TU

Grazm

SCIENCE
PASSION
TECHNOLOGY

Data Management
11 Distributed Storage & Analysis

Matthias Boehm

Graz University of Technology, Austria

Computer Science and Biomedical Engineering
Institute of Interactive Systems and Data Science
BMK endowed chair for Data Management

Last update: Jan 16, 2021 “ISDS

TU

Grazm

Announcements/Org

= #1 Video Recording ﬂ TU be

= Link in TeachCenter & TUbe (lectures will be public)
= QOptional attendance (independent of COVID)

= #2 COVID-19 Restrictions
= Corona Traffic Light: RED i L

cisco Webex
= \Webex lectures until end of semester

= #3 Exercise Submissions
= Exercise 1/2: grading done, Exercise 3: in process
= Exercise 4: published Jan 05, deadline: Jan 26 11.59pm

= #4 Course Evaluation and Exam -

= Evaluation period: Dec 15 - Jan 31
= Exam date: Feb 12 (i13), 12.30-2.30pm, 3.30-5.30pm, 6.30-8.30pm

INF.01017UF Data Management / 706.010 Databases — 11 Distributed Storage and Data Analytics .ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

TU

Grazm

Agenda

= Cloud Computing Overview

= Distributed Data Storage LAST YEAR W
o L BRECOSMIZED THAT OUR

= Distributed Data Analysis T EL u PROCESSES WERE FAR

\ ¢

Data Integration and
Large-Scale Analysis (DIA)
(bachelor/master)

SO WE PUT THEM
INTS THE CLOUD

LET THE CL-2DE MAKE YEUR LIFE EASIER

INF.01017UF Data Management / 706.010 Databases — 11 Distributed Storage and Data Analytics .ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

TU

Grazm

Cloud Computing Overview

INF.01017UF Data Management / 706.010 Databases — 11 Distributed Storage and Data Analytics
Matthias Boehm, Graz University of Technology, WS 2020/21

"ISDS

Cloud Computing Overview TU

Grazm

Motivation Cloud Computing

= Definition Cloud Computing
= On-demand, remote storage and compute resources, or services

= User: computing as a utility (similar to energy, water, internet services)
» Cloud provider: computation in data centers / multi-tenancy

= Service Models

= J|aaS: Infrastructure as a service (e.g., storage/compute nodes)
= PaaS: Platform as a service (e.g., distributed systems/frameworks)
= SaaS: Software as a Service (e.g., email, databases, office, github)

=» Transforming IT Industry/Landscape
= Since ~2010 increasing move from on-prem to cloud resources
= System software licenses become increasingly irrelevant

= Few cloud providers dominate laaS/PaaS/SaaS markets (w/ 2018 revenue):
Microsoft Azure Cloud (S 32.2B), Amazon AWS (S 25.7B), Google Cloud (N/A),
IBM Cloud (S 19.2B), Oracle Cloud (S 5.3B), Alibaba Cloud ($ 2.1B)

INF.01017UF Data Management / 706.010 Databases — 11 Distributed Storage and Data Analytics .ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

Cloud Computing Overview TU

Grazm

Motivation Cloud Computing, cont.

\
= Argument #1: Pay as you go 100% |-------Ro-mmm oo
= No upfront cost for infrastructure Utili
= Variable utilization =» over-provisioning zation

= Pay per use or acquired resources

Time
= Argument #2: Economies of Scale

= Purchasing and managing IT infrastructure at scale =» lower cost
(applies to both HW resources and IT infrastructure/system experts)

= Focus on scale-out on commodity HW over scale-up =» lower cost

= Argument #3: Elasticity 100 days @ 1 node
= Assuming perfect scalability, work done =
in constant time * resources 1 day @ 100 nodes

= Given virtually unlimited resources

_ (but beware Amdahl’s law:
allows to reduce time as necessary

max speedup sp = 1/s)

