,(C) ry(A) w,(A) c,

] zi;icalition ri(A) wy(A) ri(B) w,(B) c; ry(C) wy(C) ry(A) w(A) ¢,
= Equivalent r (A) r(C) w,(A) w,(C) ry(B) my(A) wy(B) wy(A) ¢, c,

schedules () w,(A) my(C) wy(C) ry(B) wy(B) ry(A) wy(A) <, c,
= Wrong -

schedule ri(A) ry(C) wy(C) ry(A) wi(A) ri(B) wi(B) wy(A) ¢ ¢,

= Serializability Graph (conflict graph)
= QOperation dependencies (read-write, write-read, write-write) aggregated
= Nodes: transactions; edges: transaction dependencies
= Transactions are serializable (via topological sort) if the graph is acyclic

= Beware: Serializability Theory considers only successful transactions,
which disregards anomalies like dirty read that might happen in practice

Pessimistic and Optimistic Concurrency
Control

706.543 Architecture of Database Systems — 11 Modern Concurrency Control B ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

Pessimistic and Optimistic Concurrency Control -ErE!l

Overview Concurrency Control

= Terminology
= Lock: logical synchronization of TXs access to database objects (row, table, etc)
= Latch: physical synchronization of access to shared data structures

= #1 Pessimistic Concurrency Control
= Locking schemes (lock-based database scheduler)
= Full serialization of transactions

= #2 Optimistic Concurrency Control (OCC)
= QOptimistic execution of operations, check of conflicts (validation)
= QOptimistic and timestamp-based database schedulers

= #3 Mixed Concurrency Control (e.g., PostgreSQL)

= Combines locking and OCC ERROR: could not serialize access
due to concurrent update

u Mlght return synchronlzatlon errors ERROR: deadlock detected

706.543 Architecture of Database Systems — 11 Modern Concurrency Control B ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

Pessimistic and Optimistic Concurrency Control -ErLa!.

Locking Schemes

= Compatibility of Locks Existing Lock
= X-Lock (exclusive/write lock) -m““
= S-Lock (shared/read lock) Requested S Yes Yes No
Lock X Yes No No
= Multi-Granularity Locking IS
= Hierarchy of DB objects DE/\A IS
= Additional intentional IX and IS locks Table

A 1
SANA A

Row @ @ @ @ TN

 [Nome| s | X | IS | IX_
S Yes Yes No Yes No
X Yes No No No No

IS Yes Yes No Yes Yes
IX Yes No No Yes Yes

706.543 Architecture of Database Systems — 11 Modern Concurrency Control .ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

Pessimistic and Optimistic Concurrency Control -ErLa!.

Two-Phase Locking (2PL)

= Overview
= 2PLis a concurrency protocol that guarantees SERIALIZABLE
= Expanding phase (growing): acquire locks needed by the TX

= Shrinking phase: release locks acquired by the TX
(can only start if all needed locks acquired)

Phase 1 Phase 2
Expanding Shrinking

of locks

| — Time
BOT EOT

706.543 Architecture of Database Systems — 11 Modern Concurrency Control B ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

Pessimistic and Optimistic Concurrency Control -ErLa!.

Two-Phase Locking, cont.

= Strict 2PL (S2PL) and Strong Strict 2PL (SS2PL)
= Problem: Transaction rollback can cause (Dirty Read)
= Release all X-locks (S2PL) or X/S-locks (SSPL) at end of transaction (EOT)

I\
Strict 2PL prevents
of dirty reads and thus
locks cascading abort
i = Time
BOT EOT

= Strict 2PL w/ pre-claiming (aka conservative 2PL)
= Problem: incremental expanding can cause deadlocks for interleaved TXs

= Pre-claim all necessary locks (only possible if entire TX known + latches)
I\

of Strict 2PL w/ preclaiming
locks prevents deadlocks

> Time
BOT EOT

Pessimistic and Optimistic Concurrency Control -Erla'!l

2PL — Deadlocks X1 ™2

= Deadlock Scenario lock R lock 5
= Deadlocks of concurrent transactions lock S lock R
= Deadlocks happen due to cyclic blocks until TX2 | blocks until TX1
dependencies without pre-claiming releasesS Y releases R
(wait for exclusive locks) Time
= #1 Deadlock Prevention DEADLOCK, as this %
= (guarantee if TX known upfront) will never happen
. [Philip A. Bernstein, Nathan Goodman:
= #2 Deadlock Avoidance Concurrency Control in Distributed Database

