

Data Management 11 Distributed Storage & Analysis

Matthias Boehm

Graz University of Technology, Austria Computer Science and Biomedical Engineering Institute of Interactive Systems and Data Science BMK endowed chair for Data Management

Last update: Jan 16, 2021

Announcements/Org

#1 Video Recording

- Link in TeachCenter & TUbe (lectures will be public)
- Optional attendance (independent of COVID)

#2 COVID-19 Restrictions

- Corona Traffic Light: RED
- Webex lectures until end of semester

cisco Webex

#3 Exercise Submissions

- **Exercise 1/2:** grading done, **Exercise 3:** in process
- Exercise 4: published Jan 05, deadline: Jan 26 11.59pm

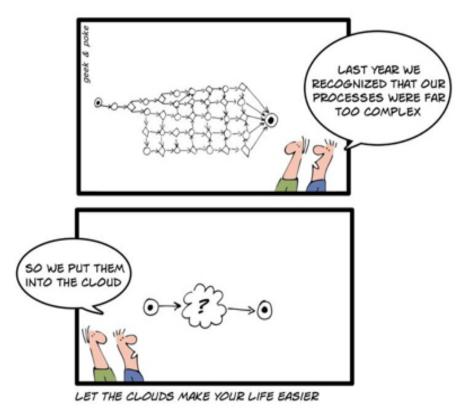
#4 Course Evaluation and Exam

- Evaluation period: Dec 15 Jan 31
- Exam date: Feb 12 (i13), 12.30-2.30pm, 3.30-5.30pm, 6.30-8.30pm

Agenda

- Cloud Computing Overview
- Distributed Data Storage
- Distributed Data Analysis

Data Integration and
Large-Scale Analysis (DIA)
(bachelor/master)



Cloud Computing Overview

Motivation Cloud Computing

Definition Cloud Computing

- On-demand, remote storage and compute resources, or services
- User: computing as a utility (similar to energy, water, internet services)
- Cloud provider: computation in data centers / multi-tenancy

Service Models

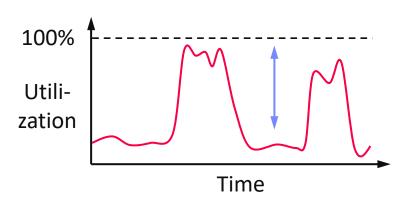
- laaS: Infrastructure as a service (e.g., storage/compute nodes)
- PaaS: Platform as a service (e.g., distributed systems/frameworks)
- SaaS: Software as a Service (e.g., email, databases, office, github)

→ Transforming IT Industry/Landscape

- Since ~2010 increasing move from on-prem to cloud resources
- System software licenses become increasingly irrelevant
- Few cloud providers dominate laaS/PaaS/SaaS markets (w/ 2018 revenue):
 Microsoft Azure Cloud (\$ 32.2B), Amazon AWS (\$ 25.7B), Google Cloud (N/A),
 IBM Cloud (\$ 19.2B), Oracle Cloud (\$ 5.3B), Alibaba Cloud (\$ 2.1B)

Motivation Cloud Computing, cont.

- Argument #1: Pay as you go
 - No upfront cost for infrastructure
 - Variable utilization over-provisioning
 - Pay per use or acquired resources



Argument #2: Economies of Scale

- Purchasing and managing IT infrastructure at scale → lower cost (applies to both HW resources and IT infrastructure/system experts)
- Focus on scale-out on commodity HW over scale-up → lower cost
- Argument #3: Elasticity
 - Assuming perfect scalability, work done in constant time * resources
 - Given virtually unlimited resources allows to reduce time as necessary

100 days @ 1 node

≈

1 day @ 100 nodes

(but beware Amdahl's law: max speedup sp = 1/s)

Characteristics and Deployment Models

Extended Definition

 ANSI recommended definitions for service types, characteristics, deployment models [Peter Mell and Timothy Grance: The NIST Definition of Cloud Computing, **NIST 2011**]

Characteristics

- On-demand self service: unilateral resource provision
- Broad network access: network accessibility
- Resource pooling: resource virtualization / multi-tenancy
- Rapid elasticity: scale out/in on demand
- Measured service: utilization monitoring/reporting