INF.01017UF Data Management / 706.010 Databases — 11 Distributed Storage and Data Analytics .ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

Cloud Computing Overview

TU

Grazm

Characteristics and Deployment Models

= Extended Definition

..) [Peter Mell and Timothy | =
= ANSI|I recommended definitions for service Grance: The NIST Definition of | ——
types, characteristics, deployment models Cloud Computing, NIST 2011]

= Characteristics
= On-demand self service: unilateral resource provision
= Broad network access: network accessibility
= Resource pooling: resource virtualization / multi-tenancy
= Rapid elasticity: scale out/in on demand
= Measured service: utilization monitoring/reporting

= Deployment Models

Public cloud: general public, on premise of cloud provider

Hybrid cloud: combination of two or more of the above
= Community cloud: single community (one or more orgs)

INF.01017UF Data Management / 706.010 Databases — 11 Distributed Storage and Data Analytics
Matthias Boehm, Graz University of Technology, WS 2020/21

MS Azure
Private Cloud

Private cloud: single org, on/off premises IBM Cloud Private

"ISDS

Cloud Computing Overview -I(;rE!l

ﬂ Excursus: 1 Query/Minute for 1 Week

= Experimental Setup

[Tim Kiefer, Hendrik Schon, Dirk Habich,
= 1GB TPC-H database, 4 queries on Wolfgang Lehner: A Query, a Minute:
2 cloud DBs / 1 on-prem DB Evaluating Performance Isolation in
Cloud Databases. TPCTC 2014]
35
Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 9 10’080 QS
30
CloudA
25 -
20 -
Relative 15 : =T o Day 4
execution 10 . b go=-T o
tlme 5 (‘e N - L 4‘"’”:‘.,.%;1 :
0 V —
Query 2 « Query 13 Query I7~ ~ _ - + Query 19
5 ; ¥ N X X =~ s
CloudB * L% X 2%x . x. % PO . T
0
Query 2 * Query 13 Query 17 + Query 19
5
On-prem
B S N
0
Query 2 « Query 13 Query 17 + Query 19
INF.01017UF Data Management / 706.010 Databases — 11 Distributed Storage and Data Analytics .ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

Cloud Computing Overview

TU

Grazm

ﬂ Anatomy of a Data Center

L

- e
= |k

¢

| ;

Processor | |

Commodity CPU:
Xeon E5-2440: 6/12 cores
Xeon Gold 6148: 20/40 cores Server:
Multiple sockets, Rack:
RAM, disks 16-64 servers +
top-of-rack switch
Data Center: ‘
>100,000 servers Cluster:

Multiple racks + cluster switch

[Google
Data Center,
Eemshaven,
Netherlands] &

TU

Cloud Computing Overview Graza

Fa U It TO I erance [Christos Kozyrakis and Matei

Zaharia: CS349D: Cloud Computing
Technology, lecture, Stanford 2018]

= Yearly Data Center Failures

~0.5 overheating (power down most machines in <5 mins, ~1-2 days)

~1 PDU failure (~500-1000 machines suddenly disappear, ~6 hrs)

~1 rack-move (plenty of warning, ~500-1000 machines powered down, ~6 hrs)
~1 network rewiring (rolling ~5% of machines down over 2-day span)

~20 rack failures (40-80 machines instantly disappear, 1-6 hrs)

~5 racks go wonky (40-80 machines see 50% packet loss)

~8 network maintenances (~30-minute random connectivity losses)

~12 router reloads (takes out DNS and external vIPs for a couple minutes)
~3 router failures (immediately pull traffic for an hour)

~dozens of minor 30-second blips for dns

~1000 individual machine failures (2-4% failure rate, at least twice)
~thousands of hard drive failures (1-5% of all disks will die)

INF.01017UF Data Management / 706.010 Databases — 11 Distributed Storage and Data Analytics .ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

TU

Grazm

Cloud Computing Overview

Fault Tolerance, cont.