. . . Systems. ACM Comput. Surv. 1981]
= Preemptive vs non-preemptive strategies

= (if deadlock suspected wrt timestamp TS, abort lock-requesting TX)
| (T1 locks something held by T2 = if T1<T2, restart T2)
| (T1 locks something held by T2 = if T1>T2, abort T1 but keep TS)

= #3 Deadlock Detection ()

= Maintain a wait-for graph of blocked TX (similar to serializability graph)
= Detection of cycles in graph (on timeout) = abort one or many TXs

TU

Pessimistic and Optimistic Concurrency Control Graza

BaSIC TI meSta m p O rd e ri ng (BTO) [Philip A. Bernstein, Nathan

Goodman: Concurrency Control
in Distributed Database Systems.

= Synchronization Scheme
ACM Comput. Surv. 1981]

= Transactions get timestamp (or version) at BOT
= Each data object A has readTS(A) and writeTS(A)
= Use timestamp comparison to validate access = serialized schedule

" Read Protocol T;(A)
= If TS(T;) >= writeTS(A): , set readTS(A) = max(TS(T), readTS(A))
= If TS(T)) < writeTS(A): abort T; (older than last modifying TX)

= Write Protocol T;(A)
= If TS(T)) >= readTS(A) & TS(T;) >= writeTS(A): , set writeTS(A)=TS(T;)
= If TS(T)) < readTS(A): abort T; (older than last reading TX)
= If TS(T)) < writeTS(A): abort T; (older than last modifying TX)

= BEWARE: BTO requires handling of dirty reads, recoverability in general

(e.g., via abort or versions) [Stephan Wolf et al: An Evaluation of Strict

. Timestamp Ordering Concurrency Control for
= Strict Timestamp Ordering (dirty bit) Mam_MZmory thabase Systeg;s IMDM@

w/ deadlock avoidance techniques VLDB 2013 (Revised Selected Papers)]

TU

Pessimistic and Optimistic Concurrency Control Graza

Excursus: BTO in Project Reference Impl

= QOverview TX Processing

= |mplements variant of (w/ handling of dirty reads)
= of aborted transactions
./speed test 1468 0 9 0 0 \

u __sync_fetch_and_add(&VAR,1) 4000 160000 100
" #1 BasicTO NUM_TXN_FAIL: ©

= jsReadable: TID >= WTS NUM_TXN_COMP: 16,000,000

= |sWriteable: TID >= max(WTS, RTS) Time to run: 15.223s.
= #2 Basic TO w/ Read Committed NUM TXN FAIL: O

= Basic TO w/ isReadable: TID >= WTS NUM_TXN_COMP: 16,000,000

&& !(TID != WTS && scanTXTable(ix, WTS)) Time to run: 15.394s.

= #3 Basic TO w/ Serializable
= Basic TO w/ read committed
= Deleted bit, forced cleanup in epochs (A TS < max(RTS,WTS))

NotimplementedException

706.543 Architecture of Database Systems — 11 Modern Concurrency Control B ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

Pessimistic and Optimistic Concurrency Control TU

Grazm

Optimistic Concurrency Control (OCC)

= #1 Read Phase

= |nitial reads from DB,
" Maintain ReadSet(T;) and WriteSet(T;) per transaction T,
= TX seen as read-only transaction on database

= #2 Validation Phase

= Check read/write and write/write conflicts, abort on conflicts

= BOCC (Backward-oriented concurrency control) — check all older TXs T,
that finished (EOT) while T, was running (EOT(T;) = BOT(Ty))

: if EOT(T;) < BOT(T}) or WSet(T;) N RSet(T;) = @
: EOT(T;) < BOT(T;) or WSet(T;) n WSet(T;) = @

