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Announcements/Org

= #1 Video Recording
= Link in TeachCenter & TUbe (lectures will be public)
= QOptional attendance (independent of COVID)

= #2 COVID-19 Restrictions (HS i5)
= Corona Traffic Light: RED
= Temporarily webex lectures until end of semester

= #3 Course Evaluation and Exam
= Evaluation period: Dec 15 - Jan 31
= Exam date: Feb 19 (virtual webex oral exams, 45min each)
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Agenda

= TX Processing Background

= Pessimistic and Optimistic Concurrency Control
= Multi-Version Concurrency Control

= Excursus: Coordination Avoidance
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TX Processing Background
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TX Processing Background -I(;rE!l

Transaction (TX) Processing

User 2
User 1 User 3

#1 Multiple users
=» Correctness?

read/write TXs

#2 Various failures Deadlocks
(TX, system, media) Constraint

=>» Reliability? violations
DBs
Network

- Crash/power

. . failure
Disk failure failure
= Goal: Transaction Processing
= #1 Locking and concurrency control to ensure #1 correctness
= #2 Logging and recovery to ensure #2 reliability
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TX Processing Background -ErLa!.

Terminology of Transactions

= Database Transaction

= A transaction (TX) is a series of steps that brings a database from
a consistent state into another (not necessarily different) consistent state

= ACID properties (atomicity, consistency, isolation, durability)

#1 Isolation level (defined

= Terminology #2 Start/begin of TX (BOT/BT) by addressed anomalies)

by Example |
START TRANSACTION ISOLATION LEVEL SERIALIZABLE;
UPDATE Account SET Balance=Balance-100
#3 Reads and writes of WHERE AID = 107;
data objects =~ ———— UPDATE Account SET Balance=Balance+100
WHERE AID = 999;

#6 Savepoints

SELECT Balance INTO lbalance (checkpoint for
FROM Account WHERE AID=107; artial rollback
#4 Abort/rollback TX IF lbalance < © THEN P )
(unsuccessful end of ROLLBACK TRANSACTION;
transaction, EOT/ET) END IF #5 Commit TX
COMMIT TRANSACTION; (successful end of

transaction, EOT/ET)
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Database (Transaction) Log

= Database Architecture

= Write-Ahead Logging (WAL)

User 2

Page-oriented storage on disk and
in memory (DB buffer) DBMS

Dedicated eviction algorithms

DB Buffer Log

Modified in-memory pages marked as
dirty, flushed by cleaner thread P7  P3

Log: append-only TX changes

Buffer

Data/log often placed on different devices
and periodically archived (backup + truncate) P18 p7 B P3 ‘

Data Log

The log records representing changes to some (dirty)
data page must be on stable storage before the data page (UNDO - atomicity)

Force-log on commit or full buffer (REDO - durability)

Recovery: forward (REDO) and [C. Mohan, Donald J. Haderle, Bruce G. Lindsay,
backward (UNDO) processing Hamid Pirahesh, Peter M. Schwarz: ARIES: A
Transaction Recovery Method Supporting Fine-
Granularity Locking and Partial Rollbacks Using

Write-Ahead Logging. TODS 1992]

Log sequence number (LSN)
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ﬂ Isolation Levels

= Different Isolation Levels SET TRANSACTION
ISOLATION LEVEL

READ COMMITTED

» Tradeoff Isolation vs performance per session/TX
= SQL standard requires guarantee against lost updates for all

= SQL Standard Isolation Levels

Isolation Level Lost Dirty Unrepeatable | Phantom
Update Read (P1) Read (P2) Read (P3)

READ UNCOMMITTED

READ COMMITTED No* No Yes Yes
REPEATABLE READ No* No No Yes
[SERIALIZABLE] No* No No No

* Lost update potentially w/

" Serializable w/ highest guarantees different semantics in standard

(pseudo-serial execution)
= How can we enforce these isolation levels?
= User: set default/transaction isolation level (mixed TX workloads possible)
= System: dedicated concurrency control strategies + scheduler
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' Excursus: A Critique of SQL Isolation Levels
n Summary [Hal Berenson, Philip A. Bernstein,

o . _ Jim Gray, Jim Melton, Elizabeth J.
= Criticism: SQL standard isolation levels are O'Neil, Patrick E. O'Neil: A Critique

ambiguous (strict/broad interpretations) of ANSI SQL Isolation Levels.