= Other Common Issues
= Configuration issues, partial SW updates, SW bugs
» Transient errors: no space left on device, memory corruption, stragglers

1.0 —
—h— P(err)=0.01

= Recap: Error Rates at Scale
_|—®— P(err)=0.001
= Cost-effective commodity hardware —=— P(en}=0.000]
= Error rate increases with increasing scale

S
=)
1

P(Job Failure)
o
=S
|

= Fault Tolerance for distributed/cloud 02
storage and data analysis 00 - 4 . . | |
| 10 100 1000 10000
=>» Cost-effective Fault Tolerance # Tasks
- (basically , soft state,)

= Effective techniques
= ECC (error correction codes), CRC (cyclic redundancy check) for detection

= Resilient storage: replication/erasure coding, checkpointing, and lineage

= Resilient compute: task re-execution / speculative execution

INF.01017UF Data Management / 706.010 Databases — 11 Distributed Storage and Data Analytics .ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

Cloud Computing Overview -I(;rE!l

Containerization

= Docker Containers
= Shipping container analogy

= Arbitrary, self-contained goods,
standardized units

= Containers reduced loading times = efficient international trade
= #1 Self-contained package of necessary SW and data (read-only image)
= #2 Lightweight virtualization w/ shared OS and resource isolation via cgroups

= Cluster Schedulers [Brendan Burns, Brian Grant, David Oppen- =
_ _ _ heimer, Eric Brewer, John Wilkes: Borg, |=*
= Container orchestration: scheduling, Omega, and Kubernetes. CACM 2016]

deployment, and management =» from machine- to application-

= Resource negotiation with clients oriented scheduling
= Typical resource bundles (CPU, memory, device)

= Examples: Kubernetes, Mesos, (YARN), ;hadgmp

. <%
Amazon ECS, Microsoft ACS, Docker Swarm kubernetes Eig%

-

pache

MESOS

INF.01017UF Data Management / 706.010 Databases — 11 Distributed Storage and Data Analytics .ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

TU

Cloud Computing Overview Graza

Example Amazon Services — Pricing (current gen)

= Amazon EC2 (Elastic vcores Mem
Com pute Cloud) md.large 2 6.5 8 GiB EBS Only $0.12 per Hour
m4.xlarge 4 13 16 GiB EBS Only $0.24 per Hour
= laas offeri ng of different m4.2xlarge 8 26 32 GiB EBS Only $0.48 per Hour
node types and generations m4.4xlarge 16 535 64 GiB EBS Only $0.96 per Hour
u On-demand, reserved, and ma.10xlarge 40 1245 160 GiB EBS Only $2.40 per Hour
SpOt instances ma4.16xlarge 64 188 256 GiB EBS Only $3.84 per Hour

= Amazon ECS (Elastic Container Service)
= Paas offering for Docker containers (in EC2 launch mode)

= Automatic setup of Docker environment

= Amazon EMR (Elastic Map Reduce) -

= PaaS offering for Hadoop workloads md.xlarge

= Automatic setup of YARN, HDFS, and ™7
specialized frameworks like Spark m:Ong

= Prices in addition to EC2 prices :;mmze

$0.117 per Hour
$0.234 per Hour
$0.468 per Hour
$0.936 per Hour
$2.34 per Hour

$3.744 per Hour

INF.01017UF Data Management / 706.010 Databases — 11 Distributed Storage and Data Analytics

Matthias Boehm, Graz University of Technology, WS 2020/21

$0.03 per Hour
$0.06 per Hour
$0.12 per Hour
$0.24 per Hour
$0.27 per Hour

$0.27 per Hour

"ISDS

Distributed Data Storage

Cloud Object Storage
Distributed File Systems

INF.01017UF Data Management / 706.010 Databases — 11 Distributed Storage and Data Analytics
Matthias Boehm, Graz University of Technology, WS 2020/21

"ISDS

Distributed Data Storage -I(;rE!l

Data Lakes

= Concept “Data Lake”