= FOCC (Forward-oriented concurrency control) — check running TXs

= #3 Write Phase

= Successful TXs with write operations propagate their local buffer
into the database and log

706.543 Architecture of Database Systems — 11 Modern Concurrency Control B ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

Pessimistic and Optimistic Concurrency Control

Ti m esta m p Al |Ocat|0 n [Xiangyao Yu, George Bezerra, Andrew Pavlo,

Srinivas Devadas, Michael Stonebraker: Staring into
the Abyss: An Evaluation of Concurrency Control

" #1 Mutex with One Thousand Cores. PVLDB 8(3) 2014]
= #2 Atomic add / Batched Atomics [Stephen Tu, Wenting Zheng, Eddie Kohler,

. Barbara Liskov, Samuel Madden: Speedy
= #3 Decentralized / CPU Clock transactions in multicore in-memory
= #4 Hardware (CPU HW counter) databases. SOSP 2013]

o—o (Clock
| &= Hardware

10000

)
~
hd [| ~~a Atomic batch=16
S 1000f| o o Atomic batch=8
E = =+ Atomic
= 1005_ = Mutex _
- i]
o []
- i |
S 10 :
o ‘ !
=]
1 10 100 1000
Number of Cores
706.543 Architecture of Database Systems — 11 Modern Concurrency Control B ISDS

Matthias Boehm, Graz University of Technology, WS 2020/21

Multi-Version Concurrency Control
(MVCC)

706.543 Architecture of Database Systems — 11 Modern Concurrency Control
Matthias Boehm, Graz University of Technology, WS 2020/21

"ISDS

TU

Multi-Version Concurrency Control Graza

Snapshot Isolation w/ Snapshots

= #1 Shadow Storage [Alfons Kemper, Thomas Neumann:
. HyPer: A hybrid OLTP&OLAP main
= #2 Snapshots via Fork memory database system based on

virtual memory snapshots. ICDE 2011]

= Partitioned, single-threaded OLTP ops

= Snapshots via fork()
+ copy-on-write

OLAP Queries

-~ oo e e
OLTP Requests /Tx L
- o o e e - -+ Read a
C/', o
O
On
of &
<O
Virtual Memory
. [] Ll
Excursus: Query Processing ;= 2 oo =T
i 1 £ ixSelect{co —a— | £ ixSelect{co e
on Prefix Trees (via fork) S oo | boelectloon) 2| 1 S on [|eiectieons —o— | |
= 600 4 . £
" - 3000 -
[Matthias Boehm Patrick Lehmann § avo § 2000 | |
Peter Benjamin Volk Wolfgang Lehner: 5 .44 L ’: 5,000,000 % 1oon | N: 35,000,000 |
Query Processing on Prefix Trees, 3 o .y & FooooE

HPI Future Soc Lab 2011] 5 18 15 28 25 38 35 5 18 15 28 25 38 35
Tuples N [in 18761 # Qualified Tuples N’ [in 18761

Multi-Version Concurrency Control

TU

Grazm

MVCC Overview

= MVCC Motivation

= Read TXs without need for locks, read sets, or copies
(fine-grained management of individual versions)

= Copy-on-write (readers never block writers), garbage collection when safe
= Additional benefits: time travel, clear semantics, snapshot isolation
= Mixed HTAP workloads = focus of many recent systems

= Design Decisions [Andy Pavlo: Advanced Database
Systems — Multi-Version Concurrency

= #1 Concurrency Control Protocol
y Control (Design Decisions), CMU 2020]

= #2 Version Storage

- Append-only, time-travel, delta [Yingjun Wu, Joy Arulraj, Jiexi Lin,

Ran Xian, Andrew Pavlo: An

= Oldest-to-newest/newest-to-oldest Empirical Evaluation of In-Memory
= #3 Garbage Collection Multi-Version Cos\cll:gsnlcoy(f)o;;rl(;l]‘

= Tuple (background, coop), TX-level
= #4 Index Management
= Logical, physical pointers

Multi-Version Concurrency Control -ErLa!.