. : : . SIGMOD 1995]
= Additional anomalies: dirty write, cursor lost update,

fuzzy read, read skew, write skew
= Additional isolation levels: cursor stability and snapshot isolation

= Snapshot Isolation (< Serializable)
= Type of optimistic concurrency control via multi-version concurrency control
= TXs reads data from a snapshot of committed data when TX started
= TXs never blocked on reads, other TXs data invisible

= TX T1 only commits if no other TX wrote the same data items

in the time interval of T1

5 [http://dbmsmusings.blogspot.com/2019/05/
= Current Status: introduction-to-transaction-isolation.html]

= “SQL standard that fails to accurately define database isolation levels and
database vendors that attach liberal and non-standard semantics”
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= Default and Maximum
Isolation Levels for “ACID”
and “NewSQL” DBs
[as of 2013]

= 3/18 SERIALIZABLE
by default

= 8/18 did not provide
SERIALIZABLE at all

[Peter Bailis, Alan Fekete, Ali Ghodsi,
Joseph M. Hellerstein, lon Stoica: HAT,
Not CAP: Towards Highly Available

Transactions. HotOS 2013]

Beware of defaults, even though
the SQL standard says
SERIALIZABLE is the default

Excursus: Isolation Levels in Practice

Database Default Maximum
Actian Ingres 10.0/10S [1] S S
Aerospike [2] RC RC
Akiban Persistit [3] SI SI
Clustrix CLX 4100 [4] RR RR
Greenplum 4.1 [8] RC S
IBM DB2 10 for z/OS [5] CS S
IBM Informix 11.50 [9] Depends S
MySQL 5.6 [12] RR S
MemSQL 1b [10] RC RC
MS SQL Server 2012 [11] RC S
NuoDB [13] CR CR
Oracle 11g [14] RC SI
Oracle Berkeley DB [7] S S
Oracle Berkeley DB JE [6] RR S
Postgres 9.2.2 [15] RC S
SAP HANA [16] RC SI
ScaleDB 1.02 [17] RC RC
VoltDB [18] S S

RC: read committed, RR: repeatable read, SI: snapshot isola-
tion, S: serializability, CS: cursor stability, CR: consistent read
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Serializability Theory

= Operations of Transaction T,
" Read and write operations of A by T;: r;(A) w;(A)
= Abort of transaction T;: a; (unsuccessful termination of T))

= Commit of transaction T;: ¢; (successful termination of T))

= Schedule S
= Qperations of a transaction T, are executed in order T T,

= Multiple transactions may be executed concurrently \ /
. . . S
=» Schedule describes the total ordering of operations

= Equivalence of Schedules S1 and S2
= Read-write, write-read, and write-write dependencies on data object A
executed in same order: ri(A) <o wi(A) & ri(A) < w;(A)
wi(4) <51 75(4) © wi(A) <sz 75(A)
w;i(4) <s; w;(4) © w;i(4) <g2 w;j(4)
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Serializability Theory, cont.

= Example Serializable Schedules
" Input TXs T1l: BOT r;(A)  w;(A) ry(B) w(B) ¢
T2: BOT r(C) w,(C) ry(A) w,(A) c,

] zi;icalition ri(A) wy(A) ri(B) w,(B) c; ry(C) wy(C) ry(A) w(A) ¢,
= Equivalent r (A) r(C) w,(A) w,(C) ry(B) my(A) wy(B) wy(A) ¢, c,

schedules () w,(A) my(C) wy(C) ry(B) wy(B) ry(A) wy(A) <, c,
= Wrong -

schedule ri(A) ry(C) wy(C) ry(A) wi(A) ri(B) wi(B) wy(A) ¢ ¢,

= Serializability Graph (conflict graph)
= QOperation dependencies (read-write, write-read, write-write) aggregated
= Nodes: transactions; edges: transaction dependencies
= Transactions are serializable (via topological sort) if the graph is acyclic

= Beware: Serializability Theory considers only successful transactions,
which disregards anomalies like dirty read that might happen in practice
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Pessimistic and Optimistic Concurrency Control -ErE!l

Overview Concurrency Control

= Terminology
= Lock: logical synchronization of TXs access to database objects (row, table, etc)
= Latch: physical synchronization of access to shared data structures

= #1 Pessimistic Concurrency Control
= Locking schemes (lock-based database scheduler)
= Full serialization of transactions

= #2 Optimistic Concurrency Control (OCC)
= QOptimistic execution of operations, check of conflicts (validation)
= QOptimistic and timestamp-based database schedulers

= #3 Mixed Concurrency Control (e.g., PostgreSQL)

= Combines locking and OCC ERROR: could not serialize access
due to concurrent update

u Mlght return synchronlzatlon errors ERROR: deadlock detected
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Pessimistic and Optimistic Concurrency Control -ErLa!.

