
Univ.-Prof. Dr.-Ing. Matthias Boehm
Graz University of Technology
Computer Science and Biomedical Engineering
Institute of Interactive Systems and Data Science
BMK endowed chair for Data Management

4 Data Management WS20/21: Ex 04 – Large-Scale Data Analysis

Published: January 05, 2021
Deadline: January 26, 2021, 11.59pm

This exercise on large-scale data analysis aims to provide practical experience with distributed
data management and large-scale data analysis on top of Apache Spark. The expected result is
a zip archive named DBExercise04 <student ID>.zip, submitted in TeachCenter. The entire
exercise is extra credit for the course data management.

4.1 Apache Spark Setup (3/25 points)

As a preparation step, setup Apache Spark and necessary Hadoop client APIs inside an IDE
(integrated development environment) of your language choice. This exercise can be done with
the Spark language bindings Java, Scala, or Python. For example in Java, you include the
maven dependencies spark-core and spark-sql. On Windows, please download winutils.exe

from https://github.com/steveloughran/winutils/tree/master/hadoop-2.7.1/bin, put
it into a directory <some-path>/hadoop/bin, and create an environment variable HADOOP HOME=

<some-path>/hadoop. The input data for this exercise is available at https://mboehm7.github.
io/teaching/ws2021_dbs/input_data.zip (from Ex 3, based on the schema from Ex 2).

Partial Results: N/A (every submission receives these points).

4.2 Query Processing via Spark RDDs (10/25 points)

Spark’s basic abstraction for distributed collections are so-called Resilient Distributed Datasets
(RDDs). In this task, you should implement the queries Q02 and Q06 from Task 2.3 via RDD
operations, collect the results in the driver and print the result list to stdout. Please implement
these queries as two self-contained functions/methods executeQ02RDD() and executeQ06RDD()

that internally create a SparkContext sc, read the files via sc.textFile(), and use only RDD1

operations to compute the query results.

Partial Results: Source file QueriesRDD.*.

1https://spark.apache.org/docs/latest/rdd-programming-guide.html

1

https://mboehm7.github.io/teaching/ws2021_dbs/input_data.zip
https://mboehm7.github.io/teaching/ws2021_dbs/input_data.zip
https://spark.apache.org/docs/latest/rdd-programming-guide.html


4.3 Query Processing via Spark SQL (6/25 points)

Spark also provides the high-level APIs Dataframe and Dataset for SQL processing. In this
task, you should implement queries Q02 and Q06 from Task 2.3 via Dataset operations, and
write the outputs to JSON files out02.json and out06.json. Please implement these queries as
two self-contained functions/methods executeQ02Dataset() and executeQ06Dataset() that
internally create a SparkSession sc, read the inputs files via sc.read().format("csv"), and
use only SQL or Dataset operations to compute and write the query results. You might either
(1) register the individual input Datasets as temporary views and compute the results directly
via SQL, or (2) alternatively use the functional API of Datasets. Both specifications share a
common query optimization and processing pipeline.

Partial Results: Source file QueriesDataset.*.

4.4 Movie Recommendations (6 points)

Given the ratings table, first extract the user key UKey, movie key MKey, and rating, and then
train a movie recommendation model with matrix-factorization-based collaborative filtering
(e.g., alternating least squares) on top of Apache Spark. The basic idea is to train low-rank
factors U (number of users times rank) and V (rank times number of movies), that matrix
multiplied together approximate the ratings matrix UV ≈ X (for existing non-zero entries).
These factors then allow predicting the unknown movie ratings by a given user (or movie), and
pick the top-k movies for recommendation. You might implement the training procedure from
scratch or use existing Spark ML library algorithms. Finally, store the computed model.

Partial Results: Source file Recommendation.*.

2


	4 Data Management WS20/21: Ex 04 – Large-Scale Data Analysis
	4.1 Apache Spark Setup (3/25 points)
	4.2 Query Processing via Spark RDDs (10/25 points)
	4.3 Query Processing via Spark SQL (6/25 points)
	4.4 Movie Recommendations (6 points)