= Store massive amounts of un/semi-structured, and structured data
(append only, no update in place)

= No need for architected schema or upfront costs (unknown analysis)
= Typically: file storage in open, raw formats (inputs and intermediates)
=>» Distributed storage and analytics for scalability and agility

= Criticism: Data Swamp

= Low data quality (lack of schema,
integrity constraints, validation)

DATA LAKE | DATA SWAMP

= Missing meta data (context) and
data catalog for search

-@-_ w o T w
|

=» Requires proper data curation / tools
q prop / [Credit: www.collibra.com]

According to priorities (data governance)

= Excursus: Research Data Management
= FAIR data principles: findable, accessible, interoperable, re-usable

Distributed Data Storage -ErLa!.

Object Storage

= Recap: Key-Value Stores
= Key-value mapping, where values can be of a variety of data types
= APIs for CRUD operations; scalability via sharding (objects or object segments)

= Object Store
= Similar to key-value stores, but: optimized for large objects in GBs and TBs
= Object identifier (key), meta data, and object as binary large object (BLOB)
= APIs: often REST APIs, SDKs, sometimes implementation of DFS APIs

= Partitioning g D, | g D, 1 D,
« Replication & | D. | | D, | Do,

Distribution Mribution

= Erasure Coding

(partitioning + parity) l@ @ lﬁ Iﬁ

INF.01017UF Data Management / 706.010 Databases — 11 Distributed Storage and Data Analytics .ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

= Key Techniques B Partitioning | Replication [N D

Distributed Data Storage -ErE!l

Object Storage, cont.

= Example Object Stores / Protocols

= Amazon Simple Storage Service (S3) Amason S3 (
= QOpenStack Object Storage (Swift) .
= |BM Object Storage

= Microsoft Azure Blob Storage

IBM Cloud
Object Storage

= Amazon S3
= Reliable object store for photos, videos, documents or any binary data

= Bucket: Uniquely named, static data container
http://s3.aws-eu-central-1.amazonaws.com/mboehm-bl

= Object: key, version ID, value, metadata, access control

= Single (5GB)/multi-part (5TB) upload and direct/BitTorrent download
= Storage classes: STANDARD, STANDARD _IA, GLACIER, DEEP_ARCHIVE
= QOperations: GET/PUT/LIST/DEL, and SQL over CSV/JSON objects

INF.01017UF Data Management / 706.010 Databases — 11 Distributed Storage and Data Analytics .ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

Distributed Data Storage -I(;rE!l

Hadoop Distributed File System (HDFS)

" Brief Hadoop HIStOl'y [Sanjay Ghemawat, Howard

n Google’s GFS + MapReduce [ODS|'04] Gobioff, Shun-Tak Leung: The
- Apache Hadoop (2006) Google file system. SOSP 2003]

= Apache Hive (SQL), Pig (ETL), Mahout/SystemML (ML), Giraph (Graph)

= HDFS Overview

= Hadoop’s distributed file system, for large clusters and datasets

= Implemented in Java, w/ native libraries for compression, 1/0, CRC32
= Files split into 128 MB blocks, replicated (3x), and distributed Client

/

sﬁz,}%mmp Hadoop Distributed File System (HDFS)

Da

Data

Node

Name Data ta ata Data
Node Node Node Nod Node
e~ e~ e~ e~

@

Head Node Worker Nodes (shared-nothing cluster)

INF.01017UF Data Management / 706.010 Databases — 11 Distributed Storage and Data Analytics .ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

Distributed Data Storage -I(;rla'!l

Hadoop Distributed File System, cont.