Version Storage

[Thomas Neumann, Tobias Muhlbauer, Alfons Kemper: | =
Fast Serializable Multi-Version Concurrency Control for
Main-Memory Database Systems. SIGMOD 2015]

= Example Hyper
= |n-place update, backward delta in UNDO buffer
= Almost no storage overhead (VersionVector), TX-local commit processing
= Newest-to-oldest (preference for fast analytical queries)

5
& .2
s &
o""\k\ ﬁ’b(\% Q'G‘O /"o,
S & Accounts & o _ _ _ %,
.\o'?' 6\2 \’bl’ Owner Bal & _ Vversion information stored in additional hidden column in base relation €
\\q}r’@g’ Q\é}‘ e‘_,— (indexes only store references, i.e., rowlDs, to records in base relations) ‘6
& . A %,
\(\’b Thomas 10 %, %, EA
—1 latest version in-place 0,/ N (}é
Larry 10 & ’/),-)> "’f,é 5
(0,0) If 0 | P physical before-image deltas (i.e., column values) © Y 3
' Aehs ! L1 /’ in undo buffers Sally=>Wendy] I
’ " 3
Jud 10 ‘ =
y —’_7_@ / Undo lTuffer of Ty (Sally=>...) Sally=>Henry .':_' Rece nt y
| Tobias__||__J 10_ T Ty.Bal8 | | .
ilsaly || 7]t ¥ s 12 Committed
| S - 3
T m
Hanna || 10 -
(0,1) Hasso 10 z
Undo buffer of TS % o
Mike 10 - | 5 J‘fo b,
— [Ts,8al,9 | [T5,8al,10 | %, &,
Lisa 10 » A © 7 o
[a
Betty 10 T4 | Readonly:Z z
o
: =
Cindy 10 Undo buffer of T3 T6 | Sally>Mike § Actlve TX
<+ : I
(2,5) Henry 11 [713,8al,10 | [73,Bal,10 5l | BERdenipie 8
Praveen 10 g'
1 w
Wendy l 11 « =
— — - Transfers

main-memory column-store

of 1 unit
Abort TX write-write conflicts on uncommitted changes

Multi-Version Concurrency Control TU

Grazm

Se r|a I |Za bi | |ty Va | |d atiOn [Thomas Neumann, Tobias Mihlbauer, Alfons

Kemper: Fast Serializable Multi-Version
Concurrency Control for Main-Memory

H . Database Systems. SIGMOD 2015
= (Extended) Precision Locking y]

= Predicate logging: Instead of maintaining read-set, store read predicates of
index and table scan of validated T, in predicate tree (PT)

= Recap: Serializable: if EOT(T;) < BOT (T;) or WSet(T;) N RSet(Tj) =0Q
= Probe UNDO buffers (write set) of all T, against predicate tree

predicate space (for 4 predicates)

X Ps: Pl:
I1=1.7andB =15 I=1.6

MP\\ s and \

B between 10 and 20 B=15

Predicate Tree of T,

o Interest

(Y

1=1.6 x~ | B=15
| AND /\ // ::é:etween 1and.2
| between .1 and .2 1=1 1=17 04 ﬁi;‘l*«/ and
1<] B between 10 and 20
0.14 —=2— TR y
1I0 2:3 Bal
. o .) alance
Abort Ti if a single UNDO buffer’s intersection of point x ‘/)
data point matches with predicate
\)_(X x/ x
2 undo buffers under validation

[1=0.13,B=14]

TU

Multi-Version Concurrency Control Graza

G 3 rbage COl Iectio N [Yingjun Wu, Joy Arulraj, Jiexi Lin, Ran Xian, Andrew

Pavlo: An Empirical Evaluation of In-Memory Multi-
Version Concurrency Control. PVLDB 10(7) 2017]