Deployment Models

- Public cloud: general public, on premise of cloud provider
- Hybrid cloud: combination of two or more of the above
- Community cloud: single community (one or more orgs)
- Private cloud: single org, on/off premises

MS Azure Private Cloud

IBM Cloud Private

Excursus: 1 Query/Minute for 1 Week

Experimental Setup

1GB TPC-H database, 4 queries on
 2 cloud DBs / 1 on-prem DB

[Tim Kiefer, Hendrik Schön, Dirk Habich, Wolfgang Lehner: A Query, a Minute: Evaluating Performance Isolation in Cloud Databases. TPCTC 2014]



Anatomy of a Data Center

Xeon E5-2440: 6/12 cores Xeon Gold 6148: 20/40 cores

Server:

Multiple sockets, RAM, disks

Rack:

16-64 servers + top-of-rack switch

Cluster:

Multiple racks + cluster switch

Data Center:

>100,000 servers

[Google Data Center, Eemshaven, Netherlands]

Fault Tolerance

[Christos Kozyrakis and Matei Zaharia: CS349D: Cloud Computing Technology, lecture, **Stanford 2018**]

Yearly Data Center Failures

- ~0.5 overheating (power down most machines in <5 mins, ~1-2 days)
- ~1 PDU failure (~500-1000 machines suddenly disappear, ~6 hrs)
- ~1 rack-move (plenty of warning, ~500-1000 machines powered down, ~6 hrs)
- ~1 network rewiring (rolling ~5% of machines down over 2-day span)
- ~20 rack failures (40-80 machines instantly disappear, 1-6 hrs)
- ~5 racks go wonky (40-80 machines see 50% packet loss)
- ~8 network maintenances (~30-minute random connectivity losses)
- ~12 router reloads (takes out DNS and external vIPs for a couple minutes)
- ~3 router failures (immediately pull traffic for an hour)
- ~dozens of minor 30-second blips for dns
- ~1000 individual machine failures (2-4% failure rate, at least twice)
- "thousands of hard drive failures (1-5% of all disks will die)

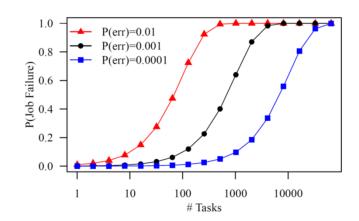
Fault Tolerance, cont.

Other Common Issues

- Configuration issues, partial SW updates, SW bugs
- Transient errors: no space left on device, memory corruption, stragglers

Recap: Error Rates at Scale

- Cost-effective commodity hardware
- Error rate increases with increasing scale
- Fault Tolerance for distributed/cloud storage and data analysis



→ Cost-effective Fault Tolerance

- BASE (basically available, soft state, eventual consistency)
- Effective techniques
 - ECC (error correction codes), CRC (cyclic redundancy check) for detection
 - Resilient storage: replication/erasure coding, checkpointing, and lineage
 - Resilient compute: task re-execution / speculative execution

Containerization

Docker Containers

- Shipping container analogy
 - Arbitrary, self-contained goods, standardized units

- Containers reduced loading times → efficient international trade
- #1 Self-contained package of necessary SW and data (read-only image)
- #2 Lightweight virtualization w/ shared OS and resource isolation via cgroups

Cluster Schedulers

- Container orchestration: scheduling, deployment, and management
- Resource negotiation with clients
- Typical resource bundles (CPU, memory, device)
- Examples: Kubernetes, Mesos, (YARN),Amazon ECS, Microsoft ACS, Docker Swarm

[Brendan Burns, Brian Grant, David Oppenheimer, Eric Brewer, John Wilkes: Borg, Omega, and Kubernetes. **CACM 2016**]

→ from machine- to applicationoriented scheduling

Example Amazon Services – Pricing (current gen)

Amazon EC2 (Elastic Compute Cloud)