= HDFS NameNode hadoop fs -1s
= Master daemon that manages file system R '
namespace and access by clients

./data/mnistlim.bin

= Metadata for all files (e.g., replication,
permissions, sizes, block ids, etc)

= FSImage: checkpoint of FS namespace
= EditLog: of file write operations (merged on startup)

= HDFS DataNode
= Worker daemon per cluster node that manages block storage (list of disks)
= Block creation, deletion, replication as individual files in local FS
= On startup: scan local blocks and send block report to name node
= Serving block read and write requests

= Send heartbeats to NameNode (capacity, current transfers) and
receives replies (replication, removal of block replicas)

INF.01017UF Data Management / 706.010 Databases — 11 Distributed Storage and Data Analytics .ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

Distributed Data Storage TJ

Grazm

Hadoop Distributed File System, cont.
Client B

= HDFS Write 1 Create '

= #1 Client RPC to NameNode HDFS Client D
to create file = lease/replica DNs

= #2 Write blocks to DNs, pipelined ~ foo.txt: Node mea Nod
replication to other DNs D1-1,2 — —

= #3 DNs report to NN via heartbeat D2-1,2 - m m

= HDFS Read

= #1 Client RPC to NameNode 1. Open t
to open file > DNs for blocks HDFS Client IZW

= #2 Read blocks sequentially from f
closest DN w/ block foo.txt: Data Data
Node Node

INF.01017UF Data Management / 706.010 Databases — 11 Distributed Storage and Data Analytics .ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

foo.txt

foo.txt

» |nputFormats and RecordReaders D1-1,2
as abstraction for multi-part files D2-1,2
(incl. compression/encryption)

Distributed Data Storage

TU

Grazm

Hadoop Distributed File System, cont.

= Data Locality
= HDFS is generally rack-aware (node-local, rack-local, other)

» Schedule reads from closest data node

= Replica placement (rep 3): local DN, other-rack DN, same-rack DN

= MapReduce/Spark: locality-aware execution (function vs data shipping)

= HDFS Federation

Eliminate NameNode as
namespace scalability bottleneck

Independent NameNodes,
responsible for name spaces

DataNodes store blocks of
all NameNodes

Client-side mount tables

INF.01017UF Data Management / 706.010 Databases — 11 Distributed Storage and Data Analytics
Matthias Boehm, Graz University of Technology, WS 2020/21

Block Storage

I
I
I
I
I
I
1
NS1 :
I
I
I
I
I
I
1

Common Storage

[Credit: https://hadoop.apache.org/docs/current/hadoop-

project-dist/hadoop-hdfs/Federation.html]

"ISDS

Distributed Data Storage -ErLa!.

Excursus: Amazon Redshift [Anurag Gupta et al.: Amazon [——

Redshift and the Case for Simpler
Data Warehouses. SIGMOD 2015]

= Motivation (release 02/2013) [Mengchu Cai et al.: Integrated

= Simplicity and cost-effectiveness Querying of SQL database data

(fully-managed DWH at petabyte scale) and S3 data in Amazon Redshift.
IEEE Data Eng. Bull. 41(2) 2018]

= System Architecture . amazon
= Data plane: data storage and SQL execution REDSHIFT
= Control plane: workflows for monitoring, S {JDBE/ODBC ,,,,,,,,,,,,, :
and managing databases, AWS services éged?rfﬂizﬁﬂster i :
" Data Plane ey d : o
= Leader node + sliced compute nodes 1 INES e
in EC2 with local storage g B
= Replication across nodes + S3 backup Spectnum Spectrum Specnum Spectrum Spectrum
= Query compilation in C++ code “‘3 ‘g ‘g ‘g °3
= Support for flat and nested files N T o b besseniinong

.. _ Amazon S3 * :
= Similar Google Microsoft T i

S t BigQuery ﬁ
stems : =
y $H% snowflake %\’S

ar

Distributed Data Analysis

Data-Parallel Computation
(MapReduce, Spark)

INF.01017UF Data Management / 706.010 Databases — 11 Distributed Storage and Data Analytics
Matthias Boehm, Graz University of Technology, WS 2020/21