Locking Schemes

= Compatibility of Locks Existing Lock
= X-Lock (exclusive/write lock) -m““
= S-Lock (shared/read lock) Requested S Yes Yes No
Lock X Yes No No
= Multi-Granularity Locking IS
= Hierarchy of DB objects DE/\A IS
= Additional intentional IX and IS locks Table

A 1
SANA A

Row @ @ @ @ TN

 [Nome| s | X | IS | IX_
S Yes Yes No Yes No
X Yes No No No No

IS Yes Yes No Yes Yes
IX Yes No No Yes Yes
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Pessimistic and Optimistic Concurrency Control -ErLa!.

Two-Phase Locking (2PL)

= Overview
= 2PLis a concurrency protocol that guarantees SERIALIZABLE
= Expanding phase (growing): acquire locks needed by the TX

= Shrinking phase: release locks acquired by the TX
(can only start if all needed locks acquired)

Phase 1 Phase 2
Expanding Shrinking

# of locks

| — Time
BOT EOT
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Pessimistic and Optimistic Concurrency Control -ErLa!.

Two-Phase Locking, cont.

= Strict 2PL (S2PL) and Strong Strict 2PL (SS2PL)
= Problem: Transaction rollback can cause (Dirty Read)
= Release all X-locks (S2PL) or X/S-locks (SSPL) at end of transaction (EOT)

I\
Strict 2PL prevents
# of dirty reads and thus
locks cascading abort
i = Time
BOT EOT

= Strict 2PL w/ pre-claiming (aka conservative 2PL)
= Problem: incremental expanding can cause deadlocks for interleaved TXs

= Pre-claim all necessary locks (only possible if entire TX known + latches)
I\

# of Strict 2PL w/ preclaiming
locks prevents deadlocks

> Time
BOT EOT



Pessimistic and Optimistic Concurrency Control -Erla'!l

2PL — Deadlocks X1 ™2

= Deadlock Scenario lock R lock 5
= Deadlocks of concurrent transactions lock S lock R
= Deadlocks happen due to cyclic blocks until TX2 | blocks until TX1
dependencies without pre-claiming releasesS Y  releases R
(wait for exclusive locks) Time
= #1 Deadlock Prevention DEADLOCK, as this %
= (guarantee if TX known upfront) will never happen
. [Philip A. Bernstein, Nathan Goodman:
= #2 Deadlock Avoidance Concurrency Control in Distributed Database

. . . Systems. ACM Comput. Surv. 1981]
= Preemptive vs non-preemptive strategies

= (if deadlock suspected wrt timestamp TS, abort lock-requesting TX)
| (T1 locks something held by T2 = if T1<T2, restart T2)
| (T1 locks something held by T2 = if T1>T2, abort T1 but keep TS)

= #3 Deadlock Detection ( )

= Maintain a wait-for graph of blocked TX (similar to serializability graph)
= Detection of cycles in graph (on timeout) = abort one or many TXs
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BaSIC TI meSta m p O rd e ri ng (BTO) [Philip A. Bernstein, Nathan

Goodman: Concurrency Control
in Distributed Database Systems.

= Synchronization Scheme
ACM Comput. Surv. 1981]

= Transactions get timestamp (or version) at BOT
= Each data object A has readTS(A) and writeTS(A)
= Use timestamp comparison to validate access = serialized schedule

" Read Protocol T;(A)
= If TS(T;) >= writeTS(A): , set readTS(A) = max(TS(T), readTS(A))
= If TS(T)) < writeTS(A): abort T; (older than last modifying TX)

= Write Protocol T;(A)
= If TS(T)) >= readTS(A) & TS(T;) >= writeTS(A): , set writeTS(A)=TS(T;)
= If TS(T)) < readTS(A): abort T; (older than last reading TX)
= If TS(T)) < writeTS(A): abort T; (older than last modifying TX)