- laaS offering of different node types and generations
- On-demand, reserved, and spot instances

	vCore	es	Mem		
m4.large	2	6.5	8 GiB	EBS Only	\$0.12 per Hour
m4.xlarge	4	13	16 GiB	EBS Only	\$0.24 per Hour
m4.2xlarge	8	26	32 GiB	EBS Only	\$0.48 per Hour
m4.4xlarge	16	53.5	64 GiB	EBS Only	\$0.96 per Hour
m4.10xlarge	40	124.5	160 GiB	EBS Only	\$2.40 per Hour
m4.16xlarge	64	188	256 GiB	EBS Only	\$3.84 per Hour

Amazon ECS (Elastic Container Service)

- PaaS offering for Docker containers
- Automatic setup of Docker environment

Amazon EMR (Elastic Map Reduce)

- PaaS offering for Hadoop workloads
- Automatic setup of YARN, HDFS, and specialized frameworks like Spark
- Prices in addition to EC2 prices

Pricing according to EC2

(in EC2 launch mode)

m4.large	\$0.117 per Hour	\$0.03 per Hour
m4.xlarge	\$0.234 per Hour	\$0.06 per Hour
m4.2xlarge	\$0.468 per Hour	\$0.12 per Hour
m4.4xlarge	\$0.936 per Hour	\$0.24 per Hour
m4.10xlarge	\$2.34 per Hour	\$0.27 per Hour
m4.16xlarge	\$3.744 per Hour	\$0.27 per Hour

Distributed Data Storage

Cloud Object Storage
Distributed File Systems

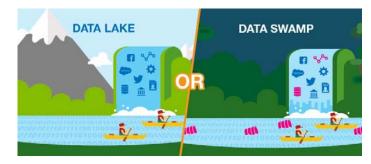
Data Lakes

Concept "Data Lake"

- Store massive amounts of un/semi-structured, and structured data (append only, no update in place)
- No need for architected schema or upfront costs (unknown analysis)
- Typically: file storage in open, raw formats (inputs and intermediates)
- Distributed storage and analytics for scalability and agility

Criticism: Data Swamp

- Low data quality (lack of schema, integrity constraints, validation)
- Missing meta data (context) and data catalog for search
- Requires proper data curation / tools According to priorities (data governance)



[Credit: www.collibra.com]

Excursus: Research Data Management

■ FAIR data principles: findable, accessible, interoperable, re-usable

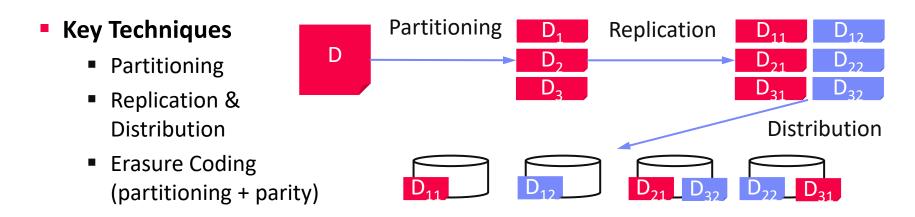
Object Storage

Recap: Key-Value Stores

- Key-value mapping, where values can be of a variety of data types
- APIs for CRUD operations; scalability via sharding (objects or object segments)

Object Store

- Similar to key-value stores, but: optimized for large objects in GBs and TBs
- Object identifier (key), meta data, and object as binary large object (BLOB)
- APIs: often REST APIs, SDKs, sometimes implementation of DFS APIs



Object Storage, cont.

Example Object Stores / Protocols

- Amazon Simple Storage Service (S3)
- OpenStack Object Storage (Swift)
- IBM Object Storage
- Microsoft Azure Blob Storage

Amazon S3

- Reliable object store for photos, videos, documents or any binary data
- Bucket: Uniquely named, static data container http://s3.aws-eu-central-1.amazonaws.com/mboehm-b1
- Object: key, version ID, value, metadata, access control
- Single (5GB)/multi-part (5TB) upload and direct/BitTorrent download
- Storage classes: STANDARD, STANDARD_IA, GLACIER, DEEP_ARCHIVE
- Operations: GET/PUT/LIST/DEL, and SQL over CSV/JSON objects

Hadoop Distributed File System (HDFS)

Brief Hadoop History

■ Google's GFS + MapReduce [ODSI'04]
 → Apache Hadoop (2006)