"ISDS

Distributed Data Analysis -I(;rE!l

Hadoop History and Architecture

[Jeffrey Dean, Sanjay
Ghemawat: MapReduce:
Simplified Data Processing on
Large Clusters. OSDI 2004]

G liEREED

= Recap: Brief History

= Google’s GFS [SOSP’03] + MapReduce
- Apache Hadoop (2006)

= Apache Hive (SQL), Pig (ETL), Mahout (ML), Giraph (Graph)

= Hadoop Architecture / Eco System

= Management (Ambari)

Worker Node1 Worker Node n

= Coordination / workflows

(Zookeeper, Oozie) :_ ________ 1| :_ ________ 1|
= Storage (HDFS) 2"“'; MR |I'[MR][MR ||
= Resources (YARN) - ———_—= task . task || task |

[SoCC’13] MR |[MR |, [MR |[MR |,
" Processing Resource task || task ||| task || task |,

r— R I I

Manager | Manager §
R lent Toe Bag
TEEY -- B EY -

Distributed Data Analysis -ErLa!.

Central Data Abstractions

= #1 Files and Objects
= File: Arbitrarily large sequential data in specific file format (CSV, binary, etc)
= Object: binary large object, with certain meta data

= #2 Distributed Collections Key

= Logical multi-set (bag) of key-value pairs

(unsorted collection) 4 Delta
= Different physical representations 2 Bravo
= Easy distribution of pairs 1 Alpha
via horizontal partitioning)
(aka shards, partitions) 3 Charlie
= Can be created from single file, 5 Echo
or directory of files (unsorted) 6 Foxtrott
7 Golf
INF.01017UF Data Management / 706.010 Databases — 11 Distributed Storage and Data Analytics .ISDS

Matthias Boehm, Graz University of Technology, WS 2020/21

Distributed Data Analysis

TU

Grazm

MapReduce — Programming Model

= Overview Programming Model

= |nspired by functional programming languages

= Implicit parallelism (abstracts distributed storage and processing)

= Example
X CS
Y CS
A EE
VA CS

Collection of
key/value pairs

function: key/value pair = set of intermediate key/value pairs
function: merge all intermediate values by key

SELECT Dep, count(*) FROM csv_files GROUP BY Dep
(Long pos, String line) {

parts <& line.split(“,”)
emit(parts[1], 1)

} cS 1 (String dep,
Iterator<Long> iter) {
S 1 total <& iter.sum();
EE 1 emit(dep, total)
} CS
CS 1
EE

Distributed Data Analysis -I(;rlagl

MapReduce — Execution Model

#1 Data Locality (delay sched., write affinity)

Input CSV files Map-Phase #2 Reduced shuffle (combine)
(stored in HDFS) #3 Fault tolerance (replication, attempts)

,m
co st
Filel | ,~~~~~ \

1 Split 12

\

/
\

[Reduce-Phase] Output Files
(HDFS)

/

reduce out 1

task 7
reduce out 2

f
csv | ! Spllt 21
\)

File 2 (- - T T T \
7 |\ Split 22 k
\

task 7

reduce Out 3
task

(
\
File 3

]
\
]

m
L

Shuffle, Merge,
[Combine]

N

Sort, [Combine], [Compress] w/ #reducers = 3

Distributed Data Analysis TJ

Grazm

Spark History and Architecture

= Summary MapReduce
= Large-scale & fault-tolerant processing w/ UDFs and files =» Flexibility
= Restricted functional APIs =» Implicit parallelism and fault tolerance
= Criticism: #1 Performance, #2 Low-level APIs, #3 Many different systems

= Evolution to Spark (and Flink)

= Spark [HotCloud’10] + RDDs [NSDI’12] = Apache Spark (2014) Spqﬁzz

= Design: standing executors with in-memory storage,
lazy evaluation, and fault-tolerance via RDD lineage

= Performance: In-memory storage and fast job scheduling (100ms vs 10s)

= APIs: Richer functional APIs and general computation DAGs,
high-level APIs (e.g., DataFrame/Dataset), unified platform

=» But many shared concepts/infrastructure
= Implicit parallelism through dist. collections (data access, fault tolerance)
= Resource negotiators (YARN, Mesos, Kubernetes)
= HDFS and object store connectors (e.g., Swift, S3)

TU

Distributed Data Analysis Graza

Spark History and Architecture, cont.