= BEWARE: BTO requires handling of dirty reads, recoverability in general

(e.g., via abort or versions) [Stephan Wolf et al: An Evaluation of Strict

. . . . . Timestamp Ordering Concurrency Control for
= Strict Timestamp Ordering (dirty bit) Mam_MZmory thabase Systeg;s IMDM@

w/ deadlock avoidance techniques VLDB 2013 (Revised Selected Papers)]
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Excursus: BTO in Project Reference Impl

= QOverview TX Processing

= |mplements variant of (w/ handling of dirty reads)
= of aborted transactions
./speed test 1468 0 9 0 0 \

u __sync_fetch_and_add(&VAR,1) 4000 160000 100
" #1 BasicTO NUM_TXN_FAIL: ©

= jsReadable: TID >= WTS NUM_TXN_COMP: 16,000,000

= |sWriteable: TID >= max(WTS, RTS) Time to run: 15.223s.
= #2 Basic TO w/ Read Committed NUM TXN FAIL: O

= Basic TO w/ isReadable: TID >= WTS NUM_TXN_COMP: 16,000,000

&& !(TID != WTS && scanTXTable(ix, WTS))  Time to run: 15.394s.

= #3 Basic TO w/ Serializable
= Basic TO w/ read committed
= Deleted bit, forced cleanup in epochs (A TS < max(RTS,WTS))

NotimplementedException

706.543 Architecture of Database Systems — 11 Modern Concurrency Control B ISDS
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Optimistic Concurrency Control (OCC)

= #1 Read Phase

= |nitial reads from DB,
" Maintain ReadSet(T;) and WriteSet(T;) per transaction T,
= TX seen as read-only transaction on database

= #2 Validation Phase

= Check read/write and write/write conflicts, abort on conflicts

= BOCC (Backward-oriented concurrency control) — check all older TXs T,
that finished (EOT) while T, was running (EOT(T;) = BOT(Ty))

: if EOT(T;) < BOT(T}) or WSet(T;) N RSet(T;) = @
: EOT(T;) < BOT(T;) or WSet(T;) n WSet(T;) = @

= FOCC (Forward-oriented concurrency control) — check running TXs

= #3 Write Phase

= Successful TXs with write operations propagate their local buffer
into the database and log
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Pessimistic and Optimistic Concurrency Control

Ti m esta m p Al |Ocat|0 n [Xiangyao Yu, George Bezerra, Andrew Pavlo,

Srinivas Devadas, Michael Stonebraker: Staring into
the Abyss: An Evaluation of Concurrency Control

" #1 Mutex with One Thousand Cores. PVLDB 8(3) 2014]
= #2 Atomic add / Batched Atomics [Stephen Tu, Wenting Zheng, Eddie Kohler,

. Barbara Liskov, Samuel Madden: Speedy
= #3 Decentralized / CPU Clock transactions in multicore in-memory
= #4 Hardware (CPU HW counter) databases. SOSP 2013]

o—o (Clock
| &= Hardware

10000

)
~
hd [| ~~a Atomic batch=16
S 1000f| o o Atomic batch=8
E = =+ Atomic
= 1005_ = Mutex _
- i ]
o [ ]
- i |
S 10 :
o ‘ !
= ]
1 10 100 1000
Number of Cores
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Snapshot Isolation w/ Snapshots

= #1 Shadow Storage [Alfons Kemper, Thomas Neumann:
. HyPer: A hybrid OLTP&OLAP main
= #2 Snapshots via Fork memory database system based on

virtual memory snapshots. ICDE 2011]

= Partitioned, single-threaded OLTP ops

= Snapshots via fork()
+ copy-on-write

OLAP Queries

-~ oo e e
OLTP Requests /Tx L
- o o e e - -+ Read a
C/', o
O
On
of &
<O
Virtual Memory
. [ ] Ll
Excursus: Query Processing ;= 2 oo =T
i 1 £ ixSelect{co —a— | £ ixSelect{co e
on Prefix Trees (via fork) S oo | boelectloon) 2| 1 S on [|eiectieons —o— | |
= 600 4 . £
" - 3000 -
[Matthias Boehm Patrick Lehmann § avo § 2000 | |
Peter Benjamin Volk Wolfgang Lehner: 5 .44 L ’: 5,000,000 % 1oon | N: 35,000,000 |
Query Processing on Prefix Trees, 3 o .y & FooooE