[Sanjay Ghemawat, Howard Gobioff, Shun-Tak Leung: The Google file system. SOSP 2003]

Apache Hive (SQL), Pig (ETL), Mahout/SystemML (ML), Giraph (Graph)

HDFS Overview

- Hadoop's distributed file system, for large clusters and datasets
- Implemented in Java, w/ native libraries for compression, I/O, CRC32
- Files split into 128MB blocks, replicated (3x), and distributed

hadooo Hadoop Distributed File System (HDFS) Name Data Data Data Data Data Node Node Node Node Node Node Node **Head Node** Worker Nodes (shared-nothing cluster)

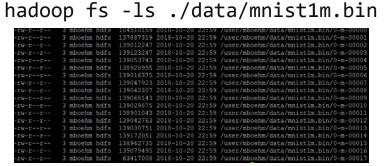
Hadoop Distributed File System, cont.

HDFS NameNode

- Master daemon that manages file system namespace and access by clients
- Metadata for all files (e.g., replication, permissions, sizes, block ids, etc)
- FSImage: checkpoint of FS namespace
- EditLog: write-ahead-log (WAL) of file write operations (merged on startup)

HDFS DataNode

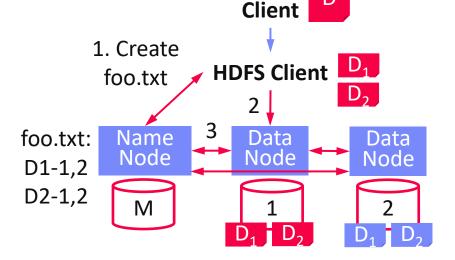
- Worker daemon per cluster node that manages block storage (list of disks)
- Block creation, deletion, replication as individual files in local FS
- On startup: scan local blocks and send block report to name node
- Serving block read and write requests
- Send heartbeats to NameNode (capacity, current transfers) and receives replies (replication, removal of block replicas)



Hadoop Distributed File System, cont.

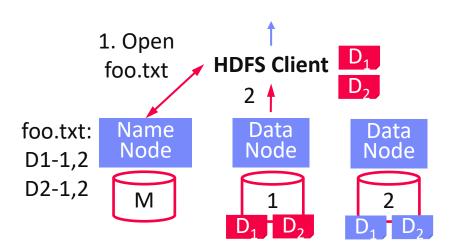
HDFS Write

- #1 Client RPC to NameNode to create file → lease/replica DNs
- #2 Write blocks to DNs, pipelined replication to other DNs
- #3 DNs report to NN via heartbeat



HDFS Read

- #1 Client RPC to NameNode to open file → DNs for blocks
- #2 Read blocks sequentially from closest DN w/ block
- InputFormats and RecordReaders as abstraction for multi-part files (incl. compression/encryption)



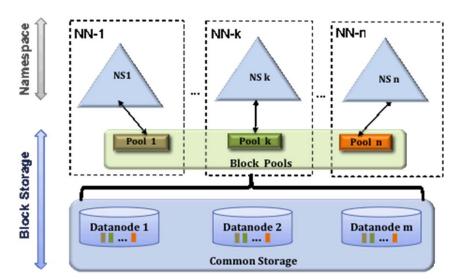
Hadoop Distributed File System, cont.

Data Locality

- HDFS is generally rack-aware (node-local, rack-local, other)
- Schedule reads from closest data node
- Replica placement (rep 3): local DN, other-rack DN, same-rack DN
- MapReduce/Spark: locality-aware execution (function vs data shipping)

HDFS Federation

- Eliminate NameNode as namespace scalability bottleneck
- Independent NameNodes, responsible for name spaces
- DataNodes store blocks of all NameNodes
- Client-side mount tables



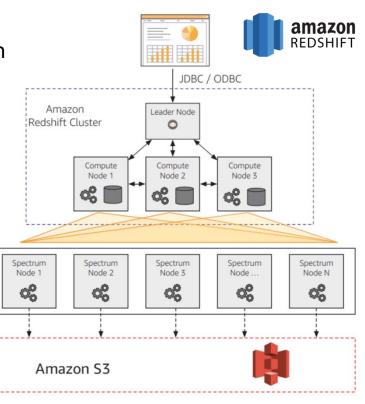
[Credit: https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/Federation.html]