= High-Level Architecture https://spark.apache.org/]

Different language bindings:

Scala, Java, Python, R :
Spark MLIib

Different libraries:
SQL, ML, Stream, Graph

Spark core (incl RDDs)

Different cluster managers:

Yarn, Kubernetes
. N
formats, and data sources:

HDFS, S3, SWIFT, DBs, NoSQL SprK had@mp

nnnnn

o .
S MESOS kubernetes

Streamingl (machine
learning)

= Focus on a unified platform
for data-parallel computation

INF.01017UF Data Management / 706.010 Databases — 11 Distributed Storage and Data Analytics .ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

Distributed Data Analysis -ErLa!.

Resilient Distributed Datasets (RDDs)

= RDD Abstraction JavaPairRDD

collections of key-value pairs
= Coarse-grained deterministic operations (transformations/actions)
= Fault tolerance via lineage-based re-computation

= Operations

= Transformations: Transformation

map, hadoopFile, textFile,
flatMap, filter, sample, join,

define new RDDs (lazy) groupByKey, cogroup, reduceByKey,
= Actions: return cross, sortByKey, mapValues
result to driver Action reduce, save,
collect, count, lookupKey
= Distributed Caching Nodel Node2

= Use fraction of worker memory for caching ‘-\ ‘-\
= Eviction at granularity of individual partitions
= Different storage levels (e.g., mem/disk x serialization x compression)

INF.01017UF Data Management / 706.010 Databases — 11 Distributed Storage and Data Analytics .ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

Distributed Data Analysis -I(;rE!l

Spark Resilient Distributed Datasets (RDDs), cont.

"= Lifecycle of an RDD X.filter(foo())
= Note: can’t broadcast X.mapValues(foo())
an RDD directly X.reduceByKey(foo())
X.cache()

sc.parallelize(lst)

Local Data = Distributed
(value, collection) [Collection

1st = X.collect()
v = X.reduce(foo())

sc.hadoopFile(f)
sc.textFile(f)

X.saveAsObjectFile(f)
X.saveAsTextFile(f)

INF.01017UF Data Management / 706.010 Databases — 11 Distributed Storage and Data Analytics .ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

Distributed Data Analysis -ErLa!.

Partitions and Implicit/Explicit Partitioning

= Spark Partitions

= Logical key-value collections are split into physical partitions

~128MB
= Partitions are granularity of tasks, 1/0, shuffling, evictions
= Partitioning via Partitioners Example Hash Partitioning:
= |Implicitly on every data shuffling For all (k,v) of R:
= Explicitly via R.repartition(n) pid = hash(k) % n

= Partitioning-Preserving

= All operations that are guaranteed to keep keys unchanged
(e.g. mapValues (), mapPartitions() w/ preservesPart flag)

Hash partitioned

X
- B P5
A X

= Partitioning-Exploiting
= Join: R3 = R1.join(R2)

= Lookups:
v = C.lookup(k)

INF.01017UF Data Management / 706.010 Databases — 11 Distributed Storage and Data Analytics .ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

Distributed Data Analysis -I(;rE!l

Spark Lazy Evaluation, Caching, and Lineage

/’::__::__::__: _____________________ RN

/ l’ \ \\
[A partitioning- I
L aware !
I ! I

: I
| G |
I
1 Stagel :
| Tmm—m—m—————— I
: // —————————————————————
I
: : ¢ - .‘ | reduce
I

;|
L 3 |
: I :
;|
¥ s | |
: I
L 3] : o
\ Y Stage 2 J Stage3

\ N o o o o e o e e o e e e e e e -’ y

~ -7 cached

[Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy
McCauly, Michael J. Franklin, Scott Shenker, lon Stoica: Resilient Distributed Datasets: A
Fault-Tolerant Abstraction for In-Memory Cluster Computing. NSDI 2012]

Distributed Data Analysis -ErLa!.