HPI Future Soc Lab 2011] 5 18 15 28 25 38 35 5 18 15 28 25 38 35
# Tuples N [in 18761 # Qualified Tuples N’ [in 18761
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MVCC Overview

= MVCC Motivation

= Read TXs without need for locks, read sets, or copies
(fine-grained management of individual versions)

= Copy-on-write (readers never block writers), garbage collection when safe
= Additional benefits: time travel, clear semantics, snapshot isolation
= Mixed HTAP workloads = focus of many recent systems

= Design Decisions [Andy Pavlo: Advanced Database
Systems — Multi-Version Concurrency

= #1 Concurrency Control Protocol
y Control (Design Decisions), CMU 2020]

= #2 Version Storage

- Append-only, time-travel, delta [Yingjun Wu, Joy Arulraj, Jiexi Lin,

Ran Xian, Andrew Pavlo: An

= Oldest-to-newest/newest-to-oldest Empirical Evaluation of In-Memory
= #3 Garbage Collection Multi-Version Cos\cll:gsnlcoy(f)o;;rl(;l]‘

= Tuple (background, coop), TX-level
= #4 Index Management
= Logical, physical pointers




Multi-Version Concurrency Control -ErLa!.

Version Storage

[Thomas Neumann, Tobias Muhlbauer, Alfons Kemper: | =
Fast Serializable Multi-Version Concurrency Control for
Main-Memory Database Systems. SIGMOD 2015]

= Example Hyper
= |n-place update, backward delta in UNDO buffer
= Almost no storage overhead (VersionVector), TX-local commit processing
= Newest-to-oldest (preference for fast analytical queries)

5
& .2
s &
o""\k\ ﬁ’b(\% Q'G‘O /"o,
S & Accounts & o _ _ _ %,
.\o'?' 6\2 \’bl’ Owner Bal & _ Vversion information stored in additional hidden column in base relation €
\\q}r’@g’ Q\é}‘ e‘_,— (indexes only store references, i.e., rowlDs, to records in base relations) ‘6
& . A %,
\(\’b Thomas 10 %, %, EA
—1 latest version in-place 0,/ N (}é
Larry 10 & ’/),-)> "’f,é 5
(0,0) If 0 | P physical before-image deltas (i.e., column values) © Y 3
' Aehs ! L1 /’ in undo buffers Sally=>Wendy ] I
’ " 3
Jud 10 ‘ =
y —’_7_@ / Undo lTuffer of Ty (Sally=>...) Sally=>Henry .':_' Rece nt y
| Tobias__||__J 10_ T Ty.Bal8 | | .
ilsaly || 7]t ¥ s 12 Committed
| S - 3
T m
Hanna || 10 -
(0,1) Hasso 10 z
Undo buffer of TS % o
Mike 10 - | 5 J‘fo b,
— [Ts,8al,9 | [T5,8al,10 | %, &,
Lisa 10 » A © 7 o
[ a
Betty 10 T4 | Readonly:Z z
o
: =
Cindy 10 Undo buffer of T3 T6 | Sally>Mike § Actlve TX
<+ : I
(2,5) Henry 11 [713,8al,10 | [73,Bal,10 5l | BERdenipie 8
Praveen 10 g'
1 w
Wendy l 11 « =
— — - Transfers

main-memory column-store

of 1 unit
Abort TX write-write conflicts on uncommitted changes
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Se r|a I |Za bi | |ty Va | |d atiOn [Thomas Neumann, Tobias Mihlbauer, Alfons

Kemper: Fast Serializable Multi-Version
Concurrency Control for Main-Memory

H . Database Systems. SIGMOD 2015
= (Extended) Precision Locking y ]

= Predicate logging: Instead of maintaining read-set, store read predicates of
index and table scan of validated T, in predicate tree (PT)

= Recap: Serializable: if EOT(T;) < BOT (T;) or WSet(T;) N RSet(Tj) =0Q
= Probe UNDO buffers (write set) of all T, against predicate tree

predicate space (for 4 predicates)

X Ps: Pl:
I1=1.7andB =15 I=1.6

MP\\ s and \

B between 10 and 20 B=15

Predicate Tree of T,

o Interest

(Y

1=1.6 x~ | B=15
| AND /\ // ::é:etween 1and.2
| between .1 and .2 1=1 1=17 04 ﬁi;‘l*«/ and
1< ] B between 10 and 20
0.14 —=2— TR y
1I0 2:3 Bal
. o . ) alance
Abort Ti if a single UNDO buffer’s intersection of point x ‘/ )
data point matches with predicate
\)_( X x/ x
2 undo buffers under validation