Excursus: Amazon Redshift

- Motivation (release 02/2013)
 - Simplicity and cost-effectiveness (fully-managed DWH at petabyte scale)
- System Architecture
 - Data plane: data storage and SQL execution
 - Control plane: workflows for monitoring, and managing databases, AWS services
- Data Plane
 - Leader node + sliced compute nodes in EC2 with local storage
 - Replication across nodes + S3 backup
 - Query compilation in C++ code
 - Support for flat and nested files
- SimilarSystems

[Anurag Gupta et al.: Amazon Redshift and the Case for Simpler Data Warehouses. **SIGMOD 2015**]

[Mengchu Cai et al.: Integrated Querying of SQL database data and S3 data in Amazon Redshift. IEEE Data Eng. Bull. 41(2) 2018]



Distributed Data Analysis

Data-Parallel Computation (MapReduce, Spark)

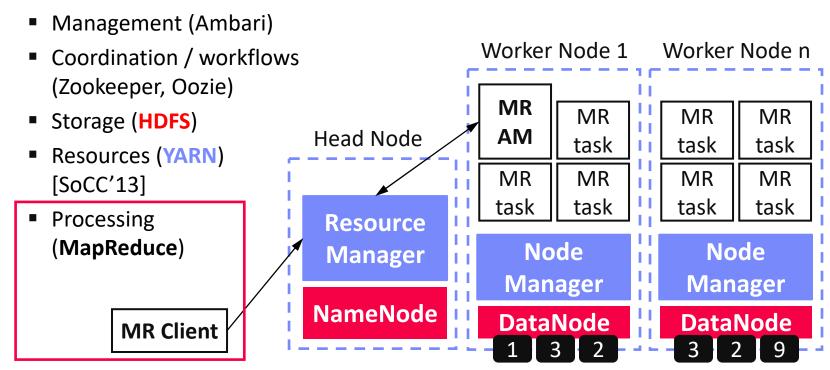
Hadoop History and Architecture

- Recap: Brief History
 - Google's GFS [SOSP'03] + MapReduce
 → Apache Hadoop (2006)

[Jeffrey Dean, Sanjay Ghemawat: MapReduce: Simplified Data Processing on Large Clusters. **OSDI 2004**]

Apache Hive (SQL), Pig (ETL), Mahout (ML), Giraph (Graph)

Hadoop Architecture / Eco System



Central Data Abstractions

#1 Files and Objects

- File: Arbitrarily large sequential data in specific file format (CSV, binary, etc)
- Object: binary large object, with certain meta data

#2 Distributed Collections

- Logical multi-set (bag) of key-value pairs (unsorted collection)
- Different physical representations
- Easy distribution of pairs via horizontal partitioning (aka shards, partitions)
- Can be created from single file, or directory of files (unsorted)

Key	Value
4	Delta
2	Bravo
1	Alpha
3	Charlie
5	Echo
6	Foxtrott
7	Golf

MapReduce – Programming Model

- Overview Programming Model
 - Inspired by functional programming languages
 - Implicit parallelism (abstracts distributed storage and processing)
 - Map function: key/value pair → set of intermediate key/value pairs
 - Reduce function: merge all intermediate values by key
- Example SELECT Dep, count(*) FROM csv_files GROUP BY Dep