= #1 Tuple-level mmm Tuple-level (VAC) mmm Tuple-level (COOP) Disabled
Garbage Collection e A
= Background vacuuming £ e T
. . 2 N DAVAS OO il Eaolh o DAAALeONS
= Cooperative cleaning 2 22 R/W:80/20 3 16l S R/W 20/80 o
on traversal) S S a— 60 80 100 120 T % Tm @ e @ w12
Elapsed time (s) Elapsed time (s)
m #2 Transaction-level mmm Tuple-level mmm Transaction-level Disabled
- — 75
= E.g., by epoch ﬁiiﬁfawmmwmwm Byl
g%l R/W:80/20 | %3, R/W: 20/80
" 00 20 40 60 80 100 120 g 00 20 40 60 80 100 120
Elapsed time (s) Elapsed time (s)
= Deferred Action Framework (DAF) [Ling Zhang et al: Everything is a Transaction: —

. Unifying Logical Concurrency Control and
|]
Maintenance tasks for GC, plan cache Physical Data Structure Maintenance in

invalidation, data transformation Database Management Systems, CIDR 2021]

706.543 Architecture of Database Systems — 11 Modern Concurrency Control .ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

Multi-Version Concurrency Control

TU

Grazm

[Xiangyao Yu, George Bezerra, Andrew Pavlo,
Srinivas Devadas, Michael Stonebraker: Staring into
the Abyss: An Evaluation of Concurrency Control
with One Thousand Cores. PVLDB 8(3) 2014]

Comparison (simulated)

14 T . .
- Read-only] o—e DL DETECT a—a TIMESTAMP
S 12| o NO_WAIT o= o MVCC
Workload c 10l [oo_wam DE =+ 0CC
S
=z 8 == .
29 = _— Timestamp
o 4 P T Allocation
5 2t > gl i / =
o o _ﬂ;;/M
Foolee , , | |
0 200 400 600 800 1000
Number of Cores
- kAt . —~ 4.5r{e—e DL DETECT &—= TIMESTAMP}— . '
Write-intensive D 4ol |o—s NowaT oe mvce . ¢l Abort
Workload 53522 WATDE 7 o« 1 Rates
. . o -
(medium contention) £ 39
s 2.5¢
= 2.0
£ 1.5f
(@]
3 1.0f Lock
c 0.5f .
F oole 1 [g , __| Thrashing
0 200 400 600 800 1000

Number of Cores

706.543 Architecture of Database Systems — 11 Modern Concurrency Control
Matthias Boehm, Graz University of Technology, WS 2020/21

"ISDS

Excursus: Coordination Avoidance

706.543 Architecture of Database Systems — 11 Modern Concurrency Control B ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

TU

Excursus: Coordination Avoidance Graza

Overview Coordination Avoidance

= Overview

= Ensure application-level invariants and convergence instead of (serializability
vs weaker) with (different approaches)

With Transactions

[Peter Bailis, Ali Ghodsi, Joseph M.
Hellerstein, lon Stoica: Bolt-on causal
consistency. SIGMOD 2013]

[Peter Bailis et al.: Coordination —

Avoidance in Database Systems.
PVLDB 8(3) 2014]

[Peter Bailis: Coordination
Avoidance in Distributed Databases.
PhD UC Berkeley 2015]

706.543 Architecture of Database Systems — 11 Modern Concurrency Control
Matthias Boehm, Graz University of Technology, WS 2020/21

Without Transactions

[Peter Alvaro, Neil Conway, Joseph M.
Hellerstein, William R. Marczak:
Consistency Analysis in Bloom: a CALM and
Collected Approach. CIDR 2011]

[Peter Alvaro: Data-centric Programming for
Distributed Systems. PHD UC Berkeley 2015]

[Chenggang Wu, Jose M. Faleiro, Yihan Lin,
Joseph M. Hellerstein: Anna: A KVS for Any
Scale. ICDE 2018]

[Chenggang Wu, Vikram Sreekanti, Joseph
M. Hellerstein: Autoscaling Tiered Cloud
Storage in Anna. PVLDB 12(6) 2019]

"ISDS

TU

Grazm

Summary and Q&A

TX Processing Background

Pessimistic and Optimistic Concurrency Control
Multi-Version Concurrency Control

= Excursus: Coordination Avoidance

Next Lectures (Part C)
= 12 [Jan 27]

706.543 Architecture of Database Systems — 11 Modern Concurrency Control
Matthias Boehm, Graz University of Technology, WS 2020/21

"ISDS