[1=0.13,B=14]
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G 3 rbage COl Iectio N [Yingjun Wu, Joy Arulraj, Jiexi Lin, Ran Xian, Andrew

Pavlo: An Empirical Evaluation of In-Memory Multi-
Version Concurrency Control. PVLDB 10(7) 2017]

= #1 Tuple-level mmm Tuple-level (VAC) mmm Tuple-level (COOP) Disabled
Garbage Collection e A
= Background vacuuming £ e T
. . 2 N DAVAS OO il Eaolh o DAAALeONS
= Cooperative cleaning 2 22 R/W:80/20 3 16l S R/W 20/80 o
on traversal) S S a— 60 80 100 120 T % Tm @ e @ w12
Elapsed time (s) Elapsed time (s)
m #2 Transaction-level mmm Tuple-level mmm Transaction-level Disabled
- — 75
= E.g., by epoch ﬁiiﬁfawmmwmwm Byl
g%l R/W:80/20 | %3, R/W: 20/80
" 00 20 40 60 80 100 120 g 00 20 40 60 80 100 120
Elapsed time (s) Elapsed time (s)
= Deferred Action Framework (DAF) [Ling Zhang et al: Everything is a Transaction: —

. Unifying Logical Concurrency Control and
| ]
Maintenance tasks for GC, plan cache Physical Data Structure Maintenance in

invalidation, data transformation Database Management Systems, CIDR 2021]
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[Xiangyao Yu, George Bezerra, Andrew Pavlo,
Srinivas Devadas, Michael Stonebraker: Staring into
the Abyss: An Evaluation of Concurrency Control
with One Thousand Cores. PVLDB 8(3) 2014]

Comparison (simulated)

14 T . .
- Read-only ] o—e DL DETECT a—a TIMESTAMP
S 12| o NO_WAIT o= o MVCC
Workload c 10l [oo_wam DE =+ 0CC
S
=z 8 == .
29 = _— Timestamp
o 4 P T Allocation
5 2t > gl i / =
o o _ﬂ;;/M
Foolee , , | |
0 200 400 600 800 1000
Number of Cores
- kAt . —~ 4.5r{e—e DL DETECT &—= TIMESTAMP}— . '
Write-intensive D 4ol |o—s NowaT  oe mvce . ¢l Abort
Workload 53522 WATDE 7 o« 1  Rates
. . o -
(medium contention) £ 39
s 2.5¢
= 2.0
£ 1.5f
(@]
3 1.0f Lock
c 0.5f .
F oole 1 [ g , __| Thrashing
0 200 400 600 800 1000

Number of Cores
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Overview Coordination Avoidance

= Overview

= Ensure application-level invariants and convergence instead of (serializability
vs weaker) with (different approaches)

With Transactions

[Peter Bailis, Ali Ghodsi, Joseph M.
Hellerstein, lon Stoica: Bolt-on causal
consistency. SIGMOD 2013]

[Peter Bailis et al.: Coordination —

Avoidance in Database Systems.
PVLDB 8(3) 2014]

[Peter Bailis: Coordination
Avoidance in Distributed Databases.
PhD UC Berkeley 2015]

706.543 Architecture of Database Systems — 11 Modern Concurrency Control
Matthias Boehm, Graz University of Technology, WS 2020/21

Without Transactions

[Peter Alvaro, Neil Conway, Joseph M.
Hellerstein, William R. Marczak:
Consistency Analysis in Bloom: a CALM and
Collected Approach. CIDR 2011]

[Peter Alvaro: Data-centric Programming for
Distributed Systems. PHD UC Berkeley 2015]

[Chenggang Wu, Jose M. Faleiro, Yihan Lin,
Joseph M. Hellerstein: Anna: A KVS for Any
Scale. ICDE 2018]

[Chenggang Wu, Vikram Sreekanti, Joseph
M. Hellerstein: Autoscaling Tiered Cloud
Storage in Anna. PVLDB 12(6) 2019]
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Summary and Q&A

TX Processing Background

Pessimistic and Optimistic Concurrency Control
Multi-Version Concurrency Control

= Excursus: Coordination Avoidance

Next Lectures (Part C)
= 12 [Jan 27]
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