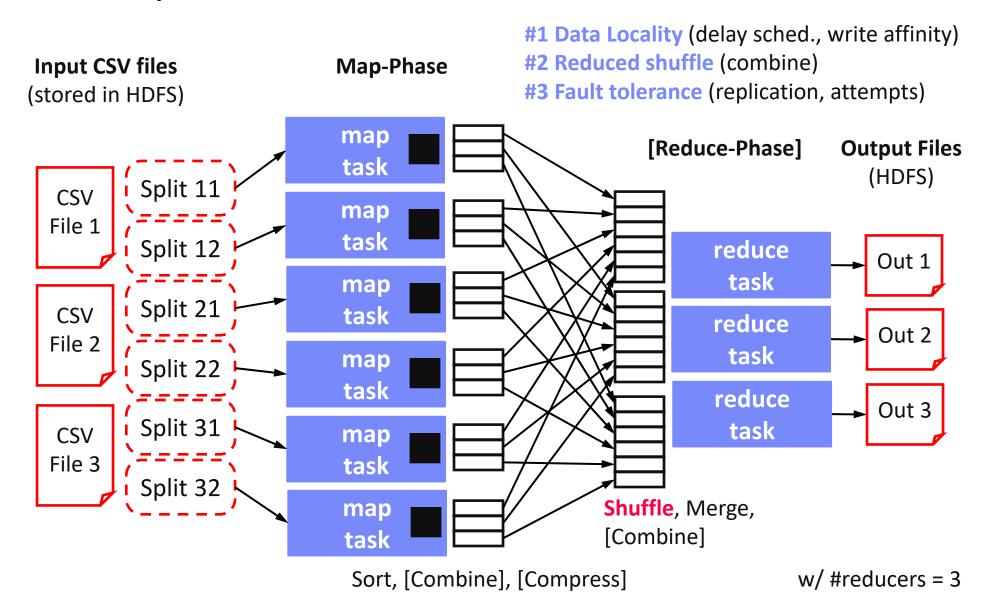
Name	Dep
X	CS
Υ	CS
Α	EE
Z	CS

Collection of key/value pairs

```
map(Long pos, String line) {
  parts ← line.split(",")
  emit(parts[1], 1)
```

CS	1
CS	1
EE	1
CS	1

MapReduce – Execution Model



Spark History and Architecture

Summary MapReduce

- Large-scale & fault-tolerant processing w/ UDFs and files → Flexibility
- Restricted functional APIs -> Implicit parallelism and fault tolerance
- Criticism: #1 Performance, #2 Low-level APIs, #3 Many different systems
- Evolution to Spark (and Flink)
 - Spark [HotCloud'10] + RDDs [NSDI'12] → Apache Spark (2014)

- Design: standing executors with in-memory storage, lazy evaluation, and fault-tolerance via RDD lineage
- Performance: In-memory storage and fast job scheduling (100ms vs 10s)
- APIs: Richer functional APIs and general computation DAGs, high-level APIs (e.g., DataFrame/Dataset), unified platform

→ But many shared concepts/infrastructure

- Implicit parallelism through dist. collections (data access, fault tolerance)
- Resource negotiators (YARN, Mesos, Kubernetes)
- HDFS and object store connectors (e.g., Swift, S3)

Spark History and Architecture, cont.

- High-Level Architecture
 - Different language bindings:
 Scala, Java, Python, R
 - Different libraries: SQL, ML, Stream, Graph
 - Spark core (incl RDDs)
 - Different cluster managers:
 Standalone, Mesos,
 Yarn, Kubernetes
 - Different file systems/ formats, and data sources:
 HDFS, S3, SWIFT, DBs, NoSQL

[https://spark.apache.org/] Spark GraphX Spark **MLlib** (machine (graph) SQL Streaming learning) **Apache Spark MESOS** Standalone **YARN** Kubernetes Apache MESOS 🚳 kubernetes

 Focus on a unified platform for data-parallel computation

Resilient Distributed Datasets (RDDs)

RDD Abstraction

Immutable, partitioned collections of key-value pairs

JavaPairRDD
 <MatrixIndexes,MatrixBlock>

- Coarse-grained deterministic operations (transformations/actions)
- Fault tolerance via lineage-based re-computation