Example: k-Means Clustering

= k-Means Algorithm

= Gjven dataset D and number of clusters k, find cluster centroids
(“mean” of assigned points) that minimize within-cluster variance

= Euclidean distance: sqrt(sum((a-b)"2))

|| Pseudo COde Clustering Result with k = 4, nax_iterations = 18, seed = 1468
function Kmeans(D, k, maxiter) { 1y
C¢ = randCentroids(D, k); ol
C={};
i = @; //until convergence b
while(C¢ != C & i<=maxiter) { s
C =C5
. . 6
1 =1+ 1;
A = getAssignments(D, C); a
c _ 4 .
C¢ = getCentroids(D, A, k); Nl
return C°¢ "o 2 y 5 s 10 12 14
INF.01017UF Data Management / 706.010 Databases — 11 Distributed Storage and Data Analytics .ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

Distributed Data Analysis -ErLa!.

Example: K-Means Clustering in Spark

// create spark context (allocate configured executors)
JavaSparkContext sc = new JavaSparkContext();

// read and cache data, initialize centroids

JavaRDD<Row> D = sc.textFile(“hdfs:/user/mboehm/data/D.csv*)
.map(new ParseRow()).cache(); // cache data in spark executors

Map<Integer,Mean> C = asCentroidMap(D.takeSample(false, k));

// until convergence
while(!equals(C, C2) & i<=maxiter) {
C2 = C; i++;
// assign points to closest centroid, recompute centroid
Broadcast<Map<Integer,Row>> bC = sc.broadcast(C)
C = D.mapToPair(new NearestAssignment(bC))
.foldByKey(new Mean(©), new IncComputeCentroids())

.collectAsMap();
} o .
Note: Existing library algorithm
return C; [https://github.com/apache/spark/blob/master/mllib/src/
main/scala/org/apache/spark/mllib/clustering/KMeans.scala]
INF.01017UF Data Management / 706.010 Databases — 11 Distributed Storage and Data Analytics .ISDS

Matthias Boehm, Graz University of Technology, WS 2020/21

Distributed Data Analysis TJ

Grazm

Se rve rI ess CO m p utl ng [Joseph M. Hellerstein et al: Serverless

Computing: One Step Forward, Two
Steps Back. CIDR 2019]

= Definition Serverless

= FaaS: functions-as-a-service (event-driven, stateless input-output mapping)
= |nfrastructure for deployment and auto-scaling of APls/functions
= Examples: Amazon Lambda, Microsoft Azure Functions, etc Jx) < >

Lambda Functions
Event Source 1 . Other APIs
.) I d P P Dnﬂuuﬂ@ . i
(e.g., clou - - \D - and Services

services hazon
) Aeatewﬁl Auto scaling
Pay-per-request
= Example (1M x 100ms = 0.25)

import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestHandler;

public class MyHandler implements RequestHandler<Tuple, MyResponse> {
@Override
public MyResponse handleRequest(Tuple input, Context context) {
return expensiveStatelessComputation(input);
}

TU

Grazm

Conclusions and Q&A

= Cloud Computing Overview
= Distributed Data Storage
= Distributed Data Analysis

= Next Lectures (Part B: Modern Data Management)

= 12 Data Stream Processing Systems [Jan 25]
= Written Exam [Feb 12] 12.30-2.30pm, 3.30-5.30pm, 6.30-8.30pm

INF.01017UF Data Management / 706.010 Databases — 11 Distributed Storage and Data Analytics .ISDS
Matthias Boehm, Graz University of Technology, WS 2020/21