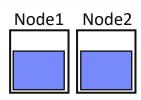
Operations

- Transformations: define new RDDs
- Actions: return result to driver

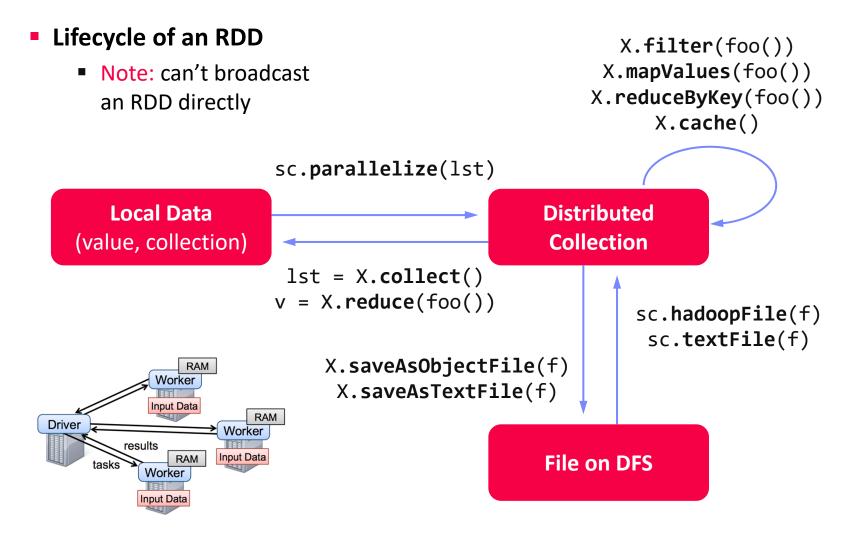
Туре	Examples
Transformation (lazy)	<pre>map, hadoopFile, textFile, flatMap, filter, sample, join, groupByKey, cogroup, reduceByKey, cross, sortByKey, mapValues</pre>
Action	<pre>reduce, save, collect, count, lookupKey</pre>

Distributed Caching

- Use fraction of worker memory for caching
- Eviction at granularity of individual partitions
- Different storage levels (e.g., mem/disk x serialization x compression)



Spark Resilient Distributed Datasets (RDDs), cont.



Partitions and Implicit/Explicit Partitioning

Spark Partitions

Logical key-value collections are split into physical partitions

~128MB

Partitions are granularity of tasks, I/O, shuffling, evictions

Partitioning via Partitioners

- Implicitly on every data shuffling
- Explicitly via R.repartition(n)

Example Hash Partitioning:

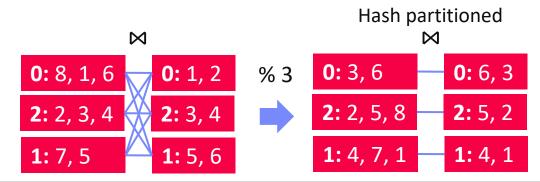
For all (k,v) of R: pid = hash(k) % n

Partitioning-Preserving

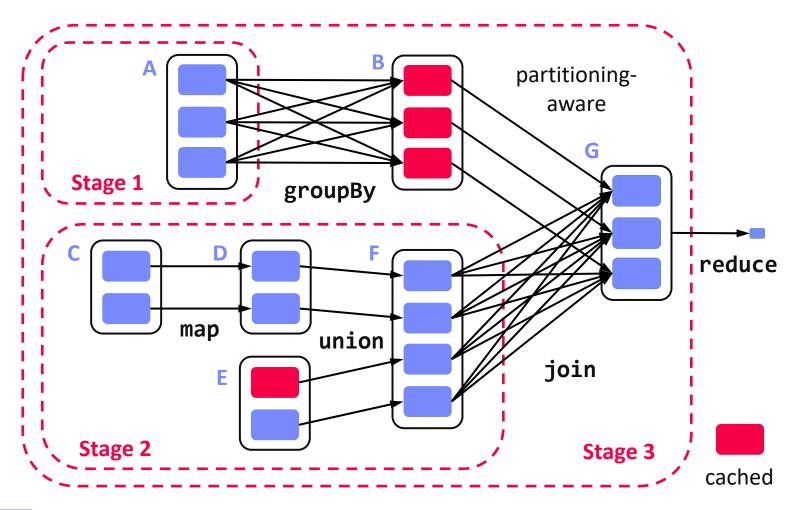
 All operations that are guaranteed to keep keys unchanged (e.g. mapValues(), mapPartitions() w/ preservesPart flag)

Partitioning-Exploiting

- Join: R3 = R1.join(R2)
- Lookups: v = C.lookup(k)



Spark Lazy Evaluation, Caching, and Lineage



[Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauly, Michael J. Franklin, Scott Shenker, Ion Stoica: Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing. **NSDI 2012**]

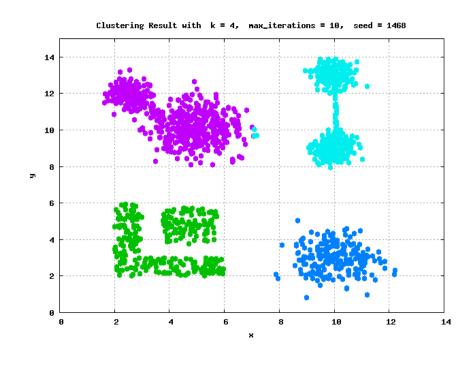
Example: k-Means Clustering

k-Means Algorithm

- Given dataset D and number of clusters k, find cluster centroids ("mean" of assigned points) that minimize within-cluster variance
- Euclidean distance: sqrt(sum((a-b)^2))

Pseudo Code

```
function Kmeans(D, k, maxiter) {
   C' = randCentroids(D, k);
   C = {};
   i = 0; //until convergence
   while( C' != C & i<=maxiter ) {
        C = C';
        i = i + 1;
        A = getAssignments(D, C);
        C' = getCentroids(D, A, k);
   }
   return C'
}</pre>
```



Example: K-Means Clustering in Spark

```
// create spark context (allocate configured executors)
JavaSparkContext sc = new JavaSparkContext();
// read and cache data, initialize centroids
JavaRDD<Row> D = sc.textFile("hdfs:/user/mboehm/data/D.csv")
  .map(new ParseRow()).cache(); // cache data in spark executors
Map<Integer, Mean> C = asCentroidMap(D.takeSample(false, k));
// until convergence
while( !equals(C, C2) & i<=maxiter ) {</pre>
  C2 = C; i++;
  // assign points to closest centroid, recompute centroid
  Broadcast<Map<Integer,Row>> bC = sc.broadcast(C)
  C = D.mapToPair(new NearestAssignment(bC))
       .foldByKey(new Mean(0), new IncComputeCentroids())
       .collectAsMap();
                                            Note: Existing library algorithm
                                     [https://github.com/apache/spark/blob/master/mllib/src/
return C:
                                    main/scala/org/apache/spark/mllib/clustering/KMeans.scalal
```

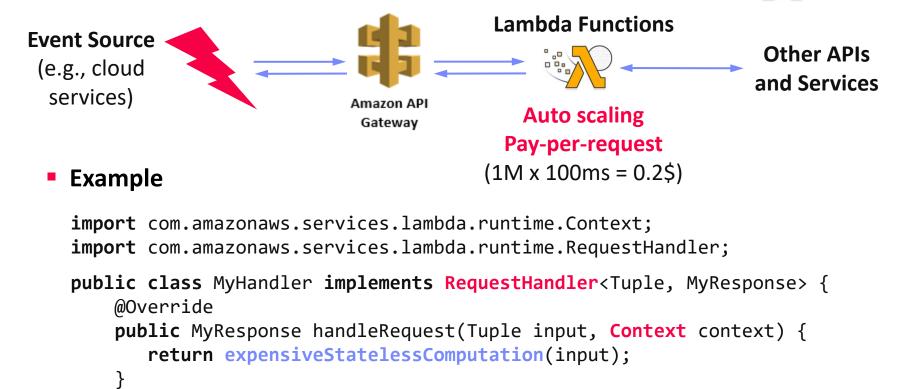

Serverless Computing

[Joseph M. Hellerstein et al: Serverless Computing: One Step Forward, Two Steps Back. CIDR 2019]

Definition Serverless

}

- FaaS: functions-as-a-service (event-driven, stateless input-output mapping)
- Infrastructure for deployment and auto-scaling of APIs/functions
- Examples: Amazon Lambda, Microsoft Azure Functions, etc



Conclusions and Q&A

- Cloud Computing Overview
- Distributed Data Storage
- Distributed Data Analysis
- Next Lectures (Part B: Modern Data Management)
 - 12 Data Stream Processing Systems [Jan 25]
 - Written Exam [Feb 12] 12.30-2.30pm, 3.30-5.30pm, 6.30-8.30pm